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Survey: definitions and comparisons

of various notions of ‘weak category’

and of enriched and internal variants.

•Quasi-categories

• Segal cats and complete Segal cats

•A∞-categories

• Top-Cats and S-cats (S=sSets)

• Philosophy: weak (∞, 1)-categories

• An analogue: weak complicial sets
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Two related problems:

(i) (‘small’ version) need ‘adequate’

kinds of (small) weak (−) categories,

for instance to model homotopy types,

stacks, higher dimensional automata,

and so forth.

(−) might be n or ∞, or · · ·

(ii) (‘large’ version) need an adequate

weak (−) category theory, including

the essence of homotopy coherence to

handle/study the objects of (i), and

to implement potential applications.
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Weakening categories

Understand Cat in S (simplicial sets)

then weaken structure.

Quasi-categories

If C is a (small) category, then Ner(C)

is a weak or restricted Kan complex.

(Fillers for inner horns.)

If G is a groupoid, then Ner(G) is a

Kan complex.

Definition

A quasi-category is a restricted Kan

complex.
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Simplicial characterization of categories

Segal Maps

Let p > 0. We have increasing

maps ei : [1] → [p] given by

ei(0) = i and ei(1) = i + 1.

Note that ei(1) = ei+1(0).

For a simplicial set A : ∆op → Sets,

evaluate A on the ei to get functions

Ap → A1.

These yield a cone diagram,

for instance, when p = 3:
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A1.



7

If A = Ner(C) for a small category

C, then the Segal maps are bijections.

The converse holds:

If A is a simplicial set such that the

Segal maps are bijections, then there

is a category structure on the directed

graph

A1
//
// A0oo

making it into a category whose nerve

is isomorphic to A.
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Complete Segal categories

Definition

Let C be a Cartesian monoidal

category and W be a subcategory

of “weak equivalences”.

A complete Segal category in (C,W)

is a simplicial object A in C such that

the Segal maps of A are in W .

(C,W) = (Sets, Bijections): Get Cat.

Object sets play a distinguished role.
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Segal categories

Assume that C has coproducts.

Define δ : Sets → C via coproducts

of copies of the terminal object ∗.

This defines “discrete objects” in C.

Definition

A Segal category in (C,W) is a

complete Segal category A such

that A0 is a discrete object of C.
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The original notion of Segal space is

(C,W) = (T op, weak equivalence).

Can replace T op by S or Cat.

The starting point, n = 2, of the

Tamsamani-Simpson definition of

weak n-category is

(C,W) = (Cat, equivalence).
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A∞ spaces and categories

Segal categories in (T op, weak equiv)

with object set ∗ model loop spaces.

Stasheff associahedra operadK = {K(q)}.

A∞ spaces,

K(q)×Xj → X,

also model loop spaces.

Many object version:

A∞-category in T op.
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DG A∞ algebras and categories

C∗(K): operad of chain complexes.

DG A∞ algebra:

C∗(K(q))⊗ Aq → A.

Many object version:

DG A∞-category.

(Fukaya, Kontsevich,

mirror symmetry.)

A generalization gives a crude initial

pattern for the operadic definitions of

weak n-categories of Batanin, Lein-

ster, Trimble, and May.
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A∞-category

Let C be a monoidal category with

unit object ∗ and a subcategory W .

An A∞-operad in (C,W) is an

operad O in C with an augmentation

O(q) → Ass such that O(q) → ∗

is in W for each q.

Definition

An A∞-category C in (C,W) is an

O-category for an A∞ operad O.

O(q)⊗C(Sq−1, Sq)⊗. . .⊗C(S0, S1)

−→ C(S0, Sq)



14

Enriched V-categories

Let V be a closed symmetric monoidal

category with unit object I .

Change point of view, allow classes of

objects in our structured categories C.

Enrichment over V :

Objects C(X, Y ) of V for objects

X and Y of C
C(S, T )⊗ C(R,S) → C(R, T )

Id : I → C(S, S)

V-Cat = V-enriched small categories.
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Internal categories in V

Let V be bicomplete.

An internal category C in V consists

of objects O(C) and M(C) of V with

maps S, T , Id, and C in V which

satisfy the category axioms.

Cat(V) = internal categories in V .

Functor V-cat → Cat(V)

δ on objects gives O(C), coproduct

of the C(S, T ) gives M(C).

Get “object-discrete internal categories”.
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Why enrich and why S?

Problems (i) and (ii) suggest that a

‘good’ category of (small) weak (−)

categories might be expected to itself

be a (large) weak (−) category and

also a category ‘weakly enriched’ over

weak (−) categories.

Categories are intrinsically intertwined

with simplicial sets, and simplicial sets

are good for doing homotopy theory.

S-enriched categories may be a good

starting point.
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Digression on alternatives

Joyal: Enrichment over quasi-categories

may be an even better choice.

Porter: I do not favour Top-enriched

categories as I have found them

awkward to use in the applications

that I have been studying.

May: I favor Top-enriched categories

as they are indispensible to many

applications I have been studying.
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Example: topologized fundamental groupoid

Internal categories in Top are good.

ΠX has object space X, morphism

space of Moore paths (varying length)

in X, and X'BΠX. Get quotient

topological groupoid πTopX (identify

homotopic paths) such that

BπTopX ' BπX.

(πX is the discrete fundamental groupoid).

X ' BΠX → BπTopX ' BπX.
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How to enrich over S

Let C be symmetric monoidal and

F : ∆ → C be a cosimplicial object.

[n] → C(X ⊗ F ([n]), Y )

defines enriched Hom.

Top, S Chk (chain complexes).

Sm/k (Smooth schemes over k).

Cat: two interesting choices of F .

[n] 7→ Total order with n+1 objects,

[n] 7→ Groupoid with n + 1 uniquely

isomorphic objects.

Analogous construction works when

C is tensored over S.
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In general:

For any category C, Simp(C) = C∆op

is an S-category.

Let K be a simplicial set. The comma

category ∆/K has objects ([n], x) with

x ∈ Kn. The morphisms

µ : ([n], x) → ([m], y)

are those µ : [n] → [m] in ∆ such

that K(µ)(y) = x.

There is a forgetful functor

δK : ∆/K → ∆, δK([n], x) = [n].

Given X, Y ∈ Simp(A), define

Simp(A)(X,Y )n = Nat(Xδ
op
∆[n]

, Y δ
op
∆[n]

).
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S-categories versus Simp(Cat)

Let B : ∆op → Cat be a simplicial

object in Cat. It has a simplicial set

B of objects. Say that B is object

discrete if B is discrete. Then,

for (x, y) ∈ B, let

B(x, y)n = {σ ∈ Bn|S(σ) = x, T (σ) = y}.

With faces and degeneracies induced

from those of B, {B(x, y)n|n ∈ N}

is a simplicial set C(x, y).

Levelwise composition in B induces

C(x, y)× C(y, z) → C(x, z).

This gives an S-enriched category C.
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Conversely, a small S-category C gives

an object discrete simplicial category

B: S-categories are object discrete

simplicial categories.

Recall: Segal categories are object

discrete complete Segal categories.

When regarding simplicial categories

and complete Segal categories as

bisimplicial sets, the two notions of

“object discrete” differ by which

0th simplicial coordinate is required

to be discrete.
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Weak categories

Slogan:

“Weak category = (∞, 1)-category”.

“An (∞, n)-category is an∞-category

with invertible i-morphisms, i > n”.

An (∞, 0)-category is a space.

That is, we can take any model for

the homotopy theory of spaces,

any (C,W) with correct C[W−1].

Examples: T op, S, Cat (Thomason).
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Baby Comparison Program

Compare notions of weak category.

Examples (W = ‘weak equivalence’):

Quasi-category

Complete Segal category

Segal category

A∞-category

S-category

T op-category
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Weakening of strict ∞-Categories

“Complicial set”: a simplicial set A

with a stratrification by “thin”

simplices tnAn ⊂ An for all n

(including all degenerate simplices)

satisfying certain axioms.

Equivalent to strict ∞-Categories.

Weak complicial sets: weaken axioms.

Street’s weak ∞ categories:

Intrinsic stratification on simplicial sets.

Require: this is a weak complicial set.
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S-categories and homotopy coherence

Part of large version of the general

problem. Given a small category D,

use free-forget monad to get a free

simplicial resolution

S(D) ∈ Simp(Cat),

similar to free group simplicial resolu-

tion or bar resolution. If the monad

‘remembers identities’, then

S(D) ∈ S-Cat.

Vogt 1973, Cordier 1982:

A homotopy coherent diagram in Top

of shape D is the same as an S-functor

S(D) → Top.
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Definition (Cordier (1980), based on

earlier ideas of Vogt, Boardman-Vogt.)

Let B be simplicially enriched.

The homotopy coherent nerve of B,

denoted Nerh.c.(B), is the simplicial

‘set’ with

Nerh.c.(B)n = S-Cat(S[n],B).

If B is a locally Kan S-category, then

Nerh.c.(B) is a quasi-category.

(Cordier–Porter, 1986)

Question: If B is locally complicial, is

Nerh.c.(B) a weak complicial set?
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How else can one construct S-cats?

Hammocks!

For a category C and subcategoryW ,

construct an S-category LH(C,W),

or LHC, the hammock localisation

of (C,W), as follows:

The objects of LHC are those of C.

For objects X and Y , the k-simplices

of LHC(X, Y ) are the “reduced

hammocks of width k and any length”

between X and Y . Such a thing is a

commutative diagram of the form
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(i) the length n of the hammock is

an integer ≥ 0,

(ii) all the vertical maps are in W ,

(iii) in each column of horizontal maps,

all maps go in the same direction; if

they go left, they must be in W .

The hammocks are subject to two

irredundancy conditions.

(iv) the maps in adjacent columns go

in different directions, and

(v) no column contains only identity

maps.
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Why the hammock localization?

Its category of components is C[W−1].

Version of inverting W that retains

higher homotopical information.

(Massey products or Toda brackets).

Baby camparison should give that the

hammock localizations of all models

for weak categories have equivalent

hammock localizations.

Model category theory shows how.


