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Chapter 1

The Modelling Process

1.1 Perspectives of the Modelling Process

Here we give an overview of the modelling process and describe a general procedural framework for

the mathematical modelling of physical processes or situations that may be of interest. The key steps

in this framework are usually best illustrated and understood in reference to model problems.

The modelling process begins with a physical problem or situation of interest. There will usually be

a motivating reason for carrying out modelling in that we either wish for a better understanding of

the problem or there are some issues or questions that require answers in the form of quantitative

feedback. This gives an idea of what features of the process we are actually interested in. We intend

to describe in a quantitative manner the important features of the system that we wish to study.

Often, a relevant simulation of a process is also an efficient way, in both time and cost, to study the

consequences of changing the process conditions.

Firstly, the key physical features of the problem are represented mathematically. This mathematical

model is then analysed to obtain mathematical results, which can then be interpreted in the context of

the original model. By initially setting out key objectives for the modelling, it is possible to determine

whether these objectives are met. We can identify deficiencies, rectify them and then, if required, we

can refine the model. This general modelling loop is illustrated in figure 2.2.

We begin by reducing the physical problem to the key ideas and then establishing a simple math-

ematical model incorporating these processes. The model ought to be a recognisable imitation of

the real problem and it should be parsimonius i.e. we wish to minimise the initial number of vari-

ables/parameters without making the model too simplistic and comprising key features. Assumptions
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CHAPTER 1. THE MODELLING PROCESS 2

are made and certain second order effects are neglected in order to make the model initially focus on

key features. These effects may become significant in certain circumstances and can subsequently be

included for a more sophisticated and realistic model if the initial analysis shows that this is required.

This process involves specification of objectives, choice of appropriate variables, identification of key

parameters and then nondimensionalistion. The aims and objectives are very important as they are

the criteria by which we judge results and they provide a direction in which to analyse the problem.

Indeed, the subsequent model and analysis may highlight further effects or questions that require

consideration. Obtaining an analytical or a numerical solution is not always necessary in determining

a relevant answer to the original question.

In general we can carry out a combination of numerical and analytical techniques (such as perturbation

and asymptotic analysis) on the mathematical model equations. We have to make judgements on

which method to use and sometimes it is appropriate to try a combination of several techniques as

the different methods often complement one another. Asymptotics give limiting behaviour of a set

of equations whilst numerical analysis may encounter difficulties at these limits. On the other hand,

numerical analysis is valid for regions where asymptotics would be of limited use. This is illustrated

in figure 1.2.

There are many different physical processes that have the same underlying mathematical structure.

Some areas have been investigated to a greater degree than others and their results can be used in

the less developed application areas. The results need to be physically reinterpreted in specific areas

of interest. This may be referred to as technology transfer (see figure 2.3).

Mathematical modelling is to some extent an open ended process where the results obtained can be

analysed and the feedback used to check the validity of the conceptual model and thereby refine it.

Often it is necessary to refine the model to give more realistic results, since the preliminary analysis

that are preformed are usually only partially successful in answering some or all of the initial objectives

posed.
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MODELLING PROCESS: OVERVIEW

PHYSICAL DESCRIPTION MATHEMATICAL DESCRIPTION

PHYSICAL MODEL
Identification + Statement
of physical problem/process

MATHEMATICAL MODEL
Mathematical Problem

Statement

MATHEMATICAL RESULTS
Answer original questions

of physical problem

Interpretation

Analysis

Interpretation
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Figure 1.1: Modelling Process: Overview.
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MODELLING PROCESS: ANALYSIS

Model
Refinement

Dimensional Analysis

Mathematical Statement
of Problem

Dimensionless Model
+
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Perturbation
Analysis

Numerical Analysis
on Full Problem

Numerical Analysis
on Reduced Problem

Problem
Solution

Figure 1.2: Modelling Process: Analysis.
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RESEARCH PROBLEMS CLASSIFICATION

Research Problems

TYPE 1
Novel Mathematics
New Techniques

TYPE 2
Known Mathematics
Certain Novel Aspects

Technology Transfer

TECHNOLOGY TRANSFER

Mathematical
Model

Application
Area 1

Application
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Application
Area N

Figure 1.3: Research problems classification and technology transfer.
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1.2 Mathematical Modelling in applied mechanics and the sciences

Applied mechanics is mathematics applied to problems which arise from continuum considerations.

A microscopic rather than an atomic or quantum view of the phenomena is adopted.

Attention is directed to those areas in which observations or experiments are reproducible and mea-

sured data are available in some form.

The objective is to construct a mathematical simulation or model of a given phenomenon that agrees

with existing measurements to within a specified accuracy and can be used with confidence to predict

future observations and behaviour.

Stemming from this continuous viewpoint the mathematical models will naturally involve relation-

ships between continuous functions (variables) of space and time which describe the application of

fundamental principles of homogeneity, isotropy and conservation to a given problem area.

