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Learning algorithms and underlying basic mathematical ideas
are presented for the problem of adaptive blind signal processing,
especially instantaneous blind separation and multichannel blind
deconvolution/equalization of independent source signals. We dis-
cuss recent developments of adaptive learning algorithms based
on the natural gradient approach and their properties concerning
convergence, stability, and efficiency. Several promising schemas
are proposed and reviewed in the paper. Emphasis is given to
neural networks or adaptive filtering models and associated on-
line adaptive nonlinear learning algorithms. Computer simulations
illustrate the performances of the developed algorithms. Some
results presented in this paper are new and are being published
for the first time.
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I. INTRODUCTION

There are many potential applications of neural networks
to signal processing. This paper treats learning algorithms
for blind signal separation and deconvolution of signals.
Consider the case in which a number of simultaneous
observations of signals are available that are linear or
nonlinear superpositions of separate independent signals
from different sources. In many cases, source signals are
simultaneously filtered and mutually mixed. It is desired
to process the observations such that the original source
signals are extracted by neural networks (see, e.g., [1]–[18]
and [32]).

This problem is known as independent component anal-
ysis (ICA), blind source separation (BSS), blind source
deconvolution, or blind estimation of multiple independent
sources [61], [68], [100], [101]. It can be formulated as the
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problem of separating or estimating the waveforms of the
original sources from an array of sensors or transducers
without knowing the characteristics of the transmission
channels. For some models, however, there is no guarantee
that the estimated or extracted signals can be of exactly
the same waveforms as the source signals, and so the
requirements are sometimes relaxed to the extent that the
extracted waveforms are distorted or filtered versions of
the source signals [24], [107].

There are many potential exciting applications of blind
signal processing in science and technology, especially
in wireless communication, noninvasive medical diagno-
sis, geophysical exploration, and image enhancement and
recognition (such as face recognition) [37], [74], [75],
[105]. Acoustic examples include the signals from several
microphones in a sound field that is produced by several
speakers (the so-called “cocktail-party” problem) or the
signals from several acoustic transducers in an underwater
sound field from the engine noises of several ships (the
sonar problem). Radio examples include the observations
corresponding to the outputs of several antenna elements
in response to several transmitters; the observations may
also include the effects of the mutual couplings of the
elements. Other radio communication examples arise in the
use of polarization multiplexing in microwave links because
the orthogonality of the polarization cannot be maintained
perfectly and there is interference among the separate trans-
missions. In wireless communication the problem arises
of recovering communication signals (that are transmitted
by unknown channels) from the received signals in the
presence of both interuser and intersymbol interferences
[19], [23], [61], [88], [106]. Other promising applications
are in the area of noninvasive medical diagnosis and
biomedical signal analysis, such as EEG, MEG, and ECG
[78].

A number of heuristic algorithms for blind signal process-
ing have been proposed as this field of research has been
activated [68], [69]. Some recently developed algorithms
are surprisingly good [6], [10], [29]–[38]. The heuris-
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Fig. 1. Functional block diagram illustrating a general blind
signal processing problem.

tic ideas have originated not only from traditional signal
processing but from various backgrounds such as neural
networks, information theory, statistics, systems theory,
and information geometry. Now it is time to give unified
theoretical foundations.

This paper proposes a unified theoretical basis for this
problem based on these results. The theory is constructed on
neural networks learning, semiparametric statistical infer-
ence, information theory, Lie group theory, and information
geometry. We propose the natural gradient learning algo-
rithm instead of the ordinary gradient descent method. In
particular, we emphasize two important issues: statistical
efficiency and the speed of convergence of algorithms.
There are many other important problems, such as the ro-
bustness of algorithms and their algebraic properties, which
we cannot touch upon here. They are, for example, Liu’s
approach and Loubuton’s approach, where the number of
observations is larger than the number of sources in the
blind deconvolution/equalization problem [26], [59], [76].

II. THE PROBLEM STATEMENTS AND ASSOCIATED

NEURAL NETWORK MODELS

The most general blind signal processing (BSP) problem
can be formulated as follows. We observe a set of signals
from an MIMO (multiple-input multiple-output) nonlinear
dynamic system (see Fig. 1), where its input signals are
generated from a number of independent sources. The
objective is to find an inverse neural system (also termed
a reconstruction system), to see if it exists and is stable
and to estimate the original input signals thereby. This
estimation is performed on the basis of only the observed
output signals where somea priori knowledge about the
system and the stochastic properties of the source signals
might be available. Preferably it is required that the inverse
system is constructed adaptively so that it has good tracking
capability under nonstationary environments. Alternatively,
instead of estimating the source signals directly, it some-
times is more convenient to identify the unknown system
(in particular when the inverse system does not exist) and
then estimate the source signals implicitly by applying a
suitable optimization procedure [62], [102].

A dynamic nonlinear system can be described in many
different ways. It is sometimes convenient to describe it
either as a lumped system or as a distributed system.
This means that the system can be described by a set of
ordinary differential (or difference) equations or partial dif-

ferential equations. Alternatively, one may use linear filters
described in the frequency domain. It should be emphasized
that such a very general problem is in general intractable,
and hence somea priori knowledge or assumptions about
the system and the source signals are usually necessary.

Four fundamental problems arise:

1) solvability of the problem (in practical terms, this
implies the existence of the inverse system and/or
identifiability of the system) [20], [100], [101];

2) stability of the inverse model [13], [84], [105];
3) convergence of the learning algorithm and its speed

with the related problem of how to avoid being
trapped in local minima;

4) accuracy of the reconstructed source signals [8], [14].

Although recently many algorithms have been developed
which are able to successfully separate source signals, there
are still many problems to be studied.

1) Development of learning algorithms which work:

a) under nonstationary environments;

b) when the number of the source signals is un-
known;

c) when the number of source signals are dynam-
ically changing,

where the properties of the nonstationarities are not
known in advance.

2) Optimal choices of the nonlinear activation func-
tions when the distributions of sources are unknown
and the mixtures contain sub-Gaussian and super-
Gaussian sources.

3) Influence of additive noises and methods for its
cancellation or reduction.

4) Global stability and convergence analysis of learning
algorithms.

5) Statistical efficiency of learning algorithms.
6) Optimal strategy for deciding the learning rate param-

eter, especially in a nonstationary environment.

In this paper we will show where the difficulties lie,
and we briefly indicate how to solve, at least partially,
the corresponding problems. Our main objective in this
paper is to develop a theoretical framework for solving
these problems and to present associated adaptive on-line
learning algorithms.

One direct approach to solve the problem is as follows.

1) Design suitable neural network models for the inverse
(separating) problem.

2) Formulate an appropriate loss function (also termed
a contrast, cost, or energy function) such that the
global minimization or maximization of this function
guarantees the correct separation or deconvolution. In
particular, this guarantees the statistical independence
of the output signals and/or spatial and temporal
decorrelation of signals. The loss function should be
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a function of the parameters of the neural network
model.

3) Apply an optimization procedure to derive learn-
ing algorithms. There are many optimization tech-
niques based on the stochastic gradient descent al-
gorithm, such as the conjugate gradient algorithm,
quasi-Newton method, and so on. We develop a new
algorithm called the natural gradient algorithm [6],
[7], [13], which automatically assures the desired
equivariant property to be explained later.

