
C
or

re
ct

ed
pr

oo
fs

SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2004; (in press) (DOI: 10.1002/spe.585)

A taxonomy of computer-based
simulations and its mapping to
parallel and distributed systems
simulation tools

Anthony Sulistio, Chee Shin Yeo and Rajkumar Buyya∗,†

Grid Computing and Distributed Systems (GRIDS) Laboratory,
Department of Computer Science and Software Engineering, University of Melbourne,
Carlton, VIC 3053, Australia

SUMMARY

In recent years, extensive research has been conducted in the area of simulation to model large complex
systems and understand their behavior, especially in parallel and distributed systems. At the same time, a
variety of design principles and approaches for computer-based simulation have evolved. As a result, an
increasing number of simulation tools have been designed and developed. Therefore, the aim of this paper
is to develop a comprehensive taxonomy for design of computer-based simulations, and apply this taxonomy
to categorize and analyze various simulation tools for parallel and distributed systems. Copyright c© 2004
John Wiley & Sons, Ltd.

KEY WORDS: taxonomy; simulation tools; parallel system; distributed system

1. INTRODUCTION

In recent years, parallel and distributed systems (PDSs) have emerged as viable solutions to meet the
ever increasing needs for computational power and data management capability. These systems offer
speedup in computational performance that is necessary to support computationally intensive grand
challenge applications, such as weather forecasting and earthquake analysis.

Designing a PDS is a complex and challenging task that involves many issues [1,2]. Some of the
issues include resource management, network performance, security, heterogeneity, fault tolerance,
adaptability, scalability, concurrency and transparency. In short, on designing a PDS one needs to
address more complicated issues related to both the parallel execution model and the distributed
architecture which do not exist in the sequential execution model and centralized architecture.

∗Correspondence to: Rajkumar Buyya, Grid Computing and Distributed Systems (GRIDS) Laboratory, Department of Computer
Science and Software Engineering, University of Melbourne, ICT Building, 111 Barry Street, Carlton, VIC 3053, Australia.
†E-mail: raj@cs.mu.oz.au

Copyright c© 2004 John Wiley & Sons, Ltd.
Received 12 November 2002
Revised 12 September 2003

Accepted 12 September 2003



C
or

re
ct

ed
pr

oo
fs

A. SULISTIO, C. S. YEO AND R. BUYYA

Simulation tools

Application 
areas 

Others 
… 

Industrial 
processes 

Environmental 
resources 

Parallel & distributed 
systems 

PDS 
taxonomy 

Design 
taxonomy 

Taxonomies Usage 
taxonomy 

Simulation 
taxonomy 

Design 
Taxonomies 

Simulation 
Engine 

Modeling 
Framework 

Programming 
Framework 

Design 
Environment 

User 
Interface 

System 
Support

Figure 1. Categorization of simulation tools.

Therefore, researchers need to ensure that their newly designed systems are feasible and can perform
as expected before proceeding on with the actual development.

Simulation has been researched and applied successfully to model real world processes, applications
and objects. It enables the study of various issues, such as feasibility, behavior and performance without
building the actual system, thus saving precious time, cost and effort. A simulation can be adjusted to
run at any speed relative to the real world and according to various possible scenarios. The results
gathered from the simulation indicate how the real system behaves, thus enabling researchers to
understand and improve on their design without the actual implementation.

However, applying simulation to model problems is also a non-trivial task. Good simulation models
are difficult to design and maintain. The design and development costs for complex simulation models
are sometimes comparable to the costs of building the actual systems. In addition, not all researchers
are experts in simulation, thus they have problems creating simulation models successfully. Therefore,
there is a need to have effective simulation tools that enable easy and fast creation of simulation models.

Extensive research conducted in the area of simulation over recent years has produced a
number of simulation tools for modeling PDSs. Simulation tools support the creation of repeatable
and controllable environments for feasibility study and performance evaluation. These simulation
environments facilitate researchers, educators and students to conduct effective research, teaching
and learning with ease. For instance, Bricks [3], GridSim [4], MicroGrid [5] and SimGrid [6] are
constructed to simulate emerging Grid computing [1] environments since it is difficult to have easy
access to readily available Grid testbeds. In addition, it is extremely hard to evaluate their performance
under different scenarios since the availability of resources changes with time and the users have
different requirements in a Grid computing environment.

Figure 1 provides a categorization of simulation tools. There are many application areas where
simulation has been applied, one of which is the design and evaluation of PDSs. Simulation tools
for PDSs are then further differentiated by four taxonomies: PDS taxonomy identifies the type of
target systems to be simulated, usage taxonomy illustrates how the tool is used, simulation taxonomy

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)



C
or

re
ct

ed
pr

oo
fs

A TAXONOMY OF COMPUTER-BASED SIMULATIONS

PDS 

Parallel system Distributed system 

Internet Intranet MPP 
system 

Embedded 
system 

Telephony 
system 

SMP 
system 

Mobile 
system 

Cluster Grid WWW 

Figure 2. PDS taxonomy.

highlights the characteristics of the simulation, and design taxonomy describes the components and
features of the simulation tools. The next few sections discuss these taxonomies in greater detail.

A survey of some of the existing research-based simulation tools examine their designs and
architectures based on the taxonomy. Only research-based simulation tools are selected since their
theoretical concepts, design and architectures are published and readily available, unlike commercially
released simulation tools. Therefore, this paper provides researchers with an in-depth understanding
of building simulation tools for PDSs and the current research trends. Researchers can extract useful
and relevant information and experience encountered in the development of the existing tools to learn,
improve and design better tools. There is also a possibility of extending or reusing some of the existing
simulation tools to prevent replication of work.

2. TAXONOMY

The proposed taxonomy provides classification of the simulation tools into categories based on
different aspects and properties. This section describes four sub-taxonomies: PDS, usage, simulation
and design taxonomies, and examples are given of simulation tools to support the taxonomies.

2.1. PDS taxonomy

The categorization of PDS taxonomy is shown in Figure 2. A parallel system consists of multiple
processors in close communication, normally located within the same machine. Multiple processors
can share the same memory or access their own local memory. A parallel system provides increased
throughput and reliability.