To pursue mathematical modelling successfully, two contrasting but complementary skills are needed:

1. The ability to formulate a given problem in appropriate mathematical terms

2. Sufficient knowledge to obtain useful information from that mathematical model

The skill in formulation lies in finding a model which is simple enough to give useful information easily,

but which is diverse enough to give all the information required with sufficient accuracy. A bottom-up

approach is usually advocated rather than a top-down.

A model might be appropriate in one set of circumstances but of no value in others because it is wither

over-complicated or two simple.

The use of analogy between well-established models and new problems is a valuable aid.
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1.3 The model building and formulation process

1. We start with a phenomenon of interest that we wish to describe or explain.

2. Observations of the phenomenon can lead to a hypothetical mechanism that can explain the

phenomenon.

3. The purpose of a model is then to formulate a description of the mechanism in quantitative

terms.

4. Analysis of the resulting model leads to results that can be tested against observations.

5. Ideally, the model also leads to predictions which if verified lend authenticity to the model.

Importantly, all model are idealisations and limited in applicability.

Sometimes we aim to over-simplify, the idea being that if the model is basically correct then it can

subsequently be made more complicated and its analysis facilitated by considering the simpler version

first.

Thus initially we consider the simplest situation and formulation of the problem that captures the

essential features of the system.

In constructing a model, judgement is required about which features to include and which to neglect.

If an important feature is omitted then the model will not describe the observed phenomenon accu-

rately enough or the model may not be self-consistent.

If unnecessary features are included then the model will be more difficult to solve due to its increased

complexity.

The advice is to adopt a simple approach with a minimum of features included at first and then

additional features added if necessary later i.e. a bottom-up approach.
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1.4 Structure for a written report

1. Problem Background and Description/Introduction.

• Describe the essential features of the physical process.

• Identify objectives - key questions requiring answers.

2. Problem formulation.

• Identify key physical processes.

• Interpret these mathematically.

• Establish a mathematical model - governing equations and suitable initial conditions and

boundary conditions.

• State clearly the assumptions.

3. Analysis.

• Non-dimensionalise

• Analogies with other related problems

• Use analytical and numerical methods to obtain solutions/results.

4. Results/Conclusions/Discussion.

• Interpret results with respect to the original physical process and objectives.

• Identify limitations and extensions



Chapter 2

Continuum Models

In formulating continuous models, there are 3 main ways of prescribing governing equations:

1. The classical procedure is to formulate exact conservation laws e.g. the laws of mass, momentum

and energy in fluid mechanics.

2. Empirical conservation laws e.g. Darcy’s law for fluid flow in a porous medium

v = −k

µ
(∇p − ρg)

where k is permeability, µ viscosity, p pressure, g gravity and ρ the fluid density. Such laws may

not be uniquely determined and may depend on the precise physical constitution of the fluid.

3. Hypothetical conservation laws. These are based on qualitative reasoning in absence of pre-

cise rules and usually involve phenomenological assumptions e.g. predator - prey models in

mathematical biology. Usually such relationships have no quantitative basis.

When formatting new problems in mathematical terms it is valuable to have experience of successful

models. Moreover many new problems are extensions or variations of the classical models.

1
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2.1 Heat and mass transfer

Consider a material occupying a volume V with temperature T = T (x, t) with x space, t time. Heat

conservation gives
d

dt

∫

V
ρc T dV = −

∫

∂V
H.n dS

where ρ is the density, c is the specific heat, n is outward normal to V on its surface ∂V , H is the

heat flux vector. If applicable, a heat source term per unit volume is usually included as a additional

term.

Assuming H is continuously differentiable we have by the divergence theorem that
∫

V

{
∂

∂t
(ρc T ) + ∇.H

}
dV = 0.

If the integrand is continuous and V is arbitrary then

∂

∂t
(ρc T ) + ∇.H = 0.

Fourier’s Law gives H = −k∇T, where k is the thermal conductivity which is a constitutive law that

is empirical or experimentally based (k can be measured for many materials). Hence

∂

∂t
(ρc T ) = ∇.(k∇T ).

If ρ, c and k are constant then we obtain the linear heat or diffusion equation

∂T

∂t
= κ∇2T

where κ =
k

ρc
is the thermal diffusivity. If k = k(T ), but ρ, c are constant then we obtain the nonlinear

heat equation

ρc
∂T

∂t
= ∇.(k(T )∇T ).

In a closed domain D the diffusion equation usually requires an initial condition and a boundary

condition applied on the surface of the domain ∂D. The main types of boundary conditions are:

1. Dirichlet conditions: T = f(x, t) on ∂D which apply to a conducting surface.

2. Neumann boundary conditions: −k
∂T

∂n
= q(x, t) on ∂D

where
∂T

∂n
= n.∇T and n is the unit outward normal from D on ∂D.

3. Mixed or Robin boundary conditions:

−k
∂T

∂n
= h(T − Tu) on ∂D

where h is the heat transfer coefficient, T0 is the temperature of the surroundings.
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An analogues set of equations arise in mass transfer problems particular the diffusion of a solute in a

liquid. The flux is determined by Fick’s law

H = −D∇c

where c is the concentration of the solute and gives

∂c

∂t
= ∇.(D∇c).
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The Stefan problem

Differential equations subject to conditions on the boundary of a known domain are termed boundary-

value problems. In certain problems the domain is not known in advance but has to be determined

as part of the solution. The term free boundary problem is used when the boundary is stationary

(and a steady-state problem exists). be determined as a function of time and space. The term moving

boundary problem is used when the boundary has to be determined as a function of time and space.

