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Abstract

A labeled sequence data set related to a certain biological

property is often biased and, therefore, does not completely

capture its diversity in nature. To reduce this sampling bias

problem a data mining procedure is proposed for detecting

underrepresented relevant sequences. The procedure is

aimed at helping domain experts achieve a cost-effective

qualitative enlargement of knowledge through an in-depth

study of a small number of statistically underrepresented and

functionally interesting sequences. Our procedure consists

of: (i) learning a class-conditional distribution model on

each class of labeled data; (ii) applying the models to

select statistically underrepresented unlabeled sequences;

and (iii) automatically evaluating their interestingness. An

application of the proposed approach is illustrated on an

important problem of increasing the data set of confirmed

disordered proteins. The obtained results demonstrate the

promise of the proposed approach for an efficient reduction

of sampling bias in biological databases.

1 Introduction

Biological sequence data labeled to one of several classes
with respect to a property of interest is often not repre-
sentative of the underlying distribution due to the influ-
ence of (i) the evolutionary bias where some sequences
are favored through the evolution, and (ii) an experi-
mental bias where certain sequences are of larger inter-
est to biologists, or are simply easier to analyze. Sam-
pling bias should be taken into account when construct-
ing and using the corresponding predictors, as well as
when deriving biological conclusions from such data.

The most direct approach to resolving the sampling
bias problem is enlarging labeled data set. However,
considering the high costs of obtaining labeled biological
data, a careful addition of new sequences to labeled data
set is necessary. A successful selection should be helpful

∗This study was supported in part by NSF grant CSE-IIS-

0196237 to Z. Obradovic and A.K. Dunker and NSF grant IIS-
0219736 to Z. Obradovic and S. Vucetic.
†Center for Information Science and Technology, Temple Uni-

versity, Philadelphia, PA 19122-6094
‡Computer and Information Science Department Delaware

State University, Dover, DE 19901

in directing use of available human resources towards
detailed studies of the most promising sequences ranging
from literature search to experiments in a ”wet lab” in
order to assign them a class label.

In our approach we concentrate on discovering
sequences that are distributionally underrepresented in
labeled sequence data. Such sequences are most likely
to qualitatively improve the quality of labeled data and
reduce the problem of sampling bias. Since distribution
density estimation from high dimensional data is known
as a difficult problem, we learn distribution implicitly by
constructing autoassociator neural networks [4] on each
class of labeled data.

Given a measure of deviation of a given sequence
from each class obtained by autoassociators, a user
could select distributionally underrepresented sequences
from large repositories of unlabeled sequences. Since
the selection is a highly subjective process, we pro-
pose an automatic procedure for its preliminary evalua-
tion. This procedure is based on extracting information
from well-annotated databases of biological sequences to
summarize functional properties of selected underrepre-
sented sequences. Based on the summary, a user could
focus on the functionally most interesting sequences.

Steps of the proposed approach, are described in
Section §2. In Section §3 the proposed approach is
illustrated on the problem of enhancing a database used
in our study of the protein disorder property [3].

2 Methodology

2.1 Learning class-conditional distributions
We consider a scenario where a set of labeled sequences

is provided with each sequence position classified into
one of several classes. For example, a given amino-acid
within a protein sequence could be characterized by its
secondary structure (e.g. helix vs. sheet vs. coil) or a
specific function (e.g. binding sites). A special case of
sequence labeling is when a single class label is assigned
to an entire sequence. An example of this special case
is classification of whole proteins by their participation
within a specific cell process (e.g. energy metabolism).
We are interested in learning distribution models that
recognize sequence properties of each separate class.



Attribute construction. We represent each se-
quence position or a whole sequence with a set of at-
tributes thought to be relevant to the studied property.
For instance, attributes representing a given sequence
position could be derived from statistics of a subse-
quence within a window centered at the position. Thus,
the first step in distribution learning is choosing an ap-
propriate knowledge representation and constructing a
set of training examples from labeled sequences that are
suitable for distribution learning.