A parallel system can be classified into symmetric multiprocessing (SMP) systems and massively
parallel processing (MPP) systems. A SMP system has multiple processors sharing a common memory
and operating system. A MPP system has multiple processors accessing their own local memory and
operating system. A MPP system is more difficult to program for parallelism compared with a SMP
system since each processor accesses each local memory separate from other processors. However, a

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)



C
or

re
ct

ed
pr

oo
fs

A. SULISTIO, C. S. YEO AND R. BUYYA

MPP system is more scalable in terms of the number of processors, since a SMP system is limited to a
maximum number of processors.

A distributed system spreads out the computation among autonomous computers, which are
physically distributed in general. Each distributed computer accesses its own local memory and
communicates with other computers through networks such as the Internet. A distributed system
supports both resource sharing and load sharing, and is fault-tolerant through the replication of devices
and data in separate physical locations. It also provides a good price/performance ratio.

A distributed system can be further sub-divided into five types: Internet, intranet, mobile systems,
embedded systems or telephony systems. The Internet is a heterogeneous network of machines and
applications that is implemented using the Internet protocol (IP). The World Wide Web (WWW) is built
on top of the Internet architecture to share information, identified through a uniform resource locator
(URL). A Grid [1] is a very large-scale distributed system that can scale to Internet-size environments
with machines distributed across multiple organizations and administrative domains.

An Intranet is a local area network (LAN) that is usually privately owned by an organization.
Access of the intranet is internal within the organization and firewalls guard the interface for external
access to the Internet. A cluster [2] is a collection of distributed machines that collaborate to present a
single integrated computing resource to the user.

A mobile system is implemented using wireless network protocol so that it can function while
it is on the move at different physical locations. Some examples of mobile systems are cellular
phone systems, handheld devices and laptop computers with a wireless LAN. An embedded system
is a combination of hardware and software designed to function as a type of application device.
Some examples of embedded systems are industrial machines, medical equipments, automobiles and
aircrafts. A telephony system transmits voice and data using digital transmission through telephone
networks. Some examples of telephony systems are asymmetric digital subscriber line (ADSL),
integrated services digital network (ISDN), intelligent networks and advanced intelligent networks.

2.2. Usage taxonomy

A simulation tool can be used as a simulator or an emulator as shown in Figure 3. A simulator is a tool
that can model and represent the actual system. Simulation runs at any speed relative to the real world
and saves information for the entire simulation to facilitate analysis of the simulated behavior of the
actual system. Conversely, an emulator is a tool that acts like the actual system. Emulation executes like
the actual system itself and is useful for accurate and reliable testing without having the real system.
For example, the Grid simulation tools studied in this paper are simulators, except MicroGrid, that
emulate Globus-based Grid applications.

2.3. Simulation taxonomy

In general, a simulation comprises three properties as shown in Figure 4. Presence of time indicates
whether the simulation of a system encompasses the time factor. A static simulation does not have
time as part of the simulation, in contrast to a dynamic simulation. Basis of value specifies the values
that the simulated entities can contain. A discrete simulation has entities only possessing one of many
values within a finite range, but a continuous simulation has entities possessing one of many values
within an infinite range. Behavior defines how the simulation proceeds. A deterministic simulation has

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)



C
or

re
ct

ed
pr

oo
fs

A TAXONOMY OF COMPUTER-BASED SIMULATIONS

Usage 

Simulator Emulator 

Figure 3. Usage taxonomy.

Simulation 

 Basis of Value Presence of Time Behavior 

Dynamic Discrete Continuous Static Deterministic Probabilistic 

Figure 4. Simulation taxonomy.

no random events occurring, so repeating the same simulation will always return the same simulation
results. In contrast, a probabilistic simulation has random events occurring, so repeating the same
simulation often returns different simulation results.

Every simulation can be classified based on these three properties. An example of a dynamic, discrete
and probabilistic simulation is to generate a path that a data packet moves from a source host to a
destination host in a network. However, simulating the path of a missile given an initial firing velocity
and fixed wind resistance is an example of a dynamic, continuous and deterministic simulation. A chess
game simulation comprises static, discrete and probabilistic properties.

2.4. Design taxonomy

The design taxonomy categorizes simulation tools based on desired components and features that
are necessary to provide simulation of a PDS. These features and components not only provide a
framework for understanding the design of existing simulation tools, but also provide possible ways of
improving the design.

2.4.1. Simulation engine

Each simulation tool exploits a simulation engine to model and execute the simulation model. Figure 5
shows the taxonomy for the simulation engine. Simulations can be executed in serial or parallel modes.
A serial or sequential simulation is executed using a single processor, while a parallel or distributed
simulation is executed using multiple processors, located in PDSs. A serial simulation is restricted by
limited memory and needs a longer execution time, compared with a parallel simulation. Therefore,
there is an increasing interest in using parallel simulation for modeling complex, large-scale systems.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)



C
or

re
ct

ed
pr

oo
fs

A. SULISTIO, C. S. YEO AND R. BUYYA

Simulation engine 

Execution Mechanics

Discrete-event Hybrid Continuous Serial Parallel

Trace-driven Time-driven Event-driven 

Figure 5. Simulation engine taxonomy.

Simulation models that are created for serial execution cannot be executed using parallel execution.
In other words, the user can only design simulation models based on the type of execution mode
supported by the simulation tool.

Most existing simulation tools use serial simulation. This is because simulation tools that use a
parallel simulation engine are more difficult to implement. However, there is a growing trend to
implement tools that exploit parallel simulation given the growing demand for faster simulation and
shorter execution time. Some tools such as Parsec [7] and GloMoSim [8] support both serial and
parallel simulation, which provides the flexibility for the user to use.

The simulation tool advances the simulation based on the mechanics defined in the simulation
engine. In a continuous simulation, state changes occur continuously across time. In a discrete-event
simulation (DES), state changes only occur at specific time intervals. A hybrid simulation comprises
both continuous and discrete-event simulations.

A DES adopts a queuing system where queues of events wait to be activated. A DES is further
subdivided into a trace-driven, time-driven or event-driven simulation. A trace-driven DES proceeds
by reading in a set of events that are collected independently from another environment and are suitable
for modeling a system that has executed before in another environment. The user can trace and modify
the inputs to observe and control the simulation. A time-driven DES advances by fixed time increments
and is useful for modeling events that occur at regular time intervals. An event-driven DES advances by
irregular time increments and is useful for modeling events that may occur at any time. An event-driven
DES is more efficient than a time-driven DES since it does not step through regular time intervals when
no event occurs. Most of the simulation tools surveyed in this paper use an event-driven DES because it
is relevant for the context of simulating most large-scale PDSs and requires less time. However, hybrid
simulation is needed by embedded system simulators such as Ptolemy II [9].