A. Blind Separation of Instantaneous
Linear Mixtures of Signals

There are many different mathematical or physical mod-
els in the mixing processes of unknown input sources

( ) depending on specific applications.
In the beginning, we will focus on the simplest model
where observed signals are instantaneous linear
combinations of the ( ) unknown source signals,
which are assumed in this paper to be zero-mean and
statistically independent. When the observable (sensors)
signals are noise-contaminated, we have

(1)

or in the matrix notation [see Fig. 2(a) and (b)]

(2)

where is the sensor vector at
discrete time , is the source
signal vector, is the noise vector,
and is an unknown full rank mixing matrix.

In order to recover the original source signals from the
observed mixtures, we use a simple linear separating system
(a feed-forward linear neural network)

(3)

where is an estimate of and
is a separating matrix, which is often called

the synaptic weight matrix. A number of adaptive learning
algorithms have been proposed by which the matrix
is expected to converge to the separating matrix, as will
be shown in Section III. However, the problem is ill-
conditioned, and we cannot obtain even when .
There are two types of ambiguities. First, even if we can
extract the independent signals correctly from their
mixtures, we do not know their order of arrangements. That
is, we do not know which signal is the first one. There
is an inherent indeterminacy within the permutations of
their ordering. Second, the scales of the extracted signals
are unknown, because when a signal is multiplied by a
scalar it has the same effect as the multiplication of the
corresponding column of by the same constant. Hence,

should converge at best to that satisfies [100],
[101]

(4)

(a)

(b)

Fig. 2. Illustration of the mixing model and a basic feed-forward
neural network for instantaneous blind separation of source signals:
(a) general block diagram (LA means learning algorithm) and (b)
detailed architecture of mixing and separating models.

where is a scaling diagonal nonsingular matrix andis
any permutation matrix.

The performance of the source separation is evaluated by
the composite matrix which describes the
total or global mixing-separating model such that

. The separation is perfect when it tends to a
generalized permutation matrix which has exactly one
nonzero element in each row and each column [100], [101].
This corresponds to the indeterminacies of the scaling and
order of the estimated signals . This indeterminacy
is not usually a serious problem since the most relevant
information about the source signals is contained in the
waveforms of the signals rather than their magnitudes and
orders in which they are arranged.

Instead of the feed-forward architecture, we may em-
ploy a fully connected feedback (recurrent) neural network
shown in Figs. 3(a) and 4(b) in the case of [10],
[35]. This is described by

(5)

It should be noted that, for the ideal memoryless case, both
basic models (recurrent and feed-forward) are equivalent
under the condition that

(6)

If, however, we take into account some intrinsic dynamic
effects such as low-pass filtering, then the dynamic behav-
iors will be different since the recurrent networks depicted
in Fig. 3 can be described by a system of differential (or
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(a)

(b)

(c)

Fig. 3. Recurrent neural network models for blind signal
separation: (a) simple recurrent neural network, (b) feed-
forward–feedback model, and (c) hybrid model.

difference) equations [see Fig. 3(a)–(c), respectively] [10],
[35]

(7)

(8)

or

(9)

where is a diagonal matrix representing the time constants
of the network. It should be noted that for the feed-forward
architecture of Fig. 2(a) and the hybrid architectures of
Fig. 3(c) the number of outputs need not necessarily be
equal to the number of sensors. In general, recurrent net-
works are more robust with respect to additive noises and
fluctuations of the parameters [10], [33], [35], [43].

In this paper we treat mostly the case where the number
of the outputs is equal to the number of the sensor signals.
We also treat the important practical case where the number
of the sources is not known in advance but it is greater than
or equal to the number of sensors ( ). Furthermore,
we assume that all the signals are sampled at discrete-time
instants , where and is sampling
period, assumed to be normalized to unity .

B. Multichannel Blind Deconvolution/Equalization
Problem

In this section we will formulate a more general and phys-
ically realistic model where the observed sensors signals are
linear combinations of multiply time-delayed versions of
the original source signals and/or mixed signals themselves,
such as represented by MA, AR and ARMA models [11],
[12], [29], [51], [61], [64]. All the coefficients are unknown.

(a)

(b)

Fig. 4. Detailed architectures for multichannel blind deconvo-
lution: (a) feed-forward neural network and (b) recurrent neural
network.

In order to recover the source signals, we can also use
the network models depicted in Fig. 4(a) and (b) but the
synaptic weights or should be generalized to
real or complex-valued dynamic filters [e.g., finite impulse
response (FIR) or infinite impulse response (IIR) filters] as
indicated in Fig. 5. A further variation is to consider the
constrained IIR such as the recently introduced gamma or
Laguerre filters or other structures which may have some
useful properties [see Fig. 5(b) and (c)] [92].

The problem is referred to as that of multichannel blind
deconvolution/equalization. In multichannel blind deconvo-
lution and equalization, an -dimensional vector of the
received discrete-time signals
at time is assumed to be produced from an-dimensional
vector of source signals for
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(a)

(b)

(c)

Fig. 5. Exemplary models of synaptic weights: (a) basic FIR filter model, (b) Gamma filter model,
and (c) Laguerre filter model.

various times , , by using the mixture model

(10)

where is an -dimensional matrix of mixing
coefficients at lag . In a causal system, takes only

nonnegative integers, , but it may
take any integer values in the case of spatial filters (for
example, for processing of images). The goal is to obtain
rescaled and time-delayed estimates of the source signals
from the received signals by using approximate knowledge
of the distributions and statistics of the source signals.
Typically, each source signal is an independent and
identically distributed (i.i.d.) sequence that is stochastically
independent of all other source sequences [61], [65], [67].

Most methods proposed so far for multichannel blind
deconvolution have focused on estimating the channel
impulse responses from the received signals and
then determining the source signals from these estimates
[59], [60], [62], [102], [109]. Moreover, the estimation
of the channel impulse responses must be carried out
before the equalized signals are calculated. In this paper,
we consider alternative methods that estimate the source
signals directly using a truncated version of a doubly-

infinite multichannel equalizer of the form [11], [12], [29]

(11)

where is a -dimensional vector
of the output signals which are to be estimators of the source
signals and , is a sequence of

-dimensional coefficient matrices. In the operator
form, the input and output of the equalizer are [11], [12]

(12)

(13)

where

(14)

are the -transforms of the channel, equalizer, and to-
tal or overall channel-plus-equalizer impulse responses,
respectively. Here is the delay operator, such that

. Then the goal of the adaptive
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deconvolution or equalization task is to adjust
such that

(15)

where is an -dimensional permutation matrix with
a single unity entry in any of its rows or columns,
is a diagonal matrix whose th entry is , is
a nonzero scaling factor, and is an integer delay value.
This channel equalization methodology is the multichannel
equivalent of the traditional Bussgang blind equalization
schemes [61], [88], [103]. A significant shortcoming of
the Bussgang techniques in the multichannel case is their
relatively slow convergence speed [48], [61], [103], and
thus few reports of algorithms have appeared thus far in the
literature which are successfully applied to a multichannel
equalizer of the form (11) [74], [88], [104], [106], [113].
When , except for , the task is reduced to
the simpler multichannel source separation of instantaneous
signal mixtures.

In this paper, we first discuss general robust algorithms
for blind source separation of instantaneous signal mixtures
and next extend them to the task of joint signal separation
and deconvolution [11], [12]. The natural gradient method
is introduced and is proved to have the equivariant property
(i.e., uniform properties of the algorithms are independent
of the mixing coefficients and scaling factors of source
signals [22]). In particular, we extend the natural gradient
method described in [6], [7], and [13] in order to apply
it to the blind deconvolution algorithms [11], [12]. We
also give a class of general divergence measures in the
space of probability distributions. This includes most of
the loss functions proposed thus far, such as the maximum
entropy problem formulation, ICA formulation, maximum
likelihood formulation, cumulant methods, etc. The method
is also elucidated from the more general framework of
estimating functions in semiparametric statistical models
[8], [15], [16].

