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Abstract 
Workflow management systems (WfMSs) have been used to support 
various types of business processes for more than a decade now. In 
workflows or Web processes for e-commerce and Web service 
applications, suppliers and customers define a binding agreement or 
contract between the two parties, specifying Quality of Service (QoS) 
items such as products or services to be delivered, deadlines, quality of 
products, and cost of services. The management of QoS metrics directly 
impacts the success of organizations participating in e-commerce. 
Therefore, when services or products are created or managed using 
workflows or Web processes, the underlying workflow engine must accept 
the specifications and be able to estimate, monitor, and control the QoS 
rendered to customers. In this paper, we present a predictive QoS model 
that makes it possible to compute the quality of service for workflows 
automatically based on atomic task QoS attributes. We also present the 
implementation of our QoS model for the METEOR workflow system. 
We describe the components that have been changed or added, and discuss 
how they interact to enable the management of QoS.  

1 Introduction 

With the advent and evolution of global scale economies, organizations need to be more 
competitive, efficient, flexible, and integrated in the value chain at different levels, 
including the information system level. In the past decade, Workflow Management 
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Systems (WfMSs) have been distinguished due to their significance and their impact on 
organizations. WfMSs allow organizations to streamline and automate business processes 
and reengineer their structure; in addition, they increase efficiency and reduce costs.  

Several researchers have identified workflows as the computing model that enables a 
standard method of building Web service applications and processes to connect and 
exchange information over the Web (Chen, Dayal et al. 2000; Leymann 2001; Shegalov, 
Gillmann et al. 2001; Fensel and Bussler 2002). The new advances and developments in 
e-services and Web services set new requirements and challenges for workflow systems. 

One important missing requirement is the management of Quality of Service (QoS). 
Organizations operating in modern markets, such as e-commerce activities and 
distributed Web services interactions, require QoS management. Appropriate control of 
quality leads to the creation of quality products and services; these, in turn, fulfill 
customer expectations and achieve customer satisfaction. 

While QoS has been a major concern in the areas of networking (Cruz 1995; 
Georgiadis, Guerin et al. 1996), real-time applications (Clark, Shenker et al. 1992) and 
middleware (Zinky, Bakken et al. 1997; Frolund and Koistinen 1998; Hiltunen, 
Schlichting et al. 2000), few research groups have concentrated their efforts on enhancing 
workflow systems to support Quality of Service management. Most of the research 
carried out to extend the functionality of workflow systems QoS has only been done in 
the time dimension, which is only one of the dimensions under the QoS umbrella. 
Furthermore, the solutions and technologies presented are still preliminary and limited 
(Eder, Panagos et al. 1999). The industry has a major interest on the QoS of workflows 
and workflow systems. Currently, ad-hoc techniques can be applied to estimate the QoS 
of workflows.  

For organizations, being able to characterize workflows based on QoS has four distinct 
advantages.  

(1) QoS-based design. It allows organizations to translate their vision into their 
business processes more efficiently, since workflow can be designed according to 
QoS metrics. For e-commerce processes it is important to know the QoS an 
application will exhibit before making the service available to its customers.  

(2) QoS-based selection and execution. It allows for the selection and execution of 
workflows based on their QoS, to better fulfill customer expectations. As 
workflow systems carry out more complex and mission-critical applications, QoS 
analysis serves to ensure that each application meets user requirements.  

(3) QoS monitoring. It makes possible the monitoring of workflows based on QoS. 
Workflows must be rigorously and constantly monitored throughout their life 
cycles to assure compliance both with initial QoS requirements and targeted 
objectives. QoS monitoring allows adaptation strategies to be triggered when 
undesired metrics are identified or when threshold values are reached.  

(4)  QoS-based adaptation. It allows for the evaluation of alternative strategies when 
workflow adaptation becomes necessary. In order to complete a workflow 
according to initial QoS requirements, it is necessary to expect to adapt, replan, 
and reschedule a workflow in response to unexpected progress, delays, or 
technical conditions. When adaptation is necessary, a set of potential alternatives 
is generated, with the objective of changing a workflow as its QoS continues to 
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meet initial requirements. For each alternative, prior to actually carrying out the 
adaptation in a running workflow, it is necessary to estimate its impact on the 
workflow QoS.  

This paper is composed of two parts. The first part presents a comprehensive model 
for the specification of workflow QoS as well as methods to compute and predict QoS. 
We start by investigating the relevant QoS dimensions that are necessary to correctly 
characterize workflows. We not only target the time dimension, but also investigate other 
dimensions required to develop a usable workflow QoS model. Once the QoS model is 
defined, algorithms are necessary to compute the QoS of workflows. Quality metrics are 
associated with tasks, and tasks compose workflows. The computation of workflow QoS 
is done based on the QoS of the tasks that compose a workflow.  

The second part of this paper describes the enhancements that need to be made to 
workflow systems to support processes constrained by QoS requirements. The 
enhancements include the implementation of a QoS model, the implementation of 
algorithms to compute and predict workflow QoS, and the implementation of methods to 
record and manage QoS metrics. These enhancements have been carried out for the 
METEOR system (Kochut, Sheth et al. 1998) to allow the specification, recording, and 
computation of QoS. The support of QoS requires the modification and extension of 
several workflow system components, and the development of additional modules. While 
the implementation was made for the METEOR system and the development is based on 
a specific conceptual model, the main ideas presented in this study can be applied to the 
vast majority of workflow systems available. 