A simple version of the Stefan problem is the melting of a semi-infinite sheet of ice initially at the

melting temperature of zero. A time t = 0 the surface of the ice at x = 0 is raised to a temperature

T0 > 0 and maintained. An interface on which melting occurs moves into the ice and separates a

region of water (a liquid phase) from one of ice (a solid phase) at zero temperature. Denoting the

position of the water/ice interface at time t by S(t) then the problem formulation for the temperature

T (x, t) is

in 0 < x < s(t), t > 0 ρc
∂T

∂t
= k

∂2T

∂x2
, (2.1)

at x = 0 T = T0, (2.2)

at x = s(t) T = 0, −k
∂T

∂x
= Lρ

ds

dt
, (2.3)

at t = 0 s = 0, (2.4)

where L is the latent heat per unit mass required to melt the ice, ρ, c, k are the density, specific heat

and conductivity of the water phase. The second condition in (2.3) is termed the Stefan condition and

expresses heat balance on the interface. It is needed to determine the position of the interface s(t).

We have to solve for both T (x, t) and s(t).

This is a one-phase problem since the temperature variation in the ice is unimportant. If the

temperature of the ice initially was below melting temperature then heat flow will occur in the ice

and a two-phase problem results.
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2.2 Fluid mechanics

To describe the motion of a fluid (liquid or gas) the continuum hypothesis is that the locally averaged

velocity vector field v is a twice continuously differentiable function of x and t.

Conservation of mass gives the continuity equation

Dρ

Dt
+ ρ∇.v = 0

where ρ is the fluid density and
D

Dt
=

∂

∂t
+ v.∇

is the material derivative.

Conservation of linear momentum gives

ρ
Dvi

Dt
=

∂σij

∂xj
+ ρFi i = 1, 2, 3,

where F is the body force per unit mass, σij is the stress tensor (second order).

Conservation of angular momentum gives that the stress tensor is symmetric i.e. σij = σij . For a

conducting fluid with temperature T , conservation of energy gives

ρ
D(cT )

Dt
= ∇.(k∇T ) + Φ

where c is the specific heat capacity and

Φ = σij
∂vi

∂xj

is usually a source term.

An equation of state usually relates ρ to pressure p and temperture T e.g. for gases p = ρRT , where

R ideal gas constant, whilst for liquids
Dρ

Dt
= 0 is taken i.e. that they are incompressible.

The constitutive equation relates stress to the rate of strain:

• For an inviscid fluid σij = −pδij where p is the pressure .

• For a Newtonian fluid σij = −pδij + Tij where Tij is the deviatoric stress tensor given by

Tij = λ
∂vk

∂xk
δij + µ

(
∂vi

∂xj
+

∂vj

∂xi

)
= λ∇.vδij + 2µεij

where µ is the dynamic shear viscosity, λ is the bulk viscosity and εij is the rate of strain tensor.
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• For a viscoelastic fluid, the Upper Convected Maxwell model is

Tij + λ1

{
D

Dt
Tij − Tik

∂vk

∂xj
− ∂vk

∂xi
Tkj

}
= 2µεij

where λ1 is the relaxation time.

For an incompressible Newtonian fluid we have the Navier-Stokes equations

∇.v = 0, ρ
Dv
Dt

= −∇p + µ∇2v + ρF.

If µ = 0, we obtain the Euler equations for inviscid flow.

In the energy equation we have Φ = 2µ(εij)2 representing viscous dissipation.

On a stationary solid boundary we can impose no-slip and solid wall condition i.e. v = 0.

The traction vector t has components ti = σijnij and represents the force per unit area exerted by a

fluid on a surface with unit normal n into the fluid.

�
�
�
�
�
�
�
�
�
�
�

-�
�

�
��

fluid
n

t

Figure 2.1: Stress t exerted by the fluid on the boundary with normal n.

At a free surface e.g. air-water interface we usually prescribe continuity of velocity and stress. If

surface tension is taken into account then balancing the stresses gives

σ
(1)
ij nj − σ

(2)
ij nj = −γκni i = 1, 2, 3

where t
(1)
i = σ

(1)
ij nj, t

(2)
i = σ

(2)
ij nj are the ith component of the stresses, n is a unit normal from fluid

(2) into fluid (1), γ is the surface tension coefficient and κ is the curvature. The surface tension acts

in the direction of the normal to the interface.

If fluid (1) is air which exerts a constant pressure pa only then t
(1)
i = σ

(1)
ij nj = −pani.
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6fluid (1)

fluid (2)

σ
(1)
ij

σ
(2)
ij

n

surface tension
-�

Figure 2.2: Stress exerted on an interface between two fluids with surface ternsion effects included.