C. Independent Components and Principal
Components Analyses

It is useful to remark here that the ICA is different from
the standard principal component analysis (PCA) [28], [54],
[85], [86], [70], [71], [73]. When the covariance matrix of
independent sources is

(16)

where is a positive diagonal matrix with diagonal entries
, then the covariance matrix of is

(17)

The PCA searches for the orthogonal matrixsuch that
the components of

(18)

are uncorrelated, that is

(19)

becomes a diagonal matrix representing eigenvalues of
the covariance matrix .

However, even though ’s become uncorrelated

(20)

this does not mean that and are independent. To
explain this, we consider the simple case whereis the
identity matrix, that is

(21)

In this case, for any orthogonal matrix, the components of

(22)

are uncorrelated since

(23)

But are not independent except for the special cases
where is a permutation matrix or the case where all
are Gaussian random variables.

In the general case, let

(24)

where is any orthogonal matrix. Therefore, when is
an orthogonal matrix such that

(25)

and is another matrix by which makes
uncorrelated. But there are no guarantee that are

independent.
The PCA can obtain independent components in only re-

stricted special cases such as the original are Gaussian,
or matrix is symmetrical and for all . But we
cannot, in general, recover the original by the method
of PCA. The present subject searches for the independent
components in a more general case by using higher order
cumulants and is completely different from the PCA.

It is sometimes useful to use the preprocessing of
into by

(26)

such that

(27)

This can be easily performed by using the method of PCA
[28], [54], [70], [71], [73], [85], [86]. This is called the
prewhitening. We then search for the orthogonal matrix
where

(28)

such that extracts the independent signals. This two-
stage process is sometimes very useful. However, we can
combine the two processes into one process. Therefore,
we do not discuss the prewhitening process in the present
paper, although it is important [44], [71], [72], [81], [85].
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III. L EARNING ALGORITHMS FOR

INSTANTANEOUS BLIND SEPARATION

Stochastic independence of random variables is a more
general concept than decorrelation. Therefore, the standard
PCA cannot be used for our purpose, although nonlinear
PCA has been successfully extended to the ICA [54], [56],
[85], [86].

Intuitively speaking, random variables and are
stochastically independent if knowledge of the values of

tells us nothing about the values of. Mathematically,
the independence can be expressed by the relationship

, where denotes the probability
density function (pdf) of random variable. More generally,
a set of signals are independent if their joint pdf can be
decomposed as

(29)

where is the pdf of th source signal.
In this section, for simplicity of consideration, we assume

that all variables are real valued, that the number of source
signals is equal to the number of sensors, and that the source
signals are zero mean ( ), although some of
these assumptions are easily relaxed. Moreover, we assume
that, at most, one source distribution is Gaussian [44], [100],
[101]. We also assume that additive noises have already
been cancelled or reduced in the preprocessing stage to a
negligible level [36]. Most learning algorithms have been
derived from heuristic considerations based on minimiza-
tion or maximization of a loss or performance function
[6], [10], [30], [44], [68]. It is remarkable that similar
types of learning algorithms are derived in common from
these heuristic ideas, for example, cumulant minimization,
entropy maximization (infomax) [17], [83], ICA [6], [44],
and maximization of likelihood (ML) [21], [90], [110],
[111].

We show that all of them can be derived from a unified
principle as follows. A more general statistical considera-
tion will be given later based on the concept of estimating
functions. Let be estimated source signals and let

be its pdf which depends on . We search for such
that makes independent signals. In order to measure

the degree of independence, we use an adequately chosen
independent probability distribution and
consider the Kullback–Leibler (KL) divergence between
two probability distributions and

KL (30)

This is the risk function in the sense of Bayesian statistics.
The KL divergence has several important properties [5],

[22].

1) KL with equality if and only if .
2) The KL divergence is invariant under an invertible

nonlinear transformation of data samples

KL KL

iii) The generalized Pythagorean theorem

KL KL KL

holds when three points and form a “gen-
eralized right triangle” under certain conditions not
stated here. This property is fundamental [5], [21],
although we do not refer to it explicitly. From this,
we can prove that takes critical values at

, (the desired solution where the signals
are separated) and it achieves the global minimum
under a certain mild conditions on to be stated
later.

We show that various algorithms are derived from (30).
Entropy maximization (infomax) uses component-wise non-
linear transformation functions and tries to
maximize the joint entropy of [17]. It can be
shown that the criterion is equivalent to the minimization
of the risk function by putting .
Moreover, when is the true pdf of the source signal

, minimizing the is equivalent to maximization
of the likelihood function. Hence, the derived is the
maximum likelihood estimator. When are set equal
to the marginal distributions of of , we have the
ICA criterion, where also depends on . The
relation between different criteria of the infomax, mutual
information, and ML are studied by Yang and Amari
[111]. It is illuminating to study this from the viewpoint
of information geometry on the manifold of probability
distributions [5].

It can be shown that is the expectation of the
following instantaneous loss function:

(31)

where is the determinant of matrix , except for a
constant term not depending on .

In order to derive a learning algorithm, we apply the
standard stochastic gradient descent method [17]

(32)

where is a learning rate at time and
is derived from as

(33)

How to choose or will be discussed later.
It is well known that stochastic gradient optimization

methods for parameterized systems sometimes suffer from
slow convergence. While the quasi-Newton method can
be used to overcome these performance limitations [77],
it is often costly in computation and may suffer from
numerical instability if not implemented properly. Thus, it
is desirable to search for new optimization methods that
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retain the simplicity and robustness of the stochastic gradi-
ent method while obtaining good asymptotic convergence
performances. It is also desirable that the performance does
not depend on the specific mixing system so that the
algorithm works uniformly well even when is close to a
singular matrix. This motivates us to discuss a more general
or universal type of algorithm.

The natural gradient [6], [7] search method has emerged
as a particularly useful technique when the parameter space
is not a uniform Euclidean space but has some structure.
In many cases, it has a Riemannian metric structure which
includes the Euclidean space as a special case. In the present
problem, the parameter space is the set of all nonsingular
matrices . Since the product of two nonsingular matrices
is again a nonsingular matrix, they form a group (Lie
group). For a matrix , if we multiply from the right,
it is mapped to the identity matrix. For a small deviation
from to , this multiplication maps to

(34)

which is regarded as the corresponding increment measured
at . We do not intend to describe mathematical details, but
it is worth mentioning that a Riemannian metric structure
is automatically introduced in the space of matrices by this
group structure. When the parameter space is related to a
family of probability distributions, information geometry
[5] elucidated its Riemannian structure by using the Fisher
information matrix. Information geometry plays a major
role also in the manifolds of neural networks (see, e.g.,
[7]), but we do not discuss its details here.

