
Validating the Result of a Quantified Boolean Formula(QBF) Solver: Theory and
Practice∗

Yinlei Yu, Sharad Malik
Dept. of Electrical Engineering, Princeton University

Princeton, NJ, USA

Abstract—Despite the increasing use of QBF solvers, current
QBF solvers do not provide for any mechanism to verify their re-
sults. This paper demonstrates a methodology for independently
validating the results of a DLL based QBF solver using the traces
generated during the solving process. It also presents a mecha-
nism to extract small unsatisfiable subformulas, called cores, from
unsatisfiable QBF instances.

I. I NTRODUCTION

Recent advancements in Boolean Satisfiability (SAT) solving tech-
niques have inspired significant research on Quantified Boolean For-
mula satisfiability (QBF) [3][8][10][17]. QBF evaluation is P-SPACE
complete, which makes it unlikely that we will find an efficient
algorithm[14]. Yet as many practical problems in Electronic De-
sign Automation [2][9][11][15] and artificial intelligence like plan-
ning [13] and reasoning (such as [7]) can be naturally transformed
into QBF. It is of interest to see if heuristics can be developed that
work well on practical instances. Bryantet al.[2] use QBF solvers
to check the convergence of bounded model checking on decidable
fragments of first order logic and apply their methodology on pipeline
processors; Gopalakrishnan and his colleagues [9][15] propose verifi-
cation methodologies for the Intel Itanium memory structure by trans-
forming problems into QBF and SAT. Mneimnehet al. transform the
diameter problem into QBF but eventually convert QBF into SAT due
to the limitation of current QBF solvers[11]. Thus there is practical
motivation to solve these QBF instances.

Currently, most state-of-the-art QBF solvers extend DPLL based
SAT solving techniques[5][6] to QBF solving[4]. Many of them apply
conflict and satisfaction based backjumping as well as clause/cube
learning by Q-Resolution [3] or long distance resolution [19].

To our knowledge, no QBF solver generates verifiable results. The
current literature does not provide a theoretical framework to indepen-
dently verify QBF solvers. The QBF Solver Evaluation 2004 Com-
petition even relies on majority to determine the truth value of a QBF
problem when discrepancies arise. This motivates the need for an in-
dependent QBF verifier to validate the results of a given QBF solver.

The propositional part of a QBF formula is often generated by the
conjunction of many different constraints. When a QBF instance eval-
uates to false, it is desirable to find a smaller set from all the con-
straints that still results the problem being false. This is referred to
as the unsatisfiable core of the problem. This is helpful in diagnosing
the cause of unsatisfiability.

This paper builds on the work of Zhang and Malik[18] for verifying
SAT solvers. For an unsatisfiable SAT instance, their proposed veri-
fier compiles the traces from the SAT solving process and then derives

∗This work is supported by Semiconductor Research Corporation Award#:
2002-TJ-1025

a DP-like[6] resolution based proof. We propose a similar methodol-
ogy for independently validating the result of a QBF solver, for both
the cases of the result being true and false. Our verifier compiles the
traces of a QBF solver to validate the outcome. ForfalseQBF formu-
las, our QBF verifier can extract unsatisfiable cores. This methodol-
ogy is implemented and evaluated on the yQuaffle QBF solver.

The organization of the rest of paper is as follows: Section II ex-
plains related basic terms and definitions. Section III describes the
algorithms of the yQuaffle solver and its verifier. It also gives a brief
proof for the verifier. Section IV describes an unsatisfiability core ex-
tractor forfalseQBF instances using the verifier. Section V provides
experimental results. Section VI has some discussion and Section
VII concluding remarks.

II. PRELIMINARIES

A quantified Boolean formula is a propositional formula
with a quantifier prefix, whose variables are quantified exis-
tentially or universally. A QBF formula has the form as
F = Q1X1 . . . QnXnP (X1, . . . , Xn), where X1, . . ., Xn de-
note n mutually disjoint sets of variables that are quantified by
Q1 . . . Qn, respectively. Q1 . . . Qn alternate between universal(∀)
and existential(∃) quantifiers. P (X1, . . . , Xn) is the propositional
part of the formula.1For example,∀xy∃abc(x+y′+a)(x+y+b+c)
is a QBF with (x + y′ + a)(x + y + b + c) as its propositional
part, variablesx andy are universally quantified and variablesa, b
andc are existentially quantified. Most recent QBF solvers only ac-
cept QBF problems with propositional parts in Conjunctive Normal
Form (CNF), which is the conjunction ofclauses, which in turn are
disjunction ofliterals (variables in their true or complemented form).
Any propositional formula can be transformed into CNF of linear size
by introducing extra variables that are then existentially quantified
with an innermost existential quantifier in the prefix.Cubesare the
conjunction of literals.Empty clauses(cubes) has no literals, which
meansfalse(true).