This paper is structured as follows. Section 2 describes a workflow process that 
illustrates a real world scenario, which will be used to exemplify QoS through the rest of 
the paper. Based on our scenario, a set of new requirements is derived and the current 
limitations of WfMSs technology are stated. In section 3, we introduce our workflow 
QoS model and describe each of its dimensions. Section 4 describes how the quality of 
service of workflow tasks is calculated. Section 5 described how QoS estimates are set. In 
Section 6, we present an algorithm to compute and estimate workflow QoS. Section 7 is 
extensive and describes the modification of existing workflow system components and 
the creation of new modules that have been developed to support the workflow QoS 
management for the METEOR system. Each of the workflow components and new 
modules are analyzed individually. Section 8 presents an example of how to compute the 
QoS for the workflow introduced in our initial scenario. Section 9 discusses the related 
work in the QoS area. Finally, section 10 presents our conclusions. 

2 Workflows, Tasks, Web services, and Web processes 

Web services and e-services have been announced as the next wave of Internet-based 
business applications that will dramatically change the use of the Internet (Fabio Casati, 
Ming-Chien Shan et al. 2001). With the development and maturity of infrastructures and 
solutions that support e-services, we expect organizations to incorporate Web services as 
part of their business processes. While in some cases Web services may be utilized in an 
isolated form, it is natural to expect that Web services will be integrated as part of 
workflows (Fensel and Bussler 2002). The increasingly global economy requires 
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advanced information systems such as those supporting multi-enterprise and Web-scale 
processes. Important developments have already been made with the construction of 
systems to support workflows (enterprise level), distributed workflows (inter-enterprise 
and B2B level), and Web processes (global level) (Bussler 2003). 

In the QoS model presented in this paper, tasks and Web services can be treated with 
no difference. Workflow systems require tasks to have a structure which includes 
information such as task name, formal parameters, relevant data, and invoked 
applications. Web services include the same kind of information. For example, in 
METEOR workflow system (Kochut, Sheth et al. 1999), business tasks have been 
wrapped with CORBA objects to enable a transparent remote invocation. With recent 
technological developments, a business task can now be wrapped with a Web service 
interface. One of the advantages of using Web services is to enable easier and greater 
interoperability and integration among systems and applications.  

The analogy drawn between tasks and Web services is also valid for workflows and 
Web processes. Workflows represent the automation of a business process, in whole or 
part, during which documents, information or tasks are passed from one participant to 
another for action, according to a set of procedural rules and are made of elements which 
comprise transitions, logic conditions, data flows, parallel and conditional building 
blocks, starting and ending points, splits, and joins. Web processes have precisely the 
same characteristics. These allows us to conclude that Web processes can be viewed as 
workflows that manage Web services instead of tasks (Cardoso and Sheth 2003).  

Therefore, throughout this paper, the term ‘task’ or ‘workflow task’ corresponds to a 
traditional workflow task or a Web service. It will later become evident that in order for 
our model to be applied to workflows or Web processes, tasks or Web service only have 
to adhere to the QoS model. 

3 Scenario  

The Fungal Genome Resource laboratory (FGR 2002) at the University of Georgia has 
realized that to be competitive and efficient it must adopt a new and modern information 
system infrastructure. Therefore, a first step was taken in that direction with the adoption 
of a workflow management system (METEOR (Kochut, Sheth et al. 1999)) to support its 
laboratory processes (Hall, Miller et al. 2003). Since the laboratory supplies several 
genome services to its customers, the adoption of a WfMS has enabled the logic of 
laboratory processes to be captured in a workflow schema. As a result, all the services 
available to customers are stored and executed under the supervision of the workflow 
system. 

3.1 Workflow Structure 

Before discussing this scenario in detail, we review the basis elements of the METEOR 
workflow model. 

A workflow is composed of tasks, networks and transitions. Tasks are represented 
using circles, networks (sub-workflows) using rounded rectangles, and transitions are 
represented using arrows. Transitions express dependencies between tasks and are 
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associated with an enabling probability (p1, p2,.., pn). When a task has only one outgoing 
transition, the enabling probability is 1. In such a case, the probability can be omitted 
from the graph. A task with more than one outgoing transition can be classified as an 
and-split or xor-split. And-split tasks enable all their outgoing transitions after completing 
their execution. Xor-split tasks enable only one outgoing transition after completing their 
execution. And-split tasks are represented with a ‘*’ and xor-split tasks are represented 
with a ‘+’. A task with more than one incoming transition can be classified as an and-join 
or xor-join. And-join tasks start their execution when all their incoming transitions are 
enabled. Xor-join tasks are executed as soon as one of the incoming transitions is 
enabled. As with and-split and xor-split tasks, and-join tasks and xor-join tasks are 
represented with the symbol ‘*’ and ‘+’, respectively. When no symbol is present to 
indicate the input or output logic of a task, then it is assumed to be an xor. 

3.2 Workflow Description  

Genomic projects involve highly specialized personnel and researchers, sophisticated 
equipment, and specialized computations involving large amounts of data. The 
characteristics of the human and technological resources involved, often geographically 
distributed, require a sophisticated coordination infrastructure to manage not only 
laboratory personnel and equipment, but also the flow of data generated.  

