
NGSCB: A Trusted Open System

Marcus Peinado, Yuqun Chen, Paul England, and John Manferdelli

Microsoft Corporation
Redmond, WA 98008

USA
{marcuspe,yuqunc,pengland,jmanfer}@microsoft.com

Abstract. We describe Microsoft’s Next Generation Secure Computing Base
(NGSCB). The system provides high assurance computing in a manner consistent
with the commercial requirements of mass market systems. This poses a number
of challenges and we describe the system architecture we have used to overcome
them. We pay particular attention to reducing the trusted computing base to a
small and manageable size. This includes operating the system without trusting
the BIOS, most devices and device drivers and the bulk of the code of mass mar-
ket operating systems. Furthermore, we seek to strengthen access control and net-
work authentication in mass market systems by authenticating executable code at
all system layers. We have implemented a prototype of the system and expect the
full system to be mass deployed.

1 Introduction

A major challenge the computer industry is facing today is how to effectively protect
the end users against a plethora of email viruses and network intrusions. An obvious so-
lution is to make the desktop operating system and applications flawless and bug free.
However, experience shows that this is an impractical goal. The reasons are threefold.
Firstly, the rich functionality that users expect from mass-market operating systems
makes them so large and complex that security bugs are nearly impossible to get rid off
completely. Secondly, similar problems also apply to applications and device drivers.
And finally, configuration and maintenance are non-trivial, such that users often mis-
configure the system.

Security vulnerabilities exist largely due to software bugs. Some of these bugs are
in the operating systems. Commercial operating systems have rapidly grown in size
in order to provide ever richer user experiences. The use of advanced quality assur-
ance methodology during the development process and rigorous testing can uncover
and eliminate a large percentage of these bugs. However, a small number of software
bugs will always remain. The problem is further compounded by the necessity to sup-
port an arbitrary number of devices in a consumer desktop operating system. A bug in
a device driver may be exploited to subvert the system. Again, though stringent testing
standards are successful at reducing the number of driver bugs, security vulnerabilities
cannot be completely eliminated in complex device drivers.

These problems were recognized decades ago and led to the development of sys-
tems that focused on simplicity, correctness and security, rather than rich mass market



functionality [5, 25, 11]. Despite their security merits, none of these systems was suc-
cessful in the mass market, partly due to the fact that these systems were crafted for
special-purpose, vertical market segments and hence lacked appeal to a broader user
base. These highly specialized systems, no matter how secure they still are, would be
even less appealing to today’s users who have grown used to the rich experience on
personal computers. What the user wants as a secure operating system is one that can
provide the same rich functionality found on Windows, MacOS, and Linux as well as
strong protection for a limited set of tasks that need such security guaranttees (e.g.
electronic banking).

In light of the virtual impossibility of providing ultimate security for a large mass
market operating system, we opt to construct a safe execution environment that coexists
with the mass-market operating system on a desktop – a tight security sanctuary on
an otherwise bug-prone system. Such a platform would allow the user to run a few
highly trusted applications without having to worry about interference from malicious
applications, compromised operating systems, and subverted hardware devices. This
alternative has a pragmatic attraction: The secure execution environment only has to
support a few trusted applications. Its construction can therefore be highly specialized,
reducing the code size by orders of magnitude, and lending itself to close scrutiny.

NGSCB, the Next-Generation Secure Computing Base (NGSCB) being developed
by Microsoft, provides exactly this high-assurance runtime environment for trustworthy
applications on a regular personal computer. This paper describes the NGSCB system
architecture and some aspects of its implementation. Due to the page limit, we had to
omit many details from this extended abstract. The full version of this paper is available
at [16].

Section 2 lists the requirements under which the system was designed. Sections 3
and 4 describe how a safe execution environment and a mass market operating system
can coexist on a single computer, with Section 3 summarizing existing approaches and
their shortcomings and Section 4 providing a detailed description of our solution. Sec-
tion 5 describes how a complete system can be configured. Section 6 discusses related
work.