In this paper, the subscripts ofQ’s are referred to asquantification
levels. A variablex ∈ Xk has the corresponding quantifierQk, so
its quantification level isk. In the previous example,x andy have
quantification level 1;a, b, andc have quantification level 2.

In this paper, we useresolutionoperation extensively[19]. The res-
olution of two clausesC1, C2 containingc andc′ is the disjunction
of all literals of C1 andC2 exceptc andc′. For example, the reso-
lution of clauses(a + c) and(c′ + d′) is (a + d′). The resolution
of two cubes is defined similarly. Multi-clauses (cubes) resolution is
possible by applying binary resolutions iteratively.

1In some literature, a QBF formula may contain free variables, which is
equivalent to quantifying these free variables existentially as the outermost
quantifiers without change the satisfiability of the problem.

 1047

PII-4

0-7803-8736-8/05/$20.00 ©2005 IEEE. ASP-DAC 2005

III. A LGORITHM AND PRACTICAL IMPLEMENTATION OF A

QBF VERIFIER

To demonstrate and evaluate our QBF verification methodology,
we choose to verify yQuaffle (a new version of Quaffle with same
algorithm)[16]. First, we describe the algorithm of yQuaffle:

A. yQuaffle QBF solving algorithm

yQuaffle is a typical extended-DPLL QBF solver. As in most QBF
solvers, yQuaffle requires the propositional part of the QBF problem
in CNF. The following description is based on Zhang and Malik’s
papers[17][19] and assumes some familiarity with QBF solvers. It
is being provided here for review. Fig. 1 is the pseudo code for the
yQuaffle algorithm.

preprocess();
while (true) {

decide_next_branch();
while(true) {

status = deduce();
if (status==CONFLICT) {

blevel = analyze_conflict();
if (blevel < 0)

return is_clause_conflict ? UNSAT : SAT;
else backtrack(blevel);

} else if (status == SAT) {
blevel = analyze_SAT();
if (blevel < 0) return SAT;
else backtrack(blevel);

} else break;
}

}

Fig. 1. yQuaffle algorithm in C-style pseudo code

yQuaffle preprocesses the clauses according to quantification rules
(preprocess()). It deletes all the universal literals with higher
quantification levels than any existential literal in the same clause
without changing the truth value of the problem.

yQuaffle branches on variables using its decision heuristic(
decide next branch()) and usesQ-Implication[4][17] rules to
derive implications from unit clauses (deduce()).

If a clause (cube) conflict according to the conflict rules in
papers[4][17] is found (a cube conflict is an assignment that can sat-
isfy a cube, which in turn satisfy the whole problem): All existential
(universal) literals evaluate to zero (one) and no universal (existen-
tial) literals are evaluated to one (zero), the conflicting clause (cube)
is resolved iteratively with each antecedent clause (cube) of its most
recent assigned literals until a Q-Unit clause (cube) is resolved. The
resultant clause (cube) is added to the database and Q-implications
are derived accordingly.Long distance resolutionis used, in which if
an empty clause (cube) is derived, the QBF evaluation will conclude
with resultfalse(true).

For a search based QBF solver like yQuaffle, thedecision levelof
a variable assignment is the number of branches the solver has taken
before the assignment has been made. AZero Decision Level Vari-
able (ZDLV)is a variable assigned without branches. It implies that
the solver has a proof that having such assignment will not alter the
truth value of the QBF formula. Once a satisfying assignment for all
the clauses is found (while not satisfying any of the cubes), the solver
derives a cube from the assignment to satisfy all clauses. A resolution
process on this cube and previous cubes generates a new cube forcing
a backtrack. The original propositional part of the QBF formula is
augmented by ORing with the new cube. Since the new cube imply
the satisfaction of the CNF, the truth value of the QBF is not altered.