The ordinary gradient represents the steepest
direction of function when is the Cartesian coordinate
system of a Euclidean space. However, when the parameter
space is not Euclidean or when a curvilinear coordinate
system is taken in a Euclidean space, this is no more true.
We need to modify depending on the local structure
of the space. The descent direction of search in such a case
is represented by

(35)

where is the Riemannian metric and is its
inverse. Since we do not intend to enter into Riemannian
geometry, the reader may think that they are linear operators
depending on , often represented by a matrix multipli-
cation. Therefore, the gradient descent learning algorithm
becomes

(36)
This is called the natural gradient learning method. How
good is the natural gradient method? In the case of neural
learning it was proved that natural gradient on-line learning
gives asymptotically the best local performance, which
is equivalent to the best batch processing. Its behavior
is equivalent to the Newton method when the parameter

approaches the equilibrium when the loss function
is given by the logarithm of probability. However, the

natural gradient is defined everywhere in the parameter
space and is generally different from the Newton method.
It can be applied to many different types of problems such
as statistical estimation, multilayer perceptrons, Boltzmann
machines, statistical estimation, and blind source separation
and deconvolution (see [7] for details).

Note that the form of the Riemannian metric depends
on the current parameter values and may requirea priori
knowledge of the statistical characteristics of the signals
to be processed. Moreover, computing the natural gradient
direction involves the inversion of and is generally not
easy. However, in the parameter space of matrices (and
also of linear dynamic systems to be treated later) where
instantaneous blind source separation are performed, the
Riemannian metric (see [4] for the geometry of linear
systems) is explicitly given by the Lie group structure.
Moreover, its inverse is also calculated explicitly in a
simple form, and the natural gradient learning algorithm
can be formulated for this problem as

(37)

Thus, implementation of the natural gradient is particularly
simple for the blind separation problem. Since the gradient

is given in (32), this leads to the simple robust
adaptive learning rule [10], [30]

(38)

See Appendix A for its derivation. We can rewrite the
algorithm in terms of the composite matrix
(describing the overall mixing-separating process) as

(39)

This is independent of the mixing matrix , so that the
learning behavior is directly described in terms ofand
it does not depend on a specific. In other words, even
when contributions of some sources are very small, there is
no problem for recovering them. This desirable property
is called the equivariant property since the asymptotic
properties of the algorithm are independent of the mixing
matrix and the scaling factors of source signals [22], [35].

Using simple relations and
, we can derive a similar equivariant algorithm

for the fully recurrent neural network shown in Figs. 3(a)
and 4(b) as [10], [35], [38]

(40)
A disadvantage of the above algorithm is that in computer
implementation it is required to invert the matrix
in each iteration step in order to evaluate the output vector

. However, the system computes
the outputs without any explicit inverse of matrices in its
physical realizations.

The final problem is how to choose the function ,
or equivalently . If we know the true source pdf, the
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best choice is to use them, since it gives the maximum
likelihood estimator which is Fisher-efficient. One idea is
to estimate the true pdf’s adaptively. However, the point
is that when we misspecify , the algorithm gives the
correct answer (or the consistent estimator in statisticians’
terminology) under certain conditions [6], [8], [15]. We
give the precise conditions for convergence later. It should
be noted here that one can use any function which
might not be derived from a probability distribution .
This is justified from the theory of estimating functions
given later. We state here that suboptimal choices for
these nonlinearities still allow the algorithm to perform
separation: for sub-Gaussian source signals with negative
kurtosis, we can select and for super-
Gaussian source signals with positive kurtosis

, where and . In the
situation where contains mixtures of both sub- and
super-Gaussian sources, additional techniques are required
to enable the system to adapt properly [41], [42], [52], [56].
We give a universally convergent algorithm in the next
section.

IV. EQUILIBRIUM , CONVERGENCE, AND

STABILITY OF LEARNING ALGORITHMS

The learning algorithms in the previous section are de-
rived using the stochastic gradient descent method. There-
fore, the learning system is globally stable in the sense
that, for a sufficiently small learning rate, the loss function
decreases on average such that the parameters (synaptic
weights) converge to one of the local minima and possibly
fluctuate in its neighborhood. Such a system has rather
simple convergence behaviors. There are no periodic os-
cillations and no chaotic behaviors [32] in the averaged
learning equations

(41)

Every solution converges to an equilibrium, except
for the measure zero case, which we do not discuss here.

The equilibria are determined by a set of nonlinear
equations with respect to

(42)

or in the component form

(43)

where is the Kronecker delta. This means that the
amplitude of the output signals are automatically scaled
in such way that they satisfy condition .
As it will be shown in Section V, these constraints can be
relaxed or even completely removed.

The equilibrium condition (43) is satisfied when the
output signals becomes a permutation of rescaled source
signals, because are independent and zero mean. Hence,
such [which satisfies (4)] is an equilibrium. We call it
the correct equilibrium.

However, this does not mean that the correct equilibrium
is dynamically stable. It is important to study the stability,

because it determines whether or not the system success-
fully separates the source signals. By the local variational
analysis, it can be shown that the correct equilibrium point
is stable when the learning rate is sufficiently small
and all the eigenvalues of the Hessian of the loss function
(31)

(44)

are positive. It is found that a necessary and sufficient
condition for stability is expressed in a relatively simple
form [7], [9], [13] as

(45)

(46)

for all (47)

where , ,
, is the source signal extracted at theth output,

and denotes the derivative of the activation function
with respect to (see Appendix B for its derivation).

This determines how to choose for obtaining the correct
solution. In other words, the stability depends onand
the statistical properties of the sources as is expressed
mathematically by (45)–(47).

It is interesting to note that, when are monotonically
increasing odd nonlinear functions, the above stability
conditions are approximately satisfied when [52]

holds for all (48)

where .
It can be also easily shown that the above stability

conditions are satisfied if one selects nonlinearities
for super-Gaussian signals and a cubic

nonlinearity for sub-Gaussian signals,
(where and ), although such nonlinearities are
not optimal in most cases [13], [22], [42], [57].

In the case when the sensor signals are mixtures of
both sub- and super-Gaussian source signals there are
some problems. Even with some knowledge of the source
signal distributions, it is impossible to knowa priori
which source signal will be extracted at which output, and
thus it is impossible to select the nonlinearities a
priori to guarantee that all of the signals will be extracted
properly. In such a case, we can apply the following strategy
proposed by Douglaset al. [52]. We prepare nonlinear-
ity vectors in
advance, where , is chosen to be one
of the two nonlinearities and that are
optimized for sub- and super-Gaussian source separation
tasks, respectively. To decide nonlinear activation function

for each channel, we form the time-averaged estimates

(49)

(50)

(51)
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for and , where is a small positive
parameter. Then at discrete time is selected as [52]

if
,

otherwise

(52)

and is used to update the coefficient matrix in (38) and
(40). It can be seen that, as the coefficients of the system
converge, the quantity becomes a
reliable estimate of the left-hand side of the inequality in
(48) for . Extensive simulations have shown
that, so long as there exists a set of nonlinearity assignments
such that the stability condition in (48) is satisfied for one
ordering of the extracted sources at the outputs, then (52)
properly selects theth nonlinearity over time to enable the
system to reliably extract all the source signals regardless
of their distributions [52].

More sophisticated methods have been proposed recently
to obtain a universally convergent learning algorithms with-
out changing the equilibrium [13], [41], [42], [110]. For
example, we use the inverse of the operator . Because
it has a special block diagonal form, its inverse is obtained
explicitly. The universally convergent algorithm can be
written in the form [9], [13]

(53)

where elements of the matrix are deter-
mined as

(54)

(55)

Here, we need to know , , and approximately,
or need to estimate them adaptively. The above learning
algorithm ensures that the correct solution is always a stable
equilibrium of the modified learning equation (except for
the case ).

V. STATISTICAL PROPERTIES OFADAPTIVE ALGORITHMS

FOR BLIND SOURCE SEPARATION

We have described a family of adaptive learning algo-
rithms. Some are efficient in giving accurate estimators and
some are convergent. The reader might wonder what is the
general form of efficient learning algorithms. The present
section considers this problem from the statistical point of
view.