2 Requirements

NGSCB strives for a general-purpose,secure computing environment for running trusted
applications. The task would be much simpler if we were to only concentrate on pro-
viding a set of application-specific hardware systems, for example a custom-designed
terminal that allows secure, authenticated remote access by bank customers. This nar-
row approach may be suitable for a limited set of applications but would not meet the
security demands of the majority of corporate customers and home users. From both
the ergonomic and the economic point of view, it is safe to argue that most people
would prefer a unified computing environment to an ever increasing number of home
and office gadgets.

On such a system, security constraints must be devised to protect the trusted appli-
cations from the rest of the system, and to protect the interaction between the user and



a trusted application, that between a trusted application and a remote service and that
between a user and a remote service.

2.1 Security Requirements

More specifically, the execution environment must possess the following properties.

– No interference: The execution environment must provide a program that executes
in it with the same underlying machine interface every time the program executes.
The program must be isolated from external interference. A necessary condition is
that a deterministic sequential program that does not access devices or persistent
state should always reach the same result, irrespective of other programs that might
have executed earlier or at the same time on the same machine.

– No observation: The computations and data of a program should not be observable
by other entities, except for data the program chooses to reveal (e.g. through IPC).

– Trusted paths: A program should be able to receive data from a local input device
(keyboard, mouse), such that only the program and the user of the input device
share the data. Data integrity must be assured. A similar requirement applies to
local output devices (video).

– Persistent storage: A program should be able to store data (e.g. cryptographic keys)
persistently, such that the integrity and the confidentiality of the data are ensured.

– Communication: A program should be able to exchange data with another program,
such that the integrity and the confidentiality of the data are ensured.

– Local authentication: A local user should be able to determine the identity of a
program.

– Remote authentication: A program should be able to authenticate itself to a remote
entity. For example, a corporate network administrator should be able to verify
that all machines on his network are running the latest security patches and virus
checker files.

Threat Model The security properties listed above must hold in the presence of ad-
versarial code (e.g. viruses) executing on the machine. We assume an adversary may
execute his code not only in user mode but also in kernel (supervisor) mode. The ad-
versarial code may also program certain devices (e.g. DMA controllers) to assist in the
attack.

Our adversary model is significantly more powerful than common system security
models. These models typically assume that adversarial application code may execute
in user mode. Furthermore, they equate adversarial code executing in kernel mode with
a complete breakdown of the system’s security. Such assumptions are unrealistic, as
the open architecture of personal computers entails the presence of a large number of
often very complex device drivers, which are subject to different types of attacks by
applications. Consequently, we chose a more powerful adversary model so as to avoid
the unrealistic assumption that every single device driver is immune to such attacks.



Assurance The system has to provide high assurance for its security features. Assur-
ance is the confidence one has that a system will behave as specified [7, 20]. Given
some specified functionality for which high assurance is required, thetrusted comput-
ing base (TCB) is defined as the collection of hardware and software components, on
which this functionality depends. Based on vast empirical evidence and the current state
of assurance methodology (formal methods, testing), it is generally believed that high
assurance systems require a TCB that is small, simple and stable over time and centrally
controlled and verified.

This paper focuses not on the assurance methodology,1 but on the impact of the
assurance requirement on system architecture. Several fundamental design choices de-
scribed in this paper are the result of the need to keep the TCB small and simple, in
order to make it ‘assurable.’ One such design decision, a salient feature of our system,
is to exclude the mass market operating system and most device drivers from the TCB.

2.2 Commercial Requirements

In order to be commercially viable in a mass market environment, our system has to
meet the following requirements:

– Open architecture: The system has to host a large class of hardware components
and expose them to applications by means of device drivers. Many of the hard-
ware components and peripherals of personal computers (CPU, chipset, graphics,
storage, printers, imaging) are produced in different versions and with a variety
of hardware interfaces by different vendors. This variety leads to a large number
of hardware configurations, which increases continually as new devices become
available. It leads to a similar number of software configurations, due to the fact
that each new device requires an associated software driver. Our system has to op-
erate in this very diverse hardware and software environment.

– No central authority: This requirement is closely related to the previous one. The
system must not require a central authority (e.g. a certification authority) to ‘ap-
prove’ hardware or software before the system ‘admits’ it.