For a plane curve y = η(x, t) the curvature is

κ =
ηxx

(1 + η2
x)3/2

and in general κ = 1
R1

+ 1
R2

where R1, R2 are the radii of curvature of the interface in any two

orthogonal directions.

In addition at a free surface, the kinematic boundary condition is usually imposed. This is simply

that fluid elements in the surface remain there. Denoting the surface by f(x, t) = 0 then

On f(x, t) = 0
D

Dt
f(x, t) = 0 =⇒ ∂f

∂t
+ v.∇f = 0.

Since the surface can move, its determination is part of the problem and this is the extra condition

necessary to specify the problem analogous to the Stefan condition in the melting ice problem.
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2.3 Mathematical Finance: Option pricing

Options are some of the commonest examples of derivative securities (also termed financial derivatives

or simply derivatives).

A European call option is a contract with the following conditions:

• At a prescribed time in the future known as the expiry date

• the holder of the option may purchase a prescribed asset known as the underlying asset or simply

the underlying

• for a prescribed amount known as the exercise or strike price.

The holder of the option (i.e. the buyer of the option) has the right but not the obligation to purchase

the underlying at the exercise price at expiry.

The writer of the option (i.e. the seller of the option) must sell the underlying at the exercise price if

the holder chooses to buy it.

A European put option is a contract that allows the holder of the option to sell the underlying asset

at the exercise price at expiry date. The writer of the put option must buy the underlying asset at

the exercise price at expiry if the holder chooses to sell.

American call and put options are similar to European call and put options except that they may be

exercised at any time prior to and including expiry.
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A simple model for asset prices

Let S be the asset price at time t. Then a simple stochastic differential equation for S is

dS

S
= µdt + σdX (2.5)

where µ is the drift (a constant)

σ is the volatility (a constant)

dX ∼ N(0, dt) i.e. a normal r.v. with mean 0, variance dt

dS is change in asset price in time interval dt (a Wiener process)

This is consistent with the efficient market hypothesis:

• Past history is fully reflected in the current price and does not hold any further information.

• Markets respond immediately to new information on an asset.

Thus changes in the asset price are a Markov process. Note that (2.5) does not refer to past history

of asset price and next asset price S + dS depends only on today’s price (Markov property).

E[ds] = µSdt, var[ds] = σ2S2dt

i.e. S undergoes a log normal random walk.

Itô’s Lemma

Let dS = µSdt + σSdX and consider f = f(S, t). Then

df = f(S + dS, t + dt) − f(S, t)

= dS
∂f

∂S
+ dt

∂f

∂t
+

1
2
dS2 ∂2f

∂S2
+

1
2
dt2

∂2f

∂t2
+ dSdt

∂2f

∂S∂t
+ O(dS3, dtdS2, dt2dS, dt3)

= (σSdX + µSdt)
∂f

∂S
+ dt

∂f

∂t
+

1
2
σ2S2dt

∂2f

∂S2
+ O(dXdt)

(since dX2 → dt with probability 1 and hence dS2 → σ2S2dt). Thus

df = σ
∂f

∂S
dX +

(
∂f

∂t
+ µS

∂f

∂S
+

1
2
σ2S2 ∂2f

∂S2

)
dt as dt → 0.
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Black-Scholes analysis

Let V (S, t) denote the value of an option that depends only on the underlying asset price S and time

t.

Consider a portfolio consisting of one option and a number (−∆) of the underlying asset. Let the

value of this portfolio be Π where

Π = V − ∆S.

Then the change in the value of this portfolio in a small time step dt is

dΠ = dV − ∆dS

where ∆ is held fixed during the small time step dt.

By Itô′s lemma, the random walk followed by V is

dV = σS
∂V

∂S
dX +

(
µS

∂V

∂S
+

1
2
σ2S2 ∂2V

∂S2
+

∂V

∂t

)
dt

and hence Π follows the random walk

dΠ = σS

(
∂V

∂S
− ∆

)
dX +

(
µS

∂V

∂S
+

1
2
σ2S2 ∂2V

∂S2
+

∂V

∂t
− µ∆S

)
dt.

Choosing ∆ = ∂V
∂S (the value at the start of the short-time step dt) then

dΠ =
(

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2

)
dt

which is wholly deterministic.

Assuming no arbitrage (and no transaction costs) then the return on the portfolio Π must be that at

the risk free interest rate r. Thus dΠ = rΠdt which gives the Black-Scholes (B-S) pde

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0.

Remarks:

• ∆ =
∂V

∂S
is termed the delta of the option

• the drift µ is absent in the B-S equation

• B-S equations is a backwards diffusion equation
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Required assumptions:

1. The underlying asset price follows a lognormal random walk.

2. The risk-free interest rate r and the asset volatility σ are known functions of time over the life

of the option.

3. There are no transaction costs associated with hedging a portfolio.

4. The underlying asset pays no dividends during the life of the option.

5. No arbitrage possibilities.

6. Trading of the underlying asset can take place continuously.

7. Short selling is permitted and the assets are divisible.
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A European call option C(S, t)

Let C(S, t) denote the value of an European call option

E be the exercise price

T be the expiry time.

