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Chapter 1

Electromagnetism

The central physical concept enabling magnetic bearing technology is that of magnetism.
This chapter provides a brief review of magnetism including ferromagnetism. These notes
were extracted from a very detailed and complete exposition by Lorrain and Corson1

1.1 Fundamental magnetic forces

The development follows a reasonably direct course. First, it is demonstrated that magnetic
fields are really a relativistic distortion of the electric field of a moving charge and the
resulting forces are obtained directly from Coulomb’s law, which was first reported in about
1785. It is then demonstrated that the typical drift velocities in conductors are small enough
to ignore the higher order relativistic terms. Next, it is shown that the force between two
conductors is due only to the magnetic effect: the forces due to the electric field (computed
in the stationary frame) cancel.

1.1.1 Lorentz force

Measured in a reference frame in which two charged particles are stationary, the force
between the two charged particles is given by the fundamental relationship known as
Coulomb’s law:

Fb2 =
QaQb

4��0r32
r2 (1.1)

wherer2 is the radial vector between the two particles, as measured in the charge frame
and�0 = 8:854� 10�12 Coul2/Joule-m is the permittivity of a vacuum.

Assume that the charged particles are moving in parallel relative to a stationary ob-
server. It can be shown through a straightforward application of the Lorentz transforms
that, in the observer’s frame of reference, the force acting on particlea by the charge of

1Lorrain, Paul and Corson, Dale,Electromagnetic Fields and Waves, W. H. Freeman and Company, San
Francisco, 1970.

1



2 CHAPTER 1. ELECTROMAGNETISM

particleb is observed as:

Fb1 =

QaQbr1

4��0r32
+ v � 
QaQbv � r1

4��0c2r32
(1.2)

where
 = 1=
p
1� (V=c)2. The first term is the expected effect due to the attraction

or repulsion of charges. The second term is a relativistic effect due to the motion of the
charged particles. It is customary to define the term

E
:
=


Qar1

4��0r32
(1.3)

as the electric field atb due to the charge ata and the term

B
:
=

Qav � r1
4��0c2r32

(1.4)

as the magnetic field atb due to the motion of the charged particlea. The combination of
coefficients1=�0c2 = �0 = 4� � 10�7 N/A2 is called thepermeabilityof a vacuum.

In this manner, the magnetic field is recognized to be simply a distortion of the electric
field as seen by the observer in the stationary system, due to relativistic effects. Since
the additional term arises from direct application of the Lorentz transforms, the effect is
referred to as the Lorentz force:

F = Q(E+ v �B) (1.5)

1.1.2 Conductors

A commonly encountered source of magnetic field is the motion of charge in a conductor,
referred to as electric current. In a conductor, it is assumed that the carrier charges (free
electrons) are uniformly distributed throughout the volume of the conductor and that the
conductor has a net charge of zero: it contains the same number of protons as electrons.
Let the volume density of carrier charges be calledq so that the total charge in a differential
volumedv is dQ = qdv. The electric current in the conductor is the rate at which charge
passes through a control surface. If these carrier charges have a velocity,v, then the total
current passing through a given section of the conductor is

I =

Z
S

v � nqda = q

Z
S

v � da = qAv (1.6)

in whichv is the mean carrier velocity, or the drift velocity. Thus, the drift velocity can be
computed from the current and the carrier density:

v =
1

qA
I (1.7)

In copper conductors, the maximum current density (current per unit cross sectional
area) which can be sustained without damage to the conductor is on the order of2 � 107
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A/m2. The free carrier charge density can be estimated from the atom density in copper.
Copper has an atomic mass of 63.5 AMU and a specific mass of 8.89 which implies that it
has about8:4�1022 atoms per cubic centimeter (recall Avogadro’s number of6:022�1023

atoms per mole.) Further, copper has only one electron in its outermost or valence shell.
Assuming that the single outer shell electron in elemental copper is the only one available
as a carrier electron in the conductor, then since each electron carries a charge of1:6�10�19
Coulombs, the carrier density,q, is about1:4� 1010 Coulomb/m3. Consequently, the drift
velocity is on the order of

v � 1

qA
I =

1

q
J =

2� 107Coul
sec m2

m3

1:4� 1010Coul
= 0:0014m/sec2

This represents an upper bound because: a) the assumed current density is an upper bound
and b) the assumed number of conduction electrons per atom is probably a lower bound.
Thus, the drift velocity is low enough that the Lorentz corrections to the radius in (1.4)
are neglible:
 = 1:0 to 15 significant digits. As a result, the termsE andB in (1.5) can
be computed non-relativistically for most problems in the design and analysis of magnetic
bearings.

Given the small magnitude of the drift velocity, it seems likely that no relativistic effects
would be discernable and that, therefore, the magnetic force would be negligible. However,
when considering the forces between two conductors, the forces produced by the electric
field of the electrons in one of the conductors areexactlycancelled by the forces produced
by the electric field of the protons because the conductor is electrically neutral. The protons
produce no magnetic (relativistic) effect because they are stationary relative to the reference
frame of the conductor. Thus, the remaining term which is relativistic is all that is detected.

As a point of comparison, the electric and magnetic forces acting on one moving point
charge due to the presence and motion of another point charge can be compared: is

jv�Bj
jEj � v2

c2

Thus, for charges moving at the speeds typical of conductors, the magnetic force is smaller
than the electric force by a factor of at least1023!

Of course, when the conductor itself is in motion, the bulk velocity of the conductor will
contribute to the magnetic field induced by the electrons, but in this case the protons will
also produce a magnetic field which will cancel that due to the conductor frame velocity of
the electrons. Consequently, even if the conductor is in motion, the magnetic field produced
is only that due to the current in the conductor. This is reasonable since one would not
expect to be able to generate a magnetic field simply bymovingan electrically neutral
conductor carrying no electric current.

1.1.3 Magnetic field due to a general distribution of moving charges

The magnetic field at a point in space due to the motion of any charges in its neighborhood
can be computed by treating (1.4) as the differential field due to a differential charge and
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then integrating over the entire volume enclosing the moving charges:

B =

Z
V

�0dQv � r
4�r3

(1.8)

Defining thecarrier charge density, q, as the amount of charge per unit volume (treating it
as no longer a discrete quantity), the termdQ is replaced withqdv:

B =

Z
V

�0qdvv� r
4�r3

(1.9)

Finally, thecurrent density, J, is defined as the product of the carrier charge density and its
local velocity:

J
:
= qv (1.10)

to produce theBiot–Savart law

B =
�0
4�

Z
V

J� r
r3

dv (1.11)

1.1.4 Maxwell’s Equations

From the previous definitions of the magnetic field (1.4) and the electric field (1.3), it is
possible (and fairly direct) to obtain Maxwell’s equations:

r �E =
q

�0
(1.12)

r� E = �@B
@t

(1.13)

r �B = 0 (1.14)

r�B = �0

�
J+ �0

@E

@t

�
(1.15)

or, in integral form, Z
S

E � ds = 1

�0

Z
V

qdv (1.16)

Z
S

B � ds = 0 (1.17)

in whichS is a closed surface surrounding a volumeV , andI
L

E � dl = � @

@t

Z
S

B � ds (1.18)

I
L

B � dl = �0

Z
S

�
Jm + �0

@E

@t

�
� ds (1.19)

in whichL is a closed path around an open surfaceS.
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Figure 1.1: Current carrying coil in a uniform magnetic field.

1.2 Magnetic force on a current carrying loop

An elementary problem of interest in understanding magnetic forces is that of the force
acting on a current carrying loop in a uniform magnetic field. Assume a planar, circular
loop of radiusr with currentI which is oriented so that its axis forms an angle� relative
to the magnetic field vector,B. Figure 1.1 illustrates the geometry. The force acting on a
differential element of the loop at an angle� can be computed using (1.5):

dF = dQ v �B (1.20)

The productdQv is equal to the current times the length of the differential element:

dQv = Idl (1.21)

to yield

dF = I dl�B (1.22)

Note that, in computing the force acting on the coil, we do not consider the interaction
between the current and itsownB field. Clearly, an electron cannot exert a force on
itself, but the other electrons comprising the overall current could (and do) exert a force
on any given electron. However, if the current is modelled as distributed over a finite
wire area and the net force acting on the wire due to the magnetic field generated by the
wire itself is computed, it is found to be zero. This should be no great surprise, because
while the average amplitude of theB field within the wire may be quite high, the
average orientation is zero. This is because the field induced by the current circulates
around the current. By contrast, an externally imposed field will not circulate around
the current and the average orientation (and magnitude) of the externally imposed field
will not be zero within the area of the wire.

Choosing a coordinate frame where theî vector is parallel toB, the axis of the coil lies in
the î � k̂ plane, and the center of the coil lies at the origin, we can componentiate these
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vectors and perform the computation:

B = Bî ; dl = r
�
cos � sin �î� sin�ĵ + cos� cos �k̂

�
d�

to obtain

dF = rBI
�
cos � cos �ĵ + sin�k̂

�
d�

The total force acting on the loop is obtained by integrating this expression through the
range of�:

F = rBI

Z 2�

0

�
cos� cos �ĵ + sin�k̂

�
d� = 0

That is, there is nonet force acting on a current carrying loop in auniformmagnetic field.
Later, it will be shown that a diverging magnetic field will produce a force on such a coil
and that this is what leads to the attractive or repulsive forces between magnets.

The differential moment acting on the loop is obtained by

dC = r� dF
in which the radius is

r = r
�
sin� sin �î + cos�ĵ + sin� cos �k̂

�
which provides

dC = r2BI
�
0:5 sin 2� sin2 �î� sin2 � sin �ĵ + 0:25 sin 2� sin 2�k̂

�
d�

The total moment is obtained by integrating:

C = r2BI

Z 2�

0

�
0:5 sin 2� sin2 �î� sin2 � sin �ĵ + 0:25 sin 2� sin 2�k̂

�
d�

(1.23)

= ��r2BI sin �ĵ
Thus, a positive rotation�ĵ produces a negative, or restoring, moment��r2BI sin �ĵ
(which is oriented along the same axis): the coil tends to align its axis with the magnetic
field.

Further, the magnetic field at the center of the coil due to the current in the coil can be
computed using (1.4):

B =

Z
L

�0
dQv � r
4�r3

=
�0I

4�r3

Z
L

dl� r

=
�0I

4�r

Z 2�

0

cos �î + sin �k̂ d�

=
�0I

2r

�
cos �î+ sin �k̂

�
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Themagnetic dipole moment,m, due to the motion of a charge distributionQ in a volume
V about a pointa is defined as

m
:
=

1

2

Z
V

ra � dQv (1.24)

For the present problem, the moving charge distribution is confined to the wire, so the
dipole moment is

m =
1

2

I
r� Idl

where the integration is taken around the coil loop. The dipole moment for this coil is
found to be

m = �r2I
�
cos �î+ sin �k̂

�
(1.25)

In terms of this dipole moment, the magnetic field at the center of the coil is thus

B =
�0
2�r3

m (1.26)

This field is aligned with the axis of the loop in the direction indicated by� in Figure 1.1.
Centering a set of spherical coordinates at the center of the coil with the� rotational coor-
dinate aligned with the symmetry of the coil, the spherical components of the field are:

BR =
�0
2�

jmj
R3

cos �

B� =
�0
4�

jmj
R3

sin �

in whichR is the distance from the center of the coil to the point of measurement and the
angle� is the angle between the axis of the coil and the radial vector to the measurement
point. Figure 1.2 shows the orientation of this axisymmetric field throughout the space
surrounding the coil. The lines simply connect adjacent vectors and the spacing between
the lines is an indication of the magnitude of the field: closely spaced lines indicate a high
magnitude.

When the coil is fully aligned with the external field, the coil’s field tends to reinforce
the external field, rather than cancelling it. Because this current carrying loop is both a
source of theB field as well as a sink of it, it is referred to as a magnetic dipole.

1.3 Ferromagnetism

Materials are made up of atoms and atoms have electrons which move in circular orbits and,
therefore, generate magnetic fields. In general, the magnetic fields are randomly oriented
and the aggregate effect is zero. However, inferromagneticmaterials, it is observed that
regions of the material exhibit coherence so that the motions of the electrons tend to be
so coordinated as to produce a net magnetic field. These regions are called themagnetic
domainsof the material.
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Figure 1.2: Magnetic field surrounding a current carrying coil.
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This behavior should, in a way, not be surprising. Assume that there are finite volumes
within the conductive material where electrons can travel freely without dissipation. If
so, then one free electron may tend to move in some motion around the surface of this
volume, forming a current carrying loop. This loop will generate a magnetic field and
tend to align any other such loops (electron trajectories) within the volume with itself.
The actual orientation of this aggregate motion would be determined by the geometric
details of the domain as well as the electrical properties of the boundary surface.

What distinguishes ferromagnetic materials from other materials, then, is the tendency
to exhibit these magnetic domains.

In order to see the significance of these domains, imagine them to be a collection of
current carrying coils, or dipoles, distributed throughout the volume of the material. In
the absence of any external fields, the dipoles are randomly oriented. One might object
by observing that the dipoles themselves generate a magnetic field in the material which
ought to produce some alignment. However, if the orientation of the dipoles is initially
random (made so by some superior effort) then the average magnetic field passing through
any volume of reasonable scale would be expected to be zero. Thus, absent any external
stimulus, the domains might be randomly oriented and would stay so. Further, noting that
the (initial) orientation of the domains is probably selected by random geometric and elec-
trical influences, it is reasonable to assume that, if the domains are rotated by application
of an external field and then the external field is removed, then they should tend to return
to their initial orientation. This suggests some sort of moment stiffness and conjures up a
picture of a collection of coils on gimbals with torsional springs acting at the gimbal axes
to return the coil orientation (dipole axis) to some nominal value in the absence of other
influences.

Suppose, now, that a magnetic field is imposed on such a material: perhaps it is placed at
the center of a large current carrying coil. If the domains maintained their initial, random
positions, then there would be no effect and the average magnetic field intensity at the
center of the external coil would be the same as if the material were not present. However,
if the domains align themselves with the field imposed by the coil, then there will be a
substantial increase in the field intensity throughout the volume of the material, relative to
what it would be if the domains were not aligned. Clearly, the softer the imagined gimbal
springs are made, the more the domains will tend to align themselves with the imposed
field and the more the field will be intensified.

For a single domain with an effective center field of

Bc =
�0I

2r

�
cos �î + sin �k̂

�
the moment due to the external field (aligned along theî axis) is

M = ��r2BI sin �ĵ
If we posit an initial alignment�0 and a gimbal stiffnessK, then the moment due to the
gimbal stiffness is

Mg = �K(� � �0)ĵ
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Figure 1.3: Coil center field strength as a function of applied field.

so that the equilibrium orientation is

M+Mg = 0 ) �r2BI sin � +K� = K�0

The net field at the center of the coil is the sum of that due to the coil itself and the externally
imposed field. Figure 1.3 shows the component of this field parallel to the imposed field as
a function of the imposed field forr = 0:001m, I = 3500A, �0 = �=2, and various values
of K. The significant features are that the field demonstrates substantial amplification at
low levels of applied field and demonstrates a saturation effect where the coil becomes fully
aligned with the applied field and further increases in the applied field produce only equal
gains in the center field.

This spring aligned gimballed coil model for the domains of a ferromagnetic material
is useful in that it provides some insight to the general properties of such materials. First, if
the spring is quite soft, the domains will align themselves with the external field quite easily,
producing a very high initial amplification of the field whereas if the spring is quite stiff, the
amplification is lower. This amplification effect is referred to as therelative permeabilityof
the material. Saturation is achieved when all of the domains in the material are completely
aligned with the external field. The amplitude of the added field is determined by the dipole
strength of the domains and is independent of the stiffness of the gimbal.

Thus, the saturation density and relative permeability are expected to be somewhat
unrelated properties of the material. In fact, there is some correlation: materials with very
high relative permeability tend to have lower saturation densities while materials with very
high saturation densities have more moderate relative permeabilities.

Ampére is credited with suggesting an internal model for ferromagnetic materials con-
sisting of a distribution of such small dipoles as shown in Figure 1.4. In this model, the
many internal dipoles are partially aligned to the applied magnetic field. The net effect of
the many current loops is an equivalent surface current, as indicated in Figure 1.4. This
equivalent surface current is related to the applied field: it is zero when the applied field is
zero, increases in proportion to the applied field until all of the domains are nearly aligned
and finally reaches a fixed value determined not by the applied field but by the strengths
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Figure 1.4: Internal model of a ferromagnetic material: many dipoles partially aligned with
the imposed field.

of the internal dipoles. The reason that the internal current loops can be represented by a
single surface current is that the effects of adjacent counterflowing currents within the vol-
ume of the material tend to cancel each other but, at the surface, no such cancellation takes
place. This model of ferromagnetic materials being equivalent to a surface current sur-
rounding the volume of the material is a powerful model, especially in treating permanent
magnets.

1.3.1 Hysteresis

The model described above for a ferromagentic material is entirely reversible: if a field is
imposed, the domains tend to align themselves with it, but once the field is removed, the
domains will return to their initial alignment. If the model for the gimbal spring is changed
from being a perfectly elastic spring to one with a tendency to yield at high stress, then
those domains which are rotated the most will not return to their original orientation after
removal of the aligning field, relaxing instead to some intermediate orientation.

1.3.2 Permanent magnets

A permanent magnet is simply a ferromagnetic material in which the orientation of the
dipoles is strongly fixed:K is very large at moderate temperature. The orientation of the
dipoles in a permanent magnet can be fixed by exposing the magnet to a strong aligning
field while the temperature is elevated. If the temperature is dropped while maintaining the
field, the new, aligned orientation is retained and the material is said to be magnetized. In
this manner, a permanent magnet can be modelled as an equivalent surface current offixed
magnitude: the extremely stiff alignment of the domains maintains the alignment of the
internal domains regardless of any imposed external magnetic field.
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1.4 Magnetic forces: field divergence

In Section 1.2, it was demonstrated that no net force acts on a circular current carrying
coil exposed to auniformmagnetic field,B. Suppose, however, that the field is circularly
uniform with axis coincident with the axis of the coil and that the field has a constant radial
component,Br, and a constant axial component,Ba, at every point on the coil. Such a field
can be established by placing another current carrying coil in a plane parallel to the subject
coil with its axis coincident to the subject coil’s axis. The field is described by:

B = Baî +Br cos �ĵ +Br sin�k̂ (1.27)

while the coil geometry is described by

dl = r
�
� sin�ĵ + cos�k̂

�
d� (1.28)

(the angular misalignment,�, of Figure 1.1 is equal to zero in this analysis.) The force,
then, is

F = �2�rBrIî (1.29)

What is signficant about this computation is that the force acting on the coil is due to the
radial component of the field, not the axial component. That is, the force acts orthogonal
to the useful component of the field.

1.4.1 Forces on a ferromagnetic disk

Suppose that a disk of ferromagnetic material is aligned with a current carrying loop, as
shown in Figure 1.5. The field from the current carrying loop will tend to align the domains
in the ferromagnetic disk, giving rise to an effective surface current,Is. This current is
essentially proportional to the axial component of the field imposed by the coil:

Is = �Ba;c

The force acting on the ferromagnetic disk is determined by the radial component of the
imposed magnetic fieldalone. To see that the field produced by the surface current itself
does not affect the force, recognise that, if the surface current were to arise but the external
coil were not present, no net force would act on the disk: otherwise the disk could push on
itself, particularly if it were a permanent magnet. Thus,

fa = �2�rBr;cIs = �2��rBr;cBa;c

Of course, regardless of the actual shape of the field developed by the external coil, the
strength of the radial component of the field is proportional to the strength of the axial
component2:

Br;c = �Ba;c

2 For points far from the center of the source coil, the ratio of radial to axial field is3r=2Z whereZ is the
axial separation between the source coil and the plane of the disk.
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Figure 1.5: Ferromagnetic disk in a magnetic field.

which produces the relationship

fa = �2���rB2
a;c

Thus, the axial force is related to the square of the strength of the axial component of
theappliedmagnetic field. However, this familiar dependency hides the job performed by
each component of the applied field:

1. the axial component of the applied field aligns the domains of the ferromagnetic
material, leading to a net surface current.

2. this surface current then interacts with the radial component of the applied magnetic
field according to the Lorentz force equation (1.5) to generate a force on the disk.

This scenario is important because it means that a ferromagnetic disk introduced to auni-
form magnetic field would experience no force. Further, a non-ferromagnetic disk intro-
duced to a field experiences no force because no surface currents are established: there are
no domains to align.

1.4.2 Definition ofH and �

Because analysis of forces acting on ferromagnetic bodies requires a distinction between
the field which would have been had the domains not aligned and the actual field, a quantity
distinct fromB is defined, called themagnetic field intensity:

H =
1

�0
Bc
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whereBc is the magnetic field which would arise in the absence of the ferromagnetic
material. The effect that imposing this fieldH on the ferromagnetic material has is to
orient the local dipole moments. Thus, a measure of the effect on the material is the average
dipole moment per unit volume:

M =mN

in whichm is theaveragedipole moment per domain andN is the number of domains
per unit volume. Although the dipole moments are, in reality, discrete,M is an expression
for a continuous quantity whose volume integral is the same as the vector sum of all of
the moments of all of the domains. Noting that the degree of alignment of the magnetic
domains is essentially proportional toBc and, therefore, toH, the magnetic susceptibility
of the material is defined by

M = �H

This represents a constitutive model for the magnetic material and is, as written, linear.
After a bunch of vector algebra, it can be shown that the magnetic field within the ferro-
magnetic material is given by

B = �0(H+M)

That is, it is the superposition of the imposed field intensityH and the induced field in-
tensityM. In this manner, sinceM is related toH by the linear constitutive law, the
relationship betweenB andH within the (assumed linear) ferromagnetic material is

B = �0(H+M) = �0(1 + �)H

The quantity1 + � is called therelative permeability, �r.

1.4.3 Maxwell’s stress tensor

A more rigorous computation of the forces acting on a ferromagnetic body in a magnetic
field is obtained using Maxwell’s stress tensor, which can be derived in the following man-
ner3. Assume that the domain currents can be represented as a net current density with
some distribution throughout the volume of the material. If the domains are uniformly
aligned then, by Amp`ere’s model, the current is entirely concentrated at the periphery of
the material. In any case, we can define an effective current density

JM = r�M

whereM is the volume differential dipole moment in the material. Further, if there are any
free currents in the volume, they lead to a non–zero curl inH:

JF = r�H
3These notes were lifted from Joe Keith’s dissertation.



1.4. MAGNETIC FORCES: FIELD DIVERGENCE 15

Given this, the total force acting on the ferromagnetic body is obtained through the volume
integral

F =

Z
(JM + JF )�B dv

or,

F =

Z
(r�H+r�M)�B dv

Since thetotal magnetic field (due to the imposed field and the domain alignment) is given
byB = �0 (H+M), this becomes

F =
1

�0

Z
(r�B)�B dv

Apply the vector identitiesI
(B �B)dS� 2

I
B(B � dS) = 2

Z
B� (r�B)dv � 2

Z
B(r �B)dv

and

(r�B)�B = �B� (r�B)

to obtain

F =
1

�0

I
B(B � dS)� 1

2�0

I
(B �B)dS� 1

�0

Z
B(r �B) dv

Gauss’ Law states that, for static fields or fields varying at a moderate rate,

r �B = 0

so that the last term disappears:

F =
1

�0

I
B(B � dS)� 1

2�0

I
(B �B)dS

This integration can be represented very compactly using Maxwell’s stress tensor, defined
in the absence of electric fields (E = 0) as:

Tij =
1

�0

�
BiBj � 1

2
ÆijB

2
ij

�

whereÆij = 1 if i = j andÆij = 0 if i 6= j. With this convenient device, the force can be
compactly expressed as

F =

I
T � dS
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Note that, if the magnetic field is perpendicular to the surface of the iron everywhere on the
surface, then the force becomes

F =
1

2�0

I
jBj2dS (1.30)

This perpendicularity obtains when the relative permeability of the magnet iron is very
high: this is the usual assumption made in computing the force on a ferromagnetic body.

Note that, as in the previous heuristic discussion of the ferromagnetic disk, the body
forces arise due to the Lorentz type interaction between the applied magnetic field and
the currents within the volume of the body – in this case, the equivalent domain currents.
In the sequel, computations of magnetic forces acting on ferromagnetic objects will be
accomplished using (1.30) since this form of the computation turns out to be very much the
most convenient one in magnetic systems with very high permeability materials.



Chapter 2

Magnetic Actuator Analysis

In analyzing the behavior of a magnetic actuator, the primary objective is to determine the
forces generated by the actuator in response to voltages applied to its coils and motion of
the actuated device. Once this analysis is well established, it can be used in the design of
actuators both in that it provides insight to the effects of the various design parameters and
in that the analysis can be used to evaluate design choices.

Generally, the analysis problem is: given the stator iron geometry and coil winding
configuration, the position of the rotor, and the currents in the stator coils, what forces are
applied to the stator. An associated question is: what is the electrical relationship between
voltages applied to the coils and the resulting currents? This question arises because, while
it is common to analyze the device as if the coil currents were known, they must be es-
tablished by a power amplifier of some sort. The power amplifier applies a voltage time
history to the coils of the actuator in an attempt to establish the desired (assumed) coil cur-
rents. How this is accomplished and what requirements it places on the amplifier depends
upon the desired time history of the coil currents and upon the electrical characteristics of
the actuator.

The analysis of the coil/geometry – force relationship and of the electrical properties is
generally done using a fairly simple one–dimensional representation of the magnetic struc-
ture of the actuator. This approach is referred to as magnetic circuit analysis. Analagous to
electrical circuit analysis, the approach models the iron elements as essentially waveguides
for the magnetic fields established by the actuator coils. As such, the analysis tends to miss
some effects – especially that part of the magnetic field which lies outside of the iron of the
actuator. It also assumes field uniformity within large elements of the actuator. By making
the assumptions that give rise to these errors, the analysis becomes very simple and quick,
making it suitable for analytic evaluation and rapid design iteration.

In the end, predictions made with a magnetic circuit analysis should be checked using
a more detailed approach like finite element analysis. Such tools are more cumbersome to
use, but allow examination of detail issues in the design of the actuator which cannot be
revealed by the circuit analysis. Finite element analyis can also accurately account for the
magnetic field which lies outside of the iron and thereby properly account for its effect on
the actuator forces and electrical properties.

17
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Table 2.1: Physical Quantities
B magnetic flux density Tesla T
� magnetic flux Tesla-meter2 Tm2

� permeability Tesla-meter per Ampere Tm/A
�r relative permeability –
H magnetomotance Amperes per meter A/m
` length meters m
f force Newtons N
� electrical conductivity mhos-meter (
 m)�1

J current density Amperes/meter2 A/m2

I current Amperes A
permeability of free space:�0 = 4� � 10�7Tm/A

2.1 Magnetic forces

As developed in the preceding Chapter, the force acting on a body due to the magnetic field
in which it is immersed can be computed using Maxwell’s stress tensor:

f =

Z
s

Z
T � da � 1

2�0

Z
s

Z
jBj2da

This approximation is good if rotor material is highly permeable: the source of error comes
from that component of the magnetic field which is not orthogonal to the surface of the
ferromagnetic body.

Thus, in order to computef , the magnetic field,B, must be known everywhere on the
surface of the body.

2.2 Material properties: constitutive law

Magnetic materials exhibit a flux density in response to an imposed magnetomotance:

B(t) = �(t; H; :::)H(t)

whereB andH are vectors and� is a tensor. For isotropic materials at low frequencies,�
is diagonal with all elements the same so that

B(t) k H(t) ) B = �H

2.2.1 Initial Hysteresis Curve

Permeability is the slope ofBH the curve. The initial permeability is low, the center
permeability is high, and the asymptotic permeability is�o. The assymptotic behavior
is calledsaturation: a loss of permeability at highB (H). This occurs because all of the
magnetic domains in the ferromagnetic material have become aligned with the applied field
and the material can no longer amplify the applied field.

The shape of theB �H curve is described by the magnetic model.
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Figure 2.1: Silicon Iron:B vsH

Table 2.2: Typical Saturation Densities
material Bsat (Tesla)
3% Silicon Iron � 1:2� 1:6
Vanadium Permendur, Hyperco� 2:2� 2:4
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Simplest

B = �H

Add saturation

B =

8<
:

Bsat : �H > Bsat

�H : �Bsat< �H < Bsat

�Bsat : �H < �Bsat

Use smoothBH curve

B = �o(1 + �r(H))H

In addition to the static shape of theB � H curve, the magnetic model can describe the
dynamic properties of the relationship:

eddy current effects in a non–rotating system can be described through a frequency de-
pendent permeability.

B = �fd(s)H : �fd(s) = �

"
tanh

�p
s��d

2

�
p
s��d

2

#

hysteresis makes theB �H relationship multivalued:

-

6

H

B

2.3 Field governing equations (Maxwell)

1. magnetomotance:

r�H = J

2. conservation of flux:

r �B = 0
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Simplification: Assume that all of the flux lies in a plane and that all of the current flows
perpendicular to that plane:

J
j

B

7

2.3.1 Magnetomotance

Z
A

r�H � da =
Z
A

J � da

(Green’s theorem) Z
A

r�H � da =

I
H � d`

(2D) I
H � d` =

Z
A

Jda

Lumped Model: Magnetomotance

I
H � d` =

Z
A
Jda

Assume:

� pathd` parallel toH

� path can be broken intons segments whereH is constant

� J is confined to electromagnet coils

� J is uniform innc coils
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Ampére’s loop law:

nsX
i=1

Hi`i =
ncX
i=1

NiIi (JA = NI)

Finally, assume that the permeability is constant in each segment:

Bi = �iHi

to get

nsX
i=1

Bi`i
�i

=
ncX
i=1

NiIi

Be careful about sign conventions. If the loop is taken in a clockwise direction, then the currents
are assumed positive passing into the analysis plane and the fluxesB are assumed positive in the
direction of the integration.

2.3.2 Conservation of Flux

r � B = 0

In integral form:

Z
s

Z
B � da = 0

Lumped Model: assume that the perimeter can be broken intonp discrete patches:B is perpendic-
ular to each patch

npX
i=1

Z
Ai

Bida = 0

further,B is uniformover each perimeter patch

Z
Ai

Bida = BiAi = �i

Finally,

npX
i=1

�i = 0

Be careful about signs: it is assumed that the integral is performed over a solid volume and thatda
is an outward directed normal to the surface. Therefore, the convention in the summation is that a
positive�i is directedout of the volume.
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2.4 Lumped Model: Forces

f =
1

2�0

Z
s

Z
jBj2da

Assume:

� surface can be broken intona patches

� B is constant in each of these patches

f =
1

2�0

naX
i=1

B2
iAi

whereAi is anoutwarddirected normal to the surface patch with magnitude equal to its area.

2.4.1 Zero Leakage – Circuit Model

It is common to assume, for high permeability magnetic structures with SMALL air gaps, that all
flux is confined to the iron and the gap volumes.