2.4.2. Modeling framework

The modeling framework depicts how the user models the target PDS in the simulation tool.
An incorrect modeling framework results in inaccurate modeling and thus produces useless simulation

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)



C
or

re
ct

ed
pr

oo
fs

A TAXONOMY OF COMPUTER-BASED SIMULATIONS

Modeling Framework 

Entity-based Event-based 

Figure 6. Modeling framework taxonomy.

Programming Framework 

Structured Object-oriented 

Figure 7. Programming framework taxonomy.

results that differ tremendously from the actual target system. Figure 6 shows the taxonomy for the
modeling framework.

An entity-based modeling framework represents processes to be modeled as entities. Each entity
performs its own tasks and communicates with other entities via messaging. In an event-based
modeling framework, each task in a modeled process is activated via the arrival of some triggering
events. It is possible to have a modeling framework that implements both entity and event. All surveyed
simulation tools apply both entity-based and event-based modeling frameworks, since both frameworks
reflect real-world happenings of actual objects.

2.4.3. Programming framework

The programming framework determines the programming paradigm that the user needs to be familiar
with in order to use the simulation tool and can thus affect the learning curve of the user. Figure 7
shows the taxonomy for the programming framework.

A structured programming framework implements a top-down structured program design with
control passing down the modules in a hierarchy. An object-oriented programming framework
expresses the program as a set of objects that communicate with one another to perform tasks.
The object-oriented framework is easier to create, maintain and reuse compared with the structured
programming framework. However, the structured framework normally incurs less runtime overheads
than the object-oriented framework.

A fair share of simulation tools use the structured and object-oriented programming framework.
Some examples of tools that use structured programming are Parsec, SimGrid and Ptolemy II, while
some examples of tools that use object-oriented programming are SimJava [10], NS-2 [11] and
GridSim.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)



C
or

re
ct

ed
pr

oo
fs

A. SULISTIO, C. S. YEO AND R. BUYYA

Design Environment 

Language Library 

Figure 8. Design environment taxonomy.

2.4.4. Design environment

The design environment determines how the user uses the tool to design simulation models. A good
design environment facilitates easy learning and fast usage. Figure 8 shows the taxonomy for the design
environment.

A language provides a set of defined constructs for the user to design simulation models, while a
library provides a set of routines to be used with a supporting programming language. A library-based
simulation tool normally gives the user more flexibility in creating and controlling the simulation.
An experienced user of the supporting programming language may fine-tune and optimize the
simulation by exploiting certain libraries. A language-based simulation tool usually hides low-level
implementation details from the user and thus provides less flexibility. Therefore, a language-based
tool needs to provide a complete set of well-defined constructs to ensure that it supports the required
level of flexibility. A language-based tool is also often easier to learn and use since it is more high-level
compared with a library-based tool.

Examples of tools that use a language-based design environment are SimOS [12], NS-2 and
Bricks, while tools that use a library-based design environment are GridSim, SimJava and GloMoSim.
Some tools such as Parsec and Ptolemy II provide both a language-based and library-based design
environment.

2.4.5. User interface

The user interface determines how the user interacts with the simulation tool directly. Figure 9 shows
the taxonomy for the user interface. A visual user interface is preferred over a non-visual interface
because graphical displays enable better interaction and they are easier to use.

A visual design interface allows the user to create a simulation model much easier and faster
compared with a non-visual interface. The user can build the simulation model by dragging and
dropping simulation objects and configuring the attributes and values by using forms. In contrast, a
typical non-visual design interface requires the user to write program codes which require more time
and effort. Examples of tools that provide a visual design interface are Parsec, GridSim and Ptolemy II.

A visual execution interface provides a better representation of the simulation process that enables
the user to observe and analyze the simulation better. Animations provide a good visualization and
display the flow of the simulation. Graphs give the graphical version of statistical data captured from
the simulation. Without a visual execution interface, the user encounters difficulties in analyzing and

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)



C
or

re
ct

ed
pr

oo
fs

A TAXONOMY OF COMPUTER-BASED SIMULATIONS

User Interface 

Non-visual Visual 

Design Execution Integrated Environment 

Drag-drop Form Animation Graph 

Figure 9. User interface taxonomy.

System Support 

Codes generation Statistics generation Validation test Debugging 

Figure 10. System support taxonomy.

understanding the simulation results based on the huge amount of statistics and events captured in pure
text format. For example, NS-2 is able to generate animations; Ptolemy II is able to generate graphs;
and SimJava is able to generate both animations and graphs.

A visual integrated environment provides both visual design and execution interfaces. The user
conveniently uses the simulation tool to develop simulation models and execute them without exiting
the tool. This integrated environment concept is borrowed from integrated development environment
(IDE) tools developed for programming. None of the surveyed tools provide a complete visual
integrated environment. Most tools have plans to incorporate a visual integrated environment in the
future to enable better usability, but implementing a good user interface is not trivial and requires lots
of time and effort. This is why most simulation tools are not able to provide a visual interface.

2.4.6. System Support

System support provides useful and ready-to-use features that help the user to build an accurate and
successful simulation model. Figure 10 shows the taxonomy for system support.

The codes generation feature produces the resulting simulation program code automatically for the
user. This feature normally exists in simulation tools that are language based or use a visual design
interface. This allows the user to create the simulation model using a high-level language or simpler
visual user interface without worrying about writing complex program code. Tools such as GridSim
and Parsec support this functionality.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)



C
or

re
ct

ed
pr

oo
fs

A. SULISTIO, C. S. YEO AND R. BUYYA

Table I. Categorization of simulation tools based on their simulated systems.

Category Tool Organization
Key similarities and differences, simulated systems,

and Web site

Parallel
systems

SimOS Stanford
University, U.S.A.

• Models complete computer systems through fast
simulation of hardware and levels of abstraction.
• Simulates a complete multiprocessor system and
studies all various aspects including hardware architecture,
operating system and application programs.
• http://simos.stanford.edu/

Distributed
systems

SimJava University of
Edinburgh, U.K.