More formally, given a labeled sequence s = {si, i =
1, . . . L} of length L, each position i is assigned a
corresponding label yi ∈ {1, . . .K}, where K is the
number of classes. An appropriate M -dimensional
attribute vector xi = [xi1, xi2, . . . xiM ] is constructed
for each sequence position si. Finally, each sequence s
is represented with a set of L examples {(xi, yi), i =
1, . . . L}. A labeled set S is then constructed by
repeating this procedure on all N available labeled
sequences. Since our goal is developing a separate
distribution model for each class, we construct training
sets Sj = {(xi, yi) : yi = j} composed of all examples
from S labeled with the class j.

Learning distributions. We avoid difficulties as-
sociated with explicitly learning probability distribu-
tions by applying models designed to detect examples
that deviate from the underlying distribution. We use
the so-called autoassociators constructed as multi-layer
feedforward neural networks [4]

Given a sequence representation with M attributes
the employed autoassociators have M -dimensional in-
put layer x, M -dimensional output layer t, and three
hidden layers with n13, n2, and n13 neurons, respec-
tively. Each autoassociator is trained to reconstruct its
input at the output and its parameters are optimized
to minimize the Euclidian distance ||x − t||2 between
its input x and output t. Processing neurons in the
autoassociator use logistic sigmoidal transfer functions.

The main property of autoassociators is that the
number of neurons n2 in the second hidden layer is
smaller then the number of inputs M (where the most
appropriate value n2 is to be determined experimen-
tally). To achieve an accurate reconstruction of an in-
put example at its output the autoassociator is implic-
itly forced to discover an appropriate nonlinear map-
ping of the original M -dimensional attribute space into
a smaller n2-dimensional space that captures the prop-
erties of the underlying distribution. This requirement
enforces specialization of the autoassociator to the dis-
tribution of training data with the consequence of mak-
ing large reconstruction errors on the examples under-
represented in training data.

An important aspect of our approach is learning

class-specific autoassociators Aj on each labeled set
Sj instead of learning a global model on all labeled
data S. The main benefit of such decomposition is
simplification of the learning task. Another important
aspect is that we use class information in optimizing the
topology of a class-specific autoassociator Aj by testing
it both on in-distribution examples from Sj as well
as on out-of-distribution examples S\Sj . We describe
this idea in more detail in the following subsection.
Finally, the decomposition could facilitate selection of
underrepresented sequences by providing estimates of
their similarity to each labeled set Sj , j = 1, . . .K.

Network topology optimization. To use au-
toassociators, we have to optimize the numbers of hid-
den neurons n13 and n2, where the only constraint is
n2 < M . A properly chosen topology should result in
autoassociators achieving a small reconstruction error
on examples matching training data distribution and
a large error elsewhere. Given a choice of the pair
(n13, n2), class-specific autoassociators Aj(n13, n2), j =
1, . . .K, are trained first. The quality of the constructed
autoassociators is then measured as their classification
accuracy on a validation set. Given a validation exam-
ple (x, y), autoassociators are combined into a classi-
fier that predicts as ŷ = arg minj ||x− Aj(x)||2 so that
the autoassociator with the smallest reconstruction er-
ror determines the predicted class. The overall quality
of autoassociators is thus measured simply as a fraction
of correctly predicted examples from the validation data
set. Given a set of candidate pairs (n13, n2), the best
choice for topology of autoassociators is the one that
provides the highest classification accuracy.

2.2 Selection and Evaluation of Underrepre-
sented Sequences
Given a set of autoassociators and a database of unla-

beled sequences one would like to select distributionally
underrepresented unlabeled sequences that would be in-
teresting for the subsequent in-depth biological analysis.
However, choosing an appropriate measure of deviation
from an underlying distribution and selecting the set
of underrepresented sequences using a given measure is
not a trivial task.

Measures of interestingness. Applying a
class-specific autoassociator to an unlabeled sequence
s = {si, i = 1, . . . L} of length L results in an L-
dimensional vector e = {ei, i = 1, . . . L} of position-
by-position based reconstruction errors, where ei =
||xi − ti||2. Therefore, given K autoassociators, each
unlabeled sequence is characterized by K such vec-
tors {e1, e2, . . . eK}. Our goal is to summarize each
L-dimensional vector ej with a single number f(ej),
where the deviation measure f(·) can be some of the



sample statistics. This allows representing each se-
quence, regardless of its length, with the deviation vec-
tor d = [f(e1), . . . f(eK)] of length K.