Then C satisfies

∂C

∂t
+

1
2
σ2S2 ∂C

∂S2
+ rS

∂C

∂S
− rC = 0 0 < t < T, 0 < S < ∞.

As boundary conditions we take

at S = 0 C = 0,

i.e. if S is ever zero then it remains zero and

as S → ∞ C ∼ S.

As a final condition we take

at t = T C =





0 if S < E,

S − E if S ≥ E,

i.e. C(S, T ) = max(S − E, 0) which is termed the pay off function.

6

-�
�

�
�

�
�

�

C

S

S − E

E

(A)

6

-�
�

�
�

�
�

�
�

�

C

S
E

(B)

Figure 2.3: (A) illustrates the pay-off function or intrinsic value i.e. C(S, T ). (B) shows schematically the

solution C(S, t) at time t earlier than expiry T .



CHAPTER 2. CONTINUUM MODELS 13

A European put option P (S, t).

in 0 < S < ∞, 0 < t < T
∂P

∂t
+

1
2
σ2S2 ∂2P

∂S2
+ rS

∂P

∂S
− rP = 0,

at S = 0 P = Ee−r(T−t),

as S → ∞ P → 0,

at t = T P (S, T ) = max (E − S, 0).

6

-@
@

@
@

@
@

@
@

P (S, T )

S
E

E

(A)

6

-@
@

@
@

@
@

@
@

P (S, t)

S
E

E

(B)

Figure 2.4: (A) illustrates the pay-off function or intrinsic value i.e. P (S, T ). (B) shows schematically the

solution P (S, t) at time t earlier than expiry T .
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The American Put option P (S, t)

Early exercise of the option is possible leading naturally to a moving boundary Sf (t) where the option

is exercised if S ≤ Sf (t) and held if S > Sf (t).

Suppose P (S, t) < max(E−S, 0) the intrinsic value or pay-off function then there exists an immediate

arbitrage opportunity:

• buy the asset for S

• buy the put for P

• immediately exercise the put for E

to give E − S − P > 0 as a risk-free profit.

Thus when early exercise is possible then P (S, t) ≥ max(E − S, 0).

6
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@
@

P (S, t)

S
E

E

Sf (t)

(A)

6

-@
@

@
@

@
@

@
@

P (S, t)

S
E

E

(a) (b)

(B)

Figure 2.5: (A) illustrates schematically the solution American put solution P (S, t) at time t < T . (B)

illustrates two alternative situations in which the solution may meet the pay-off function; in (a)
∂P

∂S
< −1 and

in (b)
∂P

∂S
> −1.

in 0 < S < Sf (t) P = E − S,

in Sf (t) < S < ∞ ∂P

∂t
+

1
2
σ2S2 ∂2P

∂S2
+ rS

∂P

∂S
− rP = 0,

at S = Sf (t) P = max(E − Sf (t), 0),
∂P

∂S
= −1,

as S → ∞ P → 0,

at t = T P = max (E − S, 0), Sf (T ) = E.



Chapter 3

Nondimensionalisation

The first and arguably the most important step in the analysis of a system of differential equations.

It involves scaling each variable (dependent and independent) by a typical or reference value, leaving

a nondimensional variable whose typical scale is O(1).

Nondimensionalisation or problem normalisation has several important uses:

1. It identifies the dimensionless groups (ratios of dimensional parameters) which control the

solution behaviour.

2. Terms in the equations are now dimensionless and so allows comparison of their sizes.

This allows the identification of the important (i.e. dominant) terms in the equations and their

interaction in different regimes, giving insight into the structure of solutions and the dominant

physical mechanisms at work.

In particular, negligible terms can be identified leading to simplification in many circumstances.

3. It allows estimates of the effects of additional features to the original model through the new

dimensional group(s) associated with the additional term(s). This allows measurement of the

effect of the physical feature(s) in the model.

4. Finally, it can reduce the number of parameters ocurring in the problem by forming the nondi-

mensional parameters or dimensionless groups.

1
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3.1 Scaling

If an equation has a variable u, say, then we nondimensionalise that variable by writing, for example,

u = [u]ū

where [u] is the chosen scale (with the same dimensions as u) and ū is the corresponding dimensionless

variable. If a system of equations describes a real process then it is dimensionally homogeneous i.e.

consistent. The process of nondimensionalisation will necessarily give a set of equations, each of whose

terms is dimensionless, after division through by the dimensions of the equations. It is then possible

to compare terms in a meaningful way.

The art of nondimensionalisation lies in the choice of scales. There is no right or wrong way to do

it (other than to only partially nondimensionalise the equations) and in more complicated problems,

the choice of scales can be the difficult part of the analysis. The basic principle is that the scales must

ultimately be chosen self-consistently by balancing terms in the equations. Because the purpose is to

obtain ‘properly scaled’ equations in which the largest dimensionless terms are numerically of O(1),

the simplest choices arise when the scales can be chosen so that all the dimensionless parameters are

O(1).