– Legacy support: The system must be compatible with existing mass market technol-
ogy. That is, the system must be compatible with most existing peripheral devices
and application programs. For example, most deployed PCI cards or USB devices
should work in the new system. The system may only require very limited changes
to core computer hardware (CPU, chipset) and operating system software. These
changes must not lead to a significant increase in the production cost of platform
hardware.

– Performance: The security-related features of the system must not deteriorate per-
formance significantly (more than a few percent).

1 We are using a combination of formal methods (specification, automatic verification) and rig-
orous testing.



3 Existing Approaches and Problems

The security and assurance requirements call for a simple and constrained operating
environment. In contrast, the commercial requirements call for the rich and diverse
legacy operating environment of mass market personal computers. In particular, the
latter must allow arbitrary devices to be attached to the system and support an open
device driver model. The former has to exclude most device drivers, in order to be
assurable.

The generic resolution to these conflicting requirements is to run two different op-
erating systems in isolation on the same computer: one rich mass market operating
system for all uses without special security requirements and one or more constrained
operating systems that meet our security and assurance requirements. In this setting, it
is of critical importance to protect these operating systems from each other. This task is
performed by a third component: the isolation layer. Clearly, the isolation layer is part
of the TCB, and it has to meet our assurance and security requirements.

Implementations of isolation layers that have been proposed in the past include
microkernels [22], exokernels [9] and virtual machine monitors (VMM) [13]. In spite
of their many merits, these systems fall short of addressing our requirements in several
aspects. The rest of this section summarizes these deficiencies. Section 4 describes our
isolation layer and how it solves these problems.

3.1 Assurance and Device Support

VMMs expose devices to their guest operating systems byvirtualizing them. That is,
a VMM intercepts a guest operating system’s attempt to access a physical device and
performs theactual device access on behalf of the guest, with possible modifications
of the request and/or access-control checks. This allows the VMM to coordinate access
requests from different guests and to share devices among them.

However, this approach requires a driver for each virtualized device to be part of the
isolation layer (TCB). As described above, the set of devices that have to be supported
in today’s consumer environment is very large and diverse, and many device drivers
are very complex. In this setting, any system that uses device virtualization for more
than a very constrained collection of devices cannot meet the assurance requirement.
This problem is exacerbated in the hosted VMM architecture (Type 2 VMM [24]), in
which the VMM, rather than being a self-contained system with its own device drivers,
executes within a host operating system and uses the device drivers of the latter. In the
hosted VMM architecture, the TCB of the isolation layer is expanded to include even
an entire operating system.

An alternative to device virtualization is toexport devices to guest operating sys-
tems. The isolation layer controls only which guests can access a device. However,
device accesses by guests are made directly to the device – without intervention by the
isolation layer. Thus, the isolation layer does not have to include the device driver.

Unfortunately, this approach does not work on existing PC hardware. Mainstream
personal computers give any DMA device unrestricted access to the full physical ad-
dress space of the machine. Thus, a guest in control of a DMA device can circumvent
any protection put in place by the isolation layer to protect guests from each other. It



will have unrestricted access to most resources on the machine, including the parts of
main memory that belong to the isolation layer or other guests.

In summary, any existing implementation of an isolation layer for mainstream per-
sonal computers suffers from at least one of the following problems: (1) It may severely
restrict the set of devices that can be accessed on the machine. This solution does not
meet our commercial requirements. (2) It may virtualize devices. This solution does
not meet our assurance requirements. (3) It may export DMA devices. On existing PC
hardware, this solution does not meet our security requirements.

3.2 Operating System Compatibility

There are two options regarding the interface between the isolation layer and its guests.
VMMs try to expose the original hardware interface. This has the important benefit
that existing off-the-shelf operating systems can be used as guests, but increases the
complexity of the isolation layer. This increase in complexity is especially severe on
PC hardware, since the instruction set of x86 CPUs is not virtualizable [23, 24].

Other implementations of isolation layers (e.g. exokernel, microkernels) expose dif-
ferent interfaces, requiring new guest operating systems to be written [9] or existing
operating systems to be modified [22, 3]. These solutions, while possible in principle,
are not appealing under our requirements, because of the development overhead they
entail.