Let

(56)

be the true probability density function of the source
signals. Then, the pdf of is written in terms of

as

(57)

Given a series of observations , it is a
statistical problem to estimate the true (except for the
indeterminacies mentioned before). However, this problem
is “ill-posed” in the sense that the statistical model (57)
includes not only the parameters , which we want to
know, but also unknown functions , .
A statistical model is said to be semiparametric when it
includes extra unknown parameters of infinite dimensions.
Since the unknown functions are of infinite dimensions, this
brings some difficulties for estimating .

The estimating function method [15], [16] is applicable
to such a problem. Let or be a
matrix function depending on and or equivalently on

and . When

(58)

is satisfied under whatever source distribution of the
form (58) is used for taking the expectation,
is called an estimating function matrix. To avoid trivial
solutions we need some regularity conditions such as

(59)

when is different from the true parameters used for
taking the expectation. When observations
are given, we can approximate the expectation (58) by
the arithmetic mean . Therefore,
when an estimating function exists, the solution of the
estimating equation

(60)

is believed to give a good estimator. It is proved that
the solution of (60) is a consistent estimator, that is, an
estimator which converges to the true as tends to
infinity.

We can find a variety of estimating functions. For ex-
ample

(61)

is an estimating function because

(62)

holds when is the separating solution. The above func-
tion is derived from a cost function as its gradient. However,
there are estimating functions which are not written as
gradients of cost functions. For example, when one of

(63)

holds, then

(64)

is an estimating function.
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A learning algorithm is easily obtained from an estimat-
ing function as

(65)

because the true solution is the equilibrium of (60).
An important problem is to find such an estimating

function which gives a good performance. An estimating
function is said to be inadmissible when there exists an
estimating function which gives a better estimator than

does for any probability distributions. We need to obtain
the class of admissible estimating functions.

Information geometry [5] is particularly useful for ana-
lyzing this type of problem [7]–[9]. When it is applied to
the present problem we can obtain all the set of estimating
functions. It includes the Fisher efficient one, which is
asymptotically the best one. However, the best choice of

again depends on the unknown, thus we need to use
an adaptive method. The following important results [6] are
obtained by applying information geometry.

1) The off-diagonal components , of
an admissible estimating function has the form

(66)

where and are suitably chosen constants or
variable parameters.

2) The diagonal part can be arbitrarily as-
signed.

The above theoretical results have the following impli-
cations. Since most learning algorithms have been derived
heuristically, one might further try to obtain better rules by
searching for an extended class of estimating functions such
as or more general ones. However, this is not
admissible, and we can find a better function for noiseless
case in the class of

(67)

We have studied the special case of in previous
sections.

It should be noted that and give
the same estimating equations, where is a linear
operator. Therefore, and are equivalent when we
estimate by batch processing. However, two learning
rules

(68)

(69)

have different dynamical characteristics, although their
equilibria are the same. The natural gradient uses
to improve the performance and to keep the equivariant
property. The universally convergent algorithm uses the
inverse of the Hessian as , so that the convergence
is guaranteed. Refer to [8], [15], and [16] to learn how to
choose good for theoretical discussions. The statistical
efficiency of estimators is analyzed in detail in [8]. It is
remarkable that “superefficiency” holds for some cases
under certain conditions [9].

The second fact shows that can be set arbitrarily.
Indeed, this term determines the scales of the output signals
which can be arbitrarily assigned. We can rescale them if
necessary. A simple choice is or . This
is a hard constraint on and very simple, but it loses
the equivariant property. So we will not discuss such an
approach in this paper. Another form of the constraints are
soft constraints such that depends on . For example,
we require that the amplitudes of the output signals satisfy

(70)

where is any positive definite diagonal matrix. The
learning rule (38) then takes the following generalized form:

(71)
A particularly convenient and interesting case is the special
one where diag . In such a
case we remove any constraints (soft and hard) on the
diagonal part in the bracket of (71). This new approach
improves the convergence properties because, changes in

are shown to be the orthogonal to the equivalence
set of [14].

Furthermore, we discovered that such a learning rule is
able to separate the source signals even in the case that the
number of sensors is greater than the number of sources and
we do not know the exact number of sources. For such a
problem we can apply the matrix , where
and a slightly modified on-line adaptive algorithm

(72)

where diag
. In this new learning rule an auxiliary term

is added in order to simultaneously perform
second-order moment decorrelation and higher-order
independence of the output signals. Mutual decorrelations
due to some redundancy make ( ) of the output
signals converge quickly to zero. This has been confirmed
by extensive computer simulations (see Section IX).
To achieve the same task, we can alternatively use
a symmetrical algorithm which is a generalization of
Cardoso–Laheld algorithm [21]

(73)

where diag .
Summarizing, all the adaptive learning algorithms with

the equivariant property for blind separation of sources can
be written in the general form by using estimating functions

— For the feed-forward neural network model [see
Fig. 2(a)]

(74)
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— For the recurrent neural network model [see
Fig. 3(a)]

(75)

where separating matrices and are in general of
dimension and the elements of an admissible

matrix can take the generalized form

(76)

where are suitably chosen entries of the scal-
ing diagonal matrix as explained and are
nonnegative parameters in general depending on the
statistical properties of the estimated source signals.
For example, in the special case for

and , the generalized learning rule is
simplified to (72). Similarly for

, we obtain algorithm (73). Analogously, we can
obtain the algorithm with the universal convergence
property (53)–(55) and other algorithms discussed in
this paper as special cases.

VI. BLIND SIGNAL EXTRACTION

An alternative approach to blind signal separation is to
extract the source signals sequentially one by one, rather
than to separate all of them simultaneously. This procedure
is called the blind signal extraction in contrast to BSS.

Several approaches have been recently developed for
blind signal extraction and blind deconvolution [39],
[63]–[65], [96]. A single processing unit (artificial neuron)
is used in the first step to extract one source signal with
specified stochastic properties. In the next step, a deflation
technique is used in order to eliminate the already extracted
signals from the mixtures. Another technique employs a
(multistage) hierarchical neural network which ensures
that the signals are extracted in a specified order without
extracting the same source signals twice. This is achieved
by using inhibitory synapses between the units.

Let us consider a single processing unit [see Fig. 6(a)]
described by

(77)

where or (where is prewhitening
matrix). The prewhitening is optional preprocessing in order
to improve convergence speed for ill-conditioned problems.

The unit successfully extracts a source signal, say the
th signal, if that satisfies the relation

, where denotes the th column of a
nonsingular diagonal matrix.

A possible loss (contrast) function is [39]

(78)

where is the normalized kurtosis defined by

(79)

(a)

(b)

Fig. 6. Block diagram illustrating blind extraction and deflation
of signals: (a) block diagram illustrating extraction and deflation
process of the first extracted signal (LAE-learning algorithm for
extraction; LAD-learning algorithm for deflation) and (b) cascade
neural network for blind extraction of signals and independent
component analysis.