�
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x
-

This means that test volumes for flux conservation consider only fluxes travelling within the material
and are typically placed at junctions in the structure where flux has a multiple possible directions.
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2.5 Calculation of Forces: simplest

����������
?
6

g

N; I

@@R

Ag

? 6

Ampére’s loop law:

B1`1
�1

+
B2`2
�2

+
Bg1`g1
�g1

+
Bg2`g2
�g2

= NI

Conservation of flux, assuming constant areas:

B1 = B2 = Bg1 = Bg2 = B

Assumeinfinite permeability

`1
�1
;
`2
�2
� `g

�g
�g = �o

2
B`g
�g

= NI ) B =
�oNI

2g

f =
1

2�0

naX
i=1

B2
iAi

Since we assume zero leakage, external flux only appears in gap areas:

f =
2B2Ag

2�0
=
B2Ag

�0

Substitute previous solution forB:

B =
�oNI

2g

to obtain

f =
�oN

2I2Ag

4g2

2.5.1 Simple example

Assume that the coil carries 100 turns of wire, that the width of each air gap is 1 cm, that the air
gap length is 0.5 mm, and that the thickness of the structure (into the plane) is 2 cm. In this case,
g = 0:0005m andAg = 0:0002 m2. As usual,�0 = 4� � 10�7N/A2. Thus, the force is

f =
4� � 10�71002I20:0002

40:00052
= 2:51I2
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Figure 2.2: Opposing magnets: a push–pull arrangement.

Assuming that the material is silicon iron, saturation occurs whenB � 1:6:

B =
�oNI

2g
= 1:6 ) Isat=

2gBsat

�0N
= 12:73A

so that the maximum force which the actuator can attain is about

fmax = 2:51 � 12:732 = 406:9N

Since the total gap area is 0.0004 m2, this corresponds to an effective “magnetic pressure” of
406.9/0.0004 = 1.02 MN/m2 = 1.02 MPa. In English units, this becomes 147.5 PSI. Thus, for
silicon iron assuming a saturation density of 1.6 Tesla, the maximum magnetic pressure is about 1
MPa or 148 PSI.

2.6 Linearization

The device described in the preceding section can generate force only in the upward direction. Such
an arrangement can be usable if the gravitational acceleration provides sufficient downward force
to meet the system’s dynamic requirements. In most applications, or where the orientation of the
actuator is horizontal, this is not adequate and a pair of opposed magnets are used in combination
to provide forces in either direction. The scheme is indicated in Figure 2.2.

The net force generated by this scheme is

f =
�oN

2Ag

4

�
I21

(go � x)2
� I22

(go + x)2

�

As a matter of convenience, introduce bias linearization:

I1 = max(Ib + ip; 0)

I2 = max(Ib � ip; 0)
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Why limit I1, I2 � 0? Recall definition ofIsat:

Bsat=
�oNIsat

2go

SupposeIb = �Isat. Maximum upper force is reached when

I1 = Isat ) ip = Isat(1� �)

at this condition,

I2 = �Isat� (1� �)Isat= (2�� 1)Isat

Net force is

fmax =
�oN

2Ag

4go

�
I2sat� I22

�
Clearly, the best solution is to haveI2 = 0 whenI1 = Isat. If � < 0:5 thenI2 reaches zerobefore
I1 reachesIsat: clampI2 at zero. If� > 0:5 thenI2 is still positive whenI1 reachesIsat.

f =
�oN

2Ag

4

�
(Ib + ip)

2

(go � x)2
� (Ib � ip)

2

(go + x)2

�
: jipj < Ib

Linearize about operating point,x = x0 ip = ip;0:

f = f jx=x0;ip=ip;0 +
@f

@ip

����
x=x0;ip=ip;0

(ip � ip;0) +
@f

@x

����
x=x0;ip=ip;0

(x� x0) + : : :

Define “actuator gain”:

Ki
:
=

@f

@ip

����
x=x0;ip=ip;0

and “open loop stiffness”:

Kx
:
= � @f

@x

����
x=x0;ip=ip;0

so that

f = f0 +Ki(ip � Ip;0)�Kx(x� x0) + : : :

2.6.1 Actuator Gain – usex0 = 0

Ki
:
=

@f

@ip

����
x=x0;ip=ip;0

=
�0N

2Ag

4g20
(2(Ib + ip)(+1) � 2(Ib � ip)(�1))

=
�0N

2IbAg

g20
(2.1)

Actuator gain increases in proportion to bias current, inversely with gap squared.
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In terms of flux density:

Bb =
�0NIb
2g0

) Ib =
2g0Bb

N�0

so that

Ki =
�0N

2Ag

g20

2g0Bb

N�0
=

2NBbAg

g0
(2.2)

These terms are more fundamental and give a direct indication of sensitivities: increased actua-
tor gain comes from increased bias density or reduced gap.

Ampere-Turns: Comments

The magnetomotive force is generated by the electromagnet coil(s).

These coils are created by winding wire around a form. If small wire is used, then
many turns can be put into 1 cm2 whereas if large wire is used, then only a few turns
can be put into the same space.

It turns out that the total copper area per coil area is about constant. This is so because
small wire has thinner insulation than large wire. As a result, for a given coil area, the
area of copper is nearly independent of the number of turns. For commercial windings,
the ratio of copper area to coil area is about 0.5. The limit is about 0.7.

Wire performance is limited, thermally, in terms of the currentdensityit can carry:
small wire carries a small current and large wire carries a large current. Generally, this
limit is about 600 A/cm2.

Thus, for a given coil area, the maximum available magnetomotance is a fixed number
of Ampere-turns, no matter what wire size or number of turns is used:

NImax � 600 � 0:5Ac = 300Ac

Force is related to:

� actuator gain times current (amps):f = Kiip

or

� actuator gain divided by turns times ampere turns:f = Ki
N Nip

Ki

N
=

2BbAg

g0
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2.7 Open Loop Stiffness – usex0 = 0

Kx
:
= � @f

@x

����
x=x0;ip=ip;0

= ��0N
2Ag

4

�
(�2)(Ib + ip;0)

2

(g0 � x0)3
(�1)� (�2)(Ib � ip;0)

2

(g0 + x0)3
(+1)

�

= ��0N
2Ag

g30

�
I2b + i2p;0

�
(2.3)

Open loop stiffness isnegativeand increases with increased bias current or reduced gap.
In terms of bias flux density (letip;0 = 0):

Kx = �4B2
bAg

�og0
(2.4)

2.8 Force Slew Rate

����dfdt
����
max

� Ki

����didt
����
max

(ingore nonlinear terms, effect ofKx)
Current slew rate: ����didt

����
max

� Vmax

L

(ignore coil resistance)
Coil inductance:

L = N
d�

di
= NAg

dB

di
=
N2Ag�o

2g0

Available slew: ����dfdt
����
max

=
2IbVmax

g0
=

2�IsatVmax

g0

Usually, chooseIsat= Imax for the amplifier
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Figure 2.3: Typical 8–pole radial actuator.

2.9 Design Tradeoffs

Open–loop stiffness is undesirable, actuator gain is desirable:

Kx

Ki=N
= �2Bb

�0
= �2�Bsat

�0

This says that largeBb or � is bad.
However, available slew rate:����dfdt

����
max

=
2IbVmax

g0
=

2�IsatVmax

g0

For a given amplifier, want large� and small gap.

2.10 Generalize

� stators often single piece – no discrete “horse shoes”

� one stator may provide several force components

� stator may be highly cross–coupled

1. identify number of flux densities to find:nb

2. identify independent flux loops:nl

3. account for all current linked by each loop
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coil coil
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Figure 2.4: Typical 4–pole thrust actuator.
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Figure 2.5: Homopolar radial actuator
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4. identify independent flux conservation nodes:nn

5. should havenn + nl = nb

6. find gaps as functions of position (x; y; : : : )

7. writenl loop equations,nn conservation equations

8. express coil currents as functions of controller output, biasing

9. solve for fluxes

10. compute net force by vector addition of each gap force

2.10.1 Example

Ignore iron flux, compute only gap fluxes:nb = 6
Five independent flux loops:

1

�0
(B1g1 �B2g2) = N1I1 �N2I2

1

�0
(B2g2 �B3g3) = N2I2 �N3I3

1

�0
(B3g3 �B4g4) = N3I3 �N4I4

1

�0
(B4g4 �B5g5) = N4I4 �N5I5

1

�0
(B5g5 �B6g6) = N5I5 �N6I6

����

�2

�3

�4

�5

�6

cc
ccc
cccccc
ccccc

cccccccc cccccc
cc
cccccccc ccccccccccccccc

cccccccc
c

cccccccccccccccc
cccccccccccccccc
cccccccccccccccc
ccccccccccccccccccccccc
ccccccccc cccccccc
cccccccc cccccccc
cccccccc

One independent flux conservation equation:

B1A1 +B2A2 +B3A3 +B4A4 +B5A5 +B6A6 = 0

Forces:

fx =
1

2�0

�
B2
1A1 cos�1 + : : : B2

6A6 cos�6

�

fy =
1

2�0

�
B2
1A1 sin�1 + : : : B2

6A6 sin�6

�
Gaps:

g1 = g1;0 � x cos�1 � y sin�1
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...

g6 = g6;0 � x cos�6 � y sin�6

Summarize:
Define the impedance matrix

R(x; y) :
=

1

�0

2
6666664

g1 �g2 0 0 0 0
0 g2 �g3 0 0 0
0 0 g3 �g4 0 0
0 0 0 g4 �g5 0
0 0 0 0 g5 �g6

�0A1 �0A2 �0A3 �0A4 �0A5 �0A6

3
7777775
(x; y)

and linkage matrix

N :
=

2
6666664

N1 �N2 0 0 0 0
0 N2 �N3 0 0 0
0 0 N3 �N4 0 0
0 0 0 N4 �N5 0
0 0 0 0 N5 �N6

0 0 0 0 0 0

3
7777775

Define vector summation,x:

Ax
:
=

1

2�0

2
6666664

A1 cos�1 0 0 0 0 0
0 A2 cos�2 0 0 0 0
0 0 A3 cos�3 0 0 0
0 0 0 A4 cos�4 0 0
0 0 0 0 A5 cos�5 0
0 0 0 0 0 A6 cos�6

3
7777775

and vector summation,y:

Ax
:
=

1

2�0

2
6666664

A1 sin�1 0 0 0 0 0
0 A2 sin�2 0 0 0 0
0 0 A3 sin�3 0 0 0
0 0 0 A4 sin�4 0 0
0 0 0 0 A5 sin�5 0
0 0 0 0 0 A6 sin�6

3
7777775

This provides the linear set of equations

R(x; y)B = N I
and the pair of quadratic equations

fx = B>AxB

and

fy = B>AyB
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2.10.2 Force Components

Solve for the force components in terms of the coil currents (and rotor position,x andy):

fx = I>N>R�>(x; y)AxR�1(x; y)N I

fy = I>N>R�>(x; y)AyR�1(x; y)N I

2.10.3 General linearization

Assume that the coil currents are selected according to a law with the linear form:

I = C
8<
:

ix
iy
ib

9=
; = CÎ

whereib is a fixed biasing term,ix controls the force in thex� direction, andiy controls the force
in they� direction. Recall the definition of the actuator gain:

Ki
:
=
@f

@i

Thus, in general, the actuator gain is a matrix function. In the present case, the actuator gain would
be defined by

Ki
:
=
@f

@Î

Thus, the top row ofKi is:

Kix =
@fx

@Î

����
0;0

= 2Î
>C>N>R�>(0; 0)AxR�1(0; 0)NC

and the second row is

Kiy =
@fy

@Î

����
0;0

= 2Î
>C>N>R�>(0; 0)AyR�1(0; 0)NC
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The open loop stiffness can be derived in a similar fashion:

Kx =

�
Kxx Kxy

Kyx Kyy

�

where

Kij
:
=
@fi
@j

from which it follows that

Kij = Î
>
0 C>N>

�
@

@j
R�>(x; y)AiR�1(x; y) +R�>(x; y)Ai

@

@j
R�1(x; y)

�
NCÎ0 (2.5)

whereÎ0 represents the current control reference vector at the nominal operating point. Noting that

@A(x)A�1(x)
@x

=
@A

@x
A�1 +A

@A�1

@x
= 0

the derivatives of the reluctance matrix can be computed as

@R�1
@j

= �R�1@R
@j
R�1

where the inverses and partial derivative are evaluated at the nominal operating point: typically,
x = 0, y = 0.

2.11 Examples

2.11.1 Two horseshoes

Assume that the geometry is as indicated in Figure 2.6. Let the width of the pole pieces be 3.5 cm
and the thickness (perpendicular to the Figure) be 5.0 cm. The nominal air gap,g, is 0.75 mm. Each
coil has 85 turns and the bias flux density is set to 0.45 Tesla. This means that the bias current,Ib, is

Ib =
2g0Bb

N�0
=

2� 0:00075 � 0:45

85� 4� � 10�7
= 6:32 Amps

From (2.1), the actuator gain is then

Ki =
�0N

2IbAg

g20
=

4� � 10�7 � 852 � 6:32 � 0:035 � 0:05

0:000752
= 178:5 N/A

The open loop stiffness is given by (2.3):

Kx = ��oN
2Ag

g30

�
I2b + i2p;0

�
= �4� � 10�7 � 852 � 0:035 � 0:05 � 6:322

0:000753
= �1:52 � 106 N/m2

The same analysis can be repeated using the formalisms introduced in Section 2.10. The
impedance matrix is found by using the two independent loops. No conservation of flux condi-
tion is required because the magnetic circuit has no branches:

R =
1

�0

�
2(g0 � x) 0

0 2(g0 + x)

�



2.11. EXAMPLES 35

� �� �� �� �� �
?
6

g0 � x

N , I1

@
@R

Ag

? 6

� �� �� �� �� �
6 ?

6
x

?
6

g0 + x

N , I2

�
��

Ag

Figure 2.6: Push–pull magnet scheme.

The linkage matrix is also very simple:

N =

�
N 0
0 N

�

This produces the relationship between the coil currents and the gap fluxes:

R
�

B1

B2

�
= N

�
I1
I2

�

The current selection scheme relates the coil currents to some control terms:

�
I1
I2

�
=

�
1 1
�1 1

��
ip
Ib

�

so that the current selection matrix is

C =
�

1 1
�1 1

�

The force summation matrix is

Ax =
1

2�0

�
2Ag 0
0 �2Ag

�
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Thus, the force is given by:

fx = Î
>C>N>R�>AxRNCÎ

=
�0
2
fip Ibg

�
1 �1
1 1

� �
N 0
0 N

�" 1
2(g0�x) 0

0 1
2(g0+x)

#�
2Ag 0
0 �2Ag

�
"

1
2(g0�x) 0

0 1
2(g0+x)

# �
N 0
0 N

� �
1 1
�1 1

��
ip
Ib

�

=
�0
2
fip Ibg

�
N �N
N N

�"
N

Ag

2(g0�x)2 N
Ag

2(g0�x)2
N

Ag

2(g0+x)2
�N Ag

2(g0+x)2

#�
ip
Ib

�

=
�0N

2Ag

4
fip Ibg

�
1 �1
1 1

�" 1
(g0�x)2

1
(g0�x)2

1
(g0+x)2

� 1
(g0+x)2

#�
ip
Ib

�

=
�0N

2Ag

4
fip Ibg

"
1

(g0�x)2 � 1
(g0+x)2

1
(g0�x)2 + 1

(g0+x)2
1

(g0�x)2 + 1
(g0+x)2

1
(g0�x)2 � 1

(g0+x)2

#�
ip
Ib

�

=
�0N

2Agg0x

(g0 � x)2(g0 + x)2
�
i2p + I2b

�
+

�0N
2Ag(g

2
0 + x2)

(g0 � x)2(g0 + x)2
Ibip

Evaluated atx = 0:

fx =
�0N

2IbipAg

g20

The actuator gain is

Kix =
@fx

@Î

����
0

= 2Î
>C>N>R�>(0)AxR�1(0)NC

=
�0N

2Ag

2
fip Ibg

"
1

(g0�x)2 � 1
(g0+x)2

1
(g0�x)2 + 1

(g0+x)2
1

(g0�x)2 + 1
(g0+x)2

1
(g0�x)2 � 1

(g0+x)2

#�����
x=0

=
�0N

2Ag

(g0 � x)2(g0 + x)2
�
2ipg0x+ Ib

�
g20 + x2

�
ip
�
g20 + x2

�
+ 2Ibg0x

�����
x=0

Evaluated at the pointx = 0:

Kix =
�0N

2Ag

g20

�
Ib ip

�

Thus, the sensitivity of the output force to the control term,ip, is the same as computed previously
using the simpler analysis.
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Figure 2.7: Eight pole stator example.

Finally, the open–loop stiffness is (2.5):

Kxx = � 1

2�0
Î
>
0 C>N>

�
R�>@R

>

@x
R�>AxR�1 +R�>AxR�1@R

@x
R�1

�
NCÎ0�

where it is noted that:
@R
@x

=
2

�0

� �1 0
0 1

��

=
2N2Ag

�20
I>0 R�>

�� �1 0
0 1

�
R�>

�
1 0
0 �1

�
+

�
1 0
0 �1

�
R�1

� �1 0
0 1

��
R�1I0

= ��0N
2Ag

2
I>0

"
1

(g0�x)3 0

0 1
(g0+x)3

#
I0

= ��0N
2Ag

2

�
(Ib + ip)

2

(g0 � x)3
+

(Ib � ip)
2

(g0 + x)3

�

Evaluated atx = 0:

Kxx = ��0N
2Ag

g30

�
I2b + i2p

�

Again, this is the same expression as was obtained previously using the simpler analysis.

2.11.2 Heteropolar radial stator

The advantage of the generalized analysis lies in its ability to treat more complex circuits with
interactions which are more difficult to visualize. As an example, consider the eight pole actuator
pictured in Figure 2.7. Ignoring the finite permeability of the stator and rotor iron, the reluctance
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matrix can be obtained using seven loop equations and a single conservation of flux equation:

R =
1

�0

2
66666666664

�g1 g2 0 0 0 0 0 0
0 �g2 g3 0 0 0 0 0
0 0 �g3 g4 0 0 0 0
0 0 0 �g4 g5 0 0 0
0 0 0 0 �g5 g6 0 0
0 0 0 0 0 �g6 g7 0
0 0 0 0 0 0 �g7 g8

�0Ag �0Ag �0Ag �0Ag �0Ag �0Ag �0Ag �0Ag

3
77777777775

in which

g1 = g � x

g2 = g � 0:707x � 0:707y

g3 = g � y

g4 = g + 0:707x � 0:707y

g5 = g + x

g6 = g + 0:707x + 0:707y

g7 = g + y

g8 = g � 0:707x + 0:707y

Assuming that all of the coils carryN turns, the linkage matrix is

N = N

2
66666666664

1 �1 0 0 0 0 0 0
0 1 �1 0 0 0 0 0
0 0 1 �1 0 0 0 0
0 0 0 1 �1 0 0 0
0 0 0 0 1 �1 0 0
0 0 0 0 0 1 �1 0
0 0 0 0 0 0 1 �1
0 0 0 0 0 0 0 0

3
77777777775

The force summation matrices are

Ax =
Ag

2�0

2
66666666664

1 0 0 0 0 0 0 0
0 0:707 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 �0:707 0 0 0 0
0 0 0 0 �1 0 0 0
0 0 0 0 0 �0:707 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0:707

3
77777777775
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and

Ay =
Ag

2�0

2
66666666664

0 0 0 0 0 0 0 0
0 0:707 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0:707 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 �0:707 0 0
0 0 0 0 0 0 �1 0
0 0 0 0 0 0 0 �0:707

3
77777777775

Finally, the coil currents must be related to some control parameters. One choice of a coil selection
law is

I = CÎ =

2
66666666664

1 0 1
�0:707 �0:707 �1

0 1 1
0:707 �0:707 �1
�1 0 1

0:707 0:707 �1
0 �1 1

�0:707 0:707 �1

3
77777777775

8<
:

ip;x
ip;y
Ib

9=
;

The actuator gain can be found from (2.10.3):

Kix =
@fx

@Î

����
0;0

= 2Î
>C>N>R�>(0; 0)AxR�1(0; 0)NC

The sensitivity of the impedance matrix to variations inx is:

@R
@x

=
1

�0

2
66666666664

1 �0:707 0 0 0 0 0 0
0 0:707 0 0 0 0 0 0
0 0 0 0:707 0 0 0 0
0 0 0 �0:707 1 0 0 0
0 0 0 0 �1 0:707 0 0
0 0 0 0 0 �0:707 0 0
0 0 0 0 0 0 0 �0:707
0 0 0 0 0 0 0 0

3
77777777775

while the sensitivity to variations iny is:

@R
@y

=
1

�0

2
66666666664

0 �0:707 0 0 0 0 0 0
0 0:707 �1 0 0 0 0 0
0 0 1 �0:707 0 0 0 0
0 0 0 0:707 0 0 0 0
0 0 0 0 0 0:707 0 0
0 0 0 0 0 �0:707 1 0
0 0 0 0 0 0 �1 0:707
0 0 0 0 0 0 0 0

3
77777777775
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The actuator gain evaluated atx = y = 0 is

Kix =
@fx

@Î

����
0

= 2Î
>C>N>R�>(0)AxR�1(0)NC

=
�0AgN

2

g2
�
ip;x ip;y Ib

	24 0 0 4
0 0 0
4 0 0

3
5

=
4�0AgN

2

g2
�
Ib 0 ip;x

�
and

Kiy =
@fy

@Î

����
0

= 2Î
>C>N>R�>(0)AyR�1(0)NC

=
�0AgN

2

g2
�
ip;x ip;y Ib

	24 0 0 0
0 0 4
0 4 0

3
5

=
4�0AgN

2

g2
�
0 Ib ip;y

�
The total actuator gain matrix becomes:

Ki =
4�0AgN

2

g2

�
Ib 0 ipx;0
0 Ib ipy;0

�

The last column corresponds to perturbations in the bias current, which is held to zero. So the last
column can be discarded to provide the simpler actuator gain

Ki =
4�0AgN

2Ib
g2

The open–loop stiffness matrix elements are computed from (2.5):

Kij = Î
>
0 C>N>

�
@

@j
R�>(x; y)AiR�1(x; y) +R�>(x; y)Ai

@

@j
R�1(x; y)

�
NCÎ0

so that

Kxx = Î
>
0 C>N>

�
@

@x
R�>(x; y)AxR�1(x; y) +R�>(x; y)Ax

@

@x
R�1(x; y)

�
NCÎ0

= ��0AgN
2

g3

�
3i2px;0 + i2py;0 + 4I2b

�

The remaining terms can be computed in a similar manner to yield

Kx = ��0AgN
2

g3

�
3i2px;0 + i2py;0 + 4I2b ipx;0ipy;0

ipx;0ipy;0 i2px;0 + 3i2py;0 + 4I2b

�
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If the nominal operating currents are zero, then the open–loop stiffness loses its cross–coupling
terms and becomes, simply

Kx = �4�0AgN
2I2b

g3

For the case wherex = y = 0, the bias flux density can be computed as

Bb =
�0NIb
g

so that, in terms of the bias density, the actuator gain and open–loop stiffness become

Ki =
4AgNBb

g
; Kx = �4AgB

2
b

�0g

Finally, the inductance can be computed for use in calculating the available slew rate. Using
Faraday’s law, the voltage across each coil is proportional to the rate of change of total flux passing
through the coil:

Vi = Ni
d�i

dt
= NiAi

dBi

dt

or, in vector form,

V =W d

dt
B

in whichW :
= diag[NiAi]. Recalling the previous definitions of the impedance matrix and the

linkage matrix,

RB = N I
or,

B = R�1N I
so that

V =W d

dt

�R�1N I�
The definition of inductance is the matrix expression

L
:
=W dB

dI
=WR�1N

which gives

V = L
dI

dt
+
dL

dt
I

The latter term is the back-EMF due to rotor motion:

dL

dt
= W dR�1

dt
N

= �WR�1dR
dt
R�1N

= �WR�1
�
@R
@x

dx

dt
+
@R
@y

dy

dt

�
R�1N
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Generally, the journal velocity term is substantially smaller than the current term is.
For the present 8 pole stator, the inductance matrix can be computed as

L =
�0N

2Ag

8g

2
66666666664

7 �1 �1 �1 �1 �1 �1 �1
�1 7 �1 �1 �1 �1 �1 �1
�1 �1 7 �1 �1 �1 �1 �1
�1 �1 �1 7 �1 �1 �1 �1
�1 �1 �1 �1 7 �1 �1 �1
�1 �1 �1 �1 �1 7 �1 �1
�1 �1 �1 �1 �1 �1 7 �1
�1 �1 �1 �1 �1 �1 �1 7

3
77777777775

The slew rate limitation is then imposed by:

V = L
d

dt
I = LC d

dt
Î = LCK�1

i

d

dt
f

where the last column ofC, corresponding to the constant bias current, has been stricken. Noting
thatLC is not square, premultiply the equation by the transpose of this quantity to obtain

C>L>V = C>L>LCK�1
i

d

dt
f

or,

d

dt
f = Ki

�
C>L>LC

��1 C>L>V
For the nominal operating point, this expression can be reduced to

d

dt
f =

Ib
g

�
1 �0:707 0 0:707 �1 0:707 0 �0:707
0 �0:707 1 �0:707 0 0:707 �1 0:707

�
V

Assuming thatjVij � Vsup, the maximum force slew rate is given by����dfdt
����
1
� 4:828VsupIb

g
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Figure 2.8: Three pole stator

2.11.3 Three pole stator

Consider the simple three pole stator depicted in Figure 2.8.

1. select a sign convention for the currents and fluxes, identify the currents and fluxes.

2. find as many independent loop equations as are available:

�B1
g1
�0
�B1

`1
�0�r

+B4
`4

�0�r
+B2

g2
�0

+B2
`2

�0�r
+B7

`7
�0�r

= N1I1 �N2I2

�B2
g2
�0
�B2

`2
�0�r

+B5
`5

�0�r
+B3

g3
�0

+B3
`3

�0�r
+B8

`8
�0�r

= N2I2 �N3I3

B4
`4

�0�r
+B5

`5
�0�r

+B6
`6

�0�r
= 0

B7
`7

�0�r
+B8

`8
�0�r

+B9
`9

�0�r
= 0
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3. find the remaining equations using conservation of flux:

B1A1 +B7A7 �B9A9 = 0

B2A2 +B8A8 �B7A7 = 0

B3A3 +B9A9 �B8A8 = 0

B6A6 �B1A1 �B4A4 = 0

B4A4 �B2A2 �B5A5 = 0

4. Summarize these equations in the form of the impedance and linkage matrices:

R =
1

�0

2
66666666666664

�g1 � `1
�r

g2 +
`2
�r

0 `4
�r

0 0 `7
�r

0 0

0 �g2 � `2
�r

g3 +
`3
�r

0 `5
�r

0 0 `8
�r

0

0 0 0 `4
�r

`5
�r

`6
�r

0 0 0

0 0 0 0 0 0 `7
�r

`8
�r

`9
�r

A1 0 0 0 0 0 A7 0 �A9

0 A2 0 0 0 0 �A7 A8 0
0 0 A3 0 0 0 0 �A8 A9

A1 0 0 A4 0 �A6 0 0 0
0 A2 0 �A4 A5 0 0 0 0

3
77777777777775

N =

2
6666666666664

N1 �N2 0
0 N2 �N3

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

3
7777777777775

5. Construct the force summation matrices. Note that onlyB1 throughB3 actually produce any
force:

Ax =
1

2�0

2
6666666666664

0 0 0 0 0 0 0 0 0
0 A2 cos 30

Æ 0 0 0 0 0 0 0
0 0 �A3 cos 30

Æ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

3
7777777777775
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Ay =
1

2�0

2
6666666666664

A1 0 0 0 0 0 0 0 0
0 �A2 sin 30

Æ 0 0 0 0 0 0 0
0 0 �A3 sin 30

Æ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

3
7777777777775

Note that bothAx andAy are indefinite, as required to produce forces in arbitrary directions.

6. Since the current vector has dimension of only three, it is not possible (or necessary) to pick
a current selection matrix,C. It will be assumed equal to the identity matrix:

C =
2
4 1 0 0

0 1 0
0 0 1

3
5

7. Establish the relationship between the gaps and the rotor position:

g1 = g � y

g2 = g + sin 30Æy � cos 30Æx

g3 = g + sin 30Æy + cos 30Æx

To continue the example, assume that the areas are all equal:A1 = A2 = : : : = A9 = A.
Further, assume that the coils all have the same number of turns:N1 = N2 = N3 = N . Finally,
assume that the iron lengths in the back iron (`7; `8; `9) are all 900 times the nominal gap,g; the
leg iron lengths are all 300 times the nominal gap; and the rotor iron lengths are all 600 times the
nominal gap. Finally, assume that the iron relative permeability is 3000:

`1 = `2 = `3 = 300g

`4 = `5 = `6 = 600g

`7 = `8 = `9 = 900g

�r = 3000

With these assumptions, thenominalimpedance matrix (atx = y = 0) is

R =
g

�0

2
6666666666664

�1:1 1:1 0 0:2 0 0 0:3 0 0
0 �1:1 1:1 0 0:2 0 0 0:3 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 0 0 0 1 0 �1
0 1 0 0 0 0 �1 1 0
0 0 1 0 0 0 0 �1 1
1 0 0 1 0 �1 0 0 0
0 1 0 �1 1 0 0 0 0

3
7777777777775
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in which those rows corresponding to entirely zero rows inN have been normalized to 1.0. The
sensitivities of the impedance matrix to rotor displacement are easily computed as

@R
@x

=

p
3

2�0

2
6666666666664

0 �1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

3
7777777777775

and

@R
@y

=
1

�0

2
6666666666664

�1 0:5 0 0 0 0 0 0 0
0 �0:5 0:5 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

3
7777777777775

The linkage matrix becomes

N = N

2
6666666666664

1 �1 0
0 1 �1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

3
7777777777775

Finally, the force summation matrices become

Ax =
A
p
3

4�0

2
6666666666664

0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 �1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

3
7777777777775
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Ay =
A

4�0

2
6666666666664

2 0 0 0 0 0 0 0 0
0 �1 0 0 0 0 0 0 0
0 0 �1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

3
7777777777775

With these simplifications, the force components become

fx = I>N>R�>(x; y)AxR�1(x; y)N I

=
0:1199�0N

2A

g2
I>

2
4 0 �1 1
�1 1 0
1 0 �1

3
5 I

fy = I>N>R�>(x; y)AyR�1(x; y)N I

=
0:0693�0N

2A

g2
I>

2
4 2 �1 �1
�1 �1 2
�1 2 �1

3
5 I

The actuator gain is

Ki =
@f

@I
=
�0N

2A

g2

�
0:1199(I3 � I2) 0:1199(I2 � I1) 0:1199(I1 � I3)

0:0693(2I1 � I2 � I3) 0:0693(2I3 � I1 � I2) 0:0693(2I2 � I1 � I3)

�

The linkage matrix,N , is singular. For this example problem, coil currents satisfyingI1 = I2 =
I3 lie in the null space ofN , which means that such a coil current arrangement does not produce any
magnetic flux. In order to always produce the most flux relative to the amount of current used, the
coil currents should be selected so that no component of the current vector lies in the null space of
N . That is, the coil current vector should be orthogonal tof111g. One possible method of choosing
the currents to satisfy this requirement is8<

:
I1
I2
I3

9=
; =

2
4 1 0

0 1
�1 �1

3
5� I1

I2

�

This choice of coil currents leads to the simplification in the force law:

fx =
0:1199�0N

2A

g2
fI1I2g

� �3 �3
�3 0

��
I1
I2

�
= �0:3597�0N

2A

g2
(I21 + I1I2)

fy =
0:2079�0N

2A

g2
fI1I2g

�
1 �1
�1 �2

��
I1
I2

�
=

0:2079�0N
2A

g2
�
I21 � 2I1I2 � 2I22

�
Notice that, even in the centered (x = y = 0) condition, these force relationships are nonlinear

in the currents. By contrast, the double horseshoe and the eight pole actuators were both linear in
the current control variable(s). This nonlinearity of the three pole actuator is fundamental to its
operation.
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Figure 2.9: Six pole actuator.