• Provides a core set of foundation classes for simulating
discrete events.
• Simulates distributed hardware systems, communication
protocols and computer architectures.
• http://www.dcs.ed.ac.uk/home/simjava/

Networks NS-2 University of
California at
Berkeley, U.S.A.

• Supports several levels of abstraction to simulate a
wide range of network protocols via numerous simulation
interfaces, such as using scripting language and/or system
language.
• Simulates network protocols over wired and wireless
networks.
• http://www.isi.edu/nsnam/ns/

Parsec University of
California at Los
Angeles, U.S.A.

• Uses a portable runtime kernel that executes simulations on
either sequential or parallel architectures enhanced by ready
support of numerous parallel simulation protocols.
• Simulates very large scale integrated (VLSI) parallel
architectures, parallel databases and wireless networks using
parallel simulation.
• http://pcl.cs.ucla.edu/projects/parsec/

Mobile
systems

GloMoSim University of
California at Los
Angeles, U.S.A.

• Provides an extensible and modular library that supports
implementation of alternative protocols for each layer of the
wireless communication protocol stack.
• Simulates large-scale wireless mobile networks.
• http://pcl.cs.ucla.edu/projects/glomosim/

Grid
scheduling
systems

Bricks Tokyo Institute of
Technology, Japan

• Provides simulation for resource allocation strategies
and policies for multiple clients and servers as in global
computing systems in a Grid environment.
• Simulates resource scheduling algorithms in Grids.
• http://matsu-www.is.titech.ac.jp/∼takefusa/bricks/

GridSim University of
Melbourne,
Australia

• Supports simulation of space-based and time-based, large-
scale resources in the Grid environment.
• Simulates economy-based resource scheduling systems in
Grids.
• http://www.gridbus.org/gridsim/

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)



C
or

re
ct

ed
pr

oo
fs

A TAXONOMY OF COMPUTER-BASED SIMULATIONS

Table I. Continued.

Category Tool Organization
Key similarities and differences, simulated systems,

and Web site

Grid
scheduling
systems
(continued)

MicroGrid University of
California at
San Diego, U.S.A.

• Runs emulations by executing actual application code
on the virtual Globus Grid and thus requires more time to
complete the application.
• Emulates the Globus Grid environment for resource
management.
• http://www-csag.ucsd.edu/projects/grid/

SimGrid University of
California at
San Diego, U.S.A.

• Simulates a single or multiple scheduling entities and time-
shared systems operating in a Grid computing environment.
• Simulates distributed Grid applications for resource
scheduling.
• http://grail.sdsc.edu/projects/simgrid/

Embedded
systems

Ptolemy II University of
California at
Berkeley, U.S.A.

• Builds upon a component-based design methodology that
hierarchically integrates multiple models of computation to
capture different design perspectives.
• Simulates systems that comprise heterogeneous compo-
nents and sub-components.
• http://ptolemy.eecs.berkeley.edu/ptolemyII/

Debugging facilities enable the user to identify abnormalities and problems in the simulation model
more easily and correct them. For example, SimOS and Ptolemy II provide some debugging facilities.
Statistics related to the simulation generated by the tool allow the user to analyze and justify the
simulation model. Without a built-in statistics generation feature, the user will need to write extra
separate modules to manually track the simulation execution. Examples of tools that provide statistics
generation are SimJava and GloMoSim. The validation test feature is able to help the user identify
probable errors or inconsistencies in the simulation model, thus supporting more accurate simulations.
For instance, the next release of NS-2 is expected to incorporate validation functionalities.

3. SIMULATION TOOLS SURVEY

A wide variety of tools have been developed to support the simulation of PDSs by various
researchers around the world. They include SimOS, SimJava, NS-2, Parsec, GloMoSim, Bricks,
GridSim, MicroGrid, SimGrid, and Ptolemy II. This section briefly describes these simulation tools
by highlighting their key similarities and differences, and the categorization based on their simulated
systems (as noted in Table I). In addition, the proposed taxonomy discussed in the previous section
is being applied to the tools to identify their design characteristics and possible innovations needed
(as noted in Table II). This section also provides a design comparison for similar tools (that are under
the same category as shown in Table I) in order to differentiate them.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)



C
or

re
ct

ed
pr

oo
fs

A. SULISTIO, C. S. YEO AND R. BUYYA

Table II. Design of simulation tools based on the proposed taxonomy.

Design SimOS SimJava NS-2 Parsec GloMoSim

Simulated
systems

Parallel
systems

Distributed
systems,
networks

Wired and
wireless
networks

VLSI circuits,
wireless
networks,
parallel
architectures

Wireless mobile
networks

Usage Simulator Simulator Simulator Simulator Simulator

Simulation Static,
discrete,
deterministic

Static,
discrete,
deterministic

Static,
discrete,
deterministic

Static, discrete,
deterministic

Static, discrete,
deterministic

Simulation
engine

Parallel, event-
driven DES

Serial, event-
driven DES

Serial, event-
driven DES

Serial & parallel,
event-driven DES

Serial & parallel,
event-driven DES

Modeling
framework

Entity-based,
event-based

Entity-based,
event-based

Entity-based,
event-based

Entity-based,
event-based

Entity-based,
event-based

Programming
framework

Structured Object-
oriented

Object-
oriented

Structured Structured

Design
environment

Language Library Language Language, library Library

User
interface

Non-visual Animation,
graph

Animation Drag-drop, form Non-visual

System
support

Debugging,
statistics
generation

Statistics
generation

Debugging,
statistics
generation,
validation test

Code generation Statistics
generation

3.1. SimOS

SimOS [12] allows simulation of complete computer systems, including a full operating system and all
application programs that run on it. It can be used to study the computer architecture such as the effects
of new processors and memories on workloads such as large scientific applications and commercial
database systems. It can also be used to study the operating systems like developing, debugging and
performance tuning an SMP operating system for multiprocessors.

SimOS runs as a layer between the host machine and the target machine. The host refers to the
hardware and software on which SimOS runs, while the target refers to the simulated hardware, its
operating system and applications running on it. Each simulated hardware component in the SimOS
layer has multiple implementations that vary in speed and detail. SimOS is capable of running large
and complex commercial applications available on the SGI platforms by adopting various simulation
modes.