4 The Isolation Kernel

In light of the conflict between commercial and security requirements, we follow the ap-
proach outlined above of allowing several operating systems to execute on the same ma-
chine. Accesses by these operating systems to system resources (e.g. memory, devices)
are controlled by an isolation layer. The operating system layer consists of copies of
Windows or other operating systems and possibly instances of a smaller high assurance
operating system. The hardware layer consists of standard hardware resources (CPU,
RAM, MMU etc.) which are shared among the software components. Furthermore, the
system contains a collection of devices and their device drivers.

This section describes the isolation layer and focuses on the design decisions we
took to minimize its complexity. The isolation layer exposes the original hardware in-
terface to all guests. In order to reflect the differences between our isolation layer and
a regular VMM, we will call our isolation layer theisolation kernel for the rest of the
paper.

4.1 CPU

We mentioned above that VMMs for the x86 CPU incur significant complexity due
to the fact that the instruction set of the x86 is not virtualizable. For a virtualizable
CPU instruction set, every instruction whose behavior depends on the ring in which
it executes causes a trap into the most privileged ring [PG74]. The x86 CPU has four



protection rings (ring 0 to 3). Existing operating system kernels typically execute in
ring 0 (supervisor mode). Applications typically execute in ring 3 (user mode).

When a VMM is present, the VMM typically executes in the most privileged ring
(ring 0 on the x86). Guest operating systems execute in a less privileged ring (ring
1 or ring 3). On a CPU with a virtualizable instruction set, the VMM can hide this
ring change from the guest by appropriately reacting to all instruction traps it receives.
However, the x86 instruction set contains 17 instructions that should trap, but do not
[RI00], leaving the VMM with the complex task of identifying these instructions at
runtime before they execute and compensating for their changed behavior.

In connection with NGSCB, upcoming versions of the x86 processor will introduce
a new CPU mode that is strictly more privileged than the existing ring 0. Effectively,
this amounts to a new ring -1. Our isolation kernel executes in this ring. Executing the
isolation kernel in ring -1 allows us to execute guest operating systems in ring 0, thus
avoiding the problems entailed by the fact that the x86 instruction set is not virtualiz-
able.

4.2 Memory

A VMM has to partition the physical memory of the machine among multiple guests.
That is, it must allow each guest to access some memory that no other guest can ac-
cess. Furthermore, it has to reserve some memory for its own use. On most platforms,
VMMs can use existing virtual memory hardware in CPUs and memory management
units (MMUs) to enforce memory partitioning efficiently. Under virtual memory, in-
structions that execute on the CPU address memory throughvirtual addresses. Each
virtual address is translated by the MMU into aphysical address, which is used to ac-
cess physical resources (RAM or memory mapped devices). The mapping is defined
by software by means of editing – depending on the CPU type – either the translation-
lookaside buffer (TLBs) or the page tables (on x86 processors).

Abstractly speaking, if a range of physical addresses is not in the image of the cur-
rent mapping from virtual to physical addresses then this range of physical addresses is
inaccessible unless the mapping is changed. Thus, by taking control of the data struc-
tures that control the virtual to physical mapping (page tables, TLBs), the VMM can
confine the physical accesses a guest can make to any subset of the physical address
space. The VMM can therefore partition the physical address space of the machine
among its guests by controlling the virtual to physical mapping that is active for each
guest. We use the well known shadow page table algorithm to implement this approach
[21].

4.3 Devices

The isolation kernel does not support a general device driver model. It contains device-
specific code for a very small collection of devices. This collection includes devices
that are required in the configuration or operation of the isolation kernel and guest oper-
ating systems (e.g. disk, network card). The code to manage these devices is physically
separated from the rest of the isolation kernel and executes as a guest.



All remaining devices, including most consumer peripherals (cameras, scanners,
printers etc.) are assigned to and managed by guest operating systems. This obviates
the need for driver code in the isolation kernel. The rest of this section describes these
approaches in more detail and explains how we avoid the problems outlined in Sec-
tion 3.

Exporting Non-essential Devices On personal computer hardware, many devices are
memory-mapped. That is, the control registers of a given device can be accessed by
writing to or reading from certain physical addresses. The isolation kernel makes a
device accessible to a guest by allowing the guest to map the control registers of the
device into its virtual address space (cf. Sect. 4.2) – thus enabling the guest to read
and write to these addresses. The isolation kernel controls which guest can access the
device, but does not contain any device specific knowledge (device driver).