The new cube is recorded in the database[19] (analyze SAT()).All
the cubes forms theDisjunctive Normal Form(DNF) part of the aug-
mented problem.

The correctness of the Quaffle algorithm has been shown in Zhang
and Malik’s paper[17].

B. Verifying algorithm for QBF

B.1 Instrumenting the yQuaffle solver for verification

We instrumented the solver as follows:

1. Each clause and cube, either in the original formula or generated
in the solving process, is given a unique identification number
(id).

2. When a new conflict clause (cube) is generated, theid’s of all the
clauses (cubes) involved in generating the new clause by itera-
tive resolutions are recorded. These clauses (cubes) are called
theantecedentsfor the new clause/cube. For example, if clause
381 is built by iteratively resolving clauses 12, 67, 24 and 8, a
line CLR: 381 12 67 24 8 will be added into the trace.

3. When a satisfying assignment is reached, the partial assignment
that satisfies all the original clauses is recorded. For example, if
the solver find that assignmentsx1 = 1, x3 = 0, x8 = 1, x12 =
0 can satisfy all original clauses, a lineSAT: +1 -3 +8 -12
will be added to the trace.

4. The last satisfying assignment/conflict clause (cube) that leads
to resolve an empty clause (cube) is recorded. Along with that,
all the ZDLV’s are recorded with corresponding values and the
literals of their corresponding antecedent clauses and cubes. The
final clause (cube) may be empty.

The instrumentation of yQuaffle solver consists of about 300 lines
of additional code. Most code deals with the special cases yQuaf-
fle uses; for example, yQuaffle removes ZDLV’s from newly added
clauses and cubes, which forces the checker to verify the validity of
the corresponding ZDLV’s. The instrumentation should be easily ap-
plicable to most other search based solvers like QUBE++ and Sem-
prop. It may be adapted to some other non-search based QBF solvers
also. For example, the algorithm in [12] that uses a mixed searching
and resolution approach can be checked with the methodology in this
paper.

B.2 Depth First Search based verification algorithm

We propose to use a post-root depth-first search to construct a resolu-
tion based proof for a QBF problem:

If the final clause/cube is not available, we reconstruct it by res-
olution (recursive build()). However, the clauses/cubes that
are involved in generating the final clause/cube may be unavailable
as well, in which case, further reconstruction is necessary. We re-
construct the final clause recursively from the original clauses. When
reconstructing a clause, we apply the Q-Resolution process to resolve
the clause from its antecedents. In the SAT case, we reconstruct the
final cube recursively from resolving satisfying cubes in similar way.

All the literals in the final clause (cube) evaluate to zero (one) by
ZDLV’s. To derive a proof for the whole problem, we need to derive a
proof for such ZDLV’s. A proof for a ZDLV is the resolution process
for a corresponding unit clause (cube) that can assert such assignment.
Such a proof consists of proofs for the antecedents and the proof of
the zero level assignments for all the other variables in its antecedent
clauses/cubes.

 1048

The pseudo-code of the DFS algorithm is shown in Fig. 2 here,
a comp is either a clause or a cube.prove QBFDFS() is
the main function; it first obtains the final conflict clause/cube
(get final id()). Then it recursively builds the final clause/cube
(recursive build()) and generates proof the assignments for
every literals in the clause/cube (prove unit lit()). When
building a clause/cube, the verifier recursively builds all the an-
tecedent clauses/cubes and resolve them iteratively to form that
clause/cube.

prove_QBF_DFS() {
comp_id = get_final_id();
comp = recursive_build(comp_id);
foreach lit in comp

if (comp.is_clause())
prove_unit_lit(lit);

else
prove_unit_lit(!lit);

return (no_error_exists());
}
recursive_build(comp_id) {
* if (is_orig_clause(comp_id) RECORD_CORE(comp_id);

if (is_built(comp_id)) return comp(comp_id);
if (is_cube(comp_id) && is_sat_cube(comp_id) {

cb = get_sat_assignment(comp_id);
check_sat_assignment(cb);
return cb;

}
ante_id = get_first_ante_id();
comp = recursive_build(ante_id);
while (other_ante_exists()) {

next_id = get_next_ante_id();
next_comp = recursive_build(next_comp);
comp = resolve(comp, next_comp);

}
return comp;