2.11.4 Six pole actuator

A final example of interest is the six pole actuator shown in Figure 2.9. In this example, it is assumed
that the relative permeability of the iron is high enough that the flux density can be computed at
least approximately without reference to the flux in the backiron or journal: only the gap fluxes will
be computed explicitly so that it is assumed that all of the terms having the formBi`i=�0�r are
essentially zero. Further, assume that the gap areas are all the same and that the coils all have the
same number of turns. With these assumptions, the impedance and linkage matrices are:

R =
1

�0

2
6666664

g1 �g2 0 0 0 0
0 g2 �g3 0 0 0
0 0 g3 �g4 0 0
0 0 0 g4 �g5 0
0 0 0 0 g5 �g6
1 1 1 1 1 1

3
7777775

N = N

2
6666664

1 �1 0 0 0 0
0 1 �1 0 0 0
0 0 1 �1 0 0
0 0 0 1 �1 0
0 0 0 0 1 �1
0 0 0 0 0 0

3
7777775
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The gaps are related to the journal motion through

g1 = g � y

g2 = g � 0:5y + 0:866x

g3 = g + 0:5y + 0:866x

g4 = g + y

g5 = g + 0:5y � 0:866x

g6 = g � 0:5y � 0:866x

The force summation matrices are

Ax =
A

2�0

2
6666664

0 0 0 0 0 0
0 �0:866 0 0 0 0
0 0 �0:866 0 0 0
0 0 0 0 0 0
0 0 0 0 0:866 0
0 0 0 0 0 0:866

3
7777775

and

Ay =
A

2�0

2
6666664

1 0 0 0 0 0
0 0:5 0 0 0 0
0 0 �0:5 0 0 0
0 0 0 �1 0 0
0 0 0 0 �0:5 0
0 0 0 0 0 0:5

3
7777775

The coil currents can be profitably chosen according to8>>>>>><
>>>>>>:

I1
I2
I3
I4
I5
I6

9>>>>>>=
>>>>>>;

= CÎ =

2
6666664

0 1 1
0:866 �0:5 �1
�0:866 �0:5 1

0 1 �1
0:866 �0:5 1
�0:866 �0:5 �1

3
7777775
8<
:

ip;x
ip;y
Ib

9=
;

With this method of choosing the coil currents, the force components atx = y = 0 can be computed
as

fx =
�0N

2A

2g2
Î
>
2
4 0 0 3

0 0 0
3 0 0

3
5 Î =

3�0N
2AIb

g2
ip;x

and

fx =
�0N

2A

2g2
Î
>
2
4 0 0 0

0 0 3
0 3 0

3
5 Î =

3�0N
2AIb

g2
ip;y

so the force is linear in the control terms,ip;x andip;y and completely decoupled. The actuator gain
is the scalar

Ki =
3�0N

2AIb
g2
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and the linearized force is

f = Ki

�
ip;x
ip;y

�
+Kx

�
x
y

�

The open loop stiffness is easily computed as

Kx = ��0N
2A

2g3

�
4:5i2p;x + 1:5i2p;y + 6I2b 3ip;xip;y

3ip;xip;y 1:5i2p;x + 4:5i2p;y + 6I2b

�

For the unloaded case where the nominal control terms are zero, the open loop stiffness becomes a
simple scalar:

Kx = �3�0N
2I2bA

g3

2.11.5 Generaln pole symmetric heteropolar stator

In general, for ann pole symmetric stator (wheren is even), the coil currents can be chosen accord-
ing to the rule

Ii = (�1)i (cos �iip;x + sin �iip;y + Ib)

If this selection scheme is adopted, then the actuator gain and open loop stiffness, evaluated at
x = y = ip;x = ip;y = 0 will be

Ki =
n�0N

2IbA

2g2
; Kx = �n�0N

2I2bA

2g3

The principal drawback to this coil selection scheme is that none of the coils carry the same
current. This implies that none of the coils can be wired in series to be driven by a common
amplifier: apparently this scheme requiresn power amplifiers. However, if each leg of the stator
carries three coils: one forx� control, one fory� control, and one for biasing, then the coil sizes
can be adjusted to produce the appropriate weightings and wound in series. In this manner, anyn
pole symmetric stator can be controlled using only six wires (two for each coil set) and three power
amplifiers.

2.11.6 Combined Force and Moment

Figure 2.10 illustrates a simple planar actuator which is capable of producing both thex� andy�
components of force as well as a moment about thez� axis. As shown, all of the legs carry the
same number of coil turns and three of the legs have the same gap area,Ag, while the two legs on
the left side of the stator have half this gap area.

Ampère’s loop law is applied to obtain four magnetic flux density equations:

B1
g1
�0
�B2

g2
�0

= NI1 �NI2

B2
g2
�0
�B3

g3
�0

= NI2 �NI3

B3
g3
�0
�B4

g4
�0

= NI3 �NI4

B4
g4
�0
�B5

g5
�0

= NI4 �NI5
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Figure 2.10: Planar actuator which produces two forces and a moment.



52 CHAPTER 2. MAGNETIC ACTUATOR ANALYSIS

Conservation of flux produces a last equation:

B1Ag +B2Ag + 0:5B3Ag + 0:5B5Ag +B5Ag = 0

The resulting impedance and linkage matrices are

R =
1

�0

2
66664
g1 �g2 0 0 0
0 g2 �g3 0 0
0 0 g3 �g4 0
0 0 0 g4 �g5
2 2 1 1 2

3
77775 ; N = N

2
66664

1 �1 0 0 0
0 1 �1 0 0
0 0 1 �1 0
0 0 0 1 �1
0 0 0 0 0

3
77775

The gaps are related to the position of the rotor by

g1 = g0 � x

g2 = g0 � y

g3 = g0 + x� d�

g4 = g0 + x+ d�

g5 = g0 + y

so that the sensitivities of the impedance matrix to the various displacement components are

@R
@x

=
1

�0

2
66664
�1 0 0 0 0
0 0 �1 0 0
0 0 1 �1 0
0 0 0 1 0
0 0 0 0 0

3
77775

@R
@y

=
1

�0

2
66664

0 1 0 0 0
0 �1 0 0 0
0 0 0 0 0
0 0 0 0 �1
0 0 0 0 0

3
77775

@R
@�

=
d

�0

2
66664

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 �1 1 0
0 0 0 0 0

3
77775

Inspection of the structure of the actuator suggests the current selection scheme:

I =

2
66664

1 0 0 1
0 �1 0 �1
�1 0 1 1
�1 0 �1 1
0 1 0 �1

3
77775
8>><
>>:

ix
iy
i�
Ib

9>>=
>>; = CÎ
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Noting that the linkage matrix has a null space of:

null(N ) =

2
66664

1
1
1
1
1

3
77775

the currents should further be selected to be orthogonal to this null space. A basis for the space
orthogonal to the null space is:

c = 0:2

2
66664

4 3 2 1
�1 3 2 1
�1 �2 2 1
�1 �2 �3 1
�1 �2 �3 �4

3
77775

(This matrix was obtained by computing the Moore–Penrose pseudoinverse of the matrixN and
then column reducing the result.) So that the ultimate current selection scheme becomes

I = c(c>c)�1c>CÎ = CÎ
in which

C =

2
66664

1:2 0 0 0:8
0:2 �1 0 �1:2
�0:8 0 1 0:8
�0:8 0 �1 0:8
0:2 1 0 �1:2

3
77775

Finally, the force summation matrices are obtained by inspection:

Ax =
Ag

2�0

2
66664

1 0 0 0 0
0 0 0 0 0
0 0 �0:5 0 0
0 0 0 �0:5 0
0 0 0 0 0

3
77775

Ay =
Ag

2�0

2
66664

0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 �1

3
77775 ; A� =

Agd

4�0

2
66664

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 �1 0
0 0 0 0 0

3
77775

With these characteristic matrices computed, the force components can be determined at the
nominal centered condition (x = y = � = 0):

fx = Î
>C>N>R�>AxR�1NCÎ =

�0N
2Ag

2g2
Î
>

2
664

0 0 0 2
0 0 0 0
0 0 �1 0
2 0 0 0

3
775 Î =

�0N
2Ag

2g2
�
4Ibix � i2�

�
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fy = Î
>C>N>R�>AyR�1NCÎ =

�0N
2Ag

2g2
Î
>

2
664

0 0 0 0
0 0 0 2
0 0 0 0
0 2 0 0

3
775 Î =

2�0N
2AgIb
g2

iy

f� = Î
>C>N>R�>A�R�1NCÎ =

�0N
2Agd

2g2
Î
>

2
664

0 0 �1 0
0 0 0 0
�1 0 0 1
0 0 1 0

3
775 Î =

�0N
2Agd

g2
(Ibi� � ixi�)

Each of the forces is linear in its respective control term, but the moment andx forces are coupled
through the product termsixi� so that the actuator gain matrix looks like:

Ki =
2�0N

2AgIb
g2

2
4 Ib 0 �0:25i�

0 Ib 0
�0:25di� 0 0:5d(Ib � 0:5ix)

3
5

Thus, the linearization is not perfect nor is the system completely decoupled. However, if the
nominal operating point isix = iy = i� = 0, then the system is decoupled as desired.

This failure to be perfectly decoupled and linearized is a consequence of the structure of the
actuator and can be alleviated by simply adding a second leg on the right side of the actuator, as
shown in Figure 2.11. For this device, the coil current selection law

I =
1

3

2
6666664

3 0 �3 2
0 �3 0 �4
�3 0 3 2
�3 0 �3 2
0 3 0 �4
3 0 3 2

3
7777775

8>><
>>:

ix
iy
i�
Ib

9>>=
>>;

produces the force relationships (at centered condition):

fx = Î
>C>N>R�>AxR�1NCÎ =

�0N
2Ag

2g2
Î
>

2
664

0 0 0 2
0 0 0 0
0 0 0 0
2 0 0 0

3
775 Î =

2�0N
2IbAg

g2
ix

fy = Î
>C>N>R�>AyR�1NCÎ =

�0N
2Ag

2g2
Î
>

2
664

0 0 0 0
0 0 0 2
0 0 0 0
0 2 0 0

3
775 Î =

2�0N
2IbAg

g2
iy

f� = Î
>C>N>R�>A�R�1NCÎ =

�0N
2Agd

2g2
Î
>

2
664

0 0 0 0
0 0 0 0
0 0 0 4
0 0 4 0

3
775 Î =

4�0N
2IbAgd

g2
i�

Thus, the actuator is linear in the control parameters and fully decoupled. The actuator gain matrix
is

Ki =
2�0N

2AgIb
g2

2
4 Ib 0 0

0 Ib 0
0 0 2dIb

3
5
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Figure 2.11: Planar actuator with moments - linearizable.
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2.12 Load Capacity

The load capacity of a magnetic actuator is most appropriately defined as the maximum force that
the actuator can generate in any given direction. Because of the nature of the saturation curve, the
actual load capacity of an actuator is, in principal, infinite: the magnetic flux densitycan, physically,
be made as large as desired. However, it is more common to compute the load capacity of the
actuator as that point where the stator iron begins to substantially saturate. Using magnetic circuit
analysis and a linear model of the magnetic material, this means that the actuator capacity is reached
whenever ’ the flux density,B, in any one of the circuit elements reachesBsat.

For practical actuators, the magnitude of the force that is generated when this limit is reached is
always dependent upon the orientation of the force. Thus, it is useful to describe the actuator load
capacity using a polar plot where the radius of the plot is an indication of the load capacity at each
angular orientation. In cases where it is desirable to characterize the actuator with a single load
capacity figure, the minimum radius of this polar plot should be used. This is particularly useful
in applications where the orientation of the loads is unknown so that a conservative estimate of the
actuator capacity is desired.

Using the simple circuit analysis presented so far and this rather conservative definition of load
capacity, the polar capacity of an actuator can be defined mathematically as

f(u) = max
Î

���f(Î)���
2

subject to:f = �u and
���B(Î)

���
1
� Bsat

in which the components of the force vector are given by

fi = C>(Î)N>R�>AiR�1NC(Î) +wi

the flux density is given by

B = R�1NC(Î)

andu is a unit vector in the selected direction. The termswi represent external loads which act on
the journal in conjunction with the actuator force and may be artificially attributed to the actuator
in order to properly asssess its net capacity. Typically, these forces will be gravity loads. Note that
the coil current selection law,C, may in general be nonlinear; in the preceding discussion it was
assumed to be linear at least in the neighborhood of the operating point.

2.12.1 Limiting performance

In evaluating the performance of the coil current selection scheme and in estimating the capacity of
an actuator prior to choosing the coil current selection scheme, it is convenient to have an alternative
method of evaluating the actuator capacity. Here, rather than imposing a coil current selection
scheme, the capacity is based on the gap flux densities, assuming that they can be chosen arbitrarily
with the only restriction being that they must satisfy conservation of flux:

f(u) = max
B

���f(Î)���
2

subject to:f = �u ; jBj1 � Bsat ; andA>B = 0

in which the components of the force are given by

fi = B>AiB + wi
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Figure 2.12: Flux density distributions for maximum capacity at various orientations: all
densities are normalized byBsat



58 CHAPTER 2. MAGNETIC ACTUATOR ANALYSIS

and the elements of the vectorA are the gap areas corresponding to each of the gap fluxes inB.
Figure 2.12 illustrates this limiting performance analysis for several different actuators.
The simplest example is that of the double opposed horseshoe actuator. This device only gen-

erates force along a single axis and the flux density is the same in either face of each pole pair.
Consequently, the largest vertical force is obtained by driving the gap fluxes in the two upper gaps
to saturation while bringing fluxes in the two lower gaps to zero. The diagram illustrates this by
identifying the upper left gap density as 1 (meaning1�Bsat), the upper right gap density as -1 (the
sign change is necessary in order to satisfy conservation of flux), and the two lower gaps have 0 flux
density. The resulting load capacity is easily computed as:

Fmax =
AgB

2
sat

2�0

�
12 + (�1)2 � 02 � 02

�
=
AgB

2
sat

�0

For the symmetric eight pole stator, also illustrated in Figure 2.12, the load capacity in any
particular direction can be assessed by drawing a line through the center of the device orthogonal
to the force orientation. The three poles closest to the load direction on the load side of this line are
then assumed to be at alternating signed saturation while the three poles opposite these saturated
poles are assumed at zero density. The remaining two poles are used to satisfy flux conservation
and load orientation.

For instance, assume that the load orientation is ten degrees from one of the legs. Identifying
the flux densities (normalized by the saturation density) of the two “control” legs asB+ andB�
whereB+ corresponds to the leg on the load side of the dividing line, conservation of flux requires
that:

Bsat(�1 + 1� 1 +B+ +B�) = 0 ) B+ = 1�B�

Load orientation requires that the off–axis force component is zero:

Ag

2�0

�
12 sin 10Æ + (�1)2 sin 55Æ � (�1)2 sin 35Æ +B2

� sin 100Æ �B2
+ sin 80Æ

�
= 0

) B2
+ �B2

� = 0:426

These two equations can be solved simultaneously to yield

B+ = 0:713 ; B� = 0:287

and the total load capacity is

fmax(10
Æ) =

AgB
2
sat

2�0

�
12 cos 10Æ + (�1)2 cos 55Æ + (�1)2 cos 35Æ +B2

� cos 100Æ +B2
+ cos 80Æ

�
= 1:23

AgB
2
sat

�0

In general, the load capacity of this actuator can be found in this manner for angles from�22:5Æ to
+22:5Æ with the result that the load capacity is

f(�) =
1:207AgB

2
sat

cos��0

where� is the angle between the load line and the nearest pole. This yields a worst case capacity of
1:207AgB

2
sat=�0 at� = 0 (on–pole orientation) and a best case capacity of1:306AgB

2
sat=�0 at� =
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Figure 2.13: Polar plots of saturated pole load capacity for various radial actuators.
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Figure 2.14: Saturation diagrams for radial actuators with horseshoe paired poles.

22:5Æ (pole bisector orientation). Naturally, since the legs are spaced45Æ apart, this characterizes
the entire polar load capacity. This capacity is illustrated in Figure 2.13.

It is important to note that this analysis depends on the notion that the only constraints on the
gap flux densities is that they must be less than the saturation density and that they must satisfy
conservation of flux. If the poles of the actuator are organized as horseshoes, either by cutting
the stator into magnetically isolated quadrants or by wiring the adjacent coils within quadrants in
reverse series, then the gap densities must match (with opposing sign) within each quadrant, as
illustrated in Figure 2.14. In this case, the densities can be chosen by setting the quadrant closest to
the load line to saturation and then using the adjacent quadrant nearest the load line to correct the
force direction. The remaining quadrant fluxes are set to zero. Thus, for a load line within45Æ of
the bisector between adjacent poles of a quadrant, the nearest neighbor quadrant fluxes are chosen
according to:

12 sin(22:5 + �)� (�1)2 sin(22:5 � �)�B(12 sin(67:5 � �) + (�1)2 sin(114:5 � �) = 0

or,

B = tan�

which produces a polar capacity of

f(�) =
0:9239B2

satAg

cos��0
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Again, this polar capacity is illustrated in Figure 2.13. The worst case is the on–quadrant orientation
where� = 0, B = 0, and the capacity is0:9239B2

satAg=�0 while the best case is the between–
quadrant orientation where� = 45Æ, B = 1, and the capacity is1:306B2

satAg=�0. Notice that the
best case capacity for the horseshoe arrangement is the same as for the more general case, but that
the worst case capacity is thirty percent less than for the more general case.

The approach used in analyzing the eight pole radial stator can be easily extended to stators with
otherevenmultiples of two evenly spaced, equal sized poles. However, the method does not work
on stators withoddmultiples of two evenly spaced legs. The problem is that, with an odd multiple
of two, there is an even number of primary (saturated) legs so that these legs automatically satisfy
flux conservation. The two control legs must therefore carry the same flux (B� = �Bp) and, since
they have the same orthogonal contribution to the direction, it is not possible to use them to correct
the load angle. Therefore, more legs must participate.

As an example, consider the six pole stator with evenly spaced, same sized poles. Using the
arguments described previously, a line would be drawn orthogonal to the load line. Assuming that
the load line does not pass exactly through any of the poles, this would result in three legs on the
load side of the line and three on the opposite sign. The two legs on the load side of the line closest
to the load line would be assigned alternating saturation. The remaining leg on the load side of
the dividing line would be assignedB+ while its radially opposed leg would be assignedB�. The
remaining legs would be assigned zero flux. Since there are two legs saturated, conservation of flux
would require that

�1 + 1 +B+ +B� = 0 ) B� = �B+

Further, alignment of the bearing force with the specified load direction,�, would require that

B2
+ sin(60 + �) + 12 sin� + (�1)2 sin(�� 60) +B2

� sin(�� 120) = 0

Using a few trigonometric identities and the prior relationship betweenB+ andB�, this becomes

sin� + sin(�� 60) = 0

This expression is only satisfied at� = 30Æ.

Instead, it turns out that all of the legs will have a non-zero flux density in order to achieve the
maximum load capacity for the six pole stator. For instance, consider the case when the load is
aligned with one of the poles. In this case, three of the poles can be saturated and the remaining
three poles used to satisfy flux conservation. By the symmetry of the problem, the two gaps nearest
the dividing line can be assigned the flux densityB1 while the gap opposite the load line can be
assigned the flux densityB2. (The pair of gapscouldbe assigned fluxes with opposite sign and still
satisfy the directional requirement, but this would greatly increase the flux required in the third pole
to satisfy conservation.) Flux conservation requires that

(�1) + 1 + (�1) +B1 +B2 +B1 = 0 ) 2B1 +B2 = 1
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The total load is

f =
AgB

2
sat

2�0

�
(�1)2 cos 60Æ + 12 + (�1)2 cos 60Æ �B2

1 cos 60
Æ �B2

2 �B2
1 cos 60

Æ�
=

AgB
2
sat

2�0

�
2�B2

1 �B2
2

�
=

AgB
2
sat

2�0

�
2�B2

1 � (1� 2B1)
2
�

=
AgB

2
sat

2�0

�
1� 5B2

1 + 4B1)
�

The capacity is maximized by differentiating with respect toB1 and setting the result to zero:

B1 = 0:4 ) B2 = 0:2

The resulting load capacity is

f(0Æ) =
0:9AgB

2
sat

�0

In general, the maximal load capacity solution is formulated with the assumption that the two
poles closest to the load line are saturated and the remaining legs have densitiesB1 throughB4.
Flux conservation requires that

B4 = �(B1 +B2 +B3)

Alignment requires that

sin� + sin(�� 60) +B2
1 sin(�� 120) + B2

2 sin(�� 180) +

B2
3 sin(�� 240) + B2

4 sin(�� 300) = 0

The net force developed is

f(�) =
AgB

2
sat

2�0

�
cos � + cos(�� 60) +B2

1 cos(�� 120)

+B2
2 cos(�� 180) +B2

3 cos(�� 240) +B2
4 cos(�� 300)

�
A general solution can be formed by substituting the first expression forB4 into the second ex-
pression which represents a constraint. The second expression can then be scaled by a Lagrange
multiplier � and added to the third equation. Solution for�, B1, B2, andB3 is then obtained by
differentiating the augmented load capacity with respect to each of these four variables and equating
the resulting expressions to zero. These equations are readily reduced to give� = tan(��30Æ), two
linear equations in the three independent flux densities, and one quadratic equation in the three. The
two linear equations can be solved forB1 andB2 in terms ofB3 and these results substituted into
the last equation to yield a quadratic equation inB3. This equation is solved for both the minimum
and maximum values and each is checked to see if it maximizes the load capacity.

The problem is indeterminate only for� = 30Æ, where� = 0: along a pole bisector. In this
case, two legs act in the load direction, two legs act orthogonal to the load direction, and two legs
act to oppose the load. The first pair are saturated, the last pair are given zero flux, and the middle
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Figure 2.15: Load capacity of the six pole symmetric radial actuator.

pair can be given any flux desired. Continuity with adjacent solutions appears to imply that the two
off–axis legs would be saturated. In any case, this orientation produces the worst load capacity of

f(30Æ) =
0:866AgB

2
sat

�0

The resulting polar capacity isnearlycircular, as indicated in Figures 2.13 and 2.15.

2.12.2 Specific Capacity

Drawing on this concept of limiting performance load capacity, it is possible to compute a specific
load capacity which is characteristic of a category of stator designs. The specific load capacity is
defined for single plane radial stators as the worst orientation load capacity (minimum radius of the
polar capacity) divided by the projected area of the journal. The projected area of the journal is
simply the length of the journal times its diameter:

fc = min
u

�0f(u)

B2
satdj`j

(2.6)

As shown in the previous discussion, the load capacity always comes out as a characteristic scale
times a product of saturation density and gap area:

min
u

f(u) = �
AgB

2
sat

�0

where the factor� is a property of the stator geometry:

�
:
= min

u
f(u)

�0
AgB2

sat

Thus,

fc =
�Ag

dj`j

For a single plane radial stator withn equal area legs, the areaAg is easily computed if it is
postulated that the poles occupy some known percentage of the available circumference. Thus,
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Table 2.3: Specific load capacity, symmetric single plane radial stators.

specific capacity
legs general horseshoe

fi = 0:5 fi = 0:75 fi = 0:5 fi = 0:75
3 0.163 0.230 - -
4 0.177 0.257 - -
5 0.188 0.276 - -
6 0.224 0.331 0.194 0.287
7 0.240 0.356 - -
8 0.235 0.350 0.180 0.268
9 0.236 0.351 - -
10 0.245 0.365 0.229 0.342
12 0.244 0.364 0.218 0.326
16 0.247 0.369 0.232 0.347
20 0.248 0.371 0.238 0.357
1 0.250 0.375 0.250 0.375

define the percent iron,fi, as the ratio between the sum of the arc lengths of the pole faces to the
total available circumference:

fi =
n�p(rj + g)

2�(rj + g)
=
n�p
2�

This parameter is useful in that it varies from 0 to 1 and has an easily assessed impact on the stator
design. Further, for this class of stators, it is easily demonstrated that the factor� depends only
upon the number of legs:

� = �(n)

Having introduced the percent iron, the air gap areameasured at the journal surfaceis computed
as:

Ag = 2rj`j cos

�
�p
2

�
= dj`j cos

�
�fi
n

�

so that, finally, the specific load capacity becomes

fc = �(n) cos

�
�fi
n

�

Table 2.3 provides this factor for several symmetric stators with a range of leg numbers assuming
either independent gap flux control or a horseshoe arrangement.

To illustrate the use of this figure, assume that a radial actuator is to be designed with a minimum
load capacity of 2000 N (450 lb) using material which saturates at 1.6 Tesla. Further, assume that
a symmetric geometry having 12 legs is selected, that the iron ratio is selected to be 0.75, and that
independent coil control will be used so that arbitrary gap flux distributions can be achieved. For
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this geometry, the specific capacity is found in Table 2.3 to befc = 0:364. Thus, the required load
capacity would dicate a journal area of

min
u

f(u) =
B2
satdj`jfc
�0

=
1:62dj`j0:364

4� � 10�7
= 2000 ) dj`j = 26:97 cm2

If the journal should be roughly square, then the journal dimensions would be:

dj = `j =
p
26:97 = 5:19 cm

The journal pressure achieved with this stator is:

Pmin =
minu f(u)

dj`j
=

2000

0:002697
= 0:74 MPa= 107:5 PSI

For comparison, iron which saturates at 1.6 Tesla can achieve a pressure of1:62=2�0 = 1:02 MPa=
148 PSI.

The choice of the iron ratio as 0.75 is apparently arbitrary, but it will shortly be demonstrated
that increasing the iron ratio reduces the area available for coils and can therefore increase the stator
outer diameter. Indeed, given a specific design objective (minimum actuator weight, minimum
journal weight, minimum stator diameter, minimum stator length, ...) there is a best choice of iron
ratio for each number of legs which is sensitive to the required capacities and the iron saturation
density.
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Chapter 3

Magnetic Stator Design

Design of actuators proceeds from a collection of performance specifications, primarily governing
load capacity, and attempts to minimize some kind of performance index. A principal constraint
relates to the thermal performance of the device: the electromagnet coils will generate heat through
I2R or Ohmic losses and these losses must be able to be adequately carried away either by con-
duction through the stator iron to an external heat sink, by convection to the gas or fluid in which
the actuator is immersed, or by radiation to neighboring surfaces. Although a formal treatment of
this heat transfer problem can be applied to the design problem, it is more customary to use stan-
dard quidelines for sizing the coils to provide adequate heat rejection and then examine the ultimate
thermal performance after the design process has made some progress toward a final configuration.

Once the basic configuration of the actuator is selected, most of the actuator geometric param-
eters are determined in attempt to satisfy the thermal constraint in conjunction with load capacity
at magnetic saturation and geometric considerations to preclude premature saturation in the iron
structure. The resulting design equations retain as few free variables as can be managed and these
are iterated in an effort to optimize the design: find a choice of the free parameters which minimizes
the performance index.

3.1 Coil Size

The size of the electromagnet coils is determined by the RMS coil current, expressed in Ampere-
turns. The model for the coil currents has the form

I = CÎ = C
�

K�1
i f

Ib

�
(3.1)

Decompose the coil selection law into that component which relates the currents to the force and
that component which relates the currents to the bias:

C = � Cf Cb
� ) I = CbIb + CfK�1

i f (3.2)

Finally, limitations on the coil size will be related to the product of coil current and coil turns, so
multiply the coil current vector by a matrix whose diagonal terms are the number of turns in each
coil:

N = diagNi

67
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so that

NI = NCbIb +NCfK�1
i f

Finally, the notation is introduced:

Ib :
= NCbIb ; [Ix Iy :::] := NCfK�1

i

Assume that the force can be written as

fx = fx;0 + fx;s cos!t

fy = fy;0 + fy;s sin!t

in which fx;0 andfy;0 are expected static forces andfx;s andfy;s are expected time varying forces
so that coilj has

NjIj = Ib;j + Ix;j(fx;0 + fx;s cos!t) + Iy;j(fy;0 + fy;s sin!t)

The RMS value is

jNjIj j =
q

(Ib;j + Ix;jfx;0 + Iy;jfy;0)2 + 0:5(Ix;jfx;s)2 + 0:5(Iy;jfy;s)2

Recall that

jNjIjj � fcJmaxAc

whereJmax is the maximum copper current density,� 600 A/cm2 andfc is the copper factor: ratio
of copper area to coil area,� 0:5. This means that

Ac;j �
p

(Ib;j + Ix;jfx;0 + Iy;jfy;0)2 + 0:5(Ix;jfx;s)2 + 0:5(Iy;jfy;s)2
fcJmax

3.2 Six Pole Example

Assume:

� fx;0 = 0 fy;0 = 200N

� fx;s = fy;s = 75N

From the examples in Chapter2, the actuator gain for a six pole symmetric stator with indepen-
dently controlled coils is

Ki =
3�0N

2AgIb
g20

where the coil selection law was chosen as

C =

2
6666664

0 1 1
0:866 �0:5 �1
�0:866 �0:5 1

0 1 �1
0:866 �0:5 1
�0:866 �0:5 �1

3
7777775
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The load capacity of this actuator is given by

min
u

f(u) =
0:866B2

satAg

�0

Assume a saturation density of 1.2 Tesla, so that the capacity is

min
u

f(u) =
0:8661:22Ag

�0
= 1:15 � 106Ag

If the gap area is set atAg = 0:001m2, then the load capacity is 1145 N. Finally, assume that the
nominal gap length is 0.2 mm. This produces an actuator gain of

Ki =
3�0N

2AgIb
g20

= 0:0942N2Ib

The bias current controls the bias flux density:

Bb = R�1NCbIb =
�0NIb
g0

8>>>>>><
>>>>>>:

1
�1
1
�1
1
�1

9>>>>>>=
>>>>>>;

so that the bias current needed to produce a given bias density ofBb is

NIb =
Bbg0
�0

The factorsIb, Ix, andIy are easily computed as

Ib = 159:15Bb

8>>>>>><
>>>>>>:

1
�1
1
�1
1
�1

9>>>>>>=
>>>>>>;

; Ix =
1

15:0Bb

8>>>>>><
>>>>>>:

0
0:866
�0:866

0
0:866
�0:866

9>>>>>>=
>>>>>>;

; Iy =
1

15:0Bb

8>>>>>><
>>>>>>:

1
�0:5
�0:5
1
�0:5
�0:5

9>>>>>>=
>>>>>>;

The resulting RMS currents and required coil areas are summarized in Table 3.1 for bias flux den-
sities of 0.6 T and 0.3 T. If a bias density of 0.6 Tesla is used, the coils must have a cross sectional
area of about 0.4 cm2. If a lower bias density of 0.3 Tesla is used instead, the coil cross sectional
area can be reduced to about 0.31 cm2.
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Table 3.1: RMS coil currents and required coil areas for the six pole stator example.