It is easy to show that for the prewhitened sensor signals
the normalized kurtosis satisfies the following relations:

(80)

where and .
Thus our normalized kurtosis satisfies the lemma given

by Delfosse and Loubaton [46], and the loss function does
not contain any spurious local minima so that all the
minima correspond to the source signals. In order to derive
a global convergent learning rule, we apply the standard
stochastic gradient descent technique. Minimization of the
loss function (78) leads to a simple learning rule [39]

(81)

where is prewhitened and the nonlinear activation func-
tion is evaluated adaptively as

sign (82)

The higher order moments and and the sign of
the kurtosis can be estimated on-line by using the
following averaging formula

(83)

with and , .
After the successful extraction of the first source signal

( ), we can apply a deflation
procedure which removes the previously extracted signals
from the mixtures. This procedure may be recursively
applied to extract sequentially the rest of the estimated
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source signals. This means that we require an on-line linear
transformation [see Fig. 6(a) and (b)] given by [39]

(84)

which ensures minimization of the generalized energy (loss)
function

(85)

where and

(86)

sign (87)

Minimization of the loss function (85) leads to the simple
local learning rule

(88)

where
, with sign . It is easy to

show that vector converges to one the column vector
of the global mixing matrix .

The procedure can be continued until all the estimated
source signals are recovered, i.e., until the amplitude of each
signal is below some threshold. This procedure means
that it is not required to know the number of source signals
in advance, but it is assumed that the number is constant
and the mixing system is stationary (e.g., the sources do
not “change places” during the algorithm’s convergence).

In order to extract signals in a specified order, for
example, in order of the decreasing absolute values of
the normalized kurtosis, an auxiliary Gaussian noisecan
be applied to the nonlinear functions , i.e.,

, where the Gaussian noise is decreasing in time.
In this manner, it may be possible to avoid local minima
[29], [39].

The blind signal extraction approach may have several
advantages over simultaneous blind separation [39].

1) Signals can be extracted in a specified order according
to the stochastic features of the source signals, e.g., in
the order of decreasing absolute value of normalized
kurtosis. Blind extraction can be considered as a gen-
eralization of PCA where decorrelated output signals
are extracted according to the decreasing order of
their variances.

2) Only the “interesting” signals need be extracted. For
example, if the source signals are mixed with a large
number of Gaussian noise signals, one can extract
only those signals with some desired stochastic prop-
erties.

3) The learning algorithms are purely local and hence
biologically plausible. Typically, they are also sim-
pler than in the case of blind signal separation. (In
fact, the learning algorithms described above can
be considered as extensions or modifications of the
Hebbian/anti-Hebbian learning rule.)

In summary, blind signal extraction is a useful approach
when it is desired to extract several signals with specific
stochastic properties from a large number of mixtures.
Extraction of a single source is closely related to the
problem of blind deconvolution [61], [64], [65], [96].

VII. A DAPTIVE ALGORITHMS FOR

BLIND DECONVOLUTION

The approach discussed in previous sections can be
generalized for blind deconvolution/equalization problems
formulated in Section II-B.

A. Learning Algorithms in the Frequency Domain

When the observed signals are time-delayed multi-
path mixtures as shown in (10), we need spatial separation
and temporal decomposition in order to extract the source
signals . A simple way of extending the blind source
separation algorithms is to use frequency domain tech-
niques. By using the Fourier transform, (10) and (11) are
represented by

(89)

where the Fourier representation is given by

const (90)

and denotes the frequency.
In this case, we have linear matrix expressions ofand

for each frequency . Let us discretize the frequency
axis, and put , . Then, our basic
learning algorithm (71) can be formulated in the frequency
domain as follows:

(91)

(92)

where is the new sampling index in the frequency domain,
the superscript denotes the Hermitian conjugate,is the
number of points in the fast Fourier transform (FFT), and
the bold underlined symbols represents variables or blocks
in the frequency domain (following the convention used in
[74] and [75]). In the above algorithm, FFT
is a block of vector signals of in the frequency domain.
Diagonal matrix is equal to the identity matrix or it
is a diagonal matrix defined as diag
[cf. (71) and (72)]. Analogously, is a matrix of FIR
filters [74]. Unfortunately, the algorithms in the frequency
domain are batch or block algorithms and are computa-
tionally intensive. Moreover, they are not responsive to
changing environments. To avoid this shortcoming, we can
use temporal-windowed Fourier expansion like

(93)
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where is the window function. We can then apply an
on-line learning algorithm

(94)
Its performance depends on the choice of the window
function. There are a number of researches in this direction
[75], where the natural gradient is used in some of them. We
will propose a more direct algorithms in the time domain.

B. Adaptive Algorithms in the Time Domain for
Multi-Input Multi-Output Blind Deconvolution

In this section we discuss the natural gradient algorithm
for adapting in the convolutive model (12) and
(13) for the multichannel deconvolution and equalization
task. For the derivation of the learning rule, see Appendix
C. Refer to [4] for the Riemannian structure of the space of
linear systems. We assume that the sources are i.i.d.
and that both and are stable with no zero
eigenvalues on the unit circle in the complex plane
of . In addition, the partial derivatives of quantities with
respect to should be understood as a sequence of
matrices of the partial derivatives with respect to
indexed by the lag value [65]. We also assume that the
number of sources equals the number of the sensors
and that all signals and coefficients are real valued, although
the final form of the algorithm is described for a more
general case [11], [12].

For our derivation, we consider the cost or loss function
of the form

(95)

where is any pdf and . The expectation of
(95) is the Kullback–Leibler divergence, except for a con-
stant, between two stochastic processes, one being
generated from the output of the system and the other
being the spatially independent i.i.d. processes specified
by the component pdf’s . The expectation of the
first term in (95) can be interpreted as an affine measure
of the negative of the joint entropy of the time series

, where
and . In addition, when is the
same as the pdf of the source signal , the first term
on the right-hand side (RHS) of (95) is the negative of the
log likelihood. The second term on the RHS of (95) is a
constraint term that prevents from converging to 0.

Minimization of the cost function (95) is complicated
but is calculated under the same principle as before (see
Appendix C). This leads to the learning rule first developed
by Amari et al. in [11] and [12]

(96)

where

(97)

In practice, the doubly-infinite noncausal equalizer cannot
be implemented, and thus we approximate it by the FIR
causal equalizer given by

(98)

However, even with this restriction, theth coefficient
matrix update in (96) depends on future equalizer outputs

, , through the definition of in (98)
for the truncated equalizer. Although such difficulties might
be overcome by suitably approximated calculations and
data storage, such solutions are cumbersome. We instead
introduce an -sample delay into the last term on the right-
hand side of (96). This delayed update version maintains
the same statistical relationships between the signals in the
updates and thus can be expected to provide a performance
similar to that of (96). The loss in the performance of this
approximation can be expected to be similar to that of the
delayed LMS algorithm in adaptive filtering tasks [108].
In addition, the calculation of for is
cumbersome because it requires application of the same
multichannel filter to delayed versions of the same
signal. For small step sizes , we can assume that

such that

(99)

which avoids these excessive calculations.
Considering these changes and approximations, in the

general case where and all signals and coefficients
are complex valued, the proposed algorithm for multichan-
nel blind deconvolution and equalization is described as
follows [11], [12]:

— compute the estimates of the source signals from
the measured signals using (98);

— form as

(100)

— update the coefficient matrices as

(101)

where is a positive-definite diagonal matrix, e.g.,
.

As previously stated, the optimum choice for each
depends on the statistics of each at the equilibrium.
The optimal choices for the
true distributions yield the fastest convergence behavior;
however, suboptimal choices for these nonlinearities still
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allow the algorithm to perform separation and deconvolu-
tion of the sources. Since typical digital communication
signals are complex valued sub-Gaussian with negative
kurtosis [defined as ], the
choices yield adequate separation and
deconvolution. Similarly, choosing or

for enables the algorithm to
deconvolve mixtures of super-Gaussian sources with posi-
tive kurtosis. In the situations where contains mixtures
of both sub- and super-Gaussian sources, techniques similar
to that proposed in Section V can be applied.