One of the services supplied by the research laboratory is the DNA Sequencing 
workflow. A simplified version of the DNA Sequencing workflow is depicted in Figure 
1.   

 

Figure 1– DNA Sequencing workflow 

The workflow is composed of eight main tasks: Setup, Prepare Sample, Prepare 
Clone and Sequence, Assembly, Get Sequences, Sequence Processing, and Process 
Report. Each individual task carries out a particular function; if necessary, the workflow 
can be spread across multiple research centers. 

The Setup task is responsible for initializing internal variables of the workflow 
process.  

The second task, Prepare Sample, consists of isolating DNA from a biological sample. 
The samples can be prepared using a variety of protocols. These protocols need to be 
followed rigorously in order to obtain DNA that is not degraded in any form. A correctly 
prepared sample will originate a better DNA sequencing, since the quality of the DNA 
template is one of the most critical factors in DNA sequencing. 

t3

t6t5

t4t2

Prepare
Sample

Prepare Clones
and

Sequence

Get SequencesTest Quality

Assembly

p1

t7

Sequence
Processing

p2

+

t1

Setup

t8

Proces
Report

+



 

 6

The task Prepare Clones and Sequence clones specific regions of the genome from 
DNA isolated in the previous step. This step can be fully automated by computer control 
(using, for example, a robotic system). This task also executes the sequencing, which 
uses DNA sequencing machines to read each biochemical “letter” (A, G, C or T) of a 
cloned DNA fragment. The output is composed of short decoded segments (a sequence 
such as AGGCATTCCAG…). The use of automated sequencers has revolutionized the 
field of bioinformatics by enabling scientists to catalogue sequence information hundreds 
of times faster than was possible with pre-existing scanning techniques. This new 
approach allows for automatic recognition, without major human intervention. 

The Assembly task analyzes the DNA segments generated in the sequencing task. This 
step includes the assembly of larger contiguous blocks of sequences of DNA from small 
overlapping fragments. This is complicated by the fact that similar sequences occur many 
times in many places of the genome. 

The Test Quality task screens for the Escherichia coli (E. coli) contaminant in DNA 
contigs. The clones grown in bacterial hosts are likely to be contaminated. A quick and 
effective way to screen for the E. coli contaminant is to compare a given DNA sequence 
to the E. coli genome. For E. coli, this task is made easier by the availability of its full 
genome. 

Get Sequences is a simple task that downloads the sequences created in the assembly 
step, using the FTP protocol. 

The Sequence Processing task analyzes the DNA segments generated in the assembly 
step. The goal of this task is to find DNA sequences in order to identify macromolecules 
with related structures and functions. The new DNA sequence is compared to a 
repository of known sequences (e.g., Swiss-Prot or GenBank), using one of a number of 
computational biology applications for comparison. 

After obtaining the desired data from the Sequence Processing task, the results are 
stored, e-mailed, and a report is created. The Process Report task stores the data 
generated in the previous task in a database and creates a final report. It is responsible for 
electronically mailing the sequencing results to the persons involved in this process, such 
as researchers and lab technicians. 

3.3 Workflow Application Requirements 

In its normal operation, the Fungal Genome Resource laboratory executes the DNA 
Sequencing workflow in a regular manner. Workflow instances are started in order to 
render the sequencing services. In this scenario, and with current workflow technology, 
the execution of the workflow instances is carried out without any quality of service 
management on important parameters such as delivery deadlines, reliability, and cost of 
service. The laboratory wishes to be able to state a detailed list of requirements for the 
service to be rendered to its customers. Its requirements include the following: 
! The final report has to be delivered in 31 weeks or less, as specified by the 

customer (e.g., NIH). 
! The profit margin has to be 10%. For example, if a customer pays $1,100 for a 

sequencing, then the execution of the DNA Sequencing workflow must have a 
cost for the laboratory that is less than $1,000.  
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! In some situations, the client may require an urgent execution of DNA 
sequencing. Therefore, the workflow has to exhibit high levels of reliability, since 
workflow failures would delay the sequencing process. 

The requirements for the genetic workflow application presented underline three non-
functional requirements: time, cost, and reliability. While the specification of such quality 
requirements is important, current WfMSs do not supply a model to delineate their 
specification or management.  

Having already given a good description of the problem and motivating why a solution 
is needed for the specification and management of QoS, in the next section we present a 
QoS model which captures the specification of QoS metrics. This model is a basic stone 
of our work, and will be used, not only to specify the QoS, but also compute the QoS of 
workflows. 

4 Workflow Quality of Service  

Workflow QoS represents the quantitative and qualitative characteristics of a workflow 
application necessary to achieve a set of initial requirements. Quantitative characteristics 
can be evaluated in terms of concrete measures such as workflow execution time, cost, 
etc. Qualitative characteristics specify the expected services offered by the system, such 
as security and fault-tolerance mechanisms. QoS should be seen as an integral aspect of 
workflows; therefore, it should be integrated with workflow specifications. The first step 
is to define a workflow QoS model. 

4.1 Characteristics of the QoS Model  

One of the most popular workflow classifications distinguishes between ad hoc 
workflows, administrative workflows, and production workflows. This classification was 
first mentioned by (McCready 1992). The main differences between these types include 
structure, repetitiveness, predictability, complexity, and degree of automation.  