Bb = 0:6T Bb = 0:3T
Coil jNjIjj RMS (A) coil area (cm2) jNjIjj RMS (A) coil area (cm2)
1 117.6 0.39 92.9 0.31
2 106.7 0.36 70.9 0.24
3 84.6 0.28 28.1 0.09
4 73.5 0.25 12.2 0.04
5 84.6 0.28 28.1 0.09
6 106.7 0.36 70.9 0.24

3.3 Stator Iron Geometry

rs stator radius
rc coil space radius
rj journal radius
rr rotor shaft radius
g air gap length
w pole width
np number of poles
fi iron ratio: �pnp=2�

*3

i

)

rs

rc

rj

rr

j
g

Y
jw

3.4 Geometric Design

Assume thatnp, g, rr, andfi are already selected. Decide whether to use flux splitting or not:

 = 0:5 or 1. Flux splitting is described in Figure 3.1.
Rules:

1. prevent back–iron or journal saturation prior to pole saturation by requiringrj � rr � 
w:

w = 2(rj + g) sin

�
�fi
np

�

) rj � rr � 2
(rj + g) sin

�
�fi
np

�

Thus, computingrj producesw.
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Split flux

� efficient use of iron

Unsplit flux

� lower rotating losses

� simpler current control

Figure 3.1: Flux splitting.

2. the requiredAg can be computed from capacity analysis. Since the preceding computation
produced the leg width, the axial length is easily obtained from the gap area:

` = Ag=w

3. match the available coil area,Av, to the required coil area,Ac: Av = �Ac where1 � � � 2.
This dictates the radius at the outside of the coil space,rc. See Figure 3.2.

4. the stator outside diameter is dictated by the coil space radius, leg width, and flux splitting
parameter: provide enough back–iron to prevent saturation there.

rs = rc + 
w

This approach determines the geometric parameters for symmetric radial stator designs except
for the iron ratiofi, the number of polesnp, the splitting parameter
, and the biasing ratio�.
Generally, these parameters are chosen iteratively to minimize some performance measure for the
actuator. Table 3.2 presents some example criteria along with engineering reasons for selecting the
criteria.

Table 3.3 summarizes the free design parameters and indicates each parameter’s effect on the
design.

3.5 Gap Selection

What controls gap size?
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Full Coil Fill

rp
:
= rj + g

Av =

�
r2c

�

np
� r2p tan

�

np
� (rc � rp)w

�
=2

Removable Coils

rp
:
= rj + g

Av =

�
rp tan

�

np
� w

2

�
(rc � rp)

Figure 3.2: Coil winding schemes.

Table 3.2: Properties to compute for design comparison.

journal weight,��`
�
r2j � r2r

�
high weight reduces controllability, rotor-
dynamic performance

journal diameter,2rj material stress, rotating losses at high
RPM: below2� 106 DN, ignore

journal length,̀ may make shaft longer, degrades rotordy-
namic performance

stator iron weight+ coil weight+ journal
weight

specific load capacity is capacity/total
weight: may be critical

stator axial length with coils long package can be hard to fit , coil size
may require added shaft length
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Table 3.3: Free design parameters: symmetric radial actuators.


 flux splitting flux splitting always gives smaller bearings, but higher losses
and somewhat more complicated coil current control

np number of poles generally should increase with increasing shaft size

rr rotor shaft radius usually fixed

fi iron ratio upper limit is based on leakage rules:2�(rj+g)(1�fi) > 3g
lower limit is 0.0
largefi leads to little space for coils, large stator diameter
smallfi leads to unsufficient iron, long axial length

Bsat saturation flux higherBsat gives more capacity, maybe smaller iron, but
need big coils to take advantage of it

� biasing ratio up to 0.5: higher gives better slew performance and linearity
but increasesKxx and coil size

Small gaps:

� require precise machining

� produce sensitivity to thermal/centrifugal
growth

� give higher open loop stiffness, stronger
variation inKx with shaft position

� may require high stiffness to prevent ex-
cessive rotor motion

Large gaps:

� require require highNI

� produce more flux leakage – more un-
modeled magnetic effects

3.5.1 Gap selection: rotordynamics

For rotors, examine the rotordynamics of the shaft/bearing combination: expected rotor response to
expected loads, unbalance, ... The gap depends on the bearing dynamic properties which, in turn,
depend on size: this implies iteration.

� once journal motions are predicted, useg � 2xmax

� checkKxx, Kyy, Kxy, Kyx: bearing stiffness (closed loop) must be> 2Kxx.

� open loop stiffnesses too large? make gap larger.

� small journal motion may require high load capacity – high load capacity will mean large
Kxx: two effects!

� nominal bearing stiffness should beguidedbyKb � 2fcap=g
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Note: ifKxx can’t be efficiently made small enough, can use flux feedback in the power ampli-
fiers to eliminate it.

3.6 Example: Six Pole Bearing

Outline:

1. determine load capacity requirements: peak, steady, sinusoidal

2. select bearing configuration

3. use peak capacity to determine required gap area

4. use steady and sinusoidal capacity to determine coil area

5. compute journal diameter,rj, and pole width,w

6. compute coil space radius to accomodate coil

7. examine solution properties, evaluate design

8. iterate on parameter assumptions

3.6.1 Load capacity, rotor shaft diameter, design parameters

Use something reasonable for capacities, rotor diameter:

� fcap = 500 N

� fsteady = 150 N

� fsinusoidal = 55 N

� rr = 2 cm

Initial design parameters:

� iron ratio,fi = 0:6

� gap,g = 0:2 mm

� flux splitting? yes:
 = 0:5

� poles,np = 6

� saturation flux,Bsat: 1.2T

� biasing ratio,� = 0:5

3.6.2 Gap area

Use limits from saturation analysis: worst is vertical

fy;sat=
AgB

2
sat

2�0
(sin 60Æ + sin 120Æ) = 500

UseBsat= 1:2Tesla.
Solve for gap area:

Ag =
2�0500

B2
sat(sin 60

Æ + sin 120Æ)
= 0:000504 m2
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3.6.3 Find journal radius, pole width

rj � rr � 2
(rj + g) sin

�
�fi
np

�

rj

�
1� 2
 sin

�
�fi
np

��
� rr + 2
g sin

�
�fi
np

�

rj �
rr + 2
g sin

�
�fi
np

�
1� 2
 sin

�
�fi
np

� = 2:9 cm

Userj = 3:0 cm.

w = 2(rj + g) sin

�
�fi
np

�
= 1:87 cm

Axial length:

` = Ag=w = 2:70 cm

3.6.4 Coil area

From the previous capacity analysis, the dominant term is the biasing, which hasn’t changed. Thus,
we need aboutAc = 0:4 cm2.

Assume a fully packed coil

rp
:
= rj + g = 3:02 cm

Av =

�
r2c

�

np
� r2p tan

�

np
� (rc � rp)w

�
=2 = 4� 10�5 m2

Solving forrc gives

rc = 4:21 cm

Finally, the stator outside dimension is at least

rs � rc + 
w = 5:14 cm
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Chapter 4

Power Amplifiers

4.1 Overview

Amplifier purpose:

� controller output will be low power, a voltage proportional to requested current

� actuator input is high power, currents related to desired forces

� amplifier must convert low power controller output signal (voltage) to a high power stator
input signal (current)

this is transconductance operation

General Mechanism:
amplifier regulates flow of energy between a power source and a load

4.1.1 Outline

� Review of components

� Simple Linear Amplifiers, Efficiency

� Regeneration

� Current Sensing

� Stability

� Switching Amplifiers, Efficiency

� Pulse Width Modulation

� Regeneration Revisited

� 3 State Switching

� Flux Feedback

� Other Switching Schemes

77
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4.2 Components

4.2.1 Operational Amplifiers

Linear model:

Va = 
 (Vp � Vm)

Characteristics:


 = 105 � 107

Rm; Rp = 105 � 109 


Limitations:

jIoutj < 50 mA

����dVadt
���� < 1� 100 V=�sec

jVaj < 12 volts

�
+

j
j j Va

Vm

Vp

�
+j j

R
R

R 5R

Vout

Vin

Always used in feedback schemes, op-amp forces circuit response to satisfyVm = Vp.
For circuit shown,Vout = 3Vin.
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4.2.2 Output Devices

Bipolar transistor
Linear model:

Ic = hfeIb Vbe � 0:6 volts

Switch model:

Vce � 1� 3 volts Vbe > 1� 2 volts

Collector

Emitter

Base

Field effect transistor
Linear model:

Ids = gfs(Vgs � Vgst) Vgst � 2� 4 volts

Switching model:

Rds � 0:05 � 1:5 Ohms Vgs > 6 volts

Drain

Source

Gate qq
q

Insulated Gate Bipolar Transistor (IGBT)
Linear model:

Ic = gfe(Vge � Vget) Vget � 4:0 volts

(similar to an FET) Switch model:

Vce � 1� 3 volts Vge > 6� 10 volts

(similar to a bipolar transistor)
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Collector

Emitter

Gate

4.3 Linear Amplifier, Monopolar

Transistor model (very simple!):

Ic � hfeIb

Output voltage:

Vout = IeZ` = (1 + hfe)IbZ`

Base current:

Ib =
Vin � Vb

R
=
Vin � Vout � Vbe

R

Amplifier voltage gain:

Vout =
1 + hfe

R=Z + 1 + hfe
(Vin � Vbe)

Amplifier current gain:

Iout = Ie = (1 + hfe)Ib

Load,Z`

j

Vps

collector

emitter

�

base

RVin

jVout



4.4. MONOPOLAR AMPLIFIER USING FEEDBACK 81

4.3.1 Dissipation

Power is dissipated in this amplifier in both the load and in the output transistor.
The instantaneous load power is

W` = VoutIout = I2outZ`

The output transistor power is

Wx = (Vps � Vout)Iout

The efficiency of the amplifier is the ratio of power consumed to power delivered:

� =
1

T

Z T

0

W`

Wx +W`
dt =

1

T

Z T

0

VoutIout
(Vps � Vout)Iout + VoutIout

dt =
V out

Vps

4.3.2 Efficiency Example

Suppose that, in order to accomodate the peak dynamic requirement,

Vps = 30 volts

Further, assume that the load impedance is

Z` = 0:033s + 1:62

(as in the simple example worked in the last lecture.)
The efficiency of the amplifier at DC under no load condition is computed for the bias current

of 0.95 amps:

Vout = 0:95� 1:62 = 1:54 volts ) � =
1:54

30
= 5:13 %

We can only increase electrical efficiency by reducing the power supply voltage, which will
reduce the dynamic capacity.

4.4 Monopolar Amplifier Using Feedback

Simple one transistor amplifier gave okay performance:
Amplifier voltage gain:

Vout =
1 + hfe

R=Z + 1 + hfe
(Vin � Vbe)

Amplifier current gain:

Iout = Ie = (1 + hfe)Ib

but it would be nice to get more control over the gain, eliminate the offset, and remove sensitivity
to hfe and load impedance.

Op–amp characteristic:

Va = �
Vm
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Collector current conservation:

Vout = Z`

�
Ic � Vout � Vm

Rf

�

Transistor characteristic:

Ic = (1 + hfe)
Va � (Vout + Vbe)

Rb

Op–amp input impedance:

Vin � Vm
Ri

= �Vout � Vm
Rf

Load,Z`

Vps

Rb

jVout

�
+

Rf

j

u

u
Ri

Vin

Va
Vm

Vout

�
1 + Z`

�
1 + hfe
Rb

+
1

Rf
+

�

(1 + hfe)

Rb
� 1

Rf

�
Ri

Ri +Rf

��
=

�Z`
�

(1 + hfe)

Rb
� 1

Rf

�
Rf

Rf +Ri
Vin � Z`

1 + hfe
Rb

Vbe

In limit as
 !1:

Vout = �Rf

Ri
Vin

4.5 Monopolar Amplifier - Transconductance

Current shunt sensor function:

Vout = Iload
RsRf

Rs +Rf
� IloadRs
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Amplifier gain:

Vout = �Rf

Ri
Vin

Transconductance:

Iload = � Rf

RiRs
Vin

Load,Z`

Vps

Rb

jVout

�
+

Rf

j

u

u
Ri

Vin

Rs

Problem: limited voltage range of op–amp

4.6 Three Transistor Transconductance Amplifier

Additional transistors provide voltage gain.

Transconductance is still

Iload = � Rf

RiRs
Vin

Drawback: amplifier is not regenerative. Can’t recapture inductor current, can only dissipate it.
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h
Vout

�
+

Rf

h

t

t
Ri

Vin

Rs

h+Vpst

h�Vpst

t

t

h+15

Load,Z`

4.6.1 Simplified Model, Inductive Load

Present amplifier:n+Vps

n Load,Z`

Vc
current
sensing

n�I`

fVa

v

To increase the load current,Va is made positive.

To decrease the load current,Va is made negative.

Current isalwaysdrawn from the power supply, sent through the load, and dumped to ground:
no current is ever recovered.



4.7. CURRENT SENSING 85

4.6.2 Regenerative Amplifieri+Vps

i Load,Z`
Vc current

sensing

i�I`

dVa
i+Vps

iVd
dVb
tt

To increase the load current,Va is made positive,Vb = 0.
To decrease the load current,Vb is made positive,Va = 0.
Current is drawn from the power supply when increasing the inductor current, returned to the

power supply when decreasing the inductor current.

4.7 Current Sensing

4.7.1 Resistor

Simplest method: resistor as a sensor

Load,Z`g Load,Z`

g
Load,Z`s s
s sg

Drawbacks: no isolation from load voltages (can be large), power dissipation in the sense resis-
tor.

4.7.2 Hall Effect Device

Hall effect device senses flux:

VHall = ��

Common scheme for measuring currents (works at DC):

���� �������� ��
load current

ju
NrefN`

Hall Effect sensor Rref
Vout
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The amplifier modulates the current in the reference coil to make the flux sensed by the Hall
Effect sensor be zero.

Thus:

N`I` �NrefIref = 0 Vout = IrefRref =
RrefNref

N`
I`

4.8 Stability, Bandwidth

Load model:

I(s) =
1

Ls+R
V (s)

Op–amp, transistor stage model:

V (s) = � K

�2s+ 2��s+ 1

�
RfVin(s)

Ri +Rf
+
RsRiI(s)

Ri +Rf

�

Closed loop model:

I(s)

Vin(s)
=

�K
(�2s+ 2��s+ 1)(Ls+R)(Rf=RsRi + 1=Rs) +K

Rf

RiRs

Apparently,

lim
K!1

I(s)

Vin(s)
=

Rf

RiRs

Unfortunately,K is limited by stability considerations. Generally,K is chosen to provide an ac-
ceptable damping ratio in the closed loop performance.

4.9 General Characteristics

� maximum current: determined by output device capacity

� maximum voltage: device capacity, power supply voltage

� bandwidth: load characteristics, bandwidth of transistor stage

� efficiency:� � Vout=Vps

Choice of output devices:

high voltage, moderate current: use power FET: low on resistance relative to load

moderate voltage, high currents: use IGBT’s: low saturation voltage
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4.10 Switching Amplifiers

4.10.1 General Idea of Switching

With a linear amplifier, the voltage across the load varies continuously:

� �� �� �� �� �� �� �
� ���

Load

� ���Amplifier

With a switching amplifier, the voltage across the load is either+Vps or�Vps:

� �� �� �� �� �� �� �
� ���

Load

u ue
e e

eu R
Amplifier

4.10.2 Character of the Switch

For field effect transistors, we can model the switch as:

Drain

Source

Gate qq
q

� time between “on” and “off” transitions ists

� when “off”: no current is conducted

� when “on”: device resistance is fixed atRon

� transition from “off” to “on” is:

– fixed duration,tr

– voltage and current vary linearly during transition
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VDS

IDS

tr ts ts + tr

Vps

I`Ron

I`

4.10.3 Switching: Duty Cycle

It is common to design the switchingalgorithmso that a pair of transitions occurs every� seconds
(microseconds!)

Theduty cycleis the percent time spent in the “on” state:

ts = Æ�

Note: the load is controlled by 4 switches. Two are on while the other two are off. This means
that the duty cycle refers to percent time of positive load voltage.

� �� �� �� �� �� �� �
� ���

Load

u
u

u
uu

uu

u

u
u u

1 2

3 4
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1

2

3

4

0 1� 2� 3� 4�

4.10.4 Average Voltage

Assuming that the switch is ideal (ignoretr, Ron) the average voltage drop across the load during
one full cycle is:

Vavg =
1

�
(Æ�Vps + (1� Æ)�(�Vps)) = (2Æ � 1)Vps : 0 < Æ < 1

So the average applied voltage varies continuously between�Vps and+Vps.

4.10.5 Average Current

For an inductive load, switching produces a current noise:

I = I0 +
1

L

Z t

0
V (t)dt =

8<
:

I0 +
1
LVpst : 0 < t < Æ�

I0 +
2
LVpsÆ� � 1

LVpst : Æ� < t < �

Average current is incremented or decremented byÆ:

Iavg =
1

�

Z �

0
I(t)dt = I0 +

Vps
L

(2Æ � 1)

4.10.6 Switching Waveform

Assume the example:

� bias:Ib = 0:95 amps

� power supply:Vps = 30 volts

� coil resistance:Rc = 1:62


� coil inductance:L = 33 mH

Amplifier properties:

� switching rate,fs = 25 kHz,
� = 40 �sec

� output device,Ron = 0:05
.
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Waveform:

dI

dt
+
Rc +Ron

L
I =

1

L
V

) dI

dt
+ 50:61I = �909:1

at steady state,

Vavg = Ib(Rc +Ron) = 1:59 ) Æ = 0:526

I(t) = min

8<
:

0:941 + 17:023
�
1� e�50:6t

�
0:979 � 18:943

�
1� e�50:6t

�
9=
;

40�sec

0.96

0.94

Current,
amps

4.10.7 Power Dissipation

Energy is dissipated during transition and during the “on” state:

Transition energy:

Wt =
VpsI` + 2I2`Ron

6
tr

“On” state energy:

Won = I2`Ron(Æ� � tr)

Total power/cycle (two transitions):

Wcycle =
VpsI` � I2`Ron

3
tr + I2`RonÆ�

Power:

P =
Wcycle

�
=
VpsI` � I2`Ron

3
fstr + I2`RonÆ
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VDS

IDS

tr ts ts + tr

Vps

I`Ron

I`

4.10.8 Efficiency

The efficiency is the ratio of power delivered to power consumed. Previously, it was shown that
each device in the H bridge consumes

Px =
VpsI` � I2`Ron

3
fstr + I2`RonÆ

Since half of the devices have a duty cycle ofÆ and the other half have a duty cycle of1 � Æ, the
total power consumed by the bridge is

Pb =
4VpsI` � 4I2`Ron

3
fstr + 2I2`Ron

The power delivered to the load is (for constantI`):

P` = I2`Rc

Let the “on” resistance beRon = �Rc so that

� =
1

4
3

h
Vps
I`Rc
� �
i
fstr + (1 + 2�)

4.10.9 Efficiency Examples

Consider the simple bearing design developed previously:

Vps = 30V I` = 0:95A Rc = 1:62
 fs = 25kHz
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Example 1:

Ron = 0:0


tr = 0nsec

� = 100 percent

Example 2:

Ron = 0:05


tr = 50nsec

� = 91:5 percent

Example 3:

Ron = 0:05


tr = 100nsec

� = 88:9 percent

Example 4:

Ron = 0:025


tr = 100nsec

� = 91:6 percent
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4.11 Transconductance Models

Two approaches:

� Use linear model, treat switching amplifier as voltage gain element

��
��

Load

��
��

K Load

� Treat feedback loop as non-linear, no open–loop model for switching element

4.11.1 Pulse Width Modulation

From prior analysis, we know that the output voltage, averaged over one cycle, is

Vavg = (2Æ � 1)Vps

Thus, if the duty cycle is made proportional to an input voltage:

Æ = 0:5 +
K

2Vps
Vin

then the amplifier has a defined gain:

Vavg = KVin

This mechanism of varying the duty cycle (pulse width) in proportion to the input voltage is
calledPulseWidth Modulation or PWM.

Commonest method of implementing: Input signal is compared to a triangle wave of amplitude
At and frequencyfs. Output state is determined by the sign of the sum:

Vl = Vps sign(Vin �At�(t)) �(t) =

�
1� 4t=� : 0 < t < 0:5�
4t=� � 3 : 0:5� < t < �

PWM:

Vl = Vps sign(Vin �At�(t)) �(t) =

�
1� 4t=� : 0 < t < 0:5�
4t=� � 3 : 0:5� < t < �

For a constant input,Vin, the resulting switching decisions occur at:

t" =
�

4

�
1� Vin

At

�
t# =

�

4

�
3 +

Vin
At

�
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so the duty cycle is

Æ =
t# � t"
�

= 0:5

�
1 +

Vin
At

�

and the amplifier gain is

K =
Vps
At

0

Vin

t" t#

�At

At

4.11.2 PWM Bandwidth

The load model is

I` =
1

sL+R
V`

and the (simplified) amplifier model is

V` =
Vps
At

(Iref � I`)

��
��

Vps
At

1
sL+R

I`V`Iref

This means that the closed loop transfer function is (solve forI` in terms ofIref )

I` =
Vps

(sL+R)At + Vps
Iref

The bandwidth occurs where

2�fbwLAt = RAt + Vps ) fbw =
R

2�L
+

Vps
2�AtL

Switching can track the input as long as

d

dt
At�(2�tfs) >

d

dt
(Iref � I`) � Vps

L
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so that

4Atfs >
Vps
L

) At >
Vps
4Lfs

This suggests an upper limit on the bandwidth of

fbw;max =
4fs
2�

By Shannon’s sampling theorem, more reasonable to expect a usable bandwidth of

fbw;max � 0:2fs

4.11.3 Regeneration

� Positive current

– Increasing inductor current

� ���� ���� ���� �
pp
p
pp
p

pp
p
pp
p

b Vps
ON

ON

OFF

OFF

– Decreasing inductor current

� ���� ���� ���� �
pp
p
pp
p

pp
p
pp
p

b Vps
OFF

OFF

(ON)

(ON)

pp

� Negative current

– Increasing inductor current

� ���� ���� ���� �
pp
p
pp
p

pp
p
pp
p

b Vps
(ON) OFF

(ON)OFF
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– Decreasing inductor current

� ���� ���� ���� �
pp
p
pp
p

pp
p
pp
p

b Vps

pp
OFF ON

OFFON

4.12 Power Supply Requirements

Because the amplifier is regenerative, the power supply only has to provide theaveragepower:
the peaks are delivered by capacitors. Further, the switching mechanism functions as a DC/DC
converter: the actual (average) current drawn from the power supply is determined by amplifier
efficiency:

Pps = VpsIavg;ps =
1

�
I2avgRc

so that

Iavg;ps =
I2avgRc

�Vps
= Iavg

Vavg
�Vps

j-
Iavg;ps

6

?
Ips � Iavg;ps

Vps

For example, letRc = 1:62
, Vps = 30 volts,Iavg = 0:95 amps, and� = 0:9:

Iavg;ps = 54 mA !

4.13 3–State Output

The H bridge can be controlled to generate a third state where the voltage drop across the load is
zero. The advantage is that the load ripple current is much smaller when the load current is changing
slowly.
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� ���� ���� ���� �
ppp
ppp

ppp
ppp
bVps

ON

ON

OFF

OFF

State 1:I` "

� ���� ���� ���� �
ppp
ppp

ppp
ppp
bVps

OFF

OFF

ON

ON

pp

State 2:I` #

� ���� ���� ���� �
ppp
ppp

ppp
ppp
bVps

OFF

ON

OFF

ON

pp

State 3:dI=dt � 0

Voltage and current waveforms (constant positive input voltage,sL+R load)

Iref
I`

V`

Vps

0

4.13.1 3–State PWM

3–state switching is fairly simple to control. The logic:

� the left and right halves of the bridge are controlled separately

� in each half, either the top or the bottom transistor is on: never both and never neither

� if the input voltage is positive, the output can be increased by turning on the top left transistor
(#1).

� if the input voltage is negative, the output can be decreased by turning on the top right tran-
sistor (#2).

� �� �� �� �� �� �� �

qq
q
qq
q

qq
q
qq
q

e Vps

1

4

2

3

qq
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4.13.2 Monopolar PWM Pair

Each half of the bridge is controlled as a monopolar PWM amplifier:

� input signal is compared to triangle wave

– left half: 0 toAt

– right half:�At to 0

– triangle waves are sychronized

� top transistor state determined by sign of difference

At=2

�At=2

t
d tt
d At=2

����� ���� ���� �

qq
q
qq
q

qq
q
qq
q

d Vps

qq
d

d
t

t
t v

t
Vin

4.13.3 Comparison of 2- and 3-State PWM

amplifier/load properties:

Vps = 50 volts

R = 1:62


L = 33 mH

fs = 25 kHz

reference signal:

0:95 + 0:1 sin 500�t
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1.05

0.848
0 0.004

3–state

noise = 3 mA RMS

1.06

0.834
0 0.004

2–state

noise = 8.8 mA RMS

Same Comparison at DC

amplifier/load properties:

Vps = 50 volts

R = 1:62


L = 33 mH

fs = 25 kHz

reference signal:

0:95

1

0.9
0 0.0004

RMS Error = 1.2 mA

3–State PWM
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1

0.9
0 0.0004

2–State PWM

RMS Error = 11 mA

Another Comparison of 2- and 3-State PWM
amplifier/load properties:

Vps = 100 volts

R = 0:95


L = 8:3 mH

fs = 25 kHz

reference signal:

0:95 + 0:1 sin 500�t

1.2

0.7
0 0.004

3–State PWM

RMS Error = 4 mA

1.2

0.7
0 0.004

RMS Error = 85 mA

2–State PWM

A Final Comparison of 2- and 3-State PWM
amplifier/load properties:

Vps = 200 volts



4.14. CURRENT FEEDBACK 101

R = 0:95


L = 8:3 mH

fs = 25 kHz

reference signal:

0:95 + 0:1 sin 500�t

1.3

0.6
0 0.004

3–State PWM

RMS Error = 3.7 mA

1.3

0.6
0 0.004

2–State PWM

RMS Error = 170 mA

4.14 Current Feedback

Recall the force generated by the simple two horseshoe bearing:

f =
1

�o
Ag

�
B2
1 �B2

2

�
We recast this in terms of the coil currents using

Bi =
�0NIi

2g(x) + `iron=�r
=

�0NIi
2(g0 � x)

to get

f =
�0N

2Ag

2

�
I21

(g0 � x)2
� I22

(g0 + x)2

�
I1 = max(Ib + ip; 0)
I2 = max(Ib � ip; 0)

f � Kiip �Kxx

We control the current by closing a feedback loop in the amplifier which forces the bearing currents
to track a request (from the controller)



102 CHAPTER 4. POWER AMPLIFIERS

4.15 Flux Feedback: Why?

Current feedback problems:

� the relationship between force and current depends upon the magnetic properties of the ma-
terial: saturation, eddy currents, hysteresis, ...

� journal motion produces back-emf which must be overcome by the transconductance ampli-
fier

� open–loop stiffness is destabilizing

With flux linearization:

B1 = Bb +Bp B2 = Bb �Bp

the force–to flux law does not include magnetic properties and has no open–loop stiffness:

f =
4

�o
AgBbBp

So, if the amplifier can control the flux directly, sensitivity to gap andB �H effects is eliminated.

4.16 General Amplifier Scheme

Current Feedback

�

� �

�n

fVin

�I

I
�

I =
Vin
�

Requires a current sensor
Flux Feedback

�

� �

�

fVin

��

I
�

i

� =
Vin
�

Requires a flux sensor
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4.16.1 Flux Sensing: Hall Sensors

Principle:e0 / �I

I0

� �
g g

e0

? ? ? ?
? ? ? ?

Magnetic field,�

j

semiconductor or gold film
z u u

Problems:

� gain is strong function of temperature

� film is at least 0.25 mm thick: extra air gap

� film is fragile

Irony: Current Sensing with Hall Probes

���� �������� �� s
Hall Effect

Sensor

Rref
����
����
���� ���� ���� ����
��cVin

Current Sensor

Current is sensed by having it generate another magnetic flux and detecting that flux with a Hall
effect sensor!

4.16.2 Flux Sensing: Faraday’s Law

For a coil with a flux passing through it:

V = N
d�

dt
+RI

This relationship is true independent of hysteresis, eddy currents, magnetic saturation, ...
Thus, the voltage drop across the coil is an indication of the flux:

� =
1

N

Z
V �RIdt

Unfortunately, we can’t detect a constant flux this way:

d�

dt
= 0 ) V = RI

which is independent of the actual flux.
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4.16.3 Flux Detection: Two Schemes

Two models for flux:

�(t) =
�0NA

2g(t) + f(�; t)
I(t)

� �0NA

2g0 + f(�0)
I � �0NAI0

(2g0 + f(�0))2
fg � g0 + f(�)� f(�0)g

�(t) =
1

N

Z
V (t)�RI(t)dt

In the frequency domain:

�(s) =
�0NA

2g0 + f(�0)
I(s)� �0NAI0

(2g0 + f(�0))2
fg(s)� g0 + f(�)(s)� f(�0)g

�(s) =
1

sN
fV (s)�RI(s)g

Low frequency model:

�LF (s) =
a

sn(s) + a
�(s)

=
�0NA

2g0 + f(�0)

a

sn(s) + a
I(s)

� �0NAI0
(2g0 + f(�0))2

a

sn(s) + a
fg(s)� g0 + f(�)(s)� f(�0)g

� �0NA

2g0 + f(�0)

a

sn(s) + a
I(s)

High frequency model:

�HF (s) =
sn(s)

sn(s) + a
�(s) =

n(s)

(sn(s) + a)N
fV (s)�RI(s)g

4.16.4 Flux Detection: Composite Model

Total model:

�(s) = �LF (s) + �HF (s)

=

�
a

sn(s) + a
+

sn(s)

sn(s) + a

�
�(s)

� 1

N(sn(s) + a)

��
a�0N

2A

2g0 + f(�0)
�Rn(s)

�
I(s) + n(s)V (s)

�

Eliminates effects of:
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� eddy currents

� transient or oscillatory rotor motion

� momentary saturation

Cannot eliminate effects of:

� persistent hysteresis

� steady rotor position error

� thermal growth of gaps

4.16.5 Linearized Actuator Model With Flux Feedback

Open loop term is “rolled off” by the low pass filter on the current feedback:

f(s) = KbBp � aKx

sn(s) + a
x

Important note: overcoming eddy current and saturation effects requires LOTS of current (but
not lots of voltage).

4.17 Other Algorithms

Some other algorithms which do not treat the switching component as a linear amplifier:

Sample and Hold the sign of the error between actual and reference currents is checked at regular
intervals (every� seconds) and the output state is set depending upon the sign.

Hysteresis the reference and actual currents are compared with a hysteretic amplifier and the output
of the amplifier determines the switch state.

Time Delay the reference and actual currents are compared and each time the sign of the error
changes, the output state is changedafter � seconds.