As mentioned above, on existing personal computer hardware, DMA devices have
unrestricted access to the full physical address space. In this situation, a guest in control
of a DMA device can circumvent the virtual memory based protections described in
Sect. 4.2. In order to solve this problem, we have encouraged chipset manufacturers to
change the hardware as follows.

Conceptually, we require an access control system [18]. In light of the need to min-
imize hardware cost and impact on performance, the system has to be very lightweight.
We will begin by outlining the general concept and then discuss simplifications and
implementation options.

Consider a set of resources (physical addresses), a set of subjects (software compo-
nents or DMA devices) and a set of access modes (read, write). Given a stateX of the
system, the current access control policy is given by the functionf that decides which
access requests are allowed. More precisely, in stateX , subjects should be allowed to
access a resourcer in modea if and only if fX(r, s, a) is true.

Our general strategy is to store the DMA policy mapf in main memory. The DMA
policy is set by software (e.g. the isolation kernel) with write access to the memory
region that storesf . The DMA policy mapf is read and enforced by hardware: In
the case where the protected resource is main memory, the memory controller or bus
bridges can enforce the security policy. The policy will typically include the require-
ment that no DMA device under the control of a guest operating system has write access
to the memory that storesf .

In the most general case, the isolation kernel could assign each DMA device read or
write access rights to an arbitrary set of memory pages. In the other extreme, if all DMA
devices are under the control of one guest operating system then it would be sufficient
to allow the isolation kernel to deny all device access to a subset of main memory.
A very simple concrete example off , which is still useful, addresses resources at the
granularity of pages and does not depend on subjects and access modes. This reduces
the storage requirements forf to one bit per page and allows for very simple control
logic in the memory controller: A page is inaccessible to all DMA devices if the bit is
false. Otherwise, all DMA devices have read and write access to the page.



4.4 Access Control

The isolation kernel has to control access by guest operating systems to the resources
under its control (e.g. memory, devices, IPC channels). The isolation kernel implements
an access control system, in which programs (e.g. guest operating systems) – identified
by an appropriately defined notion of code identity – can be security principals. The
authentication of these programs can be rooted in hardware. We omit details due to the
page limit. A description of the mechanisms employed can be found in [8] and [2].
Abadi [1] describes several applications.

4.5 Prototype Implementation

We have implemented a prototype of the system. The system runs on prototype hard-
ware from various vendors. The isolation kernel comprises the isolation component
that allows memory and devices to be assigned to a particular guest for its exclusive
use. Furthermore, the isolation kernel prototype exposes interfaces that allow a guest to
be booted, the system to be shut down and resources to be assigned to a different guest.
The isolation kernel prototype consists of2000 lines of C code, whose correctness has
been verified with a theorem prover. Initial performance measurements on a regular PC
(2.5 GHz Pentium 4) using standard benchmarks show that the impact of the isolation
kernel on the performance of Windows XP is small. For example, the performance of
Windows XP on the Winstone 2002 Content Creation benchmark [10] when hosted by
our isolation kernel prototype comes within5% of the native performance of Windows
XP on the same benchmark. The prototype and the performance measurements are de-
scribed in detail in [6].

5 System Overview

We are now ready to outline how the components and concepts described so far can
be combined into a complete system. The missing piece are operating systems and
applications that execute on the isolation kernel.

Possibly the most intuitive configuration would be to execute an existing mass mar-
ket operating system along side and existing high assurance operating system, such as
[14, 26]. The former provides access to most mass market devices and allows mass mar-
ket applications to execute. The latter can be used for a reduced set of applications with
special security needs (e.g. electronic banking).

Alternatively, the isolation kernel can host several instances of an existing mass mar-
ket operating system, where some of these instances execute applications with special
security needs. This configuration is similar to systems, such as [17].

Given sufficiently strong isolation between the VMs and appropriate security poli-
cies in the VMM, the need for high assurance in the operating system may be relaxed.
For example, the VMM of [17] implemented mandatory access control for VMs run-
ning largely unmodified VMS. This approach is appealing for several reasons:

– The amount of code that requires high assurance is reduced. While the isolation
kernel becomes somewhat more complex (see below), this added complexity does
not amount to that of a full operating system.