For the function f(·) we consider two measures: (1)
average(e) calculated as an average error of an autoas-
sociator. This simple measure is aimed at detecting
sequences that are overall the most different from an
underlying sequence distribution; (2) max(e) calculated
as the maximum error of an autoassociator. This mea-
sure is aimed at identifying sequences containing the
most underrepresented regions. Such regions in genes
or proteins could indicate the existence of unusual bi-
ological domains with potentially interesting structural
or functional properties.

Outlier Evaluation. It is highly desirable if evalu-
ation of the selected underrepresented sequences is per-
formed within the data mining environment. In our
approach for outlier analysis we utilize the fact that
some background knowledge often exists about unla-
beled biological sequences. In the simplest form, a set
of keywords is available that summarize the knowledge
about each sequence. For example, in SwissProt, a high
quality source of background information on more then
100, 000 proteins, about 840 keywords are in use to de-
scribe protein functional properties [2].

It should be emphasized that the number of key-
words assigned to a given biological molecule is depen-
dent on its biological activity (e.g. some proteins could
be involved in a number of biological processes, while
others are highly specific), and on the extent of exper-
imental research performed on the molecule (e.g. very
related proteins could differ largely in the number of as-
sociated keywords). Therefore, each existing database
of keywords assigned to biological molecules is incom-
plete with a large fraction of missing information.

Another property of the existing biological
databases is the presence of homologues - families of
similar sequences with the common evolutionary ori-
gin. The presence of large homologous families could
largely skew results of any analysis performed on these
biological databases. Therefore, in the framework of the
evaluation of underrepresented sequences, one should be
careful in designing the experiment and in interpreting
the results of the evaluation.

We construct several summaries that compare the
frequencies of the keywords in the whole database of
unlabeled sequences with the selected set of underrep-
resented sequences. Such a summary potentially allows
better understanding the properties of the identified sets
of outliers in order to decide if their functional proper-
ties justify further in-depth analysis of the selection.

3 An Application: Deviations from Known
Ordered and Disordered Proteins

We illustrate the use of the proposed system on an im-
portant biological problem related to protein disorder.
One of the problems impeding the progress in under-
standing protein disorder is a relatively small data set
of proteins with confirmed disorder property. Combin-
ing the proposed approach with an in-depth study of
selected outliers could result in increasing the database
of disordered proteins.

3.1 Background: Protein disorder property
Protein is a macromolecule defined by a sequence of

amino acids corresponding to an alphabet of twenty
symbols. In contrast to the standard paradigm that
a fixed 3-D structure is necessary for a function, around
150 proteins have been shown to carry out functions
by means of regions that are incompletely folded or
that are even completely unfolded [3]. Annotating the
biological functions of these disordered proteins, over 25
distinguishable functions have been identified ranging
from ligand binding to flexible linkers to sites of post-
translational modification. This important biological
discovery is suggesting the need for a reassessment of
the widely accepted protein sequence-to-structure-to-
function paradigm [3].

While the evidence indicates the importance of
protein disorder, the number of 150 confirmed disor-
dered proteins is still small compared to several thou-
sand completely ordered proteins from PDB structural
database [6], or to more then 100, 000 protein sequences
in the well-annotated SwissProt database. Just by con-
sidering these numbers one might conclude that protein
disorder is more an exception than a rule in nature.
However, such a small number of confirmed disordered
proteins is a consequence of a strong experimental bias
towards ordered proteins.

It is therefore very important to derive a target list
of likely disordered proteins from a set of unlabeled pro-
teins Such proteins could then be examined in-depth
using time and financially more demanding methods
(e.g. literature searches and ”wet lab” structure deter-
mination experiments). Computational approaches to
selecting the candidate list of proteins from unlabeled
sequences include: (i) using predictors of disorder, and
(ii) detecting sequences distributionally different from
known examples of protein order and disorder. The sec-
ond approach is more likely to qualitatively improve the
set of disordered proteins by discovering examples sub-
stantially different from already known disordered pro-
teins. The proposed methodology is aimed towards de-
veloping appropriate tools to facilitate the desired data
enhancement using the second approach.