All have the same objectives:

Limit the switching rate to preserve switching efficiency.
Make the average output current match the average input current

4.17.1 Underlying Concepts

� voltage applied to load is a sequence of states:+ or�
� number of state changes per second should be limited

� average current aftern switches should equal average request

� state changes are made in response to sign changes in current error signal

� closed loop sustains alimit cycleat a prescribed frequency
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4.17.2 The Limit Cycle: Constant Input

1. initial current isI0, initial output state is+

I(t) = I0e
�Rt=L +

Vps
R

�
1� e�Rt=L

�
0 < t < t�

2. state changes att�

I(t) =

�
I0e

�Rt
�

=L +
Vps
R

�
1� e�Rt=L

��
e�R(t�t�)=L � Vps

R

�
1� e�R(t�t�)=L

�
: t� < t < t+

3. state again changes att+: current must have returned toI0:

I(t+) = I0

4. average current should be equal to constant input:

1

t+

Z t+

0
I(t)dt = Iref

Simpler Form: IgnoreR

1. initial error ise0, initial output state is+

e(t) = e0 +
Vps
L
t 0 < t < t�

2. state changes att�

e(t) = e0 +
Vps
L

(2t� � t) t� < t < t+

3. state again changes att+: current must have returned toI0:

e(t+) = e0 ) t+ = 2t� = �

4. average current should be equal to constant input:

1

t+

Z t+

0
e(t)dt = 0 ) e0 = �Vps�

4L
; e(t�) =

Vps�

4L

4.17.3 Key Control Ideas

1. output state switches are correlated to error sign changes (feedback)

2. output state switches cannot occur at sign error instant

Control algorithm must either:

� switch at an error other than zero (PWM, Hysteresis)

or

� switch some time period after zero error (Time delay, sample and hold)
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4.17.4 Comparator

� �� �� �� �� �� �� �

qq
q
qq
q

qq
q
qq
q

e Vps

qq e

e

u u
u u

u

u

j
eIref

Switching rate depends on comparator characteristics:
VERY RAPID SWITCHING, VERY LOW EFFICIENCY

4.17.5 Sample and Hold

� �� �� �� �� �� �� �

qq
q
qq
q

qq
q
qq
q

e Vps

qq
Flip
Flop

D Q

CLK

e

e

u u
u u

u

u

j
eIref

�-�

Switching rate:

fs =
1

�

Noise:

An � 2
Vps
2fsL
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Synchronous; immune to short cycling on noise; high distortion; switching rate set by clock
(essentially)

4.17.6 Hysteresis

� �� �� �� �� �� �� �

qq
q
qq
q

qq
q
qq
q

e Vps

qq e

e

u u
u u

u

u

j
eIref

- �At

Switching rate:

fs � Vps
2AtL

Noise (peak–peak):

An � At =
Vps
2fsL

Asynchronous; susceptible to short cycling on noise; very low distortion; switching rate depends
upon hysteresis depth, power supply voltage, and load impedance.

4.17.7 PWM
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� �� �� �� �� �� �� �

qq
q
qq
q

qq
q
qq
q

e Vps

qq e

e

u u
u u

u

u

j
eIref

?
6

At

Best bandwidth:

At � Vps
2Lfs

Switching rate:

fs � Vps
2AtL

Noise (peak–peak):

An � At =
Vps
2fsL

Both transitions are asynchronous; susceptible to short cycling on noise; very low distortion;
switching rate fixed by clock.

4.17.8 Time Delay

� ���� ���� ���� �
pp
p
pp
p

pp
p
pp
p

c Vps

ppFlip-Flop

CLK Q

D

c
c
s s
s s

s

s

g
cIref

c
�d

�d

�

s

Switching rate:

fs � 1

4�d
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Noise (pk–pk):

An � Vps
2fsL

Asynchronous; susceptible to short cycling on noise; very low distortion; switching rate depends
upon time delay.



Chapter 5

Stator–Amplifier Matching

5.1 Bearing/Amplifier Design Sequence

1. determine peak, RMS force; peak force slew rate: dynamic requirements

2. select biasing ratio based on linearity or power loss considerations

3. design iron: based on peak force, RMS requirements and thermal model

4. determine amplifier KVa requirement based on slew requirement and gap

5. pick peak current based on availability: dicates coil turns,N , to achieve maximum load
capacity

5.1.1 Capacity Requirements

Depend upon:

� system dynamics (rotor dynamics)

� expected loads: unbalance, fluid forces, earthquakes, ...

� allowable load response: clearances, maximum strain, accelerations, ...

� expected controller performance

Note that the allowable response component implies some connection between bearing air gap (a
limit on allowed motion) and bearing capacity requirements.

The outcome of this part of the analysis is:

fmax fRMS

����dfdt
����
max

g0

5.1.2 Selecting Biasing Ratio

The biasing ratio is the ratio between the bias current and the current at which the stator iron begins
to saturate. The choice of biasing ratio depends on a number of considerations. Since bias current
exacts a toll in terms of coil power dissipation and rotating loss, it should be kept as low as possible.

111
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One drawback to low bias is an increase in required power supply voltage in order to protect the
actuator’s force slew capability.

An additional drawback to low bias may be control complexity: once the control current exceeds
the bias current, it is most common to limit the low current coils to 0 which leads to nonlinearity in
the current–to–force relationship. If a very simple control is sought, then it may be preferable to use
a high biasing ratio (as high as 0.5). More commonly, the biasing ratio is chosen to be high enough
to ensure linear operation throughout the normally expected range of actuator loads.

A detailed discussion of methods by which the biasing level may be optimized is beyond the
scope of these notes and we will assume that the biasing level will, in general, be selected so as to
ensure linear operation throughout the specified RMS load range. In any case, the outcome of this
analysis is the biasing ratio,

�

5.1.3 Iron Size Based on Peak and RMS Loads

Depends on:

� magnetic material: saturation flux density

� general pole configuration: number, spacing, backiron connection

� model for saturation of poles: by quadrant, by sector, single pole, ...

� leakage derating – probably about 0.9, but smaller for large gaps.

Match coil size to allowed RMS current density, coil copper factor, and expected currents:

JRMSAcfc = NIRMS = N
q
I2b + (fRMS=Ki)2

) Ac =
1

JRMSfc

s
(NIb)2 +

�
fRMSN2Ib

Ki

�2 1

(NIb)2

The outcome of this analysis is:

Ki

N2Ib

Kx

N2I2b

L

N2
NIsat

5.1.4 KVa Requirement

For a given choice of iron structure and biasing ratio, the relationship between amplifier capacity,
slew requirement, and nominal air gap is:����dfdt

����
max

� �
VmaxIb
g0

where� depends upon the stator configuration. Assuming that a biasing ratio has of� = Ib=Imax

has been chosen, then ����dfdt
����
max

� ��
VmaxImax

g0
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Table 5.1: Amplifiers Offered by Advanced Motion Controls
Model Imax Vmax kVA cost ($ US)
100A20 100 200 20.00 800
100A8 100 80 8.00 800
50A20 50 200 10.00 520
50A8 50 80 4.00 520
30A20-AC 30 200 6.00 520
30A8 30 80 2.40 390
25A20 25 200 5.00 390
25A8 25 80 2.00 295
20A14 20 140 2.80 335
16A20-AC 16 200 3.20 439
12A8 12 80 0.96 275
10A8 10 80 0.80 295
5A5 5 50 0.25 198

or,

VmaxImax � g0
��

����dfdt
����
max

Choice of peak currents:

� limited by available devices

� should permit saturation of magnetics:

Imax = Isat ) N =
NIsat

Imax

For example, Advanced Motion Controls offers the amplifier models listed in Table 5.1. The out-
come of this analysis (choice) is the number of coil turns,N

5.1.5 Free Design Parameters: Optimization

The design process, as described above, involves choosing many free parameters which will deter-
mine the quality of the final design.
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Free Parameters:

� number of poles

� magnetic material (saturation)

� complexity of coil control

� back–iron use (flux splitting)

� iron ratio

� coil packing factor

� amplifier current capacity

� design objective: linear rangevsslew
performance

Performance Measures:

� system weight

� shaft added mass

� power consumption

� system cost

� reliability

� safety (high voltages!)

� package size

� ...

5.2 Design Example

Performance Specifications:

� fmax = 6500 N

� fRMS = 3500 N

� maximum speed = 8000 RPM

� df=dt = 5� 106 N/sec

� g0 = 0:6 mm

� rotor: rr = 5 cm

Initial Design Choices:

� use 8 poles:np = 8

� use Vanadium Permendur:Bsat =
2:2 T

� use flux splitting:
 = 0:5

� base design on attainable linear limit

� assume coils wound in quadrant pairs

Compute

required gap area:

Ag =
2�0fmax

B2
sat2 cos 22:5

Æ = 1:85 � 10�3 m2

Choose the iron ratio to give a “square” journal (length = diameter)

rj = (rr + g0 sin(�fi=np))=(1 � sin(�fi=np))

w = 2(rj + g0) sin(�fi=np) ` = Ag=w

fi = 0:35

rj = 5:803 cm

w = 1:607 cm

` = 11:514 cm
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Note that the decision to use a square journal has dictated quite a low iron ratio: only 35 percent.
A considerably shorter journal with larger diameter would arise if a higher iron ratio were selected.
On the other hand, the larger journal might turn out to be too large: we have not paid any attention
to the hoop stresses at the inner diameter of the journal iron, but these stresses can be substantial
if the surface speed of the journal is too large. For silicon iron journals, the surface speed should
be limited to about 200 m/sec(?), which is equivalent to a DN product of 3.8 million(?). For the
present example, the maximum expected shaft speed is 8000 RPM. The computed journal diameter
of 5.8 cm then produces a surface speed of only 24 m/sec: well below the level where hoop stress is
a concern. In general, the iron ratio is an optimization parameter. When hoop stress is significant, it
acts as an upper bound on the useful iron ratio.

5.2.1 Stator Properties

Normalized actuator gain:

Ki

N2Ib
=

4�0Ag cos 22:5
Æ

g20
= 2:38 � 10�2 N/amp2turn2

Normalized open loop stiffness:

Kx

N2I2b
=

4�0Ag cos
2 22:5Æ

g30
= 36:7 N/m amp2turn2

Normalized inductance (coil pairs in series):

L

N2
=

2�0Ag

g0
= 7:75 �H/turns2

Ampere-turns at saturation:

NIsat =
Bsatg0
�0

= 1050 Ampere-turns

5.2.2 Slew Requirements/Amplifier Selection

Required kVA:

0:001ImaxVmax = 0:001
NIsat

NIb

IbL

Ki

����dfdt
����
max

= 0:001
NIsat

NIb
3:26 � 10�4 � 5� 106

= 1:63
NIsat

NIb

Available kVA: pick the 4 kVA amplifier from Advanced Motion:

4 = 1:63
NIsat

NIb
) NIb = 427 Ampere-turns

Note: this setsIb = 0:41Isat for a very wide linear range, but probably large coils because the
bias is large.
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5.3 Design Example Revisited

Performance Specifications:

� fmax = 6500 N

� fRMS = 3500 N

� maximum speed = 8000 RPM

� df=dt = 5� 106 N/sec

� g0 = 0:6 mm

� rotor: rr = 5 cm

Initial Design Choices:

� use 8 poles:np = 8

� use Vanadium Permendur:Bsat =
2:2 T

� do note use flux splitting:
 = 1:0

� assume coils wound in quadrant pairs

Slew rate chosen by requiring full capacity at maximum running speed:

����dfdt
����
max

= fmax
max = 6500 � 2� � � 8000

60

5.3.1 Size the stator for load capacity

Compute required gap area:

Ag =
2�0fmax

B2
sat2 cos 22:5

Æ = 1:85 � 10�3 m2

m
min�

Pn
i=1(Bi=Bsat)

2 cos(�i � �) = 1:848

Choose iron ratio to give “square” journal (length = diameter)

rj =
rr + 2
g0 sin

�
�fi
np

�
1� 2
 sin

�
�fi
np

�

w = 2(rj + g0) sin

�
�fi
np

�
` =

Ag

w

Solution:

fi = 0:28 rj = 6:4228 cm
w = 1:4228 cm ` = 12:841 cm
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half scale

5.3.2 Stator Properties

Normalized actuator gain:

Ki

N2Ib
=

4�0Ag cos 22:5
Æ

g20
= 2:356 � 10�2 N/amp2turn2

Normalized open loop stiffness:

Kx

N2I2b
=

4�0Ag cos
2 22:5Æ

g30
= 36:3 N/m amp2turn2

Normalized inductance (coil pairs in series):

L

N2
=

2�0Ag

g0
= 7:65 �H/turns2

Ampere-turns at saturation:

NIsat =
Bsatg0
�0

= 1050 Ampere-turns

5.3.3 Slew Requirements/Linearity

Required kVA:

0:001ImaxVmax = 0:001
NIsat

NIb

IbL

Ki

����dfdt
����
max

= 0:001
NIsat

NIb
3:247 � 10�4 � 5� 106

= 1:62
NIsat

NIb

Linearity:

actuator is linear whilejIp;maxj < Ib. 100% linearity would mean thatIb + Ip;max =
Isat, or 2Ib = Isat. In general, the linear range (as a fraction of capacity) is

flin
fmax

=

�
2Ib
Isat

�2
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5.3.4 Amplifier Selection

In this example,fRMS = 0:538fmax so we might desire that

flin
fmax

= 0:538 =

�
2Ib
Isat

�2

) Ib = 0:367Isat

This would dictate a kVA capacity of

0:001ImaxVmax =
1

0:367
1:62 = 4:42 kVA

Available kVA: pick the 5 kVA amplifier from Advanced Motion:

5 = 1:62
NIsat

NIb
) NIb � 340:2 A-t

From Advanced Motion Controls:
Model Imax Vmax kVA cost ($ US)
100A20 100 200 20.00 800
50A20 50 200 10.00 520
100A8 100 80 8.00 800
30A20-AC 30 200 6.00 520
25A20 25 200 5.00 390
50A8 50 80 4.00 520
16A20-AC 16 200 3.20 439
20A14 20 140 2.80 335
30A8 30 80 2.40 390
25A8 25 80 2.00 295
12A8 12 80 0.96 275
10A8 10 80 0.80 295
5A5 5 50 0.25 198

The maximum current for this amplifier isImax = 25 amps so

N =
NIsat

Imax
= 42 turns Isat= 25 amps Ib = max(0:324; 0:367)Isat = 9:175 amps

5.3.5 Size the Coil

The RMS perturbation current is:

Ip;RMS =
fRMS

Ki
=
fRMSN

2Ib
Ki

1

N2Ib
=

3500

0:02356

1

4229:175
= 9:179 amps

This gives an RMS coil ampere-turns of

NIRMS = 42
p

9:1752 + 9:1792 = 545 ampere-turns

The required coil area is then

JrmsfcAc = 600 � 0:5�Ac = 545 ) Ac = 1:82 cm2
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Full Coil Fill Removable Coils

Use removable coils:

rp
:
= rj + g0 = 6:483 cm

Av = Ac =

�
rp tan

�

np
� w

2

�
(rc � rp)

) rc = 7:405 cm

5.3.6 Completed Design

Stator outer radius is coil space radius plus splitting factor times leg width:

rs = rc + 
w = 7:405 + 1:0 � 1:4228 = 8:828 cm

Design performance:

� Stator iron weight: 8.91 kg

� Coil weight (8): 2.52 kg

� Journal weight: 5.14 kg

� Total bearing weight: 16.57 kg

� capacity/weight (at 1G): 40.03

� Total bearing volume: 1135 cm3

� Bearing axial length: 16.8 cm
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half scale

5.4 Design Iteration

Looks like the design has too few poles: try 12 instead. With 12 poles, it’s easier to use half back
iron (
 = 0:5) and independent coil control. Otherwise, use the same performance and design
criteria.

Compute required gap area:

Ag =
2�0fmax

B2
sat(1 + 2 cos 30Æ + 2 cos 60Æ)

= 0:9044 � 10�3 m2

Choose iron ratio to give “square” journal (length = diameter)

rj =
rr + 2
g0 sin

�
�fi
np

�
1� 2
 sin

�
�fi
np

�

w = 2(rj + g0) sin

�
�fi
np

�
` =

Ag

w

Solution:

fi = 0:29 rj = 5:417 cm
w = 0:835 cm ` = 10:836 cm
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half scale

5.4.1 Stator Properties

Normalized actuator gain:

Ki

N2Ib
=

2�0Ag(1 + 2 cos 30Æ + 2 sin2 30Æ)
g20

= 2:356 � 10�2 N/amp2turn2

Normalized open loop stiffness:

Kx

N2I2b
=

2�0Ag(1 + 2 cos2 30Æ + 2 sin2 30Æ)
g30

= 31:57 N/m amp2turn2

Normalized inductance (coils wound separately):

L

N2
=
�0Ag

g0
= 1:89 �H/turns2

Ampere-turns at saturation:

NIsat =
Bsatg0
�0

= 1050 Ampere-turns

5.4.2 Slew Requirements/Linearity

Required kVA:

0:001ImaxVmax = 0:001
NIsat

NIb

IbL

Ki

����dfdt
����
max

= 0:001
NIsat

NIb
8:022 � 10�5 � 5� 106

= 0:4011
NIsat

NIb

Linearity:

flin
fmax

=

�
2Ib
Isat

�2
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Let flin = fRMS = 0:538fmax so that

Ib = 0:367Isat

as in the previous iteration. This requires an amplifier capacity of

0:001ImaxVmax =
0:401

0:367
= 1:09 kVA

Notice that the previous design, using eight poles, required 4.42 kVA amplifiers. Apparently, the
twelve pole design requires much less kVA. However, the twelve pole design uses twelve separate
amplifiers whereas the eight pole design used only four. The total kVA for the eight pole design is
4�4:42 = 17:68 kVA whereas for the twelve pole design, the total capacity required is12�1:09 =
13:12 kVA. The slight reduction (25 percent) in required KVa is due to the higher volume efficiency
of the iron when independent coil control is used.

5.4.3 Amplifier Selection

Available kVA: pick the 0.96 kVA amplifier from Advanced Motion:

0:96 = 0:4011
NIsat

NIb
= 0:4011

1050

NIb
) NIb � 438:7 A-t

From Advanced Motion Controls:
Model Imax Vmax kVA cost ($ US)
100A20 100 200 20.00 800
50A20 50 200 10.00 520
100A8 100 80 8.00 800
30A20-AC 30 200 6.00 520
25A20 25 200 5.00 390
50A8 50 80 4.00 520
16A20-AC 16 200 3.20 439
20A14 20 140 2.80 335
30A8 30 80 2.40 390
25A8 25 80 2.00 295
12A8 12 80 0.96 275
10A8 10 80 0.80 295
5A5 5 50 0.25 198

The maximum current for this amplifier isImax = 12 amps so

N =
NIsat

Imax
=

1050

12
= 87:5 turns Isat= 12 amps Ib =

438:7

88
= 4:99 amps

5.4.4 Size the Coil

The RMS perturbation current is:

Ip;RMS =
fRMS

Ki
=
fRMSN

2Ib
Ki

1

N2Ib
=

3500

0:02356

1

8824:99
= 3:84 amps
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This gives an RMS coil ampere-turns of

NIRMS = 88
p

4:992 + 3:8442 = 554 ampere-turns

The required coil area is then

JrmsfcAc = 600 � 0:5�Ac = 554 ) Ac = 1:85 cm2

Full Coil Fill Removable Coils

Use removable coils:

rp
:
= rj + g0 = 5:477 cm

Av = Ac =

�
rp tan

�

np
� w

2

�
(rc � rp)

) rc = 7:239 cm

5.4.5 Completed Design

Stator outer radius is coil space radius plus splitting factor times leg width:

rs = rc + 
w = 7:239 + 0:5� 0:835 = 7:656 cm

This stator is considerably smaller in diameter than the previous design.

5.5 Effect of Iron Ratio on Journal Radius

Figures 5.1 and 5.2 illustrate the effect of iron ratio on journal size. Each figure plots the function

rj
rr

=
1 + 2
 g

rr
sin
�
�fi
np

�
1� 2
 sin

�
�fi
np

�
as a function offi for gap ratios,g=rr, ranging from 0.001 through 0.1. In each case, the journal
size is largest with the highest gap ratio. Each plot shows both the case with no flux splitting (
 = 1)
and with flux splitting (
 = 0:5).
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7

1
0:1 0:55

4 Pole Stator

no flux splitting

flux splitting

iron ratio,fi

rj
rr

6

1
0:1 0:8iron ratio,fi

rj
rr

6 pole stator

no flux splitting

flux splitting

3:5

1:0
0:1 0:9iron ratio,fi

rj
rr

8 pole stator

no flux splitting

flux splitting

Figure 5.1: Effect of iron ratio on journal size: 4, 6, and 8 pole stators.



5.5. EFFECT OF IRON RATIO ON JOURNAL RADIUS 125

2

1
0:1 0:9iron ratio,fi

rj
rr

12 pole stator
no flux splitting

flux splitting

1:6

1:0
0:1 0:9iron ratio,fi

rj
rr

16 pole stator no flux splitting

flux splitting

Figure 5.2: Effect of iron ratio on journal size: 12 and 16 pole stators.
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Chapter 6

Position Sensors

6.1 General Sensor Characteristics

� noncontacting

� singlevalued:f(x; y) is invertible

� bandwidth should exceed amplifier/magnetic bandwidth

� commercial applications require durability, stability, and low cost

� usable feedback gains usually limited by signal–to–noise ratio

� commonly employed in differential pairs to eliminate effects of thermal or centripetal stress
growth

6.2 Points of Comparison

gap requirements: since the probes are all non–contacting, there is a gap lying between the sen-
sitive portion of the probe and the sensed target. This gap is commonly filled with some
substance – a process fluid or air. In some cases, the gap is evacuated. The various probes
each place a different set of restrictions on what properties this intervening material must
have.

bandwidth: the sensor gain as a function of frequency of motion is assumed constant out to some
frequency beyond which the gain drops rapidly with increasing frequency. This breakpoint is
called the bandwidth and describes the maximum frequency of motion which the sensor can
usefully measure.

127
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linearity: ideally, the output of the sensor is described byvout = ax+ b wherea is the sensor gain
andb is some offset. In fact, the sensor output is not perfectly linear, so linearity is a measure
of the discrepancy between a linear model and the actual input–output relationship.

cost: self–evident

compatibility with cans: in many magnetic bearing applications, it is desirable to isolate the sen-
sors and magnetic actuators from either the process fluid or process vacuum. In order to do
this, it is often necesary to introduce a mechanical barrier (or “can”) between these compo-
nents and the shaft/sensor target which is immersed in the process fluid. Each sensor type is
able to operate with such a mechanical barrier, but each places different restrictions on the
mechanical, electrical, or magnetic properties of this barrier.

magnetic noise susceptibility: because the sensor usually operates in close proximity to the mag-
netic bearings which can have substantial leakage magnetic fluxes, the sensitivity of the sen-
sor to this leakage flux may have a significant impact on the overal system performance. In
extreme cases, leakage flux may render a sensitive sensor inoperative.

standoff distance: This is a measure of how close the sensitive portion of the sensor must be to the
target surface. In some applications, it is difficult or impossible to place the sensor close to
the surface so a large allowable standoff distance is required.

6.3 Acoustic Probes – Ultrasonic

� gap requirements: consistent density

� bandwidth: should be> 5 kHz

� linearity: very good

� cost: ???

� compatibility with cans: potentially very good

� magnetic noise susceptibility: very good with piezo devices

� standoff distance: inverse with bandwidth

� problems: diffuse acoustic field, stray echos, machine noise rejection

��
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� acoustic impedance depends on target position

� measure with tuned resonant circuit: measure electrical impedance of transducer

6.4 Capacitance Probes

� gap requirements: consistent dielectric strength

� bandwidth: very high

� linearity: moderate (hyperbolic sensitivity to gap)

� cost: moderate to high

� compatibility with cans: must be nonconductive

� magnetic noise susceptibility: significant for switching noise

� standoff distance: small

u

u u
u

� capacitance is a function of gap

� use at fixed frequency for noise rejection

6.5 Optical Probes: Interferometric

� gap: transparent, consistent refractive index

� target: reflective

� bandwidth: high,> 2 kHz

� linearity: best possible

� cost: very high



130 CHAPTER 6. POSITION SENSORS

� cans: must be transparent (glass)

� magnetic noise susceptibility: none

� standoff distance: arbitrary

6

6

6

6

- -
����

?

?

?���

Laser

Detector

Fixed mirror

Target mirror

Beam splitter

Beam separation
exaggerated for
clarity

6x

� reconverged beams interfere

� electronics count interference fringes

� quadrature required to detect direction

6.6 Optical Probes: Reflectance

� gap requirements: transparent, consistent absorbtion and refractive index

� target: consistent reflectivity

� bandwidth: extremely high,> 10 kHz

� linearity: excellent

� cost: moderate

� compatibility with cans: must be transparent (glass)

� magnetic noise susceptibility: none

� standoff distance: small, strong effect on sensitivity
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Light emitting diode

Photo–diode

-x

� intensity of reflected light varies with gap

� can minimize optical noise effects with LED frequency modulation, single frequency detec-
tion

6.7 Optical Probes: Occlusion

� gap: transparent, consistent absorbtion and refractive index

� target: (prefer non-reflective)

� bandwidth: extremely high,> 10 kHz

� linearity: excellent

� cost: moderate

� cans: must be transparent (glass)

� magnetic noise susceptibility: none

� standoff distance: can be large, small effect on sensitivity

�� ��LED
Photo
diode

Obstacle

D -�

6

�

y
r

� intensity of transmitted light varies with target motion
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� can minimize optical noise effects with LED frequency modulation, single frequency detec-
tion

6.8 Differential Occlusion, Thermal Compensation

�� ��

�� ��

6

�

y

x

>>

>> ))

))

dtt
d

dd+15 VDC
+1 VDC

�1 VDC

Vout

�� ��LED
Obstructed PT.

�� Reference PT.

h Set point

� feedback keeps PT output constant

� compensates for aging, temperature effects in LED

� if PT characteristics are the same, compensates for aging, temperature effects in PT’s.



6.9. EDDY CURRENT PROBES 133

6.9 Eddy Current Probes

� gap requirements: nonconductive

� target requirements: consistent electrical conductivity, permeability

� bandwidth: 2–4 kHz

� linearity: good

� cost: high

� compatibility with cans: must be thin and nonconductive

� mag. noise susceptibility: moderate

� standoff distance: small, strong effect on sensitivity, probe size

�

x

active coil

�
balance coil

�

��
����
��u
u

u
ee synchronous

demodulation
u

� active coil induces target eddy currents

� eddy currents depend on gap

� eddy currents make active circuit have higher losses than balance circuit

� change in impedances unbalances the bridge

6.10 Problems with Eddy Current Probes

� small mismatch in 1 MHz carrier in adjacent probes can cause large “beat” frequency output
signal (0.1 % error! 500 Hz)

� “electrical runout” on shaft can be hard to eliminate: small variations in permeability due to
machining

� switching noise from magnetic bearings can couple strongly into eddy current probe signals

� cannot conveniently be used outside of a can
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� sensor tips are expensive, hard to use in a distributed sensing array (to average surface effects)

6.11 Hall Effect Probes

� gap requirements: short gap

� bandwidth: high with non–conductive cans

� linearity: moderate

� cost: low

� compatibility with cans: must be thin

� magnetic noise susceptibility: very high

� standoff distance: small, strong effect on sensitivity

N S

e

e
Hall probe
output voltage

-x

� permanent magnet establishes�

� � varies inversely withx

� Hall output varies in proportion to�

6.12 Variable Reluctance Probes

� gap requirements

� bandwidth: to 2 kHz (limited by eddy current effects)

� linearity: good
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� cost: moderate

� compatibility with cans: must be thin

� magnetic noise susceptibility: high

� standoff distance: small, strong effect on sensitivity

6

x

Æ
��u u e

u

e synchronous
demodulation

u

Z

Z

� each coil impedance varies inversely with gap

� resistance is matched to nominal coil impedance

� output voltage is very linear in gap

6.13 Differential Variable Reluctance

Bridge operation:

v1 =
Z(!)

j!L1 + Z(!)
V v2 =

Z(!)

j!L2 + Z(!)
V

L1 =
�

g0 � x
L2 =

�

g0 + x

v1 � v2 =
2j!Z(!)V

Z2(!)(g2 � x2)� !2�+ 2j!�Z(!)g
x

Z(!) is matched to nominal coil
impedance:

Z(!) = !
�

g
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so that

v1 � v2 � V

g
x

y

y

y

y

V sin!ti i
v2v1

L1 L2

ZZ

6.14 Synchronous Demodulation

Bridge output:

v1 � v2 =
V

g
x sin!t

Take product with bridge drive:

V sin!t� (v1 � v2) =
V 2

g
x sin2 !t

Low pass filter (average over 1/2 cycle):

V 2

g

!

�

Z t+ �
!

t
x sin2 !tdt � V 2

g
x

This is essentially convolution and is very effective at removing noise at frequencies other than!.

ff
f

f
V sin!t

v1

v2
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6.15 Signal Processing Waveforms:x < 0

excitation
V sin!t

0

v1 � v2

v1

v2

V sin!t� (v1 � v2)

k
average value

1

6.16 Signal Processing Waveforms:x > 0

excitation
V sin!t

v2

v1

V sin!t� (v1 � v2)

k
average value

1

v1 � v2

0
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6.17 Signal Processing Waveforms:x = 0

excitation
V sin!t

0

v1 � v2

v1

v2

V sin!t� (v1 � v2)

k
average value

1

6.18 Problems with Variable Reluctance

� very susceptible to stray field from magnetic bearings: keep probe flux as high as possible

� maximum driving frequency is limited by eddy currents

� minimum driving frequency is limited by bandwidth requirements

bandwidth< 0.2!