Although we do not prove it here, the stability analysis
of equilibria can be performed by extending our method,
and we can obtain the universally convergent algorithm in
the case of blind equalization, too.

C. Adaptive Learning Rules for SISO and
SIMO Blind Equalization

A similar approach can be applied to the single channel
SISO (single-input single-output) and SIMO (single-input
multi-channel outputs—fractionally sampled) blind equal-
ization problems [61], [102]. For SISO blind equalization,
Douglaset al. developed the following adaptive learning
algorithms [49]–[51].

1) Filtered-regressor (FR) algorithm [49], [51]:

(102)

where ,
, and

with

(103)

2) Extended blind separation (EBS) algorithm:

(104)

with , and the matrix
can take one of the following forms:

(105)

(106)

where is a diagonal positive definite matrix,
e.g., or diag for (105)
and are suitable nonnegative parameters as
discussed above.

VIII. L EARNING OF LEARNING RATE PARAMETERS

The problem of optimal updating of the learning rate
(step size) is a key problem encountered in all the learning
algorithms discussed in this paper. Many of the research
works related to this problem are devoted to batch and/or
supervised algorithms. Various techniques like the conju-
gate gradient, quasi-Newton, and Kalman filter methods
have been applied. However, relatively little work has been

devoted to this problem for on-line adaptive unsupervised
algorithms [1], [33], [40], [82], [98].

On-line learning algorithms discussed in this paper can
be expressed in the general form as [1], [9], [31], [33],
[82], [98]

(107)

where is the iteration index,
is the -dimensional vector of the unknown

parameters to be updated, is a learning
rate (step size), and

is a nonlinear function de-
pending on , as well as and (respectively,
input and output signals) which can be considered as an
instantaneous estimate of the gradient.

It is well known that the final misadjustment (often
defined in terms of the MSE) increases as the learning
rate increases. However, convergence time increases as
the learning rate decreases [1]. For this reason it is often
assumed that the learning rateis a very small positive
constant, either fixed or exponentially decreasing to zero as
time goes to infinity. Such an approach leads to a relatively
slow convergence speed and/or low performance and is not
suitable for nonstationary environments.

This inherent limitation of on-line adaptive algorithms
represented by (107) imposes a compromise between the
two opposing fundamental requirements of the small miss-
adjustment and fast convergence demanded in most ap-
plications, especially in nonstationary environments [1],
[82]. As a result, it is desirable to find an alternative
method to improve the performances of such algorithms.
Most work has been devoted to variable step size LMS-
type (supervised delta rule) algorithms. In this section we
will consider a more general case which includes both
unsupervised and/or supervised on-line algorithms.

A very old work [1] was devoted to the analysis of
on-line dynamic behavior of in the neighborhood
of the optimal and obtained analytical formulas for
the convergence speed to and the fluctuation of
around . Moreover, this paper suggested a method for
a variable learning rate [1]. In this section we extend this
idea of learning of the learning rate by proposing robust,
variable step-size on-line algorithms. The main objective
is to propose a simple and efficient algorithm which en-
ables automatic update of the learning rate, especially in
nonstationary environments.

Recently, we have developed a new family of on-line al-
gorithms with an adaptive learning rate (see Fig. 7) suitable
for nonstationary environments [31], [33], [40]

(108)

(109)

(110)

or

(111)
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Fig. 7. Implementation of self-adaptive learning of learning rate.

where , , are fixed
coefficients and is a nonlinear function defined
as or

. It should be noted that (111) has
been obtained from (110) by simply replacing the fixed
by the self-adaptive term . The above algorithm
is related to the very recent research works of Murata
et al. and Sompolinskiet al. [82], [98]. It is interesting
to note that (109) and (110) describe simple first-order
low-pass filters with cut-off frequencies determined by the
parameters and . The even nonlinear function is
introduced to limit the maximum value of the gradient norm

, and the maximal value of the gainis constrained
to ensure stability of the algorithm [33].

It should be noted that for a fixed the system behaves
in such a way that parameters never achieve a steady
state but will fluctuate around some equilibrium point.
In order to reduce such fluctuations we have employed
two low-pass filters (LPF’s). Intuitively, the self-adaptive
system described by (108)–(111) operates as follows. If
gradient components have local average (mean) val-
ues which differ from zero (which are extracted by the
first LPF’s), then the learning rate is decreasing or
increasing to a certain value determined by the gainand
the norm of the gradient components. However, during the
learning process, decreases to zero, i.e., after some
time starts to fluctuate around zero, and then
also decreases to zero as desired. If some rapid changes
occur in the system, then suddenly increases and
consequently also rapidly increases from a small value
so that the system is able automatically to adapt quickly to
the new environment.

We have found that these algorithms work with high
efficiency and they are easily implemented in very large
scale integration (VLSI) technology. However, they require
the proper selection of three parameters ( ). Al-
though the above algorithms are robust with respect to
the values of these parameters, their optimal choice is
problem-dependent.

IX. EXEMPLARY COMPUTER SIMULATION EXPERIMENTS

Most of the adaptive learning algorithms described on
this paper have been investigated and tested by computer
simulations. Extensive simulations confirm the validity and
high performance of the developed algorithms. Due to
limitations of space we present here only three illustrative

examples. For more details see also [11], [12], [29]–[43],
[51], and [52].

Example 1: In this experiment five color images, as
shown in Fig. 8(a), have been mixed by a randomly chosen
ill conditioned, nonsingular 55 mixing matrix . Two-
dimensional mixed images shown in Fig. 8(b) have been
converted to one-dimensional zero-mean signals and then
separated by feed-forward network with the learning algo-
rithm (38) with nonlinear activation functions of the form

sign , where parameters change
between one and ten depending on value of kurtosis of
separating signals. The adaptive algorithm was able to
separate images in less than 5000 iterations using the self-
adaptive learning rate (108)–(111). Although restoration of
the original images is not perfect, the performance index
expressed by peak signal to noise ratio (PSNR) was higher
than 25 dB [36], [37].

Example 2: In the second experiment, three unknown
acoustical signals (two natural speech signals with positive
kurtosis and a single tone signal with negative kurtosis)
where mixed using randomly selected 73 full rank mixing
matrix (see Fig. 9). To sensors signals were added
3% i.i.d. Gaussian noises. The mixing matrix and the
number of sources, as well as their statistics, were assumed
to be completely unknown. The learning algorithms (72)
with self-adaptive learning rate (111) and nonlinear
activation functions , where

and if the extracted signal has positive
kurtosis and , and if it has negative kurtosis was
able to successfully estimate the number of active sources
and their waveforms [14], [41]. In this case four redundant
outputs collects only additive sensor noises, while the other
three outputs estimate original source signals with reduced
noise. In the special case where the sensors signals are
noiseless four output signals decay quickly to zero while
three other reconstruct original sources.

Example 3: In this more real-world experiment, three
natural speech signals are convolved and mixed together
by using matrix of FIR filters of order 25. In order to
perform multichannel blind deconvolution we apply a feed-
forward network with FIR filters of order with the
associated learning algorithm (101). As shown in Fig. 10,
the learning algorithm is able to restore the original source
signals with a relatively short time less than 11 000 iter-
ations. In order to improve convergence speed, we have
added to the output signals auxiliary noise signals gradually
attenuating to zero [29].