}
prove_unit_lit(lit) {

ante_id = get_ante_id(variable(lit));
ante_comp = recursive_build(ante_id);
foreach ante_lit in ante_comp

if (lit.is_enforcing_lit(ante_lit))
if (ante_comp.is_clause())

prove_unit_lit(lit);
else

prove_unit_lit(!lit);
}

Fig. 2. DFS based algorithm in C-style pseudo-code

B.3 BFS based algorithm

In a typical yQuaffle solving process, most interim clauses and cubes
generated are later deleted to make sure that the solver does not use
too much memory space. However, for the verifier, it requires all
the related clauses and cubes to be stored in memory during the DFS
search process. This may potentially lead to memory blow up prob-
lem. A solving process with an hour of CPU time can typically gen-
erate a trace file of several gigabytes in length. As the trace size may
often be huge, the problem is real.

To deal with the problem, we propose a hard disk backed Breadth
First Search (BFS) algorithm similar to the one for SAT verifiers in
Zhang and Malik’s paper[18].

We first run a preprocessing step to record the location in the log
file of every clause and cube in a temporary file.

Then a depth-first search similar to the algorithm in Fig. 2 is used,
but we only mark the clause/cube id’s and ZDLV’s that are neces-
sary to build the whole proof in the temporary file instead of building
the clauses and prove the ZDLV’s. We record the latest usage of a
clause/cubeC in generating new clauses/cubes, after which, no other

clause/cube is generated by resolving other clauses/cubes withC, so
thatC may be deleted from memory when the clause database grows
too large.

The last step is building and verifying these clauses, cubes and
ZDLV’s in the sequence of their generation in the solution process.
After the last use of a clause/cube in generating new clauses/cubes, it
is deleted from memory to save space for newer clauses and cubes.
This guarantees that only the same amount of memory as used in the
solving process is needed. This is because the solver will only be
able to use the clauses or cubes in its memory when generating new
clauses or cubes; therefore the active clause/cube set in verifier will
never exceed the clause/cube set in the QBF solver.

This approach uses less memory than the depth first search in pre-
vious section, yet is slower as it uses disk to store intermediate results.
Theoretically, the verifier may still run out of memory in the clause
and cube marking stage if the recursion is so deep that it may exhaust
the memory space. (We assume we have unlimited hard disk space.)
In this case we may need to store the backtracking stack into hard disk
as well, which will further slower the verification speed. However, in
practice this is never needed.

C. Proof of the correctness of the QBF verifier

In this section, we give a brief proof on the correctness of the QBF
verifying algorithm.

Lemma 1. The truth value of a QBF problem is not affected by
adding newly derived clauses and/or satisfaction cubes by resolution.

Lemma 2. Given the CNF (DNF) part of a QBF problem with a
clause (cube) containing single existential (universal) literal clause,
assigning to satisfy (unsatisfy) the clause (cube) does not change the
truth value of the QBF problem.

Lemma 3. A universal (existential) literal in a clause (cube) can be
removed if no existential (universal) literal with higher quantification
level exists in the same clause (cube) without changing the evaluation
result of the QBF formula.

The proof for Lemmas 1 to 3 can be found in [19].
Lemma 4. If an empty clause (cube) is derived from resolution,

the whole QBF problem isfalse(true).
Brief Proof: Resolving an empty clause means the propositional

part of the QBF formula impliesfalse. That is equivalent to saying the
propositional part isfalse, which means the whole problem isfalse.
With similar reasoning, resolving a full cube meanstrue can be dis-
juncted to the propositional part of the QBF problem, which make the
whole propositional parttrue, in turn making the QBF formulatrue.

Lemma 5. (DAG lemma) The zero level assignments can form a
partial orderp on the variable setv1, v2, . . . , vn such that ifp(v1) ≺
p(v2), v2 will not appear in the antecedence ofv1 that may enforce
the Q-Implication (i.e., for an existential variablev1, any variables
other than universal variables with higher quantification level ofv1 are
considered as “may enforce Q-Implication”.) Similarly for universal
variables and their antecedent cubes.

Proof: We may use the chronological order of zero decision level
assignments as the partial order. Ifv1 was assigned earlier thanv2, it
is lower in the partial order thanv2.