� iron reluctance should be small compared to air gap. At high frequencies, this requires thin
lams, short iron paths

� short iron paths leave little room for coils: conflicts with desire to keep gap flux large

6.19 Self Sensing Stators: Basic Concepts

� the bearing stator is a variable reluctance sensor
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� coil currents and voltages are available

� coil current and voltage are functionally related by gap length
(ignore magnetic non-idealities)

� this function should be invertible to yield gaps or shaft position

6

x

6I2

?
I1

e

eV2

V1

6.20 Motivation

� Specific:

– reduce wire count

– reduce components in harsh environment

– eliminate sensor–actuator noncollocation

– reduce bearing package length/volume

� Generic:

– reduce cost

– increase reliability

– improve system dynamics
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6.21 Prior Research (Patents)

� Bleuler and Vischer

state estimation and switch demodulation

� Jayawant

switch demodulation

� Okada

switch demodulation / synchronous demodulation

� Ianello

switch demodulation / differential rectification

6.22 General Methods

� state estimation

– actuator and system are considered integrated

– actuator is voltage in / current out

– journal position is obtained by state estimation

– plant transfer function has pole–zero pairs in RHP

� parameter estimation

– actuator and system are spectrally separated

– actuator is voltage in / current out

– position of journal is a parameter of magnetic model

– standard approach: forward filtering of current waveform

6.23 Gap Dynamics

V1 =
d

dt
L1I1 +RI1

= I1
dL

dt
+ L1

dI

dt
+RI1

= I1
�0N

2A

(g � x)2
dx

dt
+
�0N

2A

g � x

dI1
dt

+RI1
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V2 = �I2 �0N
2A

(g + x)2
dx

dt
+
�0N

2A

g + x

dI2
dt

+RI2

6

x

6I2

?
I1

e

eV2

V1

coil voltage is sum of resistive term, inductive (depends on gap), and motion back–EMF

6.24 Parameter Estimation: Ideal Filtering

Assume that switching effect is much stronger than the journal induced back–emf:

LdI=dt� IdL=dt

so that

V =
�0N

2A

g � x

dI

dt
+RI

Further,V is a square wave with amplitudeVps and duty cycleÆ.
The switching waveform is a triangle wave with the form:

I(t) �

8><
>:

I0 +
Vps
L t 0 < t < Æ�

I0 +
Vps
L (2Æ� � t) Æ� < t < �

� -�
� -Æ�



142 CHAPTER 6. POSITION SENSORS

6.25 Step 1: High Pass Filter

Remove the average value:

If (t) =

8><
>:

2Vps
L (1� Æ)(t� 0:5Æ�) 0 < t < Æ�

�2Vps
L Æ(t� 0:5(Æ + 1)�) Æ� < t < �

� -�
� -Æ�

+

� -�
� -Æ�

Highpass filter: poles in Butterworth configuration at about 0.1!s
(0.13 was used in the prototype)

6.26 Step 2: Rectify

Rectify this result:

Ir(t) = jIf (t)j =

8>>>>>>>>><
>>>>>>>>>:

2Vps
L (1� Æ)(0:5Æ� � t) 0 < t < 0:5Æ�

2Vps
L (1� Æ)(t � 0:5Æ�) 0:5Æ� < t < Æ�

2Vps
L Æ(0:5(Æ + 1)� � t) Æ� < t < (1+Æ)�

2

2Vps
L Æ(t� 0:5(Æ + 1)�) (1+Æ)�

2 < t < �
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� -�
� -Æ�

+

Use a conventional precision rectifier.

6.27 Step 3: Average (Low Pass Filter)

Finally, average the result over one full cycle:

Ia =
1

�

Z �

0
Ir(t)dt =

1

2
Æ(1 � Æ)

Vps�

L

= Æ(1 � Æ)
Vps
2L0

g0 � x

g0

Resulting signal is:

� proportional to the gap

� affected by the duty cycle

Low pass filter, poles at about0:1!s, in Butterworth configuration.
(0.05 was used in the prototype)

6.28 Sample Waveforms

Compare actual beam deflection to waveform filter: pinned beam
9.7

5.7
0.4 399

unforced rotor response, duty cycle is constant
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8.3

7.2
0.4 80

forced rotor response, duty cycle varies sinusoidally

6.29 Duty Cycle Dependency

Duty cycle produces variations in bearing force:

Æ / df

dt

) filtered output depends on:

� gap (displacement)

� force

Two approaches to eliminate force dependency:

1. scaling compensation:

g0 + x = Ia
2L0g0

VpsÆ(1 � Æ)

2. parameter estimation:

run a parallel simulation of the bearing and adjust the simulated gap to make the filtered
simulated current waveform match the filtered measured waveform
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6.30 Scaling Compensation

Looks easiest to compensate forÆ by scaling.

fVps

�	�� �	�	��
j � j

Æ filter
construct
Æ(1 � Æ)

division fg � x

f

v
However:

� division is complicated and time consuming

� direct measurement ofÆ requires additional delay and filtering

� end result is only as good as the forward filter performance: actual circuits will not match the
idealized circuits

6.31 Parameter Estimation

Instead, run a simulation of the bearing magnetic dynamics:

� apply the same voltage to the simulation as to the actual bearing

� filter the output with identically the same filter

� force the two filter outputs to be the same by choice of the gap in the simulation
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eVps
���� ������

j � j

e
u

inductance
simulation j � j

u

H(s)

u eg0 � x

Output quality is primarily determined by simulation quality andH(s).

6.32 Bearing Simulation

Recall coil voltages:

V = �I �0N
2A

(g � x)2
dx

dt
+
�0N

2A

g � x

dI

dt
+RI ) dI

dt
=

g � x

�0N2A
(V �RI)� I

1

g � x

dx

dt

If we ignore the back–emf due to rotor motion, we get

dI

dt
=

g � x

�0N2A
(V �RI)

Simulation block looks like:

��
��
e

eV
ĝ = g0 � x̂

1
�0N2A

R
(�)dt eI

R
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6.33 The Feedback,H(s)

The job of the feedback controller,H(s), is to use the error between the two filtered current wave-
forms to produce an estimate of the gap and, in doing so, force the error to zero.

The system is nonlinear, but can be linearized and shown to be essentially first order. As a
result, we can stabilize the loop with a phase lag compensator: proportional–integral control with
finite bandwidth:

H(s) =
�a
s
+ b
� 1

�s+ 1
=

bs+ a

s(�s+ 1)

Gap parameter estimator bandwidth will depend upon� andb. These are limited by the dynamic
response of the forward path filter.

prototype:a = 0:2, b = 0:0001, � � 10�4.

6.34 Sample Waveforms

Compare actual beam deflection to estimator output: pinned beam

9.5

6
0 49.9

9.5

6
0 400

unforced rotor response, duty cycle is constant

6.35 Another Sample Waveform

Compare actual beam deflection to estimator output: pinned beam
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9.5

6
0 49.9

forced rotor response, duty cycle varies sinusoidally

6.36 Prototype Performance

Bandwidth:

0

�180
20 10000

0

2:0

0:2

1.0

100 1000
Journal Frequency (Hz)

Sensor Gain

Sensor Phase

Noise:

0:12

0
50 5000

0
100 1000

Frequency (Hz)

Power Spectral
Density (�m/Hz)

Linearity:
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0:2 0:7

0

0:004

0:002

�0:002
�0:004

0:60:4

Journal Displacement (mm)

Regression error (mm)

6.37 Drawbacks

� sensitivity

at sensor frequencies, iron reluctance is large compared to air gap:

L =
�oN

2A

2g + `=�r

SLg
:
=
@L

@g

g0
L0

= � 2g0
2g0 + `=�r

for typical geometry:g � 0:5mm,` � 100mm,�r(20 kHz) � 100

) SLg � �0:5

� linearity

at high force (high flux density), permeability is a function of current

6.38 Saturation Effects

1. as gapdecreasesand force increases, iron begins to saturate

2. iron saturation produces a loss in relative permeability

3. loss in relative permeability looks like loss of inductance

4. loss of inductance is interpreted as anincreasein gap length
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35

19
�5 5

0

I = 5A

I = 4:5A

I = 4A

Journal Displacement (mils)

Switching Waveform
Slope (A/sec)

This is a problem for high performance applications, eg.: aircraft jet engines.

6.39 Future Work

� demonstrate on test rig

� incorporate saturation nonlinearity into estimator

� develop and demonstrate coupled stator methods

6.40 Including Saturation

Rearrange simulation model:

V � IR = N
d�

dt
) dB

dt
=

1

NAg
(V � IR)

B =
�0NI

2g + `=�r
) I =

1

�0N
(2g + `=�r)B
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The relative permeability (at a given frequency) depends only uponB:

`

�r
= f(B)

0:2

0�1:5 1:5
0

f(B) vsB

1:5

�1:5�0:035 0:035

0

B vsH

6.41 Revised Simulation Model

The new simulation model, including saturation, is:

��
��

d

dV

ĝ = g0 � x̂

R
(�)dt dI

R

1=�0N1=AgN

��
��

`=�r(B)

Note that this modeldoes not neglect “velocity” effects.
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6.42 Differential Gaps

Opposing coils sense motion differentially:

g1 = g0 + gt � x

g2 = g0 + gt + x

6

x

6I2

?
I1

e

eV2

V1

The gap estimates for the two gaps should not be independent!

6.43 Differential Processor

V1, I1

g1

V2, I2

g2

��
��

��
��

Hx(s)

Ht(s)

��
��

��
��

e1

e2

v

v

v

v

x̂

g0 + ĝt

Æ

magnetic simulation
and forward filters
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Hx(s) produces a fast loop for estimating displacement,x
Ht(s) produces a slow loop for estimating thermal or centrifugal growth,gt
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Chapter 7

Controllers

7.1 General Structure

�Æ �����Æ

Controller

 Amplifiers !

Sensors

Plant

Sensors Actuator Actuator

7.2 Controller Roles

Primary tasks:

� coordinate transformation of sensor signals

155
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� collection of any other parameters needed by control algorithm

� generation of control current (or flux)requests:

execute control algorithm

� coordinate transformation, biasing of amplifier signals

Secondary tasks:

� permit modification of control algorithm

� implement diagnostic measurements

7.3 Controller Implementation

7.3.1 Analog

� Generally restricted to performing linear math, implementation of linear filters:

G(s) = a

Q
s� ziQ
s� pi

� Some nonlinearity using diodes, analog multipliers

� Use op-amps, resistors and capacitors. Inductors are avoided because of size, weight, non-
ideality.

� Problems: component drift, reliability of potentiometers, general characteristics of filters are
fixed by circuits.

� Advantages: inexpensive, compact, fundamental simplicity

7.3.2 Digital

� Fastest when performing linear math (difference equations):

G(s) = a

Q
s� ziQ
s� pi

� Can implement nonlinear equations too, but at greater computational expense.

� Use digital signal processors, A/D converters, D/A converters

� Problems: electrical complexity, higher incidence of component failure, cost.

� Advantages: easier to modify algorithms, implement complex algorithms, perform data ac-
quisition functions (diagnostics, monitoring)
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7.4 Analog Filter Components

Scaling amplifier:

e euuVin
Vout

Rin

Rpot




Vout = �
Rpot

Rin
Vin

Integrator:

e euuVin
Vout

R1

C

Vout(s) = � R

sC
Vin(s)

Low pass filter:

e euuVin
Vout

R1

R2

uu
C

Vout(s) = �R2

R1

1

sCR2 + 1
Vin(s)

Summing amplifier:

e euuV1
Vout

R1

Rf

e uV2

R2

eVn
Rn

...
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Vout = �
Rf

�
1

R1
V1 +

1

R2
V2 + : : :+

1

Rn
Vn

�

Differentiator:

e euuVin
Vout

R

C

Vout(s) = �sCRVin(s)
High Pass Filter:

e euuVin
Vout

R

uu
C1

C2

Vout(s) = � sC1R

1 + sC2R
Vin(s)

Phase Lead:

e euuVin
Vout

R1

R2

uu
C2

C1

u

Vout(s) = �sC1R1 + 1

sC2R2 + 1

R2

R1
Vin(s)

Buffer voltage follower:

e eVin
Vout

R

u

Vout = Vin

Limiter:



7.4. ANALOG FILTER COMPONENTS 159

eVin u
e
e
e

Vmax

Vmin

eVout

Vout =

8<
:

Vmin : Vin < Vmin

Vin : Vmin < Vin < Vmax

Vmax : Vmax < Vin

Rectifier:

e u u
u

u
u
u
uu
eVout

Vin

all diodes 1N458

all resistors 10K


Vout = jVinj

Square Function: e eVin
Voutu

Vout = V 2
in

Square Root Circuit:

u
e euuVin

Vout

R1

R2

Vout = �R2

R1

p
Vin

( Vin � 0 )
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Notch Filter

R2

C

R4

R6

R4

C

R3
R7

R1

R5

ee u u
u

u
u

u

u
uu

u
u

uVin
Vout

Vout(s) =
G(s2 + !2

0)

s2 + 2�!0s+ !2
0

Vin(s)

!0 =
1

C
p
R3R5

G = � R2

R� 1

� =
1

2!0R2C

assuming that

R2R6 = R1R4 R4R7 = R5R6

PID Controller: Component Based
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uu
R1

R2

uu
R4

uu
C2

C3

uu
R3

C1

e u

u

euu Vout

R7

R8

u

R5

R6

u

Vin

G(s) =
Vout(s)

Vin(s)

=
R2R8

R1R7
P

+
R8

sC1R3R6
I

+
sC3R4R8

R5(1 + sC3R4)
D

7.5 Analog Controller: Principal Restrictions

Maximum voltage at each internal amplifier output:�12 volts
Maximum slew rate:�10 V=� sec
Noise level: usually about 1–10 mV with good circuit design.
Selection of gains throughout the controller is critical in protecting the signal to noise ratio!

Best you can do ismaybe80 dB. More likely to be on the order of 40 dB.
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7.6 Simple Design Rules: Analog Controllers

1. Never: attenuate a signal and then amplify it:

V2 = 0:15V1 V3 = 7V2

The noise is added at the attenuated level and the amplified along with the signal.

2. each component (single amplifier) filter should be strictly proper (more poles than zeros)

G(s) = a

Qn
j=1 s� zjQm
k=1 s� pk

m > n

3. no single filter should have a pole – zero ratio greater than about 20:

G(s) = a
s+ b

(s+ c)(s+ d)
min(c; d) < 20b

7.7 Simple Grounding Rules: Analog Controllers

1. all circuit board grounds in an enclosure should be joined at a single point: “star ground”

u
board 1 board 1 board 1

signals

grounds

2. all shielded cables should have the shield connected to ground at a single point – even when
interconnecting enclosures: use a single additional ground wire to interconnect the grounds

e ee ee e
box 2box 1

3. use differential transmitter–receiver pairs between widely separated boards to minimize noise,
ground differential effects

box 1 box 2

u
u
e j jp
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7.8 Some Other Useful Guidelines

� avoid resistances larger than about 470 k
: too noisy

� avoid resistances smaller than about 220
: too much load on op–amps

� always bypass power supply lines to ground very close to op–amps with about0:1�f capac-
itance: avoid the effects of power supply line inductance

7.9 Digital Controller - Simple

A-Ac A/D

DSP

RAM

D/A S/H c
A-Ac A/D

A-Ac A/D

D/A S/H c

D/A S/H c

bus bus

...
...

Communication

S/H

S/H

S/H

7.10 Digital Controller Components: Sample and Hold

Grabs an analog signal at its input and holds it constant at its output in response to the state of a
control line.

e eVoutVin

elatch

Vin

latch

Vout

S/H

Used to enforce simultaneous sampling of inputs, simultaneous delivery of outputs, and to pre-
vent bit transition glitches on the outputs.
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S/H output

latch

D/A output

S/Hd
d S/H S/H S/Hd d d

ttt
multiplexor A/D

7.11 Digital Controller Components: D/A

Converts a digital number to an analog voltage. Usually linear conversion:Vout = aDin+b. Typical
resolution: 12–16 bits. Typical conversion time (settling time): 50 nanoseconds.

D/Adata

Vout

convert

e

rr R0

Rf

�

+

rr R1

rr R2

rr R3

eVref

Vout

D0

D1

D2

D3

4 bit binary weighted
D/A converterc

ss s ss s
ss

� � �

ss s
s

� � �

ss s s c

R R R 2R

2R 2R 2R

Rf

Vref

ladder circuit for
multibit D/A converter
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7.12 Digital Controller Components: A/D

Converts an analog signal (voltage) to digital representation. Usually implemented as a D/A con-
verter in a feedback loop, iterative conversion. Typical resolution: 10–14 bits. Typical conversion
time: 1–3 microseconds.

evoltage "!
# 

D/A

e
Difference,�

� ?

n

0

�
�

�
�Done, reportn

> 0

< 0

increasen

decreasen

Comparator

7.13 Digital Controller Components

Digital Signal Processor (DSP): Optimized for very rapid multiply and accumlate, very fast at the
calculation

yi =
i�1X

j=i�k
aixi +

i�1X
j=i�m

biyi

Floating point DSPs now common Single computation time: 50 nsec multiply, 50–100 nsec
fetch, some parallelism possible.

Random Access Memory (RAM): Stores digital information for use by the DSP or other CPU.
Various kinds: SRAM, DRAM, on–chip cache – have varying access times, affect speed of
computation.

Bus: Permits multiple input/output devices to be addressed through single CPU I/O port. May
permit parallelism: I/O deviced talk directly to RAM without passing through CPU; multiple
CPUs can share same bus, RAM, I/O devices.
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7.14 Operation Sequence

CPU A/D D/A
1 requests A/D

conversion
2 computes next out–

put from last data
locks S/H amps

3 delivers next output to
D/A

begins conversion(s)

4 requests D/A conver-
sion

completes conver–
sion(s), notifies
CPU

5 retrieves data from
A/D

converts output data

7.15 Aliasing

The most important limitation associated with a sampled data system is that of finite, discrete sam-
pling which leads to aliasing.

d
d d

d

d d

d
d d
d
d

d
d d

d

d d

d
d d
d
d

Input signal

��+
Discrete samples

�
��+

Straight–line reconstruction

�
�

�
�

�
�=



7.16. ANTI–ALIASING FILTERS 167

d
d

d

d

d

d
d

d

d

d

�
�

�
�

��	

Input Signal

Q
QQs

Discrete Samples

�
��

Straight–line reconstruction

If a signal is sampled at a frequencyfs, the highest signal frequency which can be reconstructed
from the data is0:5fs. This is only with an infinite length sample. (Shannon’s sampling theorem.)

Signals with higher frequency will appear in the data at a lower frequency – aliased.

0:5fs fs 1:5fs 2fs

0

0:25fs

0:5fs

0

Signal Frequency

Apparent
Frequency

� ���Unaliased � ��Aliased

The practical limit to sampling is that the sampling frequency should be at least five times the
highest significant frequency.

It is common to insert ananti–aliasingfilter before the A/D converter to minimize the effect of
aliased signals.

7.16 Anti–Aliasing Filters

The input signal to a sampled data system inevitably contains frequency components above half the
sampling rate.

It is usual to insert a low pass filter ahead of the A/D converter (or S/H amplifier) to attenuate
these components. This low pass filter is called ananti–aliasing filter.
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In data acquisition systems where time delays are unimportant, high performance “brick–wall”
filters are used. Such filters have 8 to 12 poles and provide extremely rapid roll–off beyond the filter
bandwidth. However, they accomplish this rapid roll–off by introducing a group delay on the order
of hundreds of milliseconds.

In digital control systems, this group delay would destabilize the system so such “brick–wall”
filters cannot be used. Instead, simpler first or second order low pass filters are used with some
transmission of aliased signals.

7.17 DSP Computations

Usually, DSP algorithms emulate linear controllers or filters. DSP propagates a real time simulation
of the desired dynamic system.

Key idea: input is sampled (converted) regularly (� ); past input and output is used to generate
new output

?

�

? ? ? ? ?

2� 3� 4� 5� 6�

? ? ?

7� 8� 9�q q q q q q q q q
The approach: simulate the filter

G(s) =
Y (s)

X(s)
=

a

s+ b

In the time domain:

_y + by = ax

Approximate _y as:

_y � y(t)� y(t� �)

�

to get

y(t)� y(t� �) + b�y(t) = a�x(t)

or,

y(t) =
1

1 + b�
y(t� �) +

a�

1 + b�
x(t)

Of course, in generating the next output,y(t), we do not have thenextinput,x(t), so

y(t) =
1

1 + b�
y(t� �) +

a�

1 + b�
x(t� �)
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7.18 Difference Equations

The equation propagated on the DSP is called adifference equation.
Difference equations can be generated formally from differential equations (or transfer func-

tions) by a transformation such as the Tustin transform:

1. separate the differential equation to put all terms in the output variable on one side, all terms
in the input variable on the other:

nX
i=0

ai
diy

dti
=

mX
j=0

bj
djx

dtj

2. replace each instance ofd
n

dtn with
�
2
�

z�1
z+1

�n
:

nX
i=0

ai

�
2

�

z � 1

z + 1

�i
y =

mX
j=0

bj

�
2

�

z � 1

z + 1

�j
x

3. multiply each side of the equation by the highest power ofz + 1 to obtain polynomials inz
on each side

nX
i=0

ai
2i

� i
(z � 1)i(z + 1)n�iy =

mX
j=0

bj
2j

� j
(z � 1)j(z + 1)n�jx

4. rearrange as simple polynomials inz:

y

nX
i=0

�iz
i = x

nX
j=0

�jz
j

5. divide both sides by the highest power inz:

y

nX
i=0

�iz
n�i = x

nX
j=0

�jz
n�j

6. rewrite as a difference equation, substitutingt� k� for z�k:

nX
i=0

�iy(t� (n� i)�) =

nX
j=0

�jx(t� (n� j)�)

7. finally, solve fory(t) and delay the input by one sample:

y(t) = �
n�1X
i=0

�i
�n

y(t� (n� i)�) +
nX

j=0

�j
�n

x(t� (n� j + 1)�)
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7.19 Tustin Transform: A Simple Example

Assuming a sampling rate of� = 0:0001 seconds, generate the difference equation for

G(s) =
Y (s)

X(s)
=

s+ 200

s2 + 30s+ 200

1. arrange the equivalent differential equation:

d2y

dt2
+ 30

dy

dt
+ 200y =

dx

dt
+ 200x

2. substitute:�
4� 108

z2 � 2z + 1

z2 + 2z + 1
+ 6� 105

z � 1

z + 1
+ 200

�
y =

�
2� 104

z � 1

z + 1
+ 200

�
x

3. eliminate denominator:�
4� 108(z2 � 2z + 1) + 6� 105(z2 � 1) + 200(z2 + 2z + 1)

�
y =�

2� 104(z2 � 1) + 200(z2 + 2z + 1)
�
x

4. convert to simple polynomials:�
4006002z2 � 7999996z + 3994002

�
y =

�
202z2 + 4z � 198

�
x

5. divide by the highest power ofz:�
4006002 � 7999996z�1 + 3994002z�2

�
y =

�
202 + 4z�1 � 198z�2

�
x

6. substitute delay times for powers ofz:

4006002y(t) � 7999996y(t � �) + 3994002y(t � 2�) = 202x(t) + 4x(t� �)� 198x(t � 2�)

7. finally, solve fory(t) and delayx:

y(t) = 1:9970025y(t � �)� 0:9970045y(t � 2�)

+5:042 � 10�5x(t� �) + 0:100 � 10�5x(t� 2�)� 4:942 � 10�5x(t� 3�)

7.20 Example

Note that, if we truncate the coefficients,

y(t) = 1:9970y(t � �)� 0:9970y(t � 2�)

+5:04 � 10�5x(t� �) + 0:10� 10�5x(t� 2�)� 4:94 � 10�5x(t� 3�)
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the difference equation becomes unstable. To see this, assume a steady state solution:x is constant
soy should also be constant:

y + 0:997y � 1:997y = 0y = 0:2� 10�5x

that is, the final value ofy is unbounded. This need to retain lots of digits in the coefficients is an
indication of overly fast sampling: the difference equation evolves so slowly between samples that
it is likely that the changes will be lost in underflow with finite sampling precision.

If the system is sampled more slowly:� = 0:001 seconds, the equation becomes:

y(t) = 1:9702y(t � �)� 0:9704y(t � 2�)

+5:42 � 10�4x(t� �) + 0:99� 10�4x(t� 2�)� 4:43 � 10�5x(t� 3�)

which is stable.

7.21 Difference Equations

An alternative way to look at the problem of numerical underflow as seen above is to say that the
form of the difference equation is poor - in the same manner that it is numerically bad to represent
a transfer function in coefficient form. Instead, write two difference equations (sampled every 100
�sec):

y(t) = y(t� �) + Æ(t)

Æ(t) = y(t)� y(t� �)

= �2� 10�6Æ(t� �) + 5:04 � 10�5x(t� �)

+0:10 � 10�5x(t� 2�)� 4:94 � 10�5x(t� 3�)

Now, the equation coefficients are better balanced and do not need to retain as many digits.
This is a state space approach and generally leads to better numerical conditioning.
Rearrangement/balancing of the equations in a digital controller to improve numerical condi-

tioning is equivalent to careful analog circuit design to protect signal–to–noise ratio.

7.22 State Space Form

Another form for the controller differential equations to take is:

_x = Ax+Bu

y = Cx

To take the Tustin transform, first make the approximation:

1

2
( _x(t+ �) + _x(t)) � 1

�
(x(t+ �)� x(t))

Next, substitute the differential equation for_x:

1

2
(Ax(t+ �) +Bu(t+ �) +Ax(t) +Bu(t)) � 1

�
(x(t+ �)� x(t))
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Now, assume that the input is delayed by one sample:

1

2
(Ax(t+ �) +Bu(t) +Ax(t) +Bu(t� �)) � 1

�
(x(t+ �)� x(t))

and solve forx(t+ �):

x(t+ �) = [I � 0:5�A]�1 [I + 0:5�A] x(t) + 0:5� [I � 0:5�A]�1B (u(t) + u(t� �))

y(t+ �) = Cx(t+ �)

So, define

�
:
= [I � 0:5�A]�1 [I + 0:5�A]

and

V
:
= 0:5� [I � 0:5�A]�1B

so that the difference equation takes the simple form

x(t+ �) = �x(t) + V (u(t) + u(t� �))

y(t+ �) = Cx(t+ �)

Note that it is reasonably simple to find a transformation,T , so that the numerical properties
(conditioning) of the matrix

�̂ = T�T�1

are better than for the original�. This transformation can be used by introducing the substitution

w = Tx

so that

w(t+ �) = T�T�1w(t) + TV (u(t) + u(t� �))

y(t+ �) = CT�1w(t+ �)

The transformationT can be computed using standard numerical algorithms such as the method of
Parlett and Reinsch1 as implemented in the public software package EISPACK.

The delay which was introduced in order to make the controller causal can be somewhat miti-
gated by delaying only one of the input signal components rather than both of them. Thus,

1

2
(Ax(t+ �) +Bu(t+ �) +Ax(t) +Bu(t)) � 1

�
(x(t+ �)� x(t))

becomes

1

2
(Ax(t+ �) +Bu(t) +Ax(t) +Bu(t)) � 1

�
(x(t+ �)� x(t))

1 B. N. Parlett and C. Reinsch (1969). “Balancing a Matrix for Calculation of Eigenvalues and Eigenvec-
tors,” Numerical Mathematics 13, 292-304.
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or

1

2
(Ax(t+ �) +Ax(t) + 2Bu(t)) � 1

�
(x(t+ �)� x(t))

Again, solve forx(t+ �) to obtain

x(t+ �) � [I � 0:5�A]�1 [I + 0:5�A] x(t) + � [I � 0:5�A]�1Bu(t)

Finally, define

�
:
= [I � 0:5�A]�1 [I + 0:5�A] � eA�

and

V
:
= � [I � 0:5�A]�1B �

Z �

0
eA(���)B d�

to give the most commonly used difference equation

x(t+ �) = �x(t) + V u(t)

7.22.1 State Space Example

To demonstrate this arithmetic, consider the preceding example where we wish to implement the
control

G(s) =
s+ 200

s2 + 30s+ 200
=
Y (s)

U(s)

We can easily convert this transfer function to state space form through the following procedure.
First, introduce the dummy variable,x:

X(s)

U(s)
=

1

s2 + 30s+ 200

Y (s)

X(s)
= s+ 200

Next convert these transfer functions back to differential equations:

�x+ 30 _x+ 200x = u

y = _x+ 200x

Now, introduce the state variables

x0 = x ; x1 = _x

to obtain the simultaneous equations

_x0 = x1

_x1 = �200x0 � 30x1 + u

y = 200x0 + x1
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or, in matrix form

d

dt

�
x0
x1

�
=

�
0 1
�200 �30

��
x0
x1

�
+

�
0
1

�
u

y =
�
200 1

�� x0
x1

�

so that

A =

�
0 1
�200 �30

�
, B =

�
0
1

�
and C =

�
200 1

�
Assuming a sampling period of� = 0:0001, the matrices� andV are easily computed:

� = [I � 0:5�A]�1 [I + 0:5�A] =

�
1 0:00009985

�0:01997 0:997

�

V = � [I � 0:5�A]�1B = 10�4
�
0:00004995

0:9985

�

so that

x0(t+ �) = x0(t) + 0:00009985x1(t) + 4:995 � 10�9u(t)

x1(t+ �) = �0:01997x0(t) + 0:997x1(t) + 9:985 � 10�5u(t)

y(t+ �) = 200x0(t+ �) + x1(t+ �)

We can easily produce a numerical improvement for this problem by increasing the magnitude
of the first state. Let

x̂0 = 14:142x0 and x̂1 = x1

which produces

x̂0(t+ �) = x̂0(t) + 0:001412x̂1(t) + 7:064 � 10�8u(t)

x̂1(t+ �) = �0:001412x̂0(t) + 0:997x̂1(t) + 9:985 � 10�5u(t)
y(t+ �) = 14:142x̂0(t+ �) + x̂1(t+ �)

7.23 Integrator Reset Windup: Saturation

Reset windup stems from fundamental instability of controllers with integrator: pole ats = 0.
Suppose that the controller contains a saturating nonlinearity at controller output or actuator: no

matter how large the integrator output is, the input to the plant is fixed at some limit.
Once this limit is reached, the feedback loop is essentially broken and the instability of the

integrator results in “unbounded” controller output.
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plant,G(s)6-

Ĥ(s)

T
s

��
��

��
��
fe

7.24 Cruise Control

The problem is really obvious with automobile speed (cruise) controls.

Suppose the car is climbing a hill and has not enough power to maintain a requested speed of
100 km/hr: with full power, it maintains 90 km/hr.

When the car reaches the top of the hill, the integrator has reached an enormous value: 10t
wheret is the period during which the car was unable to maintain 100 km/hr.

Now, at the top of the hill, very little power is required to maintain 100 km/hr, but the integrator
has a very large value! The speed of the car increases rapidly to produce a negative error (speed>
100 km/hr) and integrator begins tounwind. Car may reach a very high peak velocity before finally
settling down to the desired 100 km/hr.

7.24.1 Saturation

Steady state bearing force, displacement, and integrator output.

-

6

fe

fm

-

6

fe

x

-

6

fe

T
R
xdt
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7.24.2 Normal Transient Response

If a constant load which does not exceed the saturation limit is applied, the error quickly converges
to zero and the integrator output matches the load.

When the load is removed, the response is just the opposite of the applied response: the error
quickly converges to zero and the integrator output returns to zero.

4

-11
0 200

7.24.3 Reset Windup

If a constant load which exceeds the saturation limit is applied, the error does not go to zero and the
integrator output climbs until it reaches its own (internal) saturation limit: itwinds up like a clock
spring.

When the load is removed, the integrator mustunwind before it even gets back to the level
which would match the original load. As a result, the plant error can take a long time to converge
to zero.

4

-11
0 200

7.24.4 Preventing Reset Windup

Solution: use an additional input to the integrator to prevent the output from actually reaching
saturation.

Normal integrator:

e r rC

R

Ĥ(s)

r r r e
R

R

r
R

x

frequest

With limiting:
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e r rC

R

Ĥ(s)

r r r e
R

R

r
R

x

frequest

r r
r

r r
r

r

r
r e

e

�Vmin

�Vmax

R

R

R

R

R

R

7.24.5 Real Effects in Single Mass Models

Some improvements in recovery from saturation can be obtained with reset windup limiting
Primary effect of force limit saturation in step response is loss of peak force associated with

damping — loss of stability. Peak force occurs shortly after application of the load, is almost two
times the load.

Results are very sensitive to parameter selection. As a result, it is hard to compare systems with
and without reset windup limiting.
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Chapter 8

Control of Flexible Structures and
Rotors

When rotor flexibility is introduced, the system of equations quickly becomes too complicated to
manage using simple transfer functions.