The QoS model presented here is better suited for production workflows (McCready 
1992) since they are more structured, predictable, and repetitive. Production workflows 
involve complex and highly-structured processes, whose execution requires a high 
number of transaction accessing different information systems. These characteristics 
allow the construction of adequate QoS models for workflow tasks. In the case of ad hoc 
workflows, the information, the behavior, and the timing of tasks are largely 
unstructured, which makes the procedure of constructing a good QoS model more 
difficult and complex. 

4.2 Workflow QoS Model 

Quality of service can be characterized according to various dimensions. We have 
investigated related work to decide which dimensions would be relevant to compose our 
QoS model. Our research targeted two distinct areas: operations management for 
organizations and quality of service for software systems. The study of those two areas is 
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important, since workflow systems are widely used to model organizational business 
processes, and workflow systems are themselves software systems. 

On the organizational side, Stalk and Hout (1990) and Rommel et al. (1995) 
investigated the features with which successful companies assert themselves in 
competitive world markets. Their results indicated that success is related to the capability 
to compete with other organizations, and it is based upon three essential pillars: time, 
cost, and quality. Kobielus (1997) suggests that these dimensions should constitute the 
criteria that workflow systems should include and might benefit from. On the software 
system side, Frolund and Koistinen present a set of practical dimensions for distributed 
object systems’ reliability and performance, which include TTR (time to repair), TTF 
(time to failure), and availability. Chung et al., (2000) present a framework, a set of tools, 
and methodology to make system design decisions based on analysis non-functional 
requirements. 

Based on previous studies and our experience in the workflow domain, we have 
constructed a QoS model composed of the following dimensions: time, cost, and 
reliability. QoS specifications are set for task definitions. Based on this information, QoS 
metrics are computed for workflows (see section 6). 

4.3 Task Time 

Time is a common and universal measure of performance. The philosophy behind a time-
based strategy usually demands that businesses deliver the most value as rapidly as 
possible. Shorter workflow execution time allows for a faster production of new products, 
thus providing a competitive advantage.  

The first measure of time is task response time (T). Task response time corresponds to 
the time an instance takes to be processed by a task. The task response time can be 
broken down into two major components: delay time and process time. Delay time (DT) 
refers to the non-value-added time needed in order for an instance to be processed by a 
task. This includes, for example, the instance queuing delay and the setup time of the 
task. While, those two metrics are part of the task operation, they do not add any value to 
it. Process time (PT) is the time a workflow instance takes at a task while being 
processed; in other words, it corresponds to the time a task needs to process an instance. 
Therefore, task response time for a task t can be computed as follows: 

T(t)  =  DT(t) + PT(t) 

The delay time can be further broken down into queuing delay and setup delay. 
Queuing delay is the time instances spend waiting in a tasklist, before the instance is 
selected for processing. Setup delay is the time an instance spends waiting for the task to 
be set up. Setup activities may correspond to the warming process carried out by a 
machine before executing any operation, or to the execution of self-checking procedures. 
Another time metric that may be considered to integrate with the delay time is the 
synchronization delay, which corresponds to the time a workflow instance waits for other 
instances in an and-join task (synchronization). In our QoS model, this metric is not part 
of the task response time. This is because the algorithm we use to estimate workflow QoS 
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can derive this metric directly from the workflow structure and from the task response 
time. This will become more clear when we describe workflow QoS computation. 

Breaking task response time into various pieces is important since it gives a more 
detailed model to be used by business analysts. Each piece correspond to an important 
attribute that needs to be analyzed and should not be overlooked. In many situations the 
different attributes are set by different people. 

4.4 Task Cost  

Task cost represents the cost associated with the execution of workflow tasks. During 
workflow design, both prior to workflow instantiation and during workflow execution, it 
is necessary to estimate the cost of the execution in order to guarantee that financial plans 
are followed. The cost of executing a single task includes the cost of using equipment, the 
cost of human involvement, and any supplies and commodities needed to complete the 
task. The following cost functions are used to compute the cost associated with the 
execution of a task.  

Task cost (C) is the cost incurred when a task t is executed; it can be broken down 
into two major components: enactment cost and realization cost.  

C(t) = EC(t) + RC(t) 

The enactment cost (EC) is the cost associated with the management of the workflow 
system and with the monitoring of workflow instances. The realization cost (RC) is the 
cost associated with the runtime execution of the task. It can be broken down into: direct 
labor cost, machine cost, direct material cost, and setup cost. Direct labor cost is the cost 
associated with the person carrying out the execution of a workflow human task (Kochut, 
Sheth et al. 1999), or the cost associated with the execution of an automatic task with 
partial human involvement. Machine cost is the cost associated with the execution of an 
automatic task. This can correspond to the cost of running a particular piece of software 
or the cost of operating a machine. Direct material cost is the cost of the materials, 
resources, and inventory used during the execution of a workflow task. Setup cost is the 
cost to set up any resource used prior to the execution of a workflow task.  

The EC and RC captures the distinction between the running costs of the workflow 
system deployment, operation, maintenance and monitoring vs. the costs associated with 
the execution of tasks. 

4.5 Task Reliability 

To model the reliability dimension of workflows, we have used concepts from system 
and software reliability theory (Hoyland and Rausand 1994; Ireson, Jr. et al. 1996; Musa 
1999). The reliability analysis of systems often uses reliability block diagrams (RBD) as 
a representation of how the components of a system are connected. Elementary 
configurations of a RBD include the series and parallel configurations. Our approach is to 
create a mapping between RBD and workflow structures. This allows us to view a 
workflow as a system of independent components which can be then modeled and 
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analyzed using similar functions applied to RBD. The first step is to model the reliability 
of an individual task.  