This provides our rationale. Given no other information, one assumes a priori that dimensionless

variables and their derivatives are O(1), until we are forced to assume otherwise. It is only when

inconsistencies arise that the process of rescaling becomes necessary. The generic situation in which

this happens is where singular perturbation theory is appropriate. In general, not all dimensionless

parameters can be choosen to be O(1), in which case they are first assumed to be O(1) and then the

limit in which they become large is taken.

3.2 Examples

3.2.1 Example 1

The number of atoms N(t) at time t of a radiactive substance is governed by the differential equation

dN

dt
= −λN

with an initial condition N = N0 at t = 0. Here λ is a decay constant with units of [time]−1.
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We nondimensionalise as follows

N = N0N̄ , t =
t̄

λ
,

where N0 is taken as the reference value for N and 1/λ for the time scale. This gives the dimensionless

problem
dN̄

dt̄
= −N̄ with N̄ = 1 at t̄ = 0,

for N̄(t̄).

3.2.2 Example 2

The motion of a linearly damped pendulum is governed by the equation

`
d2θ

dt2
+ k

dθ

dt
+ g sin θ = 0, (3.1)

with the initial conditions

at t=0 θ = θ0 and
dθ

dt
= ω0. (3.2)

Here θ(t) represents the angle that the pendulum makes to the vertical at time t, the initial angle being

theta0 and initial angular speed ω0. The dimensional parameters are the length ` of the pendulum,

the coefficient of resistance k and acceleration due to gravity g.

We nondimensionalise as follows

θ = θ0θ̄, t =
θ0

ω0
t̄,

using the initial values to give characteristic scales for the dependent variable θ and independent

variable t. Thus we obtain the dimensionless problem

d2θ̄

dt̄2
+ K

dθ̄

dt̄
+ G sin

(
θ0θ̄

)
= 0, (3.3)

subject to

at t̄ = 0 θ̄ = 1 and
dθ̄

dt̄
= 1, (3.4)

where we have introduced the dimensionless parameters

K =
kθ0

ω0`
, G =

gθ0

ω0`
,

in addition to θ0.

The dimensional problem has 5 parameters, the four dimensional parameters `, k, g, ω0 and the dimen-

sionless parameter θ0. The dimensionless problem has three dimensionless parameters K,G, θ0.
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If observational values are available for the parameters `, k, g, ω0, θ0 then these may be used to infer

the sizes of the dimensionless groups K,G, θ0. The sizes of these dimensionless parameters determine

whether they are to be taken as O(1) or a suitable limit needs to be considered in which their values

are small or large. The latter cases lead to either a regular or singular perturbation problem.

As an example, suppose we have the situation in which θ0 = π/4 radians, ω0 = 1 radian per second,

` = 1 m, k = 0.1 m/s and g = 10 m/s2. Then K ≈ 0.079, G ≈ 7.9, θ0 ≈ 0.79. Thus we are interested

in analyzing the dimensionless problem in the limit K → 0 with G = O(1), θ0 = O(1) which should

be regular.

If in contrast k = 100 m/s then we would have K ≈ 79, G ≈ 7.9, θ0 ≈ 0.79. Thus we are now

interested in analyzing the dimensionless problem in the limit K → ∞ with G = O(1), θ0 = O(1)

which is singular.

3.2.3 Example 3

Consider the following boundary-value problem (BVP) for one-dimensional heat flow in a bar,

in 0 < x < `, t > 0 ρc
∂u

∂t
= k

∂2u

∂x2
+ q, (3.5)

at x = 0 u = u0, (3.6)

at x = ` −k
∂u

∂x
= h(u − ui), (3.7)

at t = 0 u = ui, (3.8)

where ui is the initial temperature (which is also the external surrounding temperature), u0 is the

temperature at the end of the bar which is raised above ui, h denotes the heat transfer coefficient,

ρ, c, k denote the density, specific heat and conductivity of the bar respectively. The length of the bar

is ` and q represents a constant heat source term. All variables are assumed dimensional, this being

the statement of the dimensional problem.

We nondimensionalise as follows

x = `x̄, t =
`2

κ
t̄, u = ui + (u0 − ui)ū,

and introduce the two dimensionless parameters

Q =
q`2

κ(u0 − ui)
, H =

h`

k
,
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to obtain

in 0 < x̄ < 1, t̄ > 0
∂ū

∂t̄
=

∂2ū

∂x̄2
+ Q, (3.9)

at x̄ = 0 ū = 1, (3.10)

at x̄ = 1 −∂ū

∂x̄
= Hū, (3.11)

at t̄ = 0 ū = 0. (3.12)

It is assumed that H,Q are O(1) quantities. If they are not, then the appropriate limit needs to be

taken which will lead to either a regular or singular perturbation problem.

3.2.4 Example 4

Consider the Navier-Stokes equations of an incompressible Newtonian viscous fluid

∇.v = 0,

ρ

(
∂v
∂t

+ (v.∇)v
)

= −∇p + µ∇2v + ρF,

ρc

(
∂T

∂t
+ (v.∇)T

)
= k∇2T + Φ,

where v is the velocity, p is the pressure, T is the temperature and are functions of spatial coordinates

x and time t. Also,

Φ =
1
2
µ

(
∂vi

∂xj
+

∂vj

∂xi

)2

is the viscous dissipation term. The dimensional parameters of density ρ, specific heat c, conductivity

k and viscosity µ are assumed constant.