Instead, a systems approach is taken where the components of the system: the rotor, sensors,
amplifiers/magnetics, and controller are modeled using a standard state space formulation.

The resulting (large) first order differential equation can be used to determine system stability
and forced response.

8.1 Rotordynamic Model

The conventional model for the rotor has the form�
M 0
0 M

��
�wx

�wy

�
+

�
C 
G
�
G C

��
_wx

_wy

�
+

�
K 0
0 K

��
wx

wy

�
=

(
f
x
f
y

)

The magnetic actuators for operate at specific points along the shaft, so the magnetic forces,f
m

,
can be inserted as:

f
x
= Bm;xfm;x +Be;xfe;x f

y
= Bm;yfm;y +Be;yfe;y

The sensors measure the displacement of the rotor at specific points along the shaft, so the sensor
measurements can be represented by:

y
x
= Cxwx y

y
= Cywy

8.1.1 Eliminating the Mass Matrix

The mass matrix is usually banded and is always symmetric so it is easy to invert. Use the Choleski
decomposition to preserve symmetry:

M = M 0
RMR

and define

vx
:
= MRwx vy

:
=MRwy C :

= M�>
R CM�1

R G = M�>
R GM�1

R K :
= M�>

R KM�1
R

179
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which gives

�
�vx
�vy

�
+

� C 
G
�
G C

��
_vx
_vy

�
+

� K 0
0 K

��
vx
vy

�
=

�
M�>

R Bm;x 0

0 M�>
R Bm;y

�(
f
x
f
y

)

y
x
= CxM

�1
R vx y

y
= CyM

�1
R vy

8.1.2 State Space Form

The second order form is only convenient for systems whose governing differential equations are
even–ordered. Any linear differential equation can be represented in first order form:

�w + C(
) _w +Kw = Bf y = Cxw

becomes

d

dt

�
w
_w

�
+

�
0 �I
K C(
)

��
w
_w

�
=

�
0
B

�
f

define

xR =

�
w
_w

�
AR(
) =

�
0 I
�K �C(
)

�
BR =

�
0
�B

�
CR =

�
Cx 0

�
to produce

_xR = AR(
)xR +BRf

y
R

= CRxR

8.2 State–Space Models from Transfer Functions

Many filters and simple dynamic systems are described in terms of their transfer functions:

r(s)

u(s)
= G(s) =

Pm
i=0 �is

iPn
i=0 �is

i
m � n� 1

First, introduce a variable, x:

x(s)

u(s)
=

1Pn
i=0 �is

i

Then, note that

r(s) = x(s)
X

�is
i

Convert the former equation to a differential equation

nX
i=0

�ix
(i)(t) = u(t)
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Introduce the state variablesxi = x(i) and solve forxi:

xi = _xi�1 i = 1 : : : n� 1

xn = _xn�1 =
1

�n

 
u�

n�1X
i=0

!
�ixi

Finally, the output variable is given in terms of the states:

r(t) =

mX
i=1

�ixi

8.2.1 Controllable Canonical Form

The result is that the transfer function can be converted, by inspection, to a state space time domain
differential equation. The form is called the Controllable Canonical Form:

r(s)

u(s)
= G(s) =

Pm
i=0 �is

iPn
i=0 �is

i
m � n� 1

d

dt

8>>>>><
>>>>>:

x1
x2
...

xn�2
xn�1

9>>>>>=
>>>>>;

=

2
6666664

0 1 � � � 0 0

0 0
. . . 0 0

...
. ..

...
0 0 � � � 0 1

� �0
�n
� �1

�n
� � � ��n�1

�n

3
7777775

8>>>>><
>>>>>:
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8.3 Sensor Model

The sensors can typically be modeled as first or second order:

_xs =
� �a �xs +Ksxin

vout = [a] xs

vout(s)

xin(s)
= Ks

a

s+ a

_xs =

�
0 1
�!2 �2�!

�
xs +

�
0
Ks

�
xin

vout =
�
!2 0

�
xs
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vout(s)

xin(s)
= Ks

!2

s2 + 2�!s+ !2

Generically,

xs = Asxs +Bsxin

vout = Csxs

This model may contain any number of sensors.

8.4 Rotor–Sensor Model

Simply combine the rotor and sensor models by setting the sensor input equal to the rotor output
(assuming thatCR has been designed properly):

xin = y
R

to obtain the combined system model

d

dt

�
xR
xS

�
=

�
AR 0

BSCR AS

��
xR
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Bm Be 0
0 0 I
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(�)dt
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(�)dt
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CS�
S vS

8.5 Amplifier / Magnetics Model

The linearized magnetics model for a single actuator has the form�
fx
fy

�
= �

�
Kxx Kxy

Kyx Kyy

��
wx

wy

�
+

�
Ki;xx Ki;xy

Ki;yx Ki;yy

��
cx
cy

�
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whereKi;xy andKi;yx are normally zero. The variablescx andcy have units of current. In the
simplest case, they are the perturbation currents.

The desired coil currents are given by

Id = CV
2
4 1=� 0 0

0 1=� 0
0 0 �

3
5
8<
:

cx
cy
cb

9=
;

d

whereV is the current selection matrix andC is the coil connection matrix.

� C is a physical property of the magnetic bearing stator.

� V , �, andcb are constants provided by the controller (or intervening preamplifier)

� cx andcy are the control signals generated by the controller

As with the sensors, the amplifiers have a finite bandwidth and can be modeled individually as

_xa =
� �a �xa +Kavin

iout = [a]xa

iout(s)

vin(s)
= Ka

a

s+ a

_xa =

�
0 1
�!2 �2�!

�
xs +

�
0
Ka

�
vin

iout =
�
!2 0

�
xs

iout(s)

vin(s)
= Ka

!2

s2 + 2�!s+ !2

Thus, the actual currents delivered in the bearing stators are given by

_xa = Aaxa + B̂avin

I = Ĉaxa

Continuing the formal development requires examining the nonlinear dynamics. The essential
result is that the actual delivered variablescx andcy are related to the controller output variables
cx;d andcy;d by simple transfer functions with the bandwidth of the power amplifiers and gainsKa.
This bandwidth limitation can, as a result, include poles due to eddy current effects in the bearing
stator. It can be shown that the dynamics which limit the actuator bandwidth (Ki term) also limit
the bandwidth of the open–loop stiffness term.

The amplifier dynamics and the magnetic properties for any number of stators can be combined
into a unit:

_xa = Aaxa +Ba (KaKicc �KxCm;xxR)

f
m

= Caxa

where the matrixCm;x measures the motion of the journal degrees of freedom.Ka is a diagonal
matrix of amplifier gains and the state space model has a diagonal transfer function with unit gain.
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8.6 Amplifier/Magnetics – Rotor – Sensor Model

Again, combine the rotor, sensor, and amplifier/magnetics models by setting the rotor input equal to
the bearing output to obtain the combined system model

d

dt
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(�)dt

AR

CR

f
e

Be ���� R
(�)dt

AS

CS

�
S

vS

BA ���� R
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Kx
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����
KaKi
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8.7 Controller Model

The controller may consist of several (typically four) local feedback controllers or it may be more
complicated, using state space methods with state estimators and so forth. In any case, the controller
takes as its input the sensor voltages,vs and delivers as its output the amplifier input voltages,c.
The controller dynamics can always be represented by

_xC = ACxC +BCvs + �
C

c = CCxC
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8.8 System Model

The final system model can be assembled simply by connecting the output of the sensor model to
the input of the controller model and the output of the controller model to the input of the ampli-
fier/magnetics model:

d

dt
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8.9 System Stability

Since the overall system can now be represented concisely by the system differential equation

_x = Ax+Bf
e

v = Cx
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we can determine stability by simply (!) computing the eigenvalues of the matrixA. If the eigen-
values all have negative real part, then the system is stable.

Computing the eigenvalues is non–trivial. The overall system model is non symmetric (A 6= A0)
so we have to use a general eigenvalue solver. One of the better methods is the FrancisQ � R
algorithm for computing the eigenvalues of a matrix in upper Hessenberg form. This method is
referred to as HQR and software is publically available: EISPACK. Essentially, the process has
three steps:

1. balance the matrix to improve numerical conditioning (BALANC)

2. transform to upper Hessenberg form (ORTHES)

3. compute the eigenvalues using the FrancisQ�R algorithm (HQR)

8.10 System Forced Response

Forced response of the system is computed in a straight forward manner. For step or impulse
response, the differential equations are simply integrated:

v(t) = Cx(t) : x(t) = C

Z t

0

�
Ax(�) +Bf

e
(�)
�
d� = eAtx(0) +

Z t

0
eA(t��)Bf

e
(�)�

For frequency response (steady state, assuming stability), use a Bode plot approach:

_x = Ax+Bf
e

v = Cx

) v(s) = C (sI �A)�1Bf
e
(s)

For a sinusoidal inputfe(t) = Fej!t, the response is simply

V = C (j!I �A)�1BF v(t) = V ej!t

8.11 System Model: Modal Coordinates

Usually, it is easier and cheaper to compute forced response in modal (or nearly modal) coordinates.
The normal system differential equation is converted to modal coordinates:

_x = Ax+Bf
e

v = Cx

with the modal transformation:

A� = �� ) x = �z

to obtain

�_z = ��z +Bf
e

v = C�z

or,

_z = �z +��1Bf
e

v = C�z
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8.11.1 Nearly Modal Coordinates

In general, both� and� are complex and the resulting arithmetic ends up being complex also.
However, we can convert to nearly modal coordinates in the following manner. Assume that the
complex eigenvalues and are produced in conjugate pairs:

� =

2
6666664

�1 + j!1 0 � � � 0 0

0 �1 � j!1
...

... 0
. ..

0 0 � � � �n=2 + j!n=2 0

0 0 �n=2 � j!n=2

3
7777775

� =
h
�
1

�
1
� � � �

n=2
�
n=2

i
Introduce the simple transformation

T =

2
66664
T1 0 � � � 0

0
. ..

...
...

. . .
0 � � � 0 Tn=2

3
77775 where Ti =

1p
2

�
1 �j
1 j

�

The productsT�T � and�T � are real and the productT �T = I:

�̂
:
= T�T � =

2
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�1 �!1 � � � 0 0

!1 �1
...

... 0
. . .

0 0 � � � �n=2 �!n=2
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�T � =
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2
h
<(�

1
) =(�

1
) � � � <(�

n=2
) =(�

n=2
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i

1) apply the transformation�T �

x = �T �z

�T � _z = A�T �z +Bf
e

v = C�T �z

2) invert the real matrix�T � to obtain

_z = (�T �)�1��T �z + (�T �)�1Bf
e

v = C�T �z

3) insert the identityT �T :

_z = (�T �)�1�T �T�T �z + (�T �)�1Bf
e

v = C�T �z

4) and, finally,

_z = �̂z + (�T �)�1Bf
e

v = C�T �z
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which is conveniently block diagonal (with blocks of dimension 2) and all real.
The advantage of this form is that the computation

C�T �
�
j!I � �̂

��1
(�T �)�1B

can be performed without computing a full matrix inverse. This is because the inverse of a matrix
which is block diagonal is the block diagonal matrix of inverse blocks:

M =

2
66664
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0 M22
...

...
. . .
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3
77775 = diag(Mii)
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Thus,

�
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��1
= diag

 �
j! � �i !i
�!i j! � �i

��1!
= diag

�
1

(j! � �i)2 + !2
i

�
j! � �i �!i
!i j! � �i

��

which is enormously cheaper to compute than is the general complex inverse. Finally, because the
inverse is block diagonal with2� 2 blocks, we can define the input and output matrices in terms of
n=2 2�m rows orn=2 p� 2 rows:

(�T �)�1B =

2
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B̂1
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3
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Using this notation, the forced response becomes

V = C (j!I �A)�1BF =

0
@n=2X

i=1

Ĉi
1

(j! � �i)2 + !2
i

�
j! � �i �!i
!i j! � �i

�
B̂i

1
AF

If the forced response is to be computed only at a single frequency, then this procedure, which
relies on computation of the eigenvectors and eigenvalues is not very efficient. However, if the
forced response is to be computed at many frequencies, then this approach is much more efficient
than direct inversion ofj!I �A.

8.12 Rotor Model: Modal Truncation

To obtain an accurate representation of the rotor even at low frequencies, it is usually necessary to
use a lot of degrees of freedom (mass stations). As a result, the rotor model has many eigenvalues

The higher eigenvalues are probably not important:
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� they are inaccurate

� large response in the higher modes cannot be attained

– small angle assumptions violated

– actuator capacity at these frequencies is very limited

Modal truncation is employed to eliminate the poorly modeled modes. Use the free–free planar
modes without damping and without gyroscopics. These are the easiest to compute and provide
enough information to permit accurate model reduction.

The initial model:�
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Compute the eigenvalues and eigenvectors for the pairM andK:

�0M� = I �0K� = �2

Without truncation, the responseswx andwy can be represented as
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Premultiply by�0 to obtain the differential equation in modal coordinates:
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If C andG were zero, this transformation would completely decouple the equations, as usual.
However, that is not the objective. Rearrange according to the modes which are to be retained and
those which are to be truncated (removed):�
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Normally, the choice ofT dictates that�2
mm < �2

ss.
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Thus the model becomes,
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where

wx = ��1Tmmm;x +��1Tsms;x wy = ��1Tmmm;y +��1Tsms;y

The equation can be rearranged to separate the master and slave modal degrees of freedom:

8>><
>>:

�mm;x

�ms;x

�mm;y

�ms;y

9>>=
>>;+

2
664

Cmm 
Gmm Cms 
Gms

�
Gmm Cmm �
Gms Cms

Csm 
Gsm Css 
Gss

�
Gsm Csm �
Gss Css

3
775
8>><
>>:

_mm;x

_mm;y

_ms;x

_ms;y

9>>=
>>;

+

2
664

�2
mm 0 0 0
0 �2

mm 0 0
0 0 �2

ss 0
0 0 0 �2

ss

3
775
8>><
>>:

mm;x

mm;y

ms;x

ms;y

9>>=
>>; =

2
664
Bm;x 0
0 Bm;y

Bm;s 0
0 Bs;y

3
775
(

f
x
f
y

)

where, again,

wx = ��1Tmmm;x +��1Tsms;x wy = ��1Tmmm;y +��1Tsms;y

8.12.1 Modal Truncation, Assumptions

Finally, assume thatBs;x � 0, Bs;y � 0, Csm � 0, andGsm � 0:
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If these assumptions are good and the slave modes are stable, thenms;x = ms;y = 0
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8.12.2 Modally Reduced Model

Since the slave modal degrees of freedom aren’t doing anything, ignore them to obtain the reduced
order model�
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From which the physical degrees of freedom can be obtained using

wx = ��1Tmmm;x wy = ��1Tmmm;y

Note that the dimension ofmm;x is much less than that ofwx: the matrix��1Tm is a modal
interpolation matrix.

The real advantage to this approach lies in that the component matrices,Cmm, Gmm, �2
mm,

��1Tm, andBm can be obtained without computing the eigenvalues or mode shapes for the trun-
cated modes: only the lowest modes which are to be retained need to be computed. This is a normal
approach in finite element analysis or in modal testing.

8.13 Primary Issues in Flexible Structures

� sensor–actuator collocation

when sensor–actuator pairs act at the same point in the structure, local phase lead feedback
can be shown to be robust to most uncertainties

� robustness to uncertainty in structural damping

design of strictly proper controllers is sensitive to assumptions about structural damping

� spill–over of unmodeled dynamics

The structural model is always truncated and ignores some high frequency dynamics. These
unmodeled dynamics may affect system stability.

8.13.1 Simple Flexible Beam, One End Simply Supported

To make it easy to understand these issues, we will examine the dynamics of a uniform beam 1 cm
in diameter and 60 cm long which is simply supported at a point 10 cm from the left end as indicated
in Figure 8.1. The actuator will be placed 45 cm from the left end. The sensor can either be placed
45 cm from the left end (collocated) or somewhere else (noncollocated). The modeshapes for this
pivoted beam are shown in Figure 8.2.

Figures 8.3 and 8.4 illustrate the effect of sensor position on the transfer function from actuator
input to sensor output. The former assumes 0.5 percent damping in each of the flexible modes while
the latter assumes 2 percent. In each case, the sensor is moved from 5 cm to the left of the actuator
(which is 45 cm from the left end of the beam) to 5 cm to the right of the actuator. Notice that the
maxima of the transfer functions (poles) are independent of the sensor location while the minima
(zeros) are very sensitive to sensor location.
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Figure 8.1: Flexible Beam with one Pinned Support
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Figure 8.2: Flexible Beam with one Pinned Support: Mode Shapes
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Figure 8.3: Flexible beam transfer functions, 0.5% damping; sensor location is moved from
40 cm to 50 cm in 1 cm increments.
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Figure 8.4: Flexible beam transfer functions, 2.0% damping; sensor location is moved from
40 cm to 50 cm in 1 cm increments.
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Figure 8.5: Collocated transfer function, 0.5% damping

Figure 8.5 illustrates the magnitude and phase of the transfer function from actuator input to
sensor output when the two devices act at the same point along the shaft. Notice that poles and
zeros areinterlaced, so that the phase is between 0 and�180Æ. Starting at the low frequency end of
the transfer function, the first feature encountered is a minimum or zero where the phase recovers
nearly to 0. This is followed by a maximum or pole where the phase returns nearly to -180. This
sequence of zero followed by pole continues throughout the plotted range.

Figure 8.6 superimposes the sensor and actuator locations on the modeshapes for the collocated
case. Notice that the product of the modal displacement at the sensor location times the modal
displacement at the actuator location is always positive. (Itmustbe because the displacements are
the same andx2 >= 0.) This is characteristic of a flexible beam with collocated sensor and actuator.

8.14 Stability andH(S)

From the Nyquist criterion, the closed loop system is stable as long as the point(�1; 0) in the
complex plane is not clockwise encircled. That is, when the product of theH(s) and the plant
transfer function is 1.0, the phase must be greater than�180Æ. This is the concept of cross-over
phase used in Bode analysis.

Since the plant transfer function is always less than 0 but greater than�180Æ we need only
ensure that the controller phase lies between 0 and+180Æ to guarantee stability forany loop gain!
Such a controller is calledstrictly positiveand it is a widely used theorem of structural mechanics
that such a controller is always stabilizing when the sensor and actuator are collocated. A system
which is stable for any gain is referred to asphase stabilized.

8.14.1 Stabilizing Controllers: Collocated Case

If the sensor and actuator are collocated then the system is stabilized by anyproperPD controller.
Further, a proper PID controller will also stabilize the system as long as the initial�90Æ phase of the
controller recovers to a positive value before cross–over. This means that a proper PID controller
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Figure 8.6: Modeshapes with sensor collocated.
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Figure 8.7: Bode diagram with sensor located at 50 cm (5 cm to the right of the actuator).

has a lower gain limit below which the system is unstable. It has no upper gain limit. This is the
main reason for which PID control is so popular in stabilizing flexible structures!

8.14.2 Sensor at 40 cm: Noncollocated, 0.5% Damping

When the sensor and actuator are not collocated, this property is lost. Figure 8.7 shows the Bode
diagram when the sensor is placed at 40 cm, 5 cm to the left of the actuator. Notice that the poles
and zeros are no longer interlaced and the phase is less than�180Æ at some frequencies.

Figure 8.8 shows the modeshapes, sensor location, and actuator location for this case. Notice
that the product of the modal displacement at the sensor location times the modal displacement at
the actuator location is no longer always positive: mode 5 at 2319 Hz has a node between the sensor
and the actuator leading to a sign reversal.
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Figure 8.8: Modeshapes, sensor, and actuator locations: 40 cm sensor location.
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Figure 8.9: Bode diagram with sensor located at 50 cm (5 cm to the right of the actuator).

8.14.3 Sensor at 50 cm: Noncollocated, 0.5% Damping

When the sensor is moved to 50 cm, 5 cm to the right of the actuator, the interlacing violation
occurs in the second mode and the phase falls below�180Æ at a very low frequency: about 320 Hz
as illustrated in Figure 8.9. This is a real problem!

Figure 8.10 shows the modeshapes of the beam, superimposing the actuator and sensor locations
with the sensor at 50 cm, 5 cm to the right of the actuator. Notice that the product of the modal
displacement at the sensor location times the modal displacement at the actuator location is negative
for modes 2 at 306 Hz and 6 at 3692 because these modes have nodes located between the sensor
and the actuator. Comparing to Figure 8.9, this sign change is directly associated with the excess
phase lag in the actuator–sensor transfer function.
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Figure 8.10: Modeshapes, sensor, and actuator locations: 50 cm sensor location.

8.14.4 Stability with Noncollocation

This excess phase associated with noncollocation produces a stability problem, substantially com-
plicating the design of the controller. The problem is easy to understand using a root locus. The
zeros attract the poles and the loci do not cross. When the poles and zeros are interlaced, the loci
can stay in the left half plane without any difficulty: the left to right motion of the pole associated
with a simple phase lead controller is sufficient to attract the loci into the left half plane.

When the poles and zeros are not interlaced, some of the loci must “skip” over a pole and they
do this by traveling into the right half plane, producing instability, as illustrated in the root locus of
Figure 8.11.

The problem can be “fixed” if the controller adds some poles and zeros which “repair” the
interlacing violation, as illustrated in Figure 8.12. Obviously, this repair can be made and the gain
margin appears to become again infinite, but the result is very sensitive to the exact dynamics of the
beam: it wasn’t in the case of collocated control because the interlacing is a fundamental property
of such structures. Here, if the controller misplaces its added poles and zeros relative to theactual
plant poles and zeros, the system may be unstable rather than stable.

8.14.5 The Spill–over Problem

Since the strategy for stabilizing the noncollocated system is to fix any interlacing violations by
adding controller pole–zero pairs, it is clear that any unmodeled poles (higher frequency dynamics)
will not be considered in this “repair job”. Further, the mode shapes associated with the higher
modes have more nodes and so, are more likely to produce interlacing violations. The result is that,
no matter how much effort is put into stabilizing the modeled plant, some part of the unmodeled
plant will alwaysproduce instability in the final system.
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Figure 8.13: Bode plot of flexible beam, actuator at 45 cm, sensor at 50 cm, 0.5% modal
damping.

8.15 Controller Design: Single Input–Single Output

The controller is essentially a strictly proper PID controller. If the sensor and actuator are not col-
located, then some pole–zero pairs are added near to thej! axis to repair the interlacing violations.

Selection of the actual controller gains: proportional, derivative, integral and high frequency
roll–off follows the following sequence:

1. a critical speed map is generated for the beam (rotor) to determine what the nominal bearing
stiffness should be.

2. the first roll–off frequency will be at 10–20 times the zero atK=C. This means that the peak
phase will be attained at a frequency of

p
�K=C where� is the pole–zero ratio (10–20). The

peak phase should probably occur at the first bending mode as this is the most difficult mode
to control.

3. the second roll–off frequency is selected to prevent destabilizing the higher modes - a Bode
plot gives the necessary information.

4. the integrator gain is selected to provide adequate damping in the first closed loop mode.
Again, a Bode plot gives the necessary information.

8.15.1 Simple Pinned Beam

Again, we will examine the dynamics of a uniform beam 1 cm in diameter and 60 cm long which is
simply supported at a point 10 cm from the left end. The actuator will be placed 45 cm from the left
end. The sensor will be placed 50 cm from the left end to provide some non–collocation. Assume
0.5% modal damping in the beam. Figure 8.13 illustrates the plant Bode diagram from actuator
input to sensor output while Table 8.1 lists the poles and zeros of this transfer function..
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Table 8.1: Poles and zeros for flexible beam, actuator at 45 cm, sensor at 50 cm, 0.5%
modal damping.

frequency (Hz) damping (%) pole zero
0 0

p
306 0.5

p
314 0.52

p
747 0.43

p
835 0.5

p
1155 0.44

p
1363 0.5

p
2047 0.47

p
2319 0.5

p
3692 0.5

p
3856 0.51

p

Interlacing Repair

First, the controller must repair the interlacing. A complex pair of zeros is added at 280 Hz with a
damping ratio of 0.5% and a complex pair of poles is added at 320 Hz with a damping ratio of 0.5%.
This repairs the first interlacing violation. In addition, a complex pair of zeros is added at 3500 Hz
with a damping ratio of 0.5% and a complex pair of poles is added at 3900 Hz with a damping ratio
of 0.5%. Table 8.2 illustrates the insertion of these compensating poles and zeros.

The resulting initial controller transfer function is

Hir(s) =
1:3061s2 + 11:489s + 4:0426 � 106

s2 + 10:053s + 4:0426 � 106
1:2416s2 + 136:53s + 6:0047 � 108

s2 + 122:52s + 6:0047 � 108

and the Bode plot of this controller acting in series with the noninterlaced plant is illustrated in
Figure 8.14. Notice that the phase of the compensated transfer function stays between 0 and�180Æ
throughout the frequency range.

Choose Nominal PD Gains

Figure 8.15 is a critical speed map for this flexible beam. It is a plot of the imaginary part of the
system eigenvalues as a function of the stiffness of a spring acting at the actuator location. To design
the PID portion of the controller, select the bearing stiffness to correspond to sections of the critical
speed map where the curves have significant slope: this is where the bearing/rotor interaction is
strongest. Figure 8.16 expands the region of interest.

From the critical speed map, it will only be possible to do this for the first two modes – at a
stiffness of about9� 106 N/m. Use a pole–zero ratio of 15 and put the peak phase at the average of
the two critical speeds, from the critical speed map: 331 Hz. Thus, the PD portion of the controller
is

HPD(s) = 9� 106
0:00186s + 1

0:000124s + 1

Figure 8.17 illustrates the open loop transfer function of the beam acting in series with the PD
controller and interlacing repair filter.
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Table 8.2: Compensated poles and zeros for flexible beam, actuator at 45 cm, sensor at 50
cm, 0.5% modal damping.

freq. (Hz) damp. (%) pole zero
0 0

p
) 280 0.5

p
306 0.5

p
314 0.52

p
) 320 0.5

p
747 0.43

p
835 0.5

p
1155 0.44

p
1363 0.5

p
2047 0.47

p
2319 0.5

p
) 3500 0.5

p
3692 0.5

p
3856 0.51

p
) 3900 0.5

p

0.0006

2� 10�8

0

-360
100 40001000

100 40001000

Figure 8.14: Bode Plot of Plant with Interlacing Repairs
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Figure 8.15: Critical Speed Map of Flexible Beam
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Figure 8.16: Critical Speed Map Detail
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Figure 8.17: Bode plot of beam with PD controller.

Integrator Design

Adding an integrator to the PD controller introduces a pole at the origin and a zero at some other
frequency, which depends on the integrator gain:

HPID(s) =
T

s
+K

C=Ks+ 1

0:067C=Ks + 1

=
T (0:067C=Ks + 1) +K(C=Ks2 + s)

s(0:067C=Ks + 1)

From the Bode plot of the combined controller and flexible beam, the zero should be at a frequency
well below the PD controller zero at about 85 Hz. Put it at 5 Hz:

HPID(s) =
3� 108

s
+ 9� 106

0:00186s + 1

0:000124s + 1

= 9� 106
0:00186s2 + 1:0041s + 33:3

0:000124s2 + s

The resulting plant and controller Bode diagram is illustrated in Figure 8.18.
Stability of the closed loop system is assessed by computing the eigenvalues of the closed loop

dynamic matrix. Table 8.3 is the output of a stability code when the closed loop model is submitted.

Strictly Proper Controller

The controller designed so far is a proper controller but not strictly proper. The gain at infinite
frequency is2:2� 108 N/m. To make the controller strictly proper, we need to add one or two poles
at high frequency. One option is to add a pole at a frequency well beyond the last plant mode –
at 5 kHz, for example. The problem with this is that the plant certainly has unmodeled (truncated)
dynamics at these frequencies – it is better if the controller bandwidth is less than the nominal plant
bandwidth.

Instead, we would like to limit the controller bandwidth to less than 3500 Hz. Figure 8.19 plots
the real part of the first four eigenvalues as a function of the controller bandwidth (the frequency
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Figure 8.18: Bode Plot of Beam with Proper PID controller

Table 8.3: Closed Loop System With Proper PID Controller

Program EIGS Compiled Jun 07 1995 at 20:18:51
Version 1.1
Copyright (c) 1995, ROMAC Laboratories, University of Virginia
Run time is Mon Jun 26 18:17:59 1995

"A" matrix file: sysa.mat

Real eigenvalues:
exponent time constant (sec)

-32.995 0.0303077
-559.155 0.00178841

Complex eigenvalues:
real imaginary log. dec. Hertz CPM

-24.0664 1749.77 0.086419 278.484 16709.1
-11.3008 1973.89 0.0359721 314.155 18849.3
-200.228 4601.43 0.273408 732.341 43940.5
-376.909 6949.36 0.340778 1106.02 66361.5
-769.427 11876.8 0.407049 1890.26 113416
-1557.69 18526.8 0.528277 2948.63 176918
-310.729 23922.5 0.0816122 3807.38 228443
-819.642 25596.1 0.201201 4073.75 244425
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Figure 8.19: Effect of Controller Bandwidth on Stability

of the added pole which makes the controller strictly proper. If the controller bandwidth is greater
than 14,100 Hz, then all of these modes are stable. When the controller bandwidth is dropped
below this frequency, the highest mode is destabilized. The remaining modes remain stable until
the controller bandwidth drops to 6840 Hz, at which point the next highest mode is also destabilized.
Unfortunately, at this point the controller bandwidth still exceeds the plant model bandwidth, so this
approach to obtaining gain stabilization for the remaining modes will not work.

8.15.2 Repeat with 2.0% Damping

Plant Bode Diagram:
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Interlacing Repair

Put a complex pair of zeros at 280 Hz with a damping ratio of 2.0% and a complex pair of poles at
320 Hz with a damping ratio of 2.0%. In addition, put a complex pair of zeros at 3500 Hz with a
damping ratio of 2.0% and a complex pair of poles at 3900 Hz with a damping ratio of 2.0%.

Hir(s) =
1:3s2 + 46:0s+ 4:04 � 106

s2 + 40:2s+ 4:04 � 106
1:24s2 + 546s+ 6:0� 108

s2 + 490s+ 6:0 � 108

Figure 8.20 shows the Bode diagram of the plant in series with this interlacing repair filter.

PID Controller

Since the plant is substantially the same, use the same PID controller section to obtain the desired
stiffness and damping:

HPID(s) =
3� 108

s
+ 9� 106

0:00186s + 1

0:000124s + 1

= 9� 106
0:00186s2 + 1:0041s + 33:3

0:000124s2 + s

Table 8.4 shows the result of the stability analysis for the closed loop system.

8.16 Harmonic Control: Basic Concept

Most rotor excitation is sinusoidal and synchronized with the shaft rotation:
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Figure 8.20: Bode plot of plant with interlacing repairs, 2% modal damping.
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Table 8.4: Stability with proper PID controller: 2% modal damping.