Task reliability (R) models what can be considered the most important class of 
workflow failures, task failures (Eder and Liebhart 1996) (also known as activity 
failures). Task failures can be organized into two main classes: system failures and 
process failures ((Eder and Liebhart) calls this second type of failures, semantic failures). 

System failures. These consist of information technology and software failures which 
lead to a task terminating abnormally. Information technology and software include 
operating systems, communication protocols, hardware, etc. For example, a task manager 
is not able to contact its task because the CORBA server managing the task has failed due 
to a system breakdown is a system failure.  

Process failures. These consist of business process exceptions which lead to an 
anomalous termination of a task. In a workflow, task structure (Krishnakumar and Sheth 
1995) has an initial state, an execution state, and two distinct terminating states. For non-
transactional tasks, one of the terminating states indicates that a task has failed, while the 
other state indicates that a task is done (Figure 2). For transactional and open 2PC tasks, 
the terminating states are aborted and committed. The model used to represent each task 
indicates that only one starting point exists when performing a task, but two different 
states can be reached upon its execution. For example, a database access task fails 
because of an invalid user password. The task enters the aborted state.  

 

Figure 2 - Two task structures (Krishnakumar and Sheth 1995) 

To describe task reliability we follow a discrete-time modeling approach. We have 
selected this solution since workflow task behavior is most of the time characterized in 
respect to the number of executions. Discrete-time models are adequate for systems that 
respond to occasional demands, such as database systems (i.e, discrete-time domain). 
This dimension follows from one of the popular discrete-time stable reliability models 
proposed in (Nelson 1973) and it is shown below. 

 
R(t) = 1 – (system failure rate + process failure rate) 

 
System failure rate is the ratio between the numbers of time a task did not perform for 

its users and the number of times the task was called for execution, i.e. #(unsuccessful 
executions)/#(called for execution). Process failure rate provides information concerning 
the relationship between the number of times the state done/committed is reached and the 
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number of times the failed/aborted state is reached after the execution of a task (see the 
task model structure shown in Figure 2). It is calculated using the formula #(failed or 
aborted)/(#(failed or aborted) + #(done or commit)).  

Alternatively, continuous-time reliability models can be used when the failures of the 
malfunctioning equipment or software can be expressed in terms of times between 
failures, or in terms of the number of failures that occurred in a given time interval. Such 
reliability models are more suitable when workflows include tasks that control equipment 
or machines that have failure specifications determined by the manufacturer. Ireson, Jr et 
al. (1996) presents several software reliability models which can be used to model this 
QoS dimension. The ideal situation would be to associate with each workflow task a 
reliability model representing its working behavior. While this is possible, we believe that 
the common workflow system users do not have enough knowledge and expertise to 
apply such models. 

5 Creation of QoS Estimates 

In order to facilitate the analysis of workflow QoS, it is necessary to initialize task QoS 
metrics and also initialize stochastic information which indicates the probability of 
transitions being fired at runtime. Once tasks and transitions have their estimates set, 
algorithms and mechanisms, such as simulation, can be applied to compute overall 
workflow QoS. 

5.1 Creation of QoS Estimates for Tasks 

Having previously defined the QoS dimensions for tasks, we now target the estimation of 
QoS metrics of tasks. The specification of QoS metrics for tasks is made at design time 
and re-computed at runtime, when tasks are executed. During the graphical construction 
of a workflow process, the business analyst and domain expert set QoS estimates for each 
task. The estimates characterize the quality of service that the tasks will exhibit at 
runtime.  

Setting initial QoS metrics for some workflow tasks may be relatively simple. For 
example, setting the QoS for a task controlling a DNA sequencer can be done based on 
the time, cost, and reliability specifications given by the manufacturer of the DNA 
sequencer. In other cases, setting initial QoS metrics may prove to be difficult. This is the 
case for tasks that heavily depend on user input and system environment. For such tasks, 
it is convenient to study the workflow task based on real operations. The estimates are 
based on data collected while testing the task. The idea is to test the task based on 
specific inputs. This can be achieved by the elaboration of an operational profile (Musa 
1993). In an operational profile, the input space is partitioned into domains, and each 
input is associated with a probability of being selected during operational use. The 
probability is employed in the input domain to guide input generation. The density 
function built from the probabilities is called the operational profile of the task. At 
runtime, tasks have a probability associated with each input. Musa (1999) described a 
detailed procedure for developing a practical operational profile for testing purposes.  
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The task runtime behavior specification is composed of two classes of information 
(Table 1): basic and distributional. The basic class associates with each task’s QoS 
dimension the minimum value, average value, and maximum value the dimension can 
take. For example, the cost dimension corresponds to the minimum, average, and 
maximum cost associated with the execution of a task. The second class, the 
distributional class, corresponds to the specification of a constant or of a distribution 
function (such as Exponential, Normal, Weibull, and Uniform) which statistically 
describes task behavior at runtime. In some situations it may not be practical to derive a 
distribution function, an alternative is to sample the distribution and specify it in the form 
of a histogram rather than an analytical formula. For example, Table 1 and Table 2 show 
the QoS dimensions for an automatic task (the SP FASTA task) and for a manual task (the 
Prepare Sample task; see section 3.2 for tasks descriptions). 