3.2 Data Sets
Labeled sequences. Our data set of labeled se-

quences consisted of 152 proteins containing disor-
dered regions longer then 40 consecutive positions,
and of 290 completely ordered proteins. All pairs
of the labeled sequences have less than 25 percent
sequence identity. Some disordered regions identi-
fied by NMR, circular dichroism or protease digestion
were found starting by keyword searches of PubMed
(http://www.ncbi.nlm.nih.gov). Additionally, disor-
dered regions in X-ray crystal structures were identified
by searching for residues having backbone atoms that
are absent from the ATOMS lists in their PDB files.
Among the 152 disordered proteins we identified 162
long disordered regions with the lengths of disordered
regions ranging from 40 to more then 1000. The set of
290 nonredundant completely ordered proteins was ex-
tracted from PDB. In total, our labeled data set consists
of 22, 434 disordered amino acids and 67, 548 ordered
amino acids.

Unlabeled sequences. We used 101, 602 proteins
listed in October 2001 release 40 of SwissProt database
(http://us.expasy.org/sprot/) as a set of unlabeled pro-
teins. From SwissProt we extracted amino acid se-
quences of each protein as well as the associated lists
of keywords used in the evaluation of selected outliers.
A total of 840 keywords are used in SwissProt to pro-
vide information about functional and structural prop-
erties of various proteins. SwissProt is a statistically
redundant database as it contains a large number of
homologous proteins with highly similar sequences. To
reduce the redundancy that could bias the outlier anal-
ysis we used the ProtoMap database [7] that contains
an automatically generated hierarchical classification of
protein sequences based on the sequence similarities of
all sequences in the SwissProt database. Using the Pro-
toMap we assigned each SwissProt protein to one of
17, 676 clusters obtained by using psi-blast similarity
search [1] with the E-value threshold set to 1e−0.

3.3 Construction of Distribution Models for
Ordered and Disordered Sequences
Attribute construction. The attributes used in au-

toassociators should be able to capture information rel-
evant to the distributional properties of ordered and
disordered proteins. For learning class-conditional dis-
tributions of disordered and ordered proteins we used
only the following 7 attributes selected according to our
earlier experiments and expert knowledge [5]:

Attribute 1. Real-valued disorder predictions ob-
tained by our general-purpose linear disorder predictor;

Attributes 2-4. Real-valued predictions obtained by
3 linear disorder flavor predictors that capture different

specific disorder properties better;
Attribute 5. Sequence complexity calculated as a

nonlinear combination of amino acid frequencies over a
window of length 41;

Attributes 6-7. Flexibility and hydropathy calcu-
lated as appropriate linear combinations of amino acid
frequencies over a window of length 41.

Autoassociator topology optimization. Given
the choice of attributes, we examined accuracy of au-
toassociators with the numbers of hidden neurons n13

ranging from 1 to 10 for the first and the third hidden
layer, and n2 ranging from 1 to 6 for the second hidden
layer (upper bound being limited by a design choice of
seven attributes at input and output layers).

To measure the overall quality of autoassociators
as defined at Section §2.1 we used a 5–cross-validation
procedure on balanced data with equal number of or-
dered and disordered proteins. The optimal distribu-
tion model structure was achieved with n13 = 8 neu-
rons in the outer hidden layers and n2 = 1 neuron in
the inner layer with the achieved accuracy near 69.8
percent. While this accuracy is lower than the 80.5 per-
cent accuracy achieved by our general-purpose disorder
predictor, it is significantly higher then 50 percent accu-
racy of a random predictor. Considering the fact that
class-conditional distribution autoassociators of disor-
dered and ordered proteins were constructed in a com-
pletely unsupervised manner such that accuracy max-
imization was not explicitly enforced, near 70 percent
accuracy should be considered an indicator of a satis-
factory quality of distribution learning.