– Being able to use a regular operating system simplifies application compatibility
and provides more functionality to applications.

Clearly, reducing the assurance level of the operating system has implications for the
rest of the system. If the isolation kernel implements mandatory access control (e.g.
[4]), even corrupted operating systems are prevented from leaking information by the
isolation kernel. However, in practice, it is extremely difficult to mitigate the covert
channels of the PC platform to a meaningful level.

If the isolation kernel implements only discretionary access control, any application
that can compromise the operating system can compromise all applications running in
the same virtual machine. Even so, several useful configurations exist. For example,
the problem disappears if each virtual machine can run exactly one application, and
combinations of operating system and application cannot impersonate each other.

Implementing this approach requires the isolation kernel to make some devices
available to the different VMs. The isolation kernel has two options for handling each
device. It can (a) export it to a single VM or it can (b) virtualize it for all VMs. The main
benefit of option (a) is reduced complexity in the isolation kernel. Given the device treat-
ment described above, managing the keyboard, the mouse and the disk is sufficiently
simple to let the isolation kernel virtualize these devices.

6 Related Work

Traditionally, high assurance systems have been built for settings (e.g. military) in
which security concerns were paramount and existing mass market requirements were
of little importance and not addressed. Examples include [5, 11, 17]. The SCOMP sys-
tem [11] included hardware protections against DMA devices that allowed it to move
the corresponding device drivers from the base layer to less critical parts of the system.
[19, 15].

More recently, several monolithic secure operating systems, such as Eros [26] have
been built for personal computers. SE/Linux [28] adds security features to a mass mar-
ket operating system. None of these systems reconciles the conflict between the re-
quirements of assurance (a manageable TCB) and those of the mass market (a large and
complex set of device drivers as well as performance and functionality requirements on
the operating system).

The Perseus system [22] uses a microkernel to host a modified version of Linux and
‘secure applications’. The assurance problems posed by DMA device drivers in the base
layer (microkernel) on open architectures are recognized in [22] but not solved. While
[22] mentions the virtual address approach used by SCOMP, it dismisses it as unrealistic
and instead assumes a small fixed set of simple hardware components, i.e. a closed
hardware platform. Similar systems built by using regular VMMs [12] or Exokernels
to host mass market and secure operating systems suffer from the same problem. In
contrast, we have presented a solution that allows all DMA device drivers to be excluded
from the TCB without violating safety or restricting the openness of the architecture.

Several recent papers [3, 27] describe new VMMs or isolation kernels for PC hard-
ware. In each case, simplifications of the VMM software and performance improve-



ments are obtained by exposing a simplified virtual hardware interface to guest op-
erating systems. While we have also described a modified VMM, our goals and our
solutions differ from those of [3] and [27]. For example, neither system addresses the
problem of supporting a large and diverse set of device drivers in a security setting. Xen
[3] addresses the fact that the x86 CPU is not virtualizable by requiring modifications
in guest operating systems. In contrast, we make use of hardware enhancements that
make the x86 virtualizable and to which we have contributed.

7 Conclusions

We have described a system that reconciles the conflicting requirements of high as-
surance and the mass market. Our general approach has been to preserve the open ar-
chitecture of mass market computers with its large and diverse hardware and software
base and to build an execution environment that is isolated from it and requires only
a far smaller trusted computing base. In particular, we have shown how device drivers
can be excluded from the TCB in an open hardware environment and how memory can
be protected efficiently from unauthorized CPU and device accesses. A common de-
sign choice has been to introduce simple hardware protections in order to exclude large
bodies of code from the TCB. While working within the constraints of legacy personal
computer hardware and software has been a challenge throughout the project, it is also
a prerequisite for our main goal: bringing high-assurance computing to the broad mass
market.

References

1. M. Abadi. Trusted computing, trusted third parties and verified communications. 2004.
2. M. Abadi and T. Wobber. A logical account of NGSCB. 2004.
3. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and

A. Warfield. Xen and the art of virtualization. InProceedings of the 19th Symposium on
Operating Systems Principles (SOSP’03), pages 164–177, 2003.