X. CONCLUSIONS, DISCUSSIONS, ANDOPEN PROBLEMS

In this paper, we have reviewed new promising ap-
proaches to adaptive blind signal processing. A family of
robust learning adaptive algorithms are derived or mathe-
matically justified and their properties are briefly analyzed.
Exemplary computer simulation experiments are also given
to illustrate the performances of the proposed algorithms.
Due to wide interest in this fascinating area of research, we
expect, in the near future, further developments of compu-
tationally efficient separation, deconvolution, equalization
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(a)

(b)

(c)

Fig. 8. Example 1: blind separation of face images and noise: (a) original source images, (b) mixed
images, and (c) restored images after applying learning algorithm (38) or (72).

self-adaptive or self-organized systems with robust on-line
algorithms for many real world applications like wireless
communication, the “cocktail party” problem, speech and
image recognition, intelligent analysis of medical signals
and images, feature extraction, etc.

A number of open problems not addressed in this paper
still exist to our knowledge in blind signal processing. We
formulate here ten such basic problems.

1) How can one effectively use somea priori informa-
tion about the linear and nonlinear dynamic system
in order to successfully separate or extract the source
signals?

2) What methods can be effective in the case when
there are more source signals than sensors (e.g., for

EEG signals)? Whata priori information is sufficient
and/or necessary in such case?

3) How can the number of the sources be reliably esti-
mated in the presence of large amplitude of colored
(non-Gaussian) and/or impulsive noises when the
reference noise is not available [36], [42], [43].

4) What are the theoretical and practical limitations on
blind source separation/deconvolution when the mix-
tures or channels are nonlinear? It is recognized that
there will exist nonlinearities for which no solution
exists, but it is desirable to quantify these limitations,
and further, to establish the types of problems which
are solvable effectively. Developments of the inverse
models of nonlinear dynamic systems are necessary
[112].
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(a)

(b)

(c)

Fig. 9. Example 2: testing the separation abilities when the
number of source signals is unknown: (a) three original natural
voice signals, (b) seven noisy mixed signals, and (c) restored
source signals using the adaptive algorithm (72) with self-adaptive
learning rate.

5) What are necessary and sufficient conditions for suc-
cessful blind separation and/or deconvolution prob-
lems? What are the practical limitations how to
extend or modify the existing criteria, especially when
the usual i.i.d. and mutual statistical independence

(a)

(b)

(c)

Fig. 10. Example 3 of blind deconvolution of speech signals: (a)
original acoustical signals, (b) convolved and mixed signals, and
(c) restored signals during the learning process.

conditions are not fully satisfied or when the data are
correlated?

6) Comparison and further developments of computa-
tionally efficient separation, deconvolution, equaliza-
tion adaptive systems with algorithms for real-world
applications. For example, in the problem of reverber-
ation and echo or long channel delays, what methods
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can be developed to perform fast multichannel blind
source separation and deconvolution/equalization?

7) Comparison between time and frequency domain
algorithms, especially for ill-conditioned problems
with respect to complexity, robustness and biological
plausibility.

8) Implementation of adaptive stable recurrent neural
networks, especially IIR filters (e.g., Gamma, La-
guerre filters) and/or state space models instead of
standard FIR channels.

9) Development of the inverse models and adaptive al-
gorithms for time-varying nonstationary systems, i.e.,
channels with varying characteristic and/or number of
sources varying, e.g., an unknown number of sources
moving in space and varying in time (e.g., acoustic
or speech signals with quiet periods). Estimation of
variable time delays for source signals (e.g., acoustic
sources moving in space).

10) Robustness and tracking abilities of learning adap-
tive algorithms, especially in the presence of noise.

APPENDIX A
DERIVATION OF BASIC LEARNING RULE FOR BSS

In order to calculate the gradient of expressed
by (31), we derive the total differential of when is
changed from to . In component form

(112)

where the coefficients of represent the gra-
dient of . Simple algebraic and differential calculus yields

tr (113)

where tr is the trace of a matrix and is a column
vector whose components are .
From , we have

(114)

Hence, we put

(115)

whose components are linear combinations of .
The differentials form a basis of the tangent space of
nonsingular matrices since they are linear combinations
of the basis . It should be noted that
is a nonintegrable differential form so that we do not have
a matrix function which gives (115). Nevertheless,
the nonholonomic basis has a definite geometrical
meaning and is very useful. It is effective to analyze the
differential in terms of , since the natural Riemannian
gradient [6]–[8] is automatically implemented by it and
the equivariant properties investigated in [22] automatically
hold in this basis. It is easy to rewrite the results in terms
of by using (115). The gradient in (31) is expressed
by the differential form

tr (116)

This leads to the stochastic gradient learning algorithm

(117)

in terms of , or

(118)

in terms of .

APPENDIX B
STABILITY OF THE BASIC LEARNING RULE

We consider the expected version of the learning equation

(119)

where we use the continuous time version of the algorithm
for simplicity’s sake. By linearizing it at the equilibrium
point, we have the variational equation

(120)

where implies in component
form. This shows that, only when all the eigenvalues of
the operator

have negative real parts, the equilibrium
is asymptotically stable. Therefore, we need to evaluate all
the eigenvalues of the operator. This can be done in terms
of , as follows. Since is derived from the
gradient , we need to calculate its Hessian

in terms of . The equilibrium is stable if and only if
the expectation of the above quadratic form is positive
definite. We calculate the second total differential, which
is the quadratic form of the Hessian of, as [13]

(121)

The expectation of the first term is

Here, the expectation is taken at where ’s are
independent.
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Similarly

(122)

because (the normalization condition).
Hence

(123)

For a pair , the summand in the first term is
rewritten as

(124)

This is the quadratic form in , and

(125)

The is positive if and only if stability conditions
(45)–(47) hold.

APPENDIX C
DERIVATION OF LEARNING ALGORITHM FOR THE

MULTICHANNEL BLIND DECONVOLUTION [11], [12]

We now determine the stochastic learning algorithm, in
particular, the natural gradient algorithm for minimizing
the expected value of with respect to
[11], [12]. To do so, we determine the total differen-
tial when undergoes an infinitesimal
change as

(126)

as this corresponds to the gradient of the cost func-
tion with respect to . Let us define

. Then

(127)

(128)

in which is given in terms of as

(129)

(130)

Define a modified differential by

(131)

(132)

where the matrices are defined by the inverse-
-transform of . With this definition,

we have

(133)
Similarly, it can be seen that

tr (134)

tr (135)

where tr denotes the trace operation. Thus, combining
(133) and (135) gives

tr
(136)

The differential in (136) is in terms of the modified coef-
ficient differential matrix . Note that
is a linear combination of the coefficient differentials

in the matrix polynomial . Thus, so
long as is nonsingular, represents a
valid search direction to adjust the polynomial to
minimize (95), because spans the same tangent
space of matrices as spanned by . For these
reasons, one could use an alternative stochastic gradient
search method of the form

(137)

Hence taking into account (132) we have

(138)

where the right-sided operator acts on the gradient
term in brackets only in the time dimension. This search
direction is nothing more than the natural gradient search
direction using the Riemannian metric tensor of the space
of all matrix filters of the form of in (14) [7].
Now, we note from (132) and (136) that

(139)

The second term on the RHS of (139) simplifies to
. To express the first term, define

(140)

Then, substituting (139) and (140) into (138) gives the
coefficient updates as

(141)

The stability analysis of the equilibrium can be performed
in a similar way as in Appendix B.
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