The body force per unit mass F is assumed to be gravity so that F = g = gḡ with g = |g|.

These equations arise from the application of the physical laws of conversation of mass, momentum

and energy.

In the momentum equation, the physical effects modelled are: inertia, viscous forces, gravity respec-

tively.

In the heat equation, the physical effects modelled are: heat convection (or advection), heat conduc-

tion, viscous dissipation respectively.

The problem is completed by specification of suitable boundary conditions to a give a well-posed BVP.

Consequently typical scales or reference values for the variables will be given.
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Let

U be a typical velocity scale

L be a typical length

T1 − T0 be a typical temperature deviation (T0 is an ambient or equilibrium temperature)

then we may nondimensionalise as follows

x = Lx̄, v = U v̄, t =
L

U
t̄, p = P p̄, T = T0 + (T1 − T0)T̄ ,

where P is to be determined, which gives

∇̄.v̄ = 0,
(

∂v̄
∂t̄

+ (v̄.∇̄)v̄
)

= − P

ρU2
∇̄p̄ +

µ

ρUL
∇̄2v̄ +

Lg

U2
ḡ,

(
∂T̄

∂t̄
+ (v̄.∇̄)T̄

)
=

k

ρcUL
∇̄2T̄ +

µU

ρcL(T1 − T0)
Φ̄,

where

Φ̄ =
1
2

(
∂v̄i

∂x̄j
+

∂v̄j

∂x̄i

)2

, ∇̄ =
(

∂

∂x̄1
,

∂

∂x̄2
,

∂

∂x̄3

)
.

Introduce the dimensionless parameters

Reynolds number Re =
ρUL

µ
compares effects of inertia and viscous forces

Froude number Fr =
U2

Lg
compares inertia and gravity

Peclet number Pe =
ρcUL

k
=

UL

κ
compares convection to conduction

Brinkman number Br =
µU2

k(T1 − T0)
compares viscous dissipation with heat conduction

Prandtl number Pr =
µc

k
=

Pe

Re
compares viscous terms to those of heat conduction

Hence we have

∇̄.v̄ = 0,
(

∂v̄
∂t̄

+ (v̄.∇̄)v̄
)

= −∇̄p̄ +
1

Re
∇̄2v̄ +

1
Fr

ḡ,

(
∂T̄

∂t̄
+ (v̄.∇̄)T̄

)
=

1
Pe

∇̄2T̄ +
Br

Pe
Φ̄,

where we have chosen P = ρU2 i.e. the pressure scale is based on inertial forces.

The choice of pressure scale is not unique and could have been based on viscous forces so that

P =
µU

L
=

ρU2

Re
.

The appropriate scalings are dictated by the problem and the numerical values of the dimensionless

parameters.
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The limits of large and small Reynolds number Re are of particular interest.

Simplification of the equations by neglecting a term multiplied by a small dimensionless parameter is

the first step in a systematic procedure for obtaining an asymptotic expansion for the full solution in

terms of the small parameter.

If we consider the above model with 1/Fr = Br = 0 and no temperature variation then

v̄ = v̄(x̄, t̄, Re) and p̄ = p̄(x̄, t̄, Re).

If Re � 1 then we may expand in regular powers of Re to obtain the asymptotic expansions

p̄ = p̄0(x̄, t̄) + Re p̄1(x̄, t̄) + . . . ,

v̄ = v̄0(x̄, t̄) + Re v̄1(x̄, t̄, Re) + . . . ,

where p̄0 and v̄0 are the solutions to the simplified model with Re = 0.

This is a regular perturbation procedure and may be used if p̄(x̄, t̄, Re) and v̄(x̄, t̄, Re) are regular

functions of Re near Re = 0.

In some circumstances the expansion is invalid and a singular perturbation procedure must be used.

In these cases the solution of the problem with Re = 0 and the solution for Re 6= 0 but Re � 1 are

very different.

An example is the high Reynolds number flow Re � 1. A regular expansion in powers of 1/Re gives

the inviscid flow equations at leading order. In this case the highest derivtive term ∇̄2v̄ is neglected

and consequently not all boundary conditions can be satisfied (usuall the no slip conditon). Thus thin

regions develop where this term must be brought back, which are termed boundary layers.

3.2.5 Example 5

The one-phase Stefan problem for the temperature T (x, t) in the water phase for a melting ice problem

can be written as

in 0 < x < s(t), t > 0 ρc
∂T

∂t
= k

∂2T

∂x2
, (3.13)

at x = 0 T = T0, (3.14)

at x = s(t) T = 0, −k
∂T

∂x
= Lρ

ds

dt
, (3.15)

at t = 0 s = 0, (3.16)
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where s(t) denotes the moving ice/water interface, L is the latent heat per unit mass, ρ, c, k are the

density, specific heat and conductivity of the water. The water (liquid phase) occupies the region

0 < x < s(t) and the ice (solid phase) x > s(t). Initially there is no water present i.e. s(0)=0. T0

(> 0) is the temperature of the water at the fixed boundary x = 0.