First let us consider the case of existential variables. According
to the solving process, the antecedent clause of an existential vari-
ablev is the clause that a Q-Unit implication took place whenv is
assigned. Since it is a Q-Unit clause at that time, all the remaining
variables where “may enforce Q-Implication” are assigned at decision
level zero and evaluate to zero. Since they are already assigned, it is
impossible forv to appear in their antecedence, because at that time,

 1049

v is not assigned. A similar argument applies to universal variables
and their antecedent cubes.

Lemma 6. The proof for variable assignment generated by verifier
is correct.

Proof: For a unate variable,i.e. a variable that only occur in its
true form or only occur in its inverse form in the CNF part of QBF,
if it is existential, the verifier has generated its proof of unateness in
its preprocessing step. Since assigning to satisfy an existential unate
literal and falsify a universal unate literal do not change the satisfia-
bility of the QBF problem, the proof of unateness is a correct proof
for its assignment. For non-unate variables we prove by induction:

Base case: Consider the first variablev in the solving process as-
signed on the zero decision level. Ifv is unate, the proof of its unate-
ness is the proof of assignment of this variable. Otherwise, if it is
existential and its antecedent clause does not contain any other vari-
ables that may enforce Q-Implication, by the Q-Resolution rule, the
antecedent clause should not have any universal variables with higher
quantification level either. So the antecedent caluse is a single literal
clause. Therefore, by Lemma 3, the variable may be assigned to sat-
isfy the clause to obtain an equivalent formula as the original one. So
the verifier has generated a correct proof for such variablev. If v is
universal, a similar argument can show the proof for its assignment is
correct.

Induction step: Suppose the first to thekth zero level assignments
are proven by the verifier. Consider the(k + 1)th zero level assign-
mentv: If v is a unate variable, its unateness proof is the proof forv’s
assignment. Otherwise, considerv’s antecedent clauseC (supposev
is an existential variable).C must be a Q-Unit clause. For any exis-
tential literalv1 other thanv in C, v1 must have been assigned before
v; thus the assignment forv1 is among the first to thekth zero level
assignments. By the induction hypothesis, the assignment onv1 has
already been proven by the verifier. All the universal literals are not
assigned to one in the first to thekth zero level assignments as well.
By Lemma 3, having a proof for a literal assignment means all the
occurrence of the inverse of the literal in a clause may be removed
without changing the evaluation result. By removing such literals,
the only literals left inC are unassigned universal literals with higher
quantification level thanv (otherwiseC will not be a Q-Unit clause)
andv itself. By Lemma 2, the assignment for variablev is proven.
Similar arguments are applied on the proof forv’s assignment ifv is
a universal variable.

Using the base case and the induction step, the proof for the vari-
able assignment for all zero decision level variables is complete.

Theorem 1. The proof generated by the verifier is sound.
Proof: According to the process, the verifier can build a final clause

(cube) through resolution. For each literal in the final clause (cube),
the solver is able to find the proof for its assignment. The applica-
tion of such assignments are proven to not affect the truth value of
the QBF problem. By applying such assignments on the final clause
(cube), an empty clause (cube) is constructed; therefore, the proof of
the problem beingfalse(true) is derived.

IV. U NSATISFIABLE CORE EXTRACTION FOR QBF
PROBLEMS

When a QBF problem instance evaluates tofalseand its proposi-
tional part is expressed in CNF form, we may remove certain clauses
without affecting the truth value of the problem. The smaller problem
is called an unsatisfying core.

To extract the unsatisfying core, we instrument the QBF verifier by
recording all the original clauses involved in the proof. In Fig. 2, it

is the line started with a star (if (is orig clause(comp id)
RECORDCORE(compid);). Applying the original quantifier pre-
fix Q on the resultant clause set, the resulting formula is the core QBF
formula. We may run the solver and verifier iteratively to get a min-
imal unsatisfiable core for the givenfalseQBF problem. Note that
minimal here means the smallest possible core that can be obtained
through iterating with yQuaffle and extracting the core by the verifier.

The correctness of the algorithm is obvious. Only the clauses in the
unsatisfying core are involved in proving unsatisfiability; by using
these clauses, the same proof for the unsatisfiability for the whole
problem can be applied to the core.