SimOS includes a detailed simulator that runs in a loop, fetching, decoding, and simulating
the effects of instructions on the machine’s register set, caches and main memory. The simulator

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)



C
or

re
ct

ed
pr

oo
fs

A TAXONOMY OF COMPUTER-BASED SIMULATIONS

Table II. Continued.

Design Bricks GridSim MicroGrid SimGrid Ptolemy II

Simulated
systems

Grid, resource
scheduling
systems

Grid, resource
scheduling
systems

Grid, resource
scheduling
systems

Grid, resource
scheduling
systems

Embedded
systems

Usage Simulator Simulator Emulator Simulator Simulator

Simulation Static,
discrete,
deterministic

Static,
discrete,
deterministic

Dynamic,
continuous,
deterministic

Static, discrete,
deterministic

Dynamic,
continuous,
deterministic

Simulation
engine

Serial, event-
driven DES

Multithreaded,
event-driven
DES

Parallel, event-
driven DES

Serial, trace-
driven DES

Serial, hybrid

Modeling
framework

Entity-based,
event-based

Entity-based,
event-based

Entity-based,
event-based

Entity-based,
event-based

Entity-based,
event-based

Programming
framework

Object-
oriented

Object-
oriented

Structured Structured Object-oriented

Design
environment

Language Library Language Library Language, library

User
interface

Non-visual Form Non-visual Non-visual Drag-drop,
form, graph

System
support

Statistics
generation

Code
generation,
statistics
generation

N/A N/A Code
generation,
debugging,
statistics
generation

uses a parallel pipeline model that provides hardware simulators ranging from very approximate to
highly accurate models and records more detailed performance information at the expense of longer
simulation time. SimOS maps the actual hardware such as CPU, memory and disk as equivalent entities
in the simulation. Interaction events occurring in the simulated hardware are captured and classified to
facilitate analysis of results after the simulation.

SimOS is implemented in C using a structured programming framework. It is designed as a language
with a set of pre-defined constructs that the user can use for simulation. The user uses Tool Command
Language (Tcl) [13] as a specification language for SimOS for the simulated hardware and controlling
the runtime of SimOS execution. Tcl is a powerful and easy to learn scripting language so the user can
set up SimOS simulations easily if they are experts in Tcl.

SimOS uses the GNU project debugger (GDB) [14] to provide full interactive debugging of
the simulated operating system. SimOS has sophisticated statistics collection and classification
mechanisms to generate statistics about the simulated behaviors and map these statistics back to
the user-defined groups, such as processes, subroutines or transactions. SimOS was last released as
version 2.0 in 1998.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)



C
or

re
ct

ed
pr

oo
fs

A. SULISTIO, C. S. YEO AND R. BUYYA

3.2. SimJava

SimJava [10] provides a set of foundation classes to enable easy creation and animation of DES models
by using Java. It can be applied to model distributed systems and networks. Three Java-based libraries
are implemented to support the simulation. The first library, called simjava, provides the building
constructs for text-only Java simulation and incorporates the event-driven DES engine. The users write
object-oriented Java programs to call the simjava library constructs to build the simulation. The second
library, called simanim, provides an applet template that is tightly coupled with the simjava library to
create visual animations of the text-only simulation. The third library, called simdiag, is a collection of
JavaBeans that enables graphical display of simulation results.

SimJava models the simulation objects as entities that communicate by sending passive event objects
to other entities via ports. Detailed statistics generation is provided in the simjava library so that
the user can indicate which simulation events are collected and written into a trace file. Many other
tools use SimJava as the foundation libraries for simulation, one of which, GridSim, that is discussed
later in this section. The last release of SimJava is version 2.0, which dates back to September
2002.

3.3. NS-2

NS-2 [11] is a DES that enables simulation of Transport Control Protocol (TCP), routing and multicast
protocols over wired and wireless networks. NS-2 allows network researchers to study and evaluate
specific network protocols under varying network conditions, which is essential to understand their
behaviors and characteristics.

NS-2 [15] is an object-oriented simulator implemented using two languages, C++ and Object
Tcl (OTcl). It supports a class hierarchy in C++ called compiled hierarchy and a similar class
hierarchy for OTcl called interpreted hierarchy. The user creates new simulation objects using the
OTcl interpreter and each of these objects is mirrored by a corresponding object in the compiled
hierarchy.

NS-2 uses two languages to support different purposes. C++ is fast to run but slow to modify, making
it suitable for detailed simulated protocol implementation. OTcl runs much more slowly but can be
modified more quickly and interactively and is used by the user for setup and configuration. NS-2
operates as a scripting language where simulations are executed by running a simulation script defined
in OTcl. The scripts contain calls to predefined topologies provided in a comprehensive library of
network protocols.

NS-2 does not have a visual design interface which means that an inexperienced user is likely
to encounter difficulties in creating simulations given NS-2’s high complexity. NS-2 uses a visual
execution interface called Nam [15]. Nam is a Tcl/TK based animation tool for viewing network
simulation traces and supports topology layout and packet level animation. It also provides various
data inspection tools and statistics generation.

NS-2 supports some basic debugging tools. For example, memory debugging is supported using the
dmalloc library, Tcl-level debugging is supported using a Tcl debugger and C++-level debugging is
supported using GDB. The next version of NS-2 is to include automatic validation tests to help NS-2
users to check and verify their simulation models. The current release of NS-2 is version 2.26, which
was released in February 2003.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)



C
or

re
ct

ed
pr

oo
fs

A TAXONOMY OF COMPUTER-BASED SIMULATIONS

3.4. Parsec

Parsec [7] aims to provide a parallel simulation environment that is able to model large-scale complex
systems such as VLSI parallel architectures, parallel databases and wireless networks. The goals of the
environment are to provide an easy mapping of simulation models to executable programs, support a
wide range of parallel simulation protocols, and enable visual model design. The implemented parallel
simulation environment comprises Parsec, the parallel simulation language, its graphical user interface
(GUI) called Parsec Visual Environment (Pave) and a portable runtime kernel that implements the
simulation models.

Parsec adopts the process-interaction approach for event-driven DES. A physical process is modeled
as an entity and events passed among the processes are modeled as messages. Parsec provides a
structured parallel simulation language that provides a set of simple syntax to define simulation models.
The Parsec simulation models are then generated into operational C-based simulation codes. It also
provides a C++ library called Compose that can interface with native written C++ codes written by the
user to execute parallel simulations.