 
 Basic class Distributional class 
 Min value Avg value Max value Dist. Function 

Time 0.291 0.674 0.895 Normal(0.674, 0.143) 
Cost 0 0 0 0.0 
Reliability - 100% - 1.0 

Table 1 – Task QoS for an automatic task 

 
 Basic class Distributional class 
 Min value Avg value Max value Dist. Function 

Time 192 196 199 Normal(196, 1) 
Cost 576 576 576 576.0 
Reliability - 100% - 1.0 

Table 2 – Task QoS for a manual task 

The values specified in the basic class are typically employed by mathematical 
methods in order to compute workflow QoS metrics, while the distributional class 
information is used by simulation systems to compute workflow QoS (Chandrasekaran, 
Silver et al. 2002; Miller, Cardoso et al. 2002). To devise values for the two classes, the 
designer typically applies the functions presented in the previous section to derive the 
task’s QoS metrics. We recognize that the specification of time, cost, and reliability is a 
complex operation, which when not carried out properly can lead to the specification of 
incorrect values. Additionally, the initial specification may not remain valid over time. 
To overcome this difficulty, a task’s QoS values can be periodically re-computed for the 
basic class, based on previous executions. The distributional class may also need to have 
its distribution re-computed. At runtime, the workflow system keeps track of actual 
values for the QoS dimensions monitored. QoS runtime metrics are saved and used to re-
compute the QoS values for the basic class which were specified at design time. The 
workflow system re-computes the QoS values for each dimension; this allows the system 
to make more accurate estimations based on recent instance executions. 
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The re-computation of QoS task metrics is based on data coming from designer 
specifications and from the workflow system log. Depending on the workflow data 
available, four scenarios can occur: a) For a specific task t and a particular dimension 
Dim, the average is calculated based only on information introduced by the designer 
(Designer AverageDim(t)); b) the average of a task t dimension is calculated based on all 
its executions independently of the workflow that executed it (Multi-Workflow 
AverageDim (t)); c) the average of the dimension Dim is calculated based on all the times 
task t was executed in any instance from workflow w (Workflow AverageDim(t, w)); and 
d) the average of the dimension of all the times task t was executed in instance i of 
workflow w (Instance AverageDim(t, w, i)). Scenario d) can only occur when loops exist in 
a workflow. 

While the formulae presented only show how to compute average metrics, similar 
formulae are used to compute minimum and maximum values. 

The task QoS for a particular dimension can be determined at different levels; it is 
computed following the equations described in Table 3. 

 
a) QoSDim(t) = Designer AverageDim(t) 

b) QoSDim’(t) = wi1* Designer AverageDim(t) + wi2* Multi-Workflow AverageDim(t) 

c) QoSDim(t, w) = wi1* Designer AverageDim(t) + wi2* Multi-Workflow AverageDim(t) + 
wi3*Workflow AverageDim(t, w) 

d) QoSDim(t, w, i) = wi1* Designer AverageDim(t) + wi2* Multi-Workflow AverageDim(t) + 
wi3* Workflow AverageDim(t, w) + wi4* Instance Workflow 
AverageDim(t,w, i) 

Table 3 – QoS dimensions computed at runtime 

The workflow system uses the formulae from Table 3 to predict the QoS of tasks. The 
weights wik are set manually. They reflect the degree of correlation between the 
workflow under analysis and other workflows for which a set of common tasks is shared. 

The different equations are used based on the historical data available from past 
executions of tasks and workflows. For example, if the workflow system does not have 
any historical data in its log describing the QoS metrics of task tn, then the equation a) 
will be used to predict a QoS model for task tn. In the other hand, if the workflow system 
log’s contains historical data describing the QoS metrics of task tn, then equation b), c) 
and d) will be used to predict QoS metrics. The section of an equation depends on how 
much data is available.  

Let us assume that we have an instance i of workflow w running and that we desire to 
predict the QoS of task t ∈ w. The following rules are used to choose which formula to 
apply when predicting QoS. If task t has never been executed before, then formula a) is 
chosen to predict task QoS, since there is no other data available. If task t has been 
executed previously, but in the context of workflow wn, and w != wn, then formula b) is 
chosen. In this case we can assume that the execution of t in workflow wn will give a 
good indication of its behavior in workflow w. If task t has been previously executed in 
the context of workflow w, but not from instance i, then formula c) is chosen. Finally, if 
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task t has been previously executed in the context of workflow w, and instance i, meaning 
that a loop has been executed, then formula d) is used. 

5.2 Probabilities Estimates for Transitions  

In the same way we seed tasks’ QoS, we also need to seed workflow transitions. Initially, 
the designer sets the transition probabilities at design time. At runtime, the transitions’ 
probabilities are re-computed. The method used to re-compute the transitions’ 
probabilities follows the same lines of the method used to re-compute tasks’ QoS. When 
a workflow has never been executed, the values for the transitions are obviously taken 
from initial designer specifications. When instances of a workflow w have already been 
executed, then the data used to re-compute the probabilities come from initial designer 
specifications for workflow w, from other executed instances of workflow w, and if 
available, from the instance of workflow w for which we wish to predict the QoS. This 
corresponds to the use of functions similar to the ones previously defined for tasks’ QoS 
(see Table 3). 