V. EXPERIMENTAL RESULTS

We implemented the QBF verifier and core extractor as described
in the previous sections. The verifier code is written in C++ and is
totally independent from the solver code. The experiments are run on
a Linux machine with single Pentium 4 2.8GHz CPU with 1MB L2
Cache and 1GB main memory. The compiler is GCC 3.3.2 and the
optimization options are set as-O4 -fomit-frame-pointer .
The experimental results are reported here to evaluate the feasibility
and efficiency of the verifiers. The benchmarks are constructed by
Rintanen and included in QBF Evaluation 2004[1]. All cases that
finish in 1,800 seconds CPU time are listed here.

Table I gives an overview of runtime by the solver and verifier.
Column ORT is the runtime of the original yQuaffle solver in sec-
onds. IRT is the runtime of the instrumented solver in seconds. The
overhead ratio of the instrumentation is shown in column OH. The
column ‘LOG’ is the size of trace files in bytes. The last column is
the run time for the BFS verifier, in seconds too. Each row is a group
of benchmarks. The number in parenthesis in the first column is the
number of instances in each group. Each number shown in columns
2 to 6 are averages of all the instances in the corresponding group.
The BLOCK instances incur a small 5.8% overhead and a small veri-
fication time, which corresponds to few satisfying assignments in the
solving process. In contrast the CHAIN group has a 57.2% overhead
in generating the trace due to its large number of satisfying assign-
ments for the sub-spaces.

TABLE I
RESULTS FOR VERIFYING THEQBF SOLVER

name(#) ORT IRT OH LOG BT

blocks(11) 37.28 37.63 0.058 3.1M 1.24
chain(7) 147.02 182.86 0.572 0.86G 464.53
impl(10) 0.01 0.01 0 198 0.01

bwlarge(4) 0.02 0.025 0.2 35K 0.02
toilet(6) 12.11 13.41 0.112 14M 4.22

To evaluate our proposed core extraction technique, we iteratively
run the solver and verifier/core extractor onfalseQBF cases until ei-
ther reaching a fix-point or a limit of iterations. Fig. 3 shows the
reduction of clauses number for the QBF instance BLOCK4ii.7.2 in
30 iterations. The Y-axis is the number of clauses of the cores in each
iteration and the X-axis is the number of the iterations. We can see
the number of clauses drops very quickly in initial iterations, while
later only few clauses are dropped in each iteration.

Table II shows the core size and number of iterations. The in-
stances are the same instances that used in verifier evaluation, only
falsecases are used. In the results, mostfalseQBF instances have
small cores compared with their original size. The first column is

 1050

0

2000

4000

6000

8000

10000

12000

14000

16000

0 5 10 15 20 25 30
#iterations

#c
la

us
es

Fig. 3. Core size in iterations for BLOCK4ii.7.2

the name of each instance. Column ‘OrigCL’ shows the number of
clauses in the original instance; column ‘CoreCL’ shows the number
of clauses of the core when either fix-point or a given number of itera-
tions is reached (here the number is 30). The column labeled ‘Core%’
is the percentage of core clauses over all the original clauses. The
number of iterations when the fix-point is reached is shown in the last
column (the last iteration that obtain the same size core size as pre-
vious one is not counted here). From the table we can see, in most
cases, it takes only a few steps to reach fix point. The core size is
much smaller than the original problem as well, but the reduction ra-
tio varies greatly. For TOILET7.1.iv.13, the core size is 62.3%, while
our algorithm finds a tiny core with 0.06% original clauses in lognB-
WLARGEB1.

TABLE II
EXTRACTED CORE SIZE FORfalseQBF INSTANCES

Instance name OrigCL CoreCL Core % #Iter

BLOCKS3i.4.4 2,928 125 4.27 3
BLOCKS3i.5.3 2,892 406 14.04 13
BLOCK3ii.4.3 2,533 107 4.22 2
BLOCK3ii.5.2 2,707 161 5.95 7
BLOCK3iii.4 1,433 46 3.21 3
BLOCK4ii.6.3 15,061 340 2.26 11
BLOCK4ii.7.2 15,047 1,664 11.06 30*
BLOCKS4iii.6 9,661 203 2.10 4
lognBWLARGEA1 62,820 77 0.12 1
lognBWLARGEB1 178,750 120 0.06 1
TOILET2.1.iv.3 70 20 28.57 1
TOILET6.1.iv.11 1,046 626 59.85 5
TOILET7.1.iv.13 1,491 929 62.31 2
Average: 22,803 371.1 15.23 6.4

VI. D ISCUSSION

Some QBF solvers use solving techniques that may differ some-
what from those described in this paper. The verification methodol-
ogy proposed in this paper can also be applied when other solving
techniques are employed.