3.4 Illustration: Selection and Evaluation of
Outliers
Data preparation. Starting from the 101, 602

SwissProt sequences, we removed all sequences not
listed in ProtoMap database leaving 93, 863 sequences.
We then applied one round of blastp algorithm
(http://www.ncbi.nlm.nih.gov/BLAST/) to find all se-
quences among the remaining data similar to the 152
disorder sequences and 290 ordered sequences. We used
the default parameters of the blastp software and an E-
value threshold was set to 1. The procedure discovered
a total of 18, 965 similar sequences that were removed
from the further consideration. Since max and average
interestingness measures described in Section §2.2 are
sensitive to sequence length we retained only 34, 233 se-
quences with lengths between 200 and 500 amino acids.
Finally, to remove the evolutionary bias in the remain-
ing data, we used ProtoMap to select only a single rep-
resentative sequence from each ProtoMap cluster in the
remaining data. To retain the most well-studied se-
quences, each cluster representative was chosen as the



sequence with the most keywords in SwissProt database.
This resulted in a total of 6, 964 sequences that we will
call SWISS data set.

Outlier selection. We applied the autoassociators
of protein order and disorder on SWISS sequences. and
selected all sequences with f(eorder) + f(edisorder) >
θ, for some threshold θ > 0, where f(·) was max
or average interestingness measure from Section §2.2.
OutMax with 2, 582 sequences was obtained using the
max criterion, and OutAvg with 2, 079 sequences was
obtained using the average criterion.

Evaluation of the selection. To improve evalua-
tion of OutMax and OutAvg selections we constructed
an additional data sets DisPred with 1, 003 sequences
representing all SWISS sequences predicted to have
disorder longer than 40 consecutive amino acids by our
linear disorder predictor [5]. For each of the 5 data sets
we calculated the frequency of each of the 840 keywords
listed in SwissProt. We list a summary for 10 of the
most interesting keywords in the Table. Each of these
keywords appears in at least 50 OutMax proteins and
their fraction in OutMax is at least 50% larger than in
SWISS.

It can be seen that selections based on max and av-
erage measures resulted in proteins with similar prop-
erties, with only major difference with respect to Tran-
sit Peptide proteins. Frequency of Glycoprotein, Inner
Membrane, Membrane, Transmembrane and Transport
proteins in OutMax and OutAvg is extremely high as
compared to the other 3 data sets. They are all mem-
bers of a large family of membrane proteins known to
be structurally and functionally diverse and are highly
underrepresented among our labeled order and disorder
sequences. It is likely that most of the bias in our la-
beled data comes from membrane proteins. Although
membrane proteins do not seem to be directly related
to protein disorder, we plan to exploit this finding to im-
prove accuracy of disorder prediction. Furhter analysis
of the selections is in progress.

Table 1: Comparison of frequencies of 10 interesting
keywords associated with proteins in 5 data sets

Keyword Frequency of a keyword %
SWISS DisPred OutMax OutAvg
6,965 1,003 2,582 2,079

Chloroplast 1.3 0.7 2.1 2.0
Glycoprotein 5.9 5.7 12.5 10.8
Inner Membrane 2.1 2.1 4.8 4.7
Membrane 21.1 13.2 44.0 46.7
Multigene Family 2.5 4.2 4.5 4.6
Receptor 1.1 0.8 2.7 2.5
Repeat 5.9 13.5 10.0 11.1
Transit Peptide 1.4 0.9 2.7 1.1
Transmembrane 17.7 8.9 39.7 43.4
Transport 5.6 4.0 10.6 10.8

4 Conclusions.

In this paper we proposed a data mining procedure for
discovering statistically novel sequences with interesting
biological properties. It is designed to reduce a com-
mon problem of sampling bias in bioinformatics. Our
approach is enhancing the labeled sequence data sets
by providing a domain expert with a set of sequences
most likely to significantly improve the quality of labeled
data. The domain expert is then expected to perform
an in-depth evaluation of the selected sequences using
traditional scientific procedures.

We provided an illustration of applying the pro-
posed methodology to detection of novel examples of
disordered proteins. By outlining the complete data
mining process on this important real-life problem we
pointed to a number of challenges and provided guide-
lines for solving them. Specific issues included deciding
on an appropriate sequence data representation, opti-
mizing autoassociator topology, measuring the interest-
ingness of unlabeled sequences, and effectively using ex-
isting domain knowledge about unlabeled sequences.

Although the initial results seem promising, only
extended use of the proposed methodology by domain
experts will prove its usefulness. We are currently
collaborating with bio-scientists to evaluate and tune
the proposed data mining process.
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