The initialization of tasks QoS metrics and the initialization of stochastic information 
indicating the probability of transitions being fired at runtime give the necessary data to 
carry out the QoS computation of workflows. The QoS computation is investigated in the 
next section. 

6 Workflow QoS Computation 

Once QoS estimates for tasks and for transitions are determined, we can compute overall 
workflow QoS. We describe a mathematical modeling technique that can be used to 
compute QoS metrics for a given workflow process.  

6.1 Mathematical Modeling 

To compute QoS metrics for workflows based on task’s QoS metrics we have developed 
the Stochastic Workflow Reduction (SWR) algorithm (Cardoso 2002). The SWR 
algorithm repeatedly applies a set of reduction rules to a workflow until only one atomic 
task (Kochut, Sheth et al. 1999) remains. Each time a reduction rule is applied, the 
workflow structure changes. After several iterations only one task will remain. When this 
state is reached, the remaining task contains the QoS metrics corresponding to the 
workflow under analysis. 

Graph reduction rules have already been successfully used to verify the correctness of 
workflows. Sadiq and Orlowska (1999) present an algorithm that employs a set of graph 
reduction rules to identify structural conflicts in workflows. The algorithm starts by 
removing all structures from the workflow graph that are correct. This is achieved by 
iteratively applying a conflict-preserving reduction process. The reduction process 
eventually reduces a structurally correct workflow to an empty graph. If the workflow is 
not completely reduced, then structural conflicts exist.  

In our approach, the set of reduction rules that can be applied to a given workflow 
corresponds to the set of inverse operations that can be used to construct a workflow. We 
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have decided to only allow the construction of workflows which are based on a set of 
predefined construction systems; this protects users from designing invalid workflows. 
Invalid workflows contain design errors, such as non-termination, deadlocks, and spliting 
of instances (Aalst 1999).   

Additional reduction rules can be developed. We have decided to present the reduction 
concept with only six reduction rules, for three reasons. The first reason is because a vast 
majority of workflow systems support the implementation of the reduction rules 
presented. A study on fifteen major workflow systems (Aalst, Barros et al. 2000) show 
that most systems support, the reduction rules presented. The study does not discuss 
network patterns. The network pattern is intended to provide a structural and hierarchical 
division of a given workflow design into levels, in order to facilitate its understanding by 
the grouping of related tasks into functional units. The second reason is that the reduction 
rules are simple, making it easy to understand the idea behind the workflow reduction 
process. The last reason is that these rules are supported by the METEOR workflow 
management system and form a basic set of rules that should be supported by any modern 
workflow system. 

The algorithm uses a set of six distinct reduction rules: (1) sequential, (2) parallel, (3) 
conditional, (4) fault-tolerant, (5) loop, and (6) network. 

Reduction of a Sequential System. Figure 3 illustrates how two sequential workflow 
tasks ti and tj can be reduced to a single task tij. In this reduction, the incoming transitions 
of ti and outgoing transition of tasks tj are transferred to task tij. 

 

Figure 3 - Sequential system reduction 

This reduction can only be applied if the following two conditions are satisfied: a) ti is 
not a xor/and split and b) tj is not a xor/and join. These conditions prevent this reduction 
from being applied to parallel, conditional, and loop systems. To compute the QoS of the 
reduction, the following formulae are applied: 

 
T(tij) = T(ti) + T(tj) 
C(tij)= C(ti) + C(tj) 
R(tij) = R(ti) * R(tj) 

 
Reduction of a Parallel System. Figure 4 illustrates how a system of parallel tasks t1, t2, 
…, tn, an and split task ta, and an and join task tb can be reduced to a sequence of three 
tasks ta, t1n, and tb. In this reduction, the incoming transitions of ta and the outgoing 
transition of tasks tb remain the same. The only outgoing transitions from task ta and the 
only incoming transitions from task tb are the ones shown in the figure below. 

tij

(a) (b)

ti tj



 

 16

 

Figure 4 - Parallel system reduction 

 
The QoS of tasks ta and tb remain unchanged. To compute the QoS of the reduction the 
following formulae are applied: 
 
 

T(t1n) = MaxI∈ {1..n} {T(ti)}  

C(t1n) = ∑
≤≤ ni .1

C(ti) 

R(t1n) = ∏
≤≤ ni .1

R(ti) 

 
Reduction of a Conditional System. Figure 5 illustrates how a system of conditional 
tasks t1, t2, …, tn, a xor split (task ta), and a xor join (task tb) can be reduced to a sequence 
of three tasks ta, t1n, and tb. Task ta and task tb do not have any other outgoing transitions 
and incoming transitions, respectively, other than the ones shown in the figure. In this 
reduction the incoming transitions of ta and outgoing transition of tasks tb remain the 
same  

 

Figure 5 - Conditional system reduction 

The QoS of tasks ta and tb remain unchanged. To compute the QoS of the reduction the 
following formulae are applied: 

 

tbta
+

(a) (b)

+
tbta t1n

pa1

pan

pa2

t1

t2

tn

tbta
*

(a) (b)

* tbta t1n

t1

t2
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T(t1n) = ∑
≤≤ ni .1

 pai * T(ti)  

C(t1n) = ∑
≤≤ ni .1

 pai * C(ti) 

R(t1n) = ∑
≤≤ ni .1

pai * R(ti) 

 

Reduction of a Loop System. Loop systems can be characterized by simple and dual 
loop systems. Figure 6 illustrates how a simple loop system can be reduced. A simple 

loop system in task ti can be reduced to a task tli. In this reduction, pi +∑
=

=
n

i
oip

1
1.  