1. Trivial Truth is finding satisfying assignments with some vari-
ables unassigned. This does not change the verification para-
digm here as they are still SAT cubes. The verifier can still work.

2. Pure Literalsare variables that occur only in one phase in unsat-
isfied clauses. They may be assigned to satisfy or unsatisfy such
occurrences depend on their quantifiers. The proposed method
cannot directly be applied on pure literal deductions. However,
if we plug in the proof for the ZDLV’s that can satisfy all the
original clauses containing the other phase of the variable, a
proof for the whole problem can be built accordingly.

VII. C ONCLUSION

This paper proposes an algorithm and methodology for indepen-
dently verifying a QBF solver. By instrumenting the yQuaffle solver,
and running our verifier, the yQuaffle solver is independently vali-
dated. Also, we propose methods to extract unsatisfiable core for
falseQBF instances that have been shown to be efficient and result
in small cores in practice.

REFERENCES

[1] QBF evaluation 2004 benchmarks, available from
http://www.mrg.dist.unige.it/qbflib/benchmarks/04secondtestset.tar,
2004.

[2] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Convergence testing in
term-level bounded model checking. InProc. CHARME’03, vol. 2860
of LNCS, pp. 348–362, 2003.

[3] H. K. Büning, M. Karpinski, and A. Fl̈ogel. Resolution for quantified
Boolean formulas.Information and Computation, 117(1):12–18, 1995.

[4] M. Cadoli and M. Schaerf. An algorithm to evaluate quantified Boolean
formulae and its experimental evaluation. InHighlights of Satisfiability
Research in 2000, 2000.

[5] M. Davis, G. Logemann, and D. Loveland. A machine program for the-
orem proving.Comm. ACM, 5(7):394–397, July 1962.

[6] M. Davis and H. Putnam. A computing procedure for quantification
theory.J. ACM, 7(3):201–215, July 1960.

[7] U. Egly, T. Eiter, H. Tompits, and S. Woltran. Solving advanced rea-
soning tasks using quantified Boolean formulas. InProc. AAAI’00 and
IA*AI’00 , pp. 417–422, 2000.

[8] E. Giunchiglia, M. Narizzano, and A. Tacchella. Learning for quantified
Boolean logic satisfiability. InProc. AAAI’02, pp. 649–654, 2002.

[9] G. Gopalakrishnan, Y. Yang, and H. Sivaraj. QB or not QB: An effi-
cient execution verification tool for memory orderings. InProc. CAV’04,
2004.

[10] R. Letz. Lemma, model caching in decision procedures for quantified
Boolean formulas. InProc. TABLEAUX’02, vol. 2381 ofLNCS, pp. 160–
175, 2002.

[11] M. Mneimneh and K. A. Sakallah. Computing vertex eccentricity in
exponentially large graphs: QBF formulation and solution. InProc.
SAT’03, vol. 2919 ofLNCS, pp. 411–425, 2003.

[12] D. A. Plaisted, A. Biere, and Y. Zhu. A satisfiability procedure for quan-
tified Boolean formulae.Discrete Appl. Math., 130(2):291–328, 2003.

[13] J. Rintanen. Constructing conditional plans by a theorem-prover.J. of
Artificial Intelligence Research, 10:322–352, 1999.

[14] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential
time. InProc. 5th Annual ACM Symp. on Theory of Computing, pp. 1–9,
1973.

[15] Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind. Analyzing the
Intel Itanium memory ordering rules using logic programming and SAT.
In Proc. CHARME’03, vol. 2860 ofLNCS, pp. 81–95, 2003.

[16] Y. Yu and S. Malik. yQuaffle QBF solver. available from
http://www.princeton.edu/ chaff/quaffle.html

[17] L. Zhang and S. Malik. Conflict driven learning in a quantified Boolean
satisfiability solver.

[18] L. Zhang and S. Malik. Validating SAT solvers using an independent
resolution-based checker: Practical implementations and other applica-
tions.

[19] L. Zhang and S. Malik. Towards a symmetric treatment of satisfaction
and conflicts in quantified Boolean formula evaluation. InProc. CP’02,
vol. 2470 ofLNCS, pp. 200–215, 2002.

 1051