Program EIGS Compiled Jun 07 1995 at 20:18:51
Version 1.1
Copyright (c) 1995, ROMAC Laboratories, University of Virginia
Run time is Tue Jun 27 10:03:41 1995

"A" matrix file: sysa.mat

Real eigenvalues:
exponent time constant (sec)

-32.995 0.0303077
-559.167 0.00178837

Complex eigenvalues:
real imaginary log. dec. Hertz CPM

-36.969 1749.06 0.132805 278.371 16702.3
-42.102 1973.97 0.134012 314.167 18850

-254.825 4591.89 0.348683 730.822 43849.3
-458.245 6939.36 0.414913 1104.43 66266
-904.586 11859.6 0.479248 1887.51 113251
-1698.05 18564.5 0.574709 2954.63 177278
-862.878 23871.5 0.227117 3799.27 227956

-813.77 25641.8 0.199404 4081.02 244861

mass imbalance

shaft bow

aerodynamic excitation

sensor surface runout

Because the excitation is steady, it can bepredictedon the basis of past observations. If it can be
predicted, then a counteracting force can be applied which minimizes the system response.

8.16.1 Parallel Control

This harmonic control is some sinusoidal force applied to the system in order to counter-act (cancel)
the effect of the steady disturbance. The magnitude and phase of the harmonic control will be
changed very slowly (every 0.05 seconds?) so there is no effect on linear system stability. Because
this is not a stabilizing control, some feedback control must also be used. The two controls then
function in parallel as illustrated in Figure 8.21.

8.16.2 Single Mass Model

The underlying idea is best illustrated through the example of controlling a simple mass. The model
of the simple mass is

M �x = fb + fe
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Figure 8.21: Parallel control architecture.

Examine simple feedback control. Assumefb = �Kx� C _x:

M �x+ C _x+Kx = fe

ChooseC for damping�: C = 2�
p
KM . The steady state load response is

x(s)

fe(s)
=

1

Ms2 + Cs+K

Normalize by the last coefficient and substitute the defining relationship forC. Now, define the
nondimensional frequency

�
:
= s

r
M

K

to obtain

x(�)

fe(�)
=

1

K

1

�2 + 2�� + 1

The required bearing force is

fb(�)

fe(�)
= (K + Cs)

x(�)

fe(�)
=

1 + 2��

�2 + 2�� + 1

Figure 8.22 shows the worst case amplification from the unbalance load,fe, to the bearing force,
fb, as a function of the damping ratio,�.

8.16.3 Single Mass Model: Quadratic Optimization

Clearly, with a feedback solution, we want very high stiffness and very high damping to minimize
the forced response while using the least force. As an alternative, assume thatfe = Fe sin!t. If
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Figure 8.22: Single mass bearing, worst amplificationvsdamping ratio.

fb = Fb sin!t = �fe then the response,x = X sin!t, is identically zero and the force is always
smaller than with feedback.

In general, we wish to reach some sort of trade–off between bearing force and response:

F �b = argmin
Fb

�jFb=�j2 + jX=�j2� : X =
1

m!2
(Fb + Fe)

This allows the force to go to zero at high frequencies if� is finite and� is non–zero:

F �b = � �2

�2 + �2m2!4
Fe

Notice that the force is always180Æ out of phase with the excitation. This cannot be achieved stably
using only feedback.

Solution of the Quadratic Minimization

The problem posed is to minimizeJ by choice ofFb:

J =
�jFb=�j2 + jX=�j2�

subject to the constraint:

X =
1

m!2
(Fb + Fe)

Thus,J can be expanded as

J =
F 2
b

�2
+

1

m2!4

�
F 2
b + 2FbFe + F 2

e

�
Differentiate with respect toFb:

dJ

dFb
= 2

Fb
�2

+
1

�2m2!4
(2Fb + 2Fe)
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Figure 8.23: Single mass: quadratically optimized bearing force amplificationvs nondi-
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The minimizer occurs where the derivative is zero, so

F �b

�
1

�2
+

1

�2m2!4

�
= � 1

�2m2!4
Fe ) F �b = � �2

�2 + �2m2!4
Fe

Quadratic Optimized Solution: Single Mass

With this quadratic optimization, the bearing force and mass response magnitudes are:����FbFe
���� =

�2

�2 + �2m2!4

����XFe
���� =

1

m!2

�2m2!4

�2 + �2m2!4

Or, define�
:
= !

p
�m=� to obtain the nondimensional forms����FbFe

���� = 1

1 + �4

����X�

Fe�

���� = �2

1 + �4

Figure 8.23 illustrates this solution. Notice that this response looks like a mass with PID control. It
has a “resonance” and is zero as� ! 0 and as� !1.

8.16.4 Similar PID Control

For comparison, a PID controller was designed for a mass of 0.387 units. The PID parameters were:

K = 2:309 C = 1:638 T = 1:085

The Bode plots of force and displacement are shown in Figure 8.16.4. The displacement response is
somewhat similar to that obtained with quadratic optimization but the control forces are substantially
larger.
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Quadratic Optimization: Choice of Parameters

How are the parameters� and� selected? Notice that these parameters nondimensionalize the
displacement and bearing force in the cost function:

F �b = argmin
Fb

�jFb=�j2 + jX=�j2� : X =
1

m!2
(Fb + Fe)

As a result, an obvious choice is to let� equal the largest expected forceor the bearing load capacity
and� equal the largest allowed motion.

It is perfectly reasonable for� or � to depend on frequency. This is especially useful with�
where the bearing load capacity is frequency dependent: at low frequency, the capacity is set by
saturation and at high frequency, it is set by slew rate:

� = fmax;DC

s
!2
o

!2 + !2
o

: !o =
_fmax

fmax

8.16.5 ComputingFb

In the presentation so far, it is assumed thatFe is known so thatFb can be computed directly.
However, it is usual to know onlyx: how do we computeFb?

The answer is that the cost function itself can be evaluated for a given choice ofFb and thenFb
is iterated until the cost function is minimized:

F �b (!) = argmin
Fb

�jFb=�(!)j2 + jX=�j2� : X = kb(Fb;!) + ke(Fe;!)

The functionskb andke define the plant. For the single mass example, both are simplyF=m!2. In
general, they do not have to be linear in the force: any monotonic relationship will work!

In iteratingFb, it is assumed that!, kb, ke, andFe are constant. Thus, the solutionF �b is found in
the same way as a numerical optimization is performed. Since the cost function is quadratic and the
plant functions (ke andkb) are monotonic, the problem has a single global minimum. Figure 8.24
illustrates the algorithm.
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Figure 8.24: Harmonic control: the essential algorithm.

Requirements

Since the problem is stated in the frequency domain, we require a few things.

1. The plant must be stable. Otherwise, we can’t talk about (or measure) steady state response.
Typically, this means that the plant must be stabilized with feedback control.

2. There must be a way of selecting the frequency and staying synchronized with it. For rotors,
the frequency is usually a multiple of the shaft speed and is monitored with akey phasor
signal: a pulse which is issued once per revolution.

3. We need to be able to evaluate the cost function: this means that we need to measureFb and
X. Fb is assumed known.X is measured by integrating the product of the measured response
with synchronized sine and cosine waves (to generate Fourier coefficients):

X =
!

n�

Z 2�n
!

0
x(t) cos!tdt+ j

!

n�

Z 2�n
!

0
x(t) sin!tdt

8.16.6 Generalizing to Flexible Rotors

The harmonic response model for a rotor is fairly simple. For instance, if the rotor differential
equation is

M�x+ C(
) _x+Kx = Bcfb +Bef

y = Wx

then the harmonic response model is

Y = W
�
K � !2M + j!C(
)

��1
(BcF b +BeF )

In simpler form, the response is

Y = T (
)F b + Y 0(
)

This is the general form for a linear differential equation, but even a nonlinear differential equation
can be linearized about a present operating point to produce this same form.
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Cost Functions for Large Plants

The quadratically optimized harmonic control is based on a quadratic cost function. For the single
mass, this was

J = jFb=�(!)j2 + jX=�j2

In general, we use

J =

NfX
i=1

jFb;i=�i(!)j2 +
NyX
i=1

jYi=�ij2

In matrix notation, this is

J = F �bRF b + Y �QY

(where(�)� means the conjugate transpose)
The matricesR andQ are

R =

2
64

1=�21
. . .

1=�2n

3
75 Q =

2
64

1=�21
. ..

1=�2n

3
75

As before, the�i compare the bearing forces to maximum capacity and the�i compare the response
to the maximum allowed response.

We can substitute the harmonic model forY to obtain

J = F �bRF b + (F �bT
�(
) + Y �0(
))Q (TF b + Y 0)

This expression is differentiated with respect toF b and the result set to zero:

dJ

dF b

= 2RF b + 2T �(
)QTF b + 2T �(
)QY 0 = 0

The best control bearing control is the solution to this minimization:

F bi+1 = � (R+ T �(
)QT )�1 T �(
)QY 0

As with the single mass problem, we do not know whatY 0 is, but we can estimate it from previous
solutions:

Y 0(
) = Y i � T (
) F bi

which defines a recursive relationship forF b:

F bi+1 = � (R+ T �(
)QT )�1 T �(
)Q
�
T (
)F bi � Y i

�
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Figure 8.25: Gas pipeline compressor rotor.
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Figure 8.26: Free–free response of a pipeline compressor rotor to midspan unbalance.
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Figure 8.27: Clamped response of a pipeline compressor rotor to mass unbalance at
midspan.
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Figure 8.28: Mixed optimization response of a pipeline compressor rotor to mass unbalance
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Example Compressor

Gas pipeline compressor. Rotor mass = 1050 kg. First free–free resonance = 5433 CPM. Depicted
in Figure 8.25.

The simplest result is when the cost of response (Q) is zero and the cost of control (R) is
not. This produces the rotor free–free response illustrated in Figure 8.26 Clearly, this approach of
eliminating the bearing effect at the synchronous speed causes problems at any free–free natural
frequencies!

The opposite extreme uses no cost of control:R = 0 to absolutely minimize the rotor response.
Figure 8.27 illustrates the resulting rotor response and bearing forces. In contrast to the minimum
bearing force solution, the minimum response solution causes problems at frequencies other than
the free–free resonances. The problem frequencies correspond to transmission zeros for the transfer
matrix from actuator input to cost function (� weighted) output.

The problems associated with either of these extreme solutions can be avoided simply by using
a mixed optimization in which neither the cost of control nor the cost of response is zero. As an
example, the bearing control forces for the present rotor are normalized by their capacity of 2230
pounds force and the journal motions are normalized by a clearance of 0.007 inches. The resulting
unbalance response and bearing forces are illustrated in Figure 8.28.



Chapter 9

Auxilliary Bearings

9.1 Introduction

In application to commercial rotating machinery, magnetic bearings usually require some form of
auxiliary bearing. Fundamental limits to the static and dynamic capacity of magnetic bearings
dictate that excessive shaft loads will, at some point in the life of the bearing, force the shaft out of
support.[6] To protect the shaft and surrounding components such as seals and impellers which are
likely to be damaged in the event of excessive shaft vibration, auxiliary bearings are introduced to
limit the shaft motion to some acceptable level. These auxiliary bearings generally take the form of
either a rolling element bearing or a bushing. In either case, the inner bore is oversized to provide a
clearance between the auxiliary bearing and the shaft. In this manner, the shaft does not contact the
auxiliary bearing until it moves beyond a limit point equal to the radial clearance in the auxiliary
bearing. Smaller motions of the shaft are controlled by the magnetic bearing.

The transient behavior governing the transfer of support of the rotor from magnetic bearings
onto auxiliary bearings has been examined in detail in the context of general rotor rubs by Muszyn-
ska [7] and Choy [2] and in the specific context of auxiliary bearings by Ishii [4] and Kirk [5].
This behavior is very complex and dependent upon the precise conditions at the moment of loss
of support as well as the details of the friction at the interface between rotor and auxiliary bearing
inner race and auxiliary bearing dynamic compliance. As a result, it is very difficult to draw general
conclusions from either transient simulations or actual drop tests.

However, one important property of the steady behavior following such a transition is whether
or not the rotor enters full rolling whirl in the auxiliary bearing clearances. This is important because
fully developed circular whirl typically results in much larger shaft deflections than does the more
random bouncing which may characterize the transient response or, ideally, the small oscillations
about a steady operating point at the bottom of the clearance space.

The conditions for a sustained circular whirl can be computed without relying on a transient
simulation. Black [1] carried out an elegant study of steady whirl at a single point of rub in a simple
single mass rotor. Feeny [3] explored the stability of various classes of whirls in rigid rotors on rigid
auxiliary bearings using perturbation analysis. While prediction of thepossibilityof full whirl does
not imply that it will occur – this depends on the precise initial conditions of the drop – prediction
that whirl is impossible precludes such behavior. The present work develops a general condition for
steady circular whirl when the rotor and auxiliary bearing support are circularly isotropic.
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Nomenclature

a amplitude
c vector of complex clearance components
C damping matrix
D whirl direction matrix, diag[�1]
f generalized force
G gyroscopic matrix
H output selection matrix
j

p�1
J cost, worst case phase error
K stiffness matrix
K frequency dependent stiffness matrix
M mass matrix
n number of mass stations in the rotor model
nc number of contact points along the rotor
P permutation matrix

R receptance matrix (function of! and
)
t time
V journal force selection matrix
wx generalized displacements in thex� z plane
wy generalized displacements in they � z plane
X vector of complex planar rotor motions
Y vector of complex planar rotor journal motions
� vector of complex bearing motions
� phase angle

 spin/whirl ratio:
=!
�k kinematic coefficient of friction
! shaft whirl speed

 shaft spin speed
� dimensionless whirl frequency
� damping ratio

9.2 Model

The interaction between the rotor journals and oversized bearing bores is potentially quite compli-
cated. However, if the system components are circularly isotropic, this interaction becomes con-
siderably simpler, permitting a relatively compact formulation. In the following subsections, the
complex analysis which permits this compact formulation is discussed to highlight the model as-
sumptions necessary for its use. The rotor and bearing models are then examined to demonstrate
their suitability to such a formulation.

9.2.1 Complex Notation

Assume that the harmonic motions of the journals in a rotor spinning at a rate
 in response to
harmonic forces applied to the journals at a frequency! can be componentiated in thex andy
planes and computed as

�
wx

wy

�
=

�
Rxx Rxy

Ryx Ryy

�
(!; 
)

(
f
x
f
y

)
(9.1)

(a model of this form for the rotor will be developed in the next section.) If the motion is uniformly
circular so that

wx;i(t) = ai cos(!t+ �i)

and

wy;i(t) = ai sin(!t+ �i)

then the motion can be represented in terms of the complex notation

Wi(t) = wx;i(t) + jwy;i(t) = aie
j(!t+�i)

or

Wi(t) = aie
j�iej!t
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The termuniformly circular implies that the magnitude and sign of! are the same at every station,
i. In this manner, each element of the vector is distinguished from each other only in terms of its
magnitude,ai, and phase,�i. This permits the simple vector notation

W (t) = Awe
j!t

whereAw is a complex vector indicating both magnitude and phase at each station,i.
This notation is useful only if the dynamics of the system are suitable. That is, assume that the

bearing forces are to be represented as

F (t) = f
x
(t) + jf

y
(t) = Afe

j!t

Then the relationship (9.1) must be able to be compactly represented as

W (t) = R(!; 
)F (t) (9.2)

or, equivalently,

wx + jwy = (Rr + jRi)
�
f
x
+ jf

y

�
(9.3)

Expanding (9.3) produces

wx + jwy = Rrfx �Rify + j(Rifx +Rrfy) (9.4)

Comparing (9.4) to (9.1) implies that

Rr(!; 
) = Rxx(!; 
) = Ryy(!; 
)

and

Ri(!; 
) = �Rxy(!; 
) = Ryx(!; 
)

Thus, the complex notation is useful only for systems with the form

�
wx

wy

�
=

�
Rxx Rxy

�Rxy Rxx

�
(!; 
)

(
f
x
f
y

)
(9.5)

Such systems will be referred to as circularly isotropic. The arguments
 and! imply that the
isotropy may only hold at specific values of
 and!. Linear systems will usually be isotropic for
all values of these parameters if for any.

9.2.2 The Rotor

The rotor is assumed to have the rather conventional circularly symmetric model of the form�
M 0
0 M

��
�wx

�wy

�
+

�



�
0 G
�G 0

�
+

�
C 0
0 C

���
_wx

_wy

�

+

�
K 0
0 K

��
wx

xy

�
=

(
f
x
f
y

)
(9.6)
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wherewx andwy are generalized displacements (translations and rotations) in thex� z andy � z
planes,
 is the shaft spin rate, and any gyroscopic effects are described by the matrixG. Physical
considerations imply thatM , C, G, andK are all symmetric. Typically, the matricesM andG
are diagonal, but need not be. For the problem of whirl in the auxiliary bearing clearance, it is
assumed thatf

x
andf

y
are solely bearing contact forces: gravity, mass unbalance, and aero- or

hydro-dynamic effects are neglected. These effects can be added back in as a linear perturbation to
the solution subject to some easily established constraints on the magnitude of the additional forces
relative to those exerted by the bearings.

Given the isotropic nature of the rotor and the auxiliary bearings, it is assumed that the steady
state motion of the rotor consists of circular orbits at each mass station:

wx;i = Xie
j!t wy;i = �jXie

j!t (9.7)

or, more compactly

wx = Xej!t wy = �jDXej!t : X 2 Cn (9.8)

whereD = diag(�1) which has the propertyDD = I. For an isotropic bearing model, this type of
orbit should give rise to bearing forces of the form

f
x
= Fej!t f

y
= �jDFej!t : F 2 Cn (9.9)

Such a model for the bearing forces presupposesonly that the bearing forces precess in the same
direction and at the same rate as the motion of the associated journals.

This model produces a simultaneous pair of algebraic equations for the steady state response

��!2M + !
GD + j!C +K
�
X = F (9.10)

and

�j ��!2MD + !
Gj!CD+KD
�
X = �jDF (9.11)

Multiply (9.11) byjD to obtain

��!2DMD + !
DG+ jDCD +DKD
�
X = F (9.12)

Now, introduce the permutation matrixP where

PDP 0 :=
�
I 0
0 �I

�
; P 0P = I (9.13)

Apply the transformation

P 0
�

X+

X�

�
:
= X P 0

�
F+

F�

�
:
= F (9.14)
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and define

P 0MP
:
=

�
M++ M+�
M�+ M��

�

P 0GP :
=

�
G++ G+�
G�+ G��

�

P 0CP :
=

�
C++ C+�
C�+ C��

�

P 0KP
:
=

�
K++ K+�
K�+ K��

�
K++(!; 
)

:
= �!2M++ + !
G++ + j!C++ +K++

K+�(!; 
)
:
= �!2M+� � !
G+� + j!C+� +K+�

K�+(!; 
) :
= �!2M�+ + !
G�+ + j!C�+ +K�+

K��(!; 
) :
= �!2M�� � !
G�� + j!C�� +K��

to convert the algebraic equations (9.10) and (9.12) to� K++(!; 
) K+�(!; 
)
K�+(!; 
) K��(!; 
)

��
X+

X�

�
=

�
F+

F�

�
(9.15)

and � K++(!; 
) �K+�(!; 
)
�K�+(!; 
) K��(!; 
)

��
X+

X�

�
=

�
F+

F�

�
(9.16)

where the off diagonal termsM+�, M�+, G+�, andG�+ would typically be zero. The block
componentsX+ andX� are associated with forward and backward whirl, respectively. Recombine
these simultaneous equations by forming half the sum of the two equations and half the difference:� K++(!; 
) 0

0 K��(!; 
)
��

X+

X�

�
=

�
F+

F�

�
(9.17)

and �
0 K+�(!; 
)

K�+(!; 
) 0

��
X+

X�

�
=

�
0
0

�
(9.18)

These equations imply that the forward component of the response,X+, is independent of the
backward component of the response,X�. However, each response must simultaneously satisfy a
pair of equations of the form��!2M�� � !
G�� + j!C�� +K��

�
X� = F� (9.19)

and ��!2M�� � !
G�� + j!C�� +K��
�
X� = 0 (9.20)

In general, the coefficient matrix in (9.19) is full rank, so unless the coefficient matrix in (9.20)
has zero rank, these equations cannot be simultaneously satisfied except for very specific cases of
F�. The more general condition is satisfied when the coefficient matrix in (9.20) has zero rank; that
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is, when the dimension ofX+ or of X� is zero. This implies that mixed whirl can only occur for
this type of circularly isotropic system under very specific conditions whereas uniform whirl, either
forward or backward, can occur under much more general conditions. As a result, the remaining
analysis will assume thatD = �I, which satisfies the assumption of uniform circular response
discussed in the preceding section.

Defining


 =



!
(9.21)

where
 can be either positive or negative:
 > 0 corresponds to forward whirl while
 < 0
corresponds to backward whirl, leads to the simpler formulation�

!2[
G�M ] + j!C +K
�
X = F (9.22)

In the present analysis, the interaction between the rotor and the auxiliary bearings occurs only
at a few discrete points. Thus, it is convenient to extract from (9.22) that information which is
relevant to this interaction. Define the displacement at the journals as

Y = HX

Further, assume that forces are only applied to the rotor at the discrete auxiliary bearing journals so
that

F = V F j

After solving (9.22) forX , the input–output relationship can be reduced to

Y = H
�
!2[
G�M ] + j!C +K

��1
V F j (9.23)

Comparing (9.23) to (9.2) reveals that the transfer function from journal forces to journal displace-
ments is

R(!; 
) = H
�
!2[
G�M ] + j!C +K

��1
V (9.24)

9.2.3 Bearing Model

In the previous section, it was demonstrated that forced circular motion of the free–free shaft can be
described by the relationship

Y ej!t = R(!; 
)F je
j!t (9.25)

in which the complex elements of the vectorY represent the planar displacements of the shaft at
the points where it interacts with its auxiliary bearings and the complex elements of the vectorF j

represent the planar forces applied to the system by the auxiliary bearings.
Further, if the displacements of the centers of the auxiliary bearings are given by the complex

vector� then tangency of the journal surfaces to the auxiliary bearing bores requires that

Y = �+ c : c =

8><
>:

c1e
j�1

...
cnce

j�nc

9>=
>; (9.26)
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Figure 9.1: Rotor–bearing contact geometry

in which the elements of vectorc are equal in magnitude to the clearance at each auxiliary bearing
but whose phase (orientation) is, as yet, unknown. The geometry is indicated in Figure 9.1.

Finally, if the bearing compliance is circularly isotropic then the complex bearing force,F j can
be computed in terms of the complex bearing displacement as

F j = �Kb(!; 
)� (9.27)

The interface between the rotor journal and the bearing bore can only sustain a positive normal
force; a negative normal force would imply tension across this contact. In addition, assuming
skidding at the interface, the tangential component of the contact force must equal the limit imposed
by the contact kinematic coefficient of friction,�k. This means that the tangent of the angle between
the bearing force and the surface inward normal must be equal to the kinematic coefficient of friction
with sign determined by the sign of the ratio of the shaft spin to the shaft whirl:

6
�
F j;i

�� 6 (�ci) = sign

�



!

�
tan�1 �k;i i = 1 : : : nc (9.28)

atnc points of contact along the rotor.
If �k is non–zero, the tangential component of the bearing force will produce a moment, or

torque, on the shaft which will tend to slow the shaft spin unless there is an external torque acting
on the shaft. In the present work, we assume either that the translational motion of the shaft is not
coupled to its spin (usually gyroscopically) or that there is enough external torque or shaft inertia to
make the effect of the friction on the shaft spin rate negligible (the time scale of loss in shaft spin
rate is much larger than the period of the whirl.)

9.3 Whirl Condition

With these assumptions, the bearing motion� can easily be computed as

� = � (I +R(!; 
)Kb(!; 
))�1 c (9.29)
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This solution can be rearranged to a form which is more convenient to use:

c+ � = (I +RKb)�1RKbc (9.30)

Introducing the rotor transfer functionwithout auxiliary bearing clearance,

Rcl(!; 
) = (I +R(!; 
)Kb(!; 
))�1R(!; 
) (9.31)

permits the simple representation of the overall rotor journal motion for a given clearance vector,

c+ � = RclKbc (9.32)

or,

� = (RclKb � I) c (9.33)

In this manner, a general condition for sustainable whirl can be obtained by combining (9.27),
(9.28), and (9.33):

6 fKb (RclKb � I) cgi � 6 ci = sign

�



!

�
tan�1 �k;i i = 1 : : : nc (9.34)

for some choice of phasings in the vectorc. When this condition is satisfied for a givenc, the total
rotor journal response can be computed from (9.32).

9.3.1 Computation

When only one point of contact is possible, (9.34) is independent of the choice of clearance phase:

6 ac� 6 c = 6 a

so no effort need be invested in determining the appropriate phase. Further, (9.34) describes the
points of intersections of the phase of a rotor transfer function and the constant phase line corre-
sponding to the coefficient of friction. These points of intersection can be found using any conve-
nient root finding algorithm.

However, when two or more points of contact are possible, the problem immediately becomes
more complicated. At each potential whirl frequency, the phases of the elements ofc must be
searched for an arrangement which satisfies (9.34). If the off–diagonal terms inKb (RclKb � I) are
negligible then, again, the choice of phase has no effect on satisfying the constraint. In this case
the constraint is satisfied only at points of mutual intersection ofnc + 1 phase curves. Such an
intersection may not exist for a real rotor model at any frequency. When the off–diagonal terms are
not negligible, then the individual phases inc can be manipulated to change the shapes of the phase
curves, leading to a better chance of finding such points of mutual intersection.

Consequently, in searching for whirl frequencies which satisfy (9.34), an optimization problem
is posed at each potential frequency. Define a cost which is the maximum error in the agreement of
phase:

J(!; c) = max
i

����6 fKb (RclKb � I) cgi � 6 ci � sign

�



!

�
tan�1 �k;i

���� (9.35)

then search on the elements ofc to minimizeJ :

c(!) = argmin
c

J(!; c) (9.36)
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It is important to note that one of the phases inc is arbitrary. Factorc by the phase ofc1:

c =

8>>><
>>>:

c1
c2e

j(�2��1)
...

cnce
j(�nc��1)

9>>>=
>>>;
ej�1

Clearly, the choice of�1 has no effect on the equality of (9.34) so it can be arbitrarily chosen equal
to zero. In the case of rotors with two points of contact, (9.36) represents a scalar minimization at
each potential frequency.

If (9.34) can be identically satisfied at a given frequency then the minimum cost achieved in
(9.36) will be zero. Typically, this zero cost will not be achieved at any frequency for real rotors.
However, the actual minimum cost achieved has a useful interpretation. DefiningJmin(!) as the
lowest cost achieved through (9.36), if the coefficients of friction at the rotor–bearing interfaces can
be modified by an amount bounded by

��k;i � tan Jmin(!)

then whirl can be achieved at!. Given the approximate nature of the model represented by the
kinematic coefficient of friction, it seems reasonable to consider any frequency with a low enough
bound,tan Jmin(!), to be a possible whirl frequency.

9.3.2 Multiple Auxiliary Bearings or Rubs

If a rotor system has more than two potential points of contact (nc > 2), it may be that whirl involves
some, but not all, of the contact points. In this case, it will be necesary to examine the possibility
of whirl with all possible combinations of contact points. For each combination examined, if whirl
appears feasible, the response at the other potential points of contact not included in the analysis
set must be examined to ensure that the computed whirl does not produce contact at the excluded
points.

9.4 Examples

9.4.1 Simple Disk

A simple example of this analysis is that of a disk rolling in a clearance. The geometry is illustrated
in Figure 9.2. The disk has a massM . The annular support (auxiliary bearing) has a stiffness ofK
and a dampingC. The radial clearance between the disk and the bearing isc, the contact coefficient
of friction is�k, and the clearance phase angle is assumed to be�. Given this model, (9.34) becomes

6
�
M!2(K + j!C)cej�

K �M!2 + j!C

�
� 6

�
cej�

�
= sign

�



!

�
tan�1 �k

Introducing the damping ratio� = C=2
p
KM and the whirl ratio� = !=

p
K=M produces

6
�

1 + 2��

1� �2 + 2��

�
= sign




!
tan�1 �k (9.37)
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Figure 9.2: Geometry of simple disk example.
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Figure 9.4: Compressor layout, showing impeller, balance piston, thrust bearing, and aux-
iliary bearing locations.

For 0 � �k � 1 and� � 0, (9.37) can only be satisfied if sign(
=!) = �1: the wheel can only
whirl backwards.

Figure 9.3 is a contour map of the whirl ratio,�, vsdamping ratio,�, and friction coefficient,�k.
Of particular interest is that the contour lines converge at the origin. This means that the problem of
clearance whirl is ill–posed in the absence of both friction and bearing dissipation. Further, in the
limit as the damping ratio goes to zero, the whirl ratio converges to 1.0 for any non–zero friction
coefficient. Finally, if�k = 0 and� > 0, the disk cannot exhibit steady whirl. This last observation
is no surprise: the whirl is driven by friction so, if the system is dissipative and there is no friction
to drive the whirl, then any whirl produced by initial conditions would quickly collapse.

9.4.2 Commercial Compressor Rotor

The rotor of a large commercial compressor with a centrally mounted compressor wheel is depicted
in Figure 9.4. The rotor has an auxiliary bearing span of 236 cm (93 inches) and a total rotor weight
of 1050 kg (2320 pounds). The first free-free bending critical speed occurs at about 6500 CPM. The
rotor model assumes about 0.2% modal damping in each of the rotor free–free modes. Figure 9.5
is a critical speed map for this rotor with gyroscopic effects neglected. This diagram shows the
rotor/bearing resonances as a function of the bearing stiffness, assuming that the rotor is in contact
with both auxiliary bearings and that they have identical stiffness and damping. For this rotor, which
is fairly symmetric end–to–end, whirl is most likely to occur at a frequency slightly below the first
resonance in the auxiliary bearings. As an example, Figure 9.6 shows the required variation in
coefficient of friction for whirl to occur (Jmin(!) in equation 9.36) at frequencies ranging from 500
CPM to 17000 CPM. In this example, the bearings are assumed to have a stiffness of 17,500,000
N/m and the effect of auxiliary bearing damping is illustrated by plotting the required variation for
damping values ranging from 700 N-sec/m up to 70000 N-sec/m.

Figure 9.6 indicates that when the auxiliary bearing damping is slight there is a strong tendency
to whirl at about 1650 CPM. It also suggests the possibility of whirl at about 2290 CPM or at about
11000 CPM when the damping is very light. Very heavy damping introduces the possibility of high
frequency whirl at about 13500 CPM, associated with the fourth critical speed. Since the rotor is
never operated beyond 7000 CPM, it is most likely that any whirl induced by a rotor drop onto
auxiliary bearings would have a frequency lower than the first critical speed. A very similar result
is reported by Ishii [4] on the basis of simulated rotor drops for a rotor with similar geometry.
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9.5 Conclusions

An economical method of evaluating the whirl response of rotors supported in auxiliary bearings
with an annular clearance has been developed. The method does not require simulation and the cal-
culations involved are essentially similar to standard forced response analysis as widely employed
in the rotordynamics community. As developed in this presentation, the generality of the method is
limited only by the requirement of circular isotropy in the rotor and auxiliary bearings.

The primary value of the analysis lies not in predicting the possibility of whirl: almost any
rotor/bearing system can probably whirl. Instead, the analysis permits regions of feasible whirl to
be examined to determine the rotor response in an effort to ascertain the extent of attendant damage.
Further, it permits direct comparison of various auxiliary bearing designs on the bases of likelihood
and severity of whirl.
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