4. D. Bell and L. La Padula. Secure computer systems: Mathematical foundations and model.
Technical Report M74-244, Mitre Corporation, 1975.

5. T. Berson and G. Barksdale. KSOS – a development methodology for a secure operating
system. InProceedings of the 1979 AFIPS National Computer Conference, pages 365–371,
1979.

6. Y. Chen, P. England, M. Peinado, and B. Willman. High assurance computing on open
hardware architectures. Technical Report MSR-TR-2003-20, Microsoft Research, 2003.

7. DOD, Washington, DC.Department of defense trusted computer system evaluation criteria,
December 1985. DOD 5200.28-STD.

8. P. England and M. Peinado. Authenticated operation of open computing devices. InInfor-
mation Security and Privacy – Proceedings of ACISP 2002, pages 346–361, 2002.

9. D. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: An operating system architec-
ture for application-level resource management. InProceedings of the 15th Symposium on
Operating Systems Principles (15th SOSP’95), Operating Systems Review, pages 251–266,
1995.

10. eTestingLab. Business Winstone 2002 and Multimedia Content Creation Winstone 2002,
2002. http://www.winstone.com.



11. L. Fraim. Scomp: A solution to the multilevel security problem.IEEE Computer, 16:26–34,
1983.

12. T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A virtual-machine
based platform for trusted computing. InProceedings of the 19th Symposium on Operating
Systems Principles (SOSP’03), 2003.

13. T. Garfinkel, M. Rosenblum, and D. Boneh. A broader vision of trusted computing. In
Proceedings of the 9th USENIX Workshop on Hot Topics in Operating Systems (HotOS-IX),
2003.

14. H. Härtig, M. Hohmuth, J. Liedtke, S. Sch¨onberg, and J. Wolter. The performance ofµ-
kernel-based systems. InProceedings of the 16th Symposium on Operating Systems Princi-
ples (SOSP’97), 1997.

15. Hermann H¨artig. Security architectures revisited, 2002.
16. http://research.microsoft.com/research/pubs/.
17. P. Karger, M. Zurko, D. Bonin, A. Mason, and C. Kahn. A restrospective on the VAX VMM

security kernel.IEEE Transactions on Software Engineering, 17(11):1147–1165, November
1991.

18. B. Lampson. Protection.ACM Operating Systems Review, 8(1):18–24, 1974.
19. B. Leslie and G. Heiser. Towards untrusted device drivers. Technical Report UNSW-CSE-

TR-0303, University of New South Wales, 2003.
20. NIST. Common Criteria for Information Technology Security Evaluation, version 2.1 edi-

tion, August 1999.
21. R. Parmelee, T. Peterson, C. Tillman, and D. Hatfield. Virtual storage and virtual machine

concepts.IBM Systems Journal, 11(2):99–130, 1972.
22. B. Pfitzmann, J. Riordan, C. St¨uble, M. Waidner, and A. Weber. The Perseus system archi-

tecture. Technical report, IBM Research Division, 2001.
23. G. Popek and R. Goldberg. Formal requirements for virtualizable third generation architec-

tures.Communications of the ACM, 17(7):412–421, 1974.
24. J. Robin and C. Irvine. Analysis of the Intel Pentium’s ability to support a secure virtual

machine monitor. InProceedings of the 9th USENIX Security Symposium (SECURITY-00),
pages 129–144. The USENIX Association, 2000.

25. R. Schell, T. Tao, and M. Heckman. Designing the GEMSOS security kernel for security
and performance. InProceedings of the 8th DoD/NBS Computer Security Conference, pages
108–119, 1985.

26. J. Shapiro, J. Smith, and D. Faber. EROS: a fast capability system. InProceedings of the
17th Symposium on Operating Systems Principles (SOSP-99), Operating Systems Review,
pages 170–185. ACM Press, 1999.

27. A. Whitaker, M. Shaw, and S. Gribble. Scale and performance in the Denali isolation kernel.
In Proceedings of the 5th Symposium on Operating Systems Design and Implementation
(OSDI’02), pages 195–209, 2002.

28. C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman. Linux security modules:
General security support in the Linux kernel. InProceedings of the 11th USENIX Security
Symposium, 2002.