Once the reduction is applied, the probabilities of the outgoing transitions of task tli are 

changed to plk = 
i

ok

p-1 
p

, and ∑
=

=
n

k
lkp

1
1. In the reduction of a loop system the loop is 

removed. Since the loop is removed we need to update the remaining outgoing 
transitions. Therefore, the probability of each outgoing transition needs to be divided by 
the probability of the loop not being followed (i.e., 1-pi). 
 

Figure 6 – Simple loop system reduction 

To compute the QoS of the reduction the following formulae are applied: 
 

T(tli) = 
ip-1 
)(T it  

C(tli) = 
ip-1
)(C it  

R(tli) = 
)(Rp-1

)(R*)p-(1
i

i

i

i

t
t

 

 
Figure 7 illustrates how a dual loop system can be reduced. A dual loop system 

composed of two tasks ti and tj can be reduced to a single task tij. In this reduction, 

(a) (b)

tli
+ +
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po1 pl1ti… …
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… …
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pi+∑
=

=
n

i
oip

1
1. Once the reduction is applied, the probabilities of the outgoing transitions 

of task tij are changed to plk = 
i

ok
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=
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Figure 7 – Dual loop system reduction 

To compute the QoS of the reduction the following formulae are applied: 
 

T(tij) = 
)p-(1

)(T)p-(1)(T)(T

j

j jji ttt −+
 

C(tij) = 
)p-(1

)(C)p-(1)(C)(C

j

j jji ttt −+
 

R(tij) = 
)(R)(Rp-1

)(R*)p-(1

j

j

ji

i

tt
t

 

 

Reduction of a Fault-Tolerant System. Figure 8 illustrates how a fault-tolerant system 
with tasks t1, t2, …, tn, an and split (task ta), and a xor join (task tb) can be reduced to a 
sequence of three tasks ta, t1n, and tb. The execution of a fault-tolerant system starts with 
the execution of task ta and ends with the completion of task tb. Task tb will be executed 
only if k tasks from the set {t1, t2, …, tn} are executed successfully. In this reduction, the 
incoming transitions of ta and the outgoing transition of tasks tb remain the same. The 
idea of this reduction system is to allow several tasks {t1, t2, …, tn} to be executed in 
parallel, carrying out the same function but in a different way, until k tasks have 
completed their execution. For example, in genomics several algorithms can be used to 
query genome databases given an initial probe. Let us assume that the tasks t1, t2, …, t5 
are execute in parallel and each task executes a distinct algorithm. Using a fault-tolerant 
system, we can specify that the parallel execution of the tasks continues until two of them 
complete their execution. In this scenario, we consider that the answers of the first two 
queries to complete are sufficient for the process to continue. 
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tbta
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Figure 8 – Fault-Tolerant system reduction 

The QoS of tasks ta and tb remain unchanged. To compute the QoS of the reduction the 
following formulae are applied: 

The function )(sMin
k

selects the set of the k smallest numbers from the set s, and 

function )(xg is defined as followed: 
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The formula R(t1n) is utilized to compute reliability and corresponds to the sum of all 

the probabilistic states for which at least k tasks execute successfully.  
A fault-tolerant system with n tasks can generate 2n distinct probabilistic states (the 

power set). The function R(t1n) adds all the probabilistic states that leads to the successful 
execution of the fault-tolerant system (i.e. at least k tasks execute successfully). 

In the formula R(t1n), the summation over i1, …, in generates all the possible 
probabilistic states. Each probabilistic state is represented with a binary sequence (i1 … 
in) for which 0 represents the failing of a task, and 1 represents its success. 

For example, in a fault-tolerant system with three parallel tasks (n=3), the values of 
the indexes i1=1, i2=0, and i3=1 represent the probabilistic state for which tasks t1 and t3 
succeed and task t2 fails.  

The term )(
1
∑

=

−
n

j
j kig  is used to indicate if a probabilistic state should be considered 

in the reliability computation. A probabilistic state is considered only if the number of 

tasks succeeding is greater or equal to k, i.e. ∑
=

≥
n

j
j ki

1
 (or equivalently∑

=
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1
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our previous example, since i1=1, i2=0, i3=1 and ∑
=

=
n

j
ji

1
2 , the probabilistic state (i1=1, 

i2=0, i3=1) will be only considered if 2≤k . 
The reliability of a valid state (i.e., a state for which at least k tasks are executed 

successfully) is computed based on the product of the reliability of the tasks that compose 
the state. In our previous example, where i1=1, i2=0, i3=1, and with k=2, the reliability of 
this state is g(2-2)*((1- i1)+(2i1-1)R(t1))*((1- i2)+(2i2-1)R(t2))*((1- i3)+(2i3-1)R(t3)) which 
can be reduced to 1*R(t1)*(1-R(t2))*R(t3). This corresponds to the product of the 
probability of task t1 to succeed, the probability of task t2 to fail, and the probability of 
task t3 to succeed. 

 
Reduction of a Network System. A network task represents a sub-workflow (Figure 9). 
It can be viewed as a black box encapsulating an unknown workflow realization with a 
certain QoS. A network task ns, having only one task ti, can be replaced by an atomic task 
tj. This reduction can be applied only when the QoS of task ti is known