Pave enables the visual design of simulation component libraries and the construction of simulation
models from these components through a simple visual framework. Pave allows the user to drop
flowchart notations to represent control flow and message operations. In addition, Pave generates the
Parsec codes for the simulation models and optimizes them for parallel execution. However, Pave does
not provide debugging or statistics generation facilities.

The portable run-time kernel can execute Parsec simulation models on sequential and parallel
machine architectures. However, the user has to explicitly program the synchronization required for
parallel execution. Parsec has been used to design other parallel simulation libraries such as GloMoSim,
which is surveyed in the following section. Parsec was re-released as commercial software in 2001 and
is currently maintained by Scalable Network Technologies [16].

3.5. GloMoSim

GloMoSim [8] is designed to support simulation of very large wireless mobile networks with several
thousands of nodes. It uses parallel DES to reduce the time required for executing the detailed mobile
simulations.

GloMoSim is a library-based simulator that simulates a specific wireless communication protocol
in the protocol stack. It is developed using Parsec. Parsec enables new protocols and functions to be
programmed and added to the GloMoSim library. GloMoSim is a library built on top of Parsec and thus
it is useful for the GloMoSim user to know Parsec in order to build additional protocols and modules.
GloMoSim uses Parsec as the simulation engine and is able to support both serial and parallel DES.
GloMoSim models mobile network nodes as Parsec entities.

GloMoSim is implemented using a layered approach that enables rapid integration of models
developed at different layers by different users. Each layer is treated as a module and is invoked via
receiving message events from other layers. This layered design supports modularity and encapsulates
the complexity of a specific layer from other layers. Each layer also keeps track of relevant simulation
statistics and generates statistics at the end of the simulation. GloMoSim serves as a basic library
for wireless simulations that can be customized or extended using Parsec for specific requirements.
There is no need to have a visual user interface for GloMoSim since it is easily configured via an input

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)



C
or

re
ct

ed
pr

oo
fs

A. SULISTIO, C. S. YEO AND R. BUYYA

text file and executes at the command prompt. The last release of GloMoSim, version 2.0, was released
in 2000 before Parsec became commercialized.

3.6. Bricks

Bricks [3] is a performance evaluation system that allows analysis and comparison of various
scheduling schemes in a high-performance Grid computing environment. Bricks simulates various
behaviors of Grid computing systems such as the behavior of networks and resource scheduling
algorithms.

Bricks operates as a DES of a job scheduling system in virtual time. It consists of two components:
the simulated Global Computing Environment that models the Grid and the Scheduling Unit that
coordinates the simulation behaviors of Grid computing systems. Bricks models the Global Computing
Environment to consist of three entities: clients that represent user machines that have jobs to run,
servers that represent resources available to run the jobs, and networks that represent the network
between clients and servers. Events of the entities form the communication required to drive the
simulation.

Bricks is designed using an object-oriented framework and implemented in Java. The Scheduling
Unit uses Java interfaces to support various scheduling algorithms and components. Bricks provides a
Bricks script language that enables the user to set up the configuration and parameters of the Global
Computing Environment. The user uses the building ‘bricks’ within the script to test and evaluate a
variety of simulations in a deterministic manner based on the statistics collected. No current work
seems to be in progress for Bricks since it is not available for download.

3.7. GridSim

GridSim [4] supports modeling and simulation of heterogeneous Grid resources (both time- and space-
shared), users, applications, brokers and schedulers in a Grid computing environment. It provides
primitives for creation of application tasks, mapping of tasks to resources, and their management so
that resource schedulers can be simulated to study the scheduling algorithms involved.

GridSim adopts the multi-layered design architecture. The first bottom layer is the portable
and scalable Java interface and runtime environment called Java virtual machine (JVM), whose
implementation is available for single and multiprocessor systems including clusters. The second layer
is SimJava which provides an event-driven discrete event infrastructure on top of the JVM to drive
the simulation for GridSim. The third layer is the GridSim toolkit, which provides the modeling and
simulation of core Grid entities such as resources and information services using the discrete event
services defined by the second layer. The fourth layer provides the simulation of resource aggregators
called Grid brokers or schedulers. The last top layer focuses on application and resource modeling
with different scenarios to evaluate scheduling and resource management policies, heuristics, and
algorithms.

SimJava provides the event-driven DES engine for GridSim. The Grid resources, users and brokers
are modeled as entities, and they communicate via messaging events. To create the simulations, the user
writes Java programs that call the GridSim libraries to model the different Grid elements. The Visual
Modeler (VM) [17] provides the visual design interface for GridSim. VM is a form-based tool that
enables the user to create Grid resources, users and applications and specifies their property values.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)



C
or

re
ct

ed
pr

oo
fs

A TAXONOMY OF COMPUTER-BASED SIMULATIONS

VM also generates the Java program codes for executing the simulation. GridSim has a GridStatistics
library that the user can call to collect simulation statistics automatically. Version 2.1 of GridSim
was released in July 2003 and continuing work promises to provide better simulation features and
functionalities.

3.8. MicroGrid

MicroGrid [5] implements a virtual grid infrastructure to run a Globus [18] application to
support systematic design and evaluation of middleware, applications and network services for the
computational Grid. MicroGrid models the Globus Grid middleware infrastructure, and aims to support
scalable simulation of Grid applications using a wide variety of scalable clustered resources. It provides
a realistic Grid software environment that emulates the applications to run with identical Application
Program Interfaces (APIs) and allows the MicroGrid user to configure Grid resource performance
attributes.

The simulation engine for MicroGrid, called MaSSF, is built on top of the parallel DES engine
Dartmouth Scalable Simulation Framework (DaSSF) [19]. MaSSF is able to provide detailed network
emulations that model the behaviors of each IP packet. MicroGrid models Grid resources as computing
entities and these computing entities interact via communication entities. MicroGrid adopts the
structured programming framework and is implemented in C. The design environment of MicroGrid
resembles a language since MicroGrid provides a limited but simple set of user commands that
enables easy emulation of Globus applications in a Globus-based simulation environment. No visual
user interface is provided for MicroGrid and the user has to manually modify the Makefile of an
existing Globus application to add a link to MicroGrid to run the simulation. The latest release
of MicroGrid, version 2.2.1 in February 2003, has been successfully tested with Globus 2.2
toolkit.