We nondimensionalise as follows

x = `x̄, s = `s̄, t = βt̄, T = T0T̄ ,

where the scales ` and β have to be found. The system (3.13)–(3.16) becomes

in 0 < x̄ < s̄(t̄), t̄ > 0
∂T̄

∂t̄
=

k

ρc

β

`2

∂2T̄

∂x̄2
, (3.17)

at x̄ = 0 T̄ = 1, (3.18)

at x̄ = s̄(t̄) T̄ = 0, −∂T̄

∂x̄
=

Lρ

kT0

`2

β

ds̄

dt̄
, (3.19)

at t̄ = 0 s̄ = 0, (3.20)

The governing equation (3.17) suggests

β =
ρc

k
`2,

and the Stefan condition on the moving interface then suggests introducing the dimensionless para-

meter λ where

λ =
Lρ

kT0

`2

β
=

Lρ

T0
,

which is commonly termed the Stefan number. The dimensionless problem is thus

in 0 < x̄ < s̄(t̄), t̄ > 0
∂T̄

∂t̄
=

∂2T̄

∂x̄2
, (3.21)

at x̄ = 0 T̄ = 1, (3.22)

at x̄ = s̄(t̄) T̄ = 0, −∂T̄

∂x̄
= λ

ds̄

dt̄
, (3.23)

at t̄ = 0 s̄ = 0, (3.24)

where the length scaling ` remains arbitrary; this is not unexpected given that the original problem

had no inherent spatial length scale. The fact that ` is not fixed leads to the existence of a similarity

solution of this problem termed the Neumann solution (one of the few explicit solutions that exist for

moving boundary problems).



CHAPTER 3. NONDIMENSIONALISATION 9

3.3 Dimensional analysis

The topic of dimensional analysis formalises the procedure of nondimensionalisation. An important

theorem in which is the Buckingham Pi theorem:

If n variables Q1, Q2, . . . , Qn invovling r separate fundamental dimensional components (usually r =

3, these being mass, length, time, i.e. M,L,T, but see the table below) are related by a unique

dimensionally consistent function f(Q1, . . . , Qn) = 0,

then we can find n − r dimensionless combinations of Qi, say Πj(Q1, . . . , Qn), j = 1, . . . , n − r, such

that the solution can be expressed as F (Π1, . . . ,Πn−r) = 0.

As a first illustration of this theorem, consider Example 2. Let f(θ, t, `, k, g, θ0, ω0) = 0 be the solution

of the IVP (3.1)–(3.2). There are two dimensionless quantities (θ, θ0) and n = 5 dimensional quantities

involving r = 3 fundamental dimensions (M,L,T). Thus the solution can be expressed in terms of θ, θ0

and n − r = 2 dimensionless quantities namely F (θ, θ0,K,G) = 0 as shown by (3.3)–(3.4).

As a second illustration of this theorem, consider Example 3. Let f(u−ui, x, t, ρc, k, q, h, `, u0−ui) = 0

be the solution of the BVP (3.5)–(3.8). There are n = 9 dimensional quantities involving r = 4

fundamental dimensions (M,L,T,Θ). Thus the solution can be expressed in terms of n − r = 5

dimensionless quantities namely F (ū, x̄, t̄, Q,H) = 0 as shown by (3.9)–(3.12).

As a third illustration, we consider Example 4. Let f(v, p, T − T0,x, t, ρ, µ, c, k, T1 − T0, g, L, U) = 0

be the solution of the dimensionless governing equations. There are n = 17 dimensional quantities

involving r = 4 fundamental dimensions (M,L,T,Θ). Thus the solution can be expressed in terms

of n − r = 13 dimensionless quantities namely F (v̄, p̄, T̄ , x̄, t̄, Re, Fr, Pe,Br) = 0 as shown by the

dimensionless equations.

As a fourth illustration, we consider Example 5. Let f(T, s, x, t, ρ, c, k, L, T0) = 0 be the solution

of the moving boundary problem (3.13)–(3.16). There are n = 9 dimensional quantities involving

r = 4 fundamental dimensions (M,L,T,Θ). Thus the solution can be expressed in terms of n − r = 5

dimensionless quantities namely F (T̄ , s̄, x̄, t̄, λ) = 0 as shown by (3.21)–(3.24).

Note 1. The function f may be a solution of a PDE, a BVP or IVP.

Note 2. If a PDE involves fewer fundamental dimensions than dimensional quantities, it must admit

a simplified solution in accordance with the Buckingham Pi Theorem.
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The International System (SI) of fundamental units are:

Fundamental Dimension Base Unit

Length (L) metre, m

Mass (M) kilogram, kg

Time (T) second, s

Electric current (A) ampere, A

Thermodynamic temperature (Θ) kelvin, K

Amount of substance (X) mole, mol

Luminous intensity (I) candela, cd



Chapter 4

Similarity Methods

1



Chapter 5

Asymptotic Methods

1



Chapter 6

Model Problems

1