3.9. SimGrid

SimGrid [6] is a toolkit that provides core functionalities for the evaluation of scheduling algorithms
in distributed applications in a heterogeneous, computational Grid environment. SimGrid aims at
providing the right model and level of abstraction for studying Grid-based scheduling algorithms and
generates correct and accurate simulation results.

The first version [20] of SimGrid is now known as SG. SG is a low-level simulator that enables one to
build flexible and general simulations. Using SG to simulate a distributed application where scheduling
decisions are taken by different entities may be more difficult. The newest version of SimGrid is called
MSG, which is a higher-level simulator built using the SG, which is more application-oriented and
builds simulation with multiple scheduling agents.

In SG, resources such as processing units and network links are treated as unrelated resources, so
no interconnection topology is imposed between the resources. This provides maximum flexibility for
SG to simulate a wide range of computing environments as the user can specify topologies based
on the application-specific requirements. SimGrid describes scheduling algorithms in terms of agent
entities that make scheduling decisions. These agents interact by sending and receiving events via
communication channels.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)



C
or

re
ct

ed
pr

oo
fs

A. SULISTIO, C. S. YEO AND R. BUYYA

SimGrid is implemented in C and provides predefined SG and MSG API libraries that enable the user
to manipulate data structures for Grid resources and tasks. A SG Grid resource comprises a name, a
set of defined performance-related metrics and trace values for each metric. SimGrid uses trace-driven
simulation based on these trace values gathered from real Grid resources to simulate a more realistic
representation of the resources in terms of fluctuating performance rather than constant performance.
A SG task comprises a name, a cost, which keeps track of the cost of performing the task, and a state,
which reflects the status of the task. These data structures provide maximum flexibility for the SimGrid
user, but also require higher user expertise. However, SimGrid does not provide any of the system
support facilities as discussed in the taxonomy. The current release of SimGrid is version 2.15, which
was released in May 2003.

3.10. Ptolemy II

Ptolemy II [9] emphasizes the modeling and design of embedded systems. It is built upon a
component-based design methodology to support hierarchical integration of an extensible range
of simulation models. The user uses Ptolemy II to capture, understand and manipulate different
design perspectives of an embedded system, which comprises heterogeneous components across
different domains. Ptolemy II supports different models of computation [21], consisting of discrete-
event (DE), continuous-time (CT), synchronous dataflow (SDF), finite state machines (FSMs),
communicating sequential processes (CSPs), process networks (PNs) and distributed discrete-
event (DDE). These models of computation enable the Ptolemy II user to define different interaction
mechanisms between the components.

Ptolemy II uses a serial simulation engine that supports hybrid simulation to simulate the
heterogeneous components in an embedded system. Concurrent models of computation, such as CSP,
PN and DDE, are thus implemented via threads. Components are modeled as entities called actors
and these entities message via interfaces called ports. Ptolemy II uses object-oriented technologies to
implement its component-based design.

Ptolemy II serves as both a language and a library. Ptolemy II acts as an architecture design language
that focuses on modeling the interaction among a set of components in an embedded system. It also
has a comprehensive algebra-based expression language for specifying the values of parameters in
components. Ptolemy II is implemented in Java and comprises libraries. This enables the user to write
Java code that uses Ptolemy libraries directly to create the simulation model.

Ptolemy II provides a GUI called Vergil that enables the user to create, view and modify Ptolemy
models by dragging and dropping component-based building blocks. Vergil also uses forms to get
specific values of each component from the user. Vergil represents Ptolemy II models using an
Extensible Markup Language (XML) schema called Modeling Markup Language (MoML). Ptolemy II
uses a plot package that creates applets to plot graphs for the statistical results. The visual design and
execution interfaces are not integrated together and have to be invoked separately.

Vergil provides basic debugging facilities to detect errors in the Ptolemy II models. Statistical data of
the simulation are collected in Ptolemy II and can be displayed graphically by calling the plot package.
A code generation facility [22] for Ptolemy II is currently under development to enable transformation
of Ptolemy II models into simulation program codes for more efficient execution. The current release
of Ptolemy II, released in May 2003, is version 3.0-beta which provides a more comprehensive actor
library.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)



C
or

re
ct

ed
pr

oo
fs

A TAXONOMY OF COMPUTER-BASED SIMULATIONS

3.11. Design comparison for similar tools

As seen in Table I, this paper discusses several simulation tools for the same category of PDS: networks
and Grid scheduling systems. Therefore, there is a need to highlight the core design differences between
these similar tools as follows.

• Networks. NS-2 is a discrete event simulator that provides extensive support for simulation of
various wired and wireless network protocols, such as TCP, routing and multicast protocols.
The user is able to create simulations using NS-2 by writing scripts to access predefined network
topologies predefined in a comprehensive library of network protocols. Parsec is able to support
both serial and parallel execution of DES models for VLSI circuits, networks and parallel
architectures. Parsec provides a set of functions that enable the user to create network simulation.
Alternatively, the user can use Parsec to create new simulation libraries suitable for specific
applications.

• Grid scheduling systems. Bricks is used in simulating client–server global computing systems
that provide remote access to scientific libraries running on high-performance computers and
is designed based on a centralized global scheduling methodology. GridSim is able to simulate
different classes of heterogeneous resources for a Grid environment that includes both time-
based and space-based large-scale resources. It can also be used to simulate application
schedulers for single or multiple administrative distributed computing domains such as clusters
and Grids. MicroGrid is modeled on the Globus Grid computing environment to facilitate
execution of Globus applications in a controlled virtual Grid emulated environment. MicroGrid’s
emulation returns more precise results as actual application code is executed in the virtual Grid
and thus requires more execution time. The need to construct Globus applications for emulating
new scheduling algorithms also imposes more development overheads. Therefore, the MicroGrid
emulator is helpful for testing already built Globus applications. SimGrid supports modeling
of resources that are time-shared. The first version of SimGrid, SG, is limited to a single
scheduling entity and time-shared system, so it is difficult to simulate multi-user systems in a
Grid environment. Therefore, the new version of SimGrid, MSG, was introduced to enhance the
low-level SG simulator so that multiple scheduling entities can be simulated.

4. CONCLUSION

This paper has presented a taxonomy for computer simulations and applied the taxonomy on simulation
tools for PDSs. The taxonomy comprises PDS, usage, simulation and design taxonomies. The design
taxonomy has emphasized respective components and features of a simulation tool, including the
simulation engine, modeling framework, programming framework, design environment, user interface
and system support. A number of selected simulation tools have been surveyed using the taxonomy.
This paper thus helps to identify some approaches for designing simulation tools for PDSs and possible
future research directions.

There are many different approaches and methods for developing simulation tools for modeling
PDSs. With the increased complexity and scale of simulated systems, there is a growing trend for
simulation tools to use parallel simulation engines in order to speed up the simulation process.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)



C
or

re
ct

ed
pr

oo
fs

A. SULISTIO, C. S. YEO AND R. BUYYA

Future simulation tools are likely to support both language-based and library-based design
environments so that the user has greater flexibility and power to build customized and extensible
simulations. Simulation tools are also evolving into visual integrated environments where the user can
build, execute, monitor and analyze simulations in a single complete environment. Simulation tools
are also incorporating useful system support capabilities to assist the user in building faster and more
accurate simulation models.

ACKNOWLEDGEMENTS

The authors would like to acknowledge all researchers of the simulation tools described in this paper and thank
them for their outstanding work. We also thank Srikumar Venugopal and anonymous reviewers for their comments
on this paper.

REFERENCES

1. Foster I, Kesselman C (eds.). The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann: San Francisco,
CA, 1999.

2. Barker M, Buyya R. Cluster computing at a glance. High Performance Cluster Computing, vol. 1, Buyya R (ed.). Prentice-
Hall: Upper Saddle River, NJ, 1999; 3–47.

3. Takefusa A, Matsuoka S, Nakada H. Overview of a performance evaluation system for global computing scheduling
algorithms. Proceedings 8th IEEE International Symposium on High Performance Distributing Computing (HPDC8),
Redondo Beach, CA, August 1999. IEEE Computer Society Press: Los Alamitos, CA, 1999; 97–104.

4. Buyya R, Murshed M. GridSim: A toolkit for the modeling and simulation of distributed resource management and
scheduling for Grid computing. Concurrency and Computation: Practice and Experience 2002; 14(13–15):1175–1220.

5. Song HJ, Liu X, Jakobsen D, Bhagwan R, Zhang X, Taura K, Chien A. The MicroGrid: A scientific tool for modeling
computational Grids. IEEE Supercomputing (SC2000), Dallas, TX, 4–10 November 2000. IEEE Computer Society Press:
Los Alamitos, CA, 2000.

6. Legrand A, Marchal L, Casanova H. Scheduling distributed applications: The SimGrid simulation framework. Proceedings
3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid2003), Tokyo, Japan, 12–15 May
2003. IEEE Computer Society Press: Los Alamitos, CA, 2003.

7. Bagrodia R, Meyer R, Takai M, Chen Y, Zeng X, Martin J, Park B, Song H. Parsec: A parallel simulation environment for
complex systems. IEEE Computer 1998; 31(10):77–85.

8. Zeng X, Bagrodia R, Gerla M. GloMoSim: A library for parallel simulation of large-scale wireless networks. Proceedings
12th Workshop on Parallel and Distributed Simulations (PADS98), Banff, Alberta, Canada, May 1998. IEEE Computer
Society Press: Los Alamitos, CA, 1998; 154–161.

9. Liu X, Liu J, Eker J, Lee EA. Heterogeneous modeling and design of control systems. Software-Enabled Control:
Information Technology for Dynamical Systems, Samad T, Balas G (eds.). Wiley-IEEE Press: New York, 2003.

10. Howell F, McNab R. SimJava: A discrete event simulation package for Java with applications in computer systems
modeling. First International Conference on Web-based Modeling and Simulation, San Diego, CA, January 1998. SCS
Press: San Diego, CA, 1998.

11. Breslau L, Estrin D, Fall K, Floyd S, Heidermann J, Helmy A, Huang P, McCanne S, Varadhan K, Xu Y, Yu H. Advances
in network simulation. IEEE Computer 2000; 33(5):59–67.

12. Rosenblum M, Bugnion E, Devine S, Herrod SA. Using the SimOS machine simulator to study complex computer systems.
ACM Transactions on Modeling and Computer Society 1997; 7(1):78–103.

13. Tcl Developer Site. http://www.tcl.tk/ [July 2003].
14. GNU Project Debugger. http://www.gnu.org/software/gdb/ [July 2003].
15. Fall K, Varadhan K (eds.). The NS manual. Technical Report, University of California at Berkeley, June 2003.
16. Scalable Network Technologies. http://www.scalable-networks.com/ [July 2003].
17. Sulistio A, Yeo CS, Buyya R. Visual modeler for Grid modeling and simulation (GridSim) toolkit. Innovative Solutions

for Grid Computing Workshop, Proceedings of the International Conference on Computational Science (ICCS 2003),
Melbourne, Australia, 2–4 June 2003 (Lecture Notes in Computer Science, vol. 2659). Springer: Berlin, 2003; 1123–1132.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)



C
or

re
ct

ed
pr

oo
fs

A TAXONOMY OF COMPUTER-BASED SIMULATIONS

18. Foster I, Kesselman C. Globus: A metacomputing infrastructure toolkit. The International Journal of Supercomputer
Applications and High Performance Computing 1997; 11(2):115–128.

19. Cowie J, Liu H, Liu J, Nicol D, Ogielski A. Towards realistic million-node internet simulations. Proceedings of the
International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA99), Las Vegas,
NV, 1999. CSREA Press: Las Vegas, NV, 1999.

20. Casanova H. Simgrid: A toolkit for the simulation of application scheduling. Proceedings 1st IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGrid2001), Brisbane, Australia, May 2001. IEEE Computer Society
Press: Los Alamitos, CA, 2001.

21. Bhattacharyya SS et al. Ptolemy II: Heterogeneous concurrent modeling and design in Java. Technical Report, University
of California, Berkeley, August 2002.

22. Tsay J. A code generation framework for Ptolemy II. Technical Report, University of California, Berkeley, May 2000.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; (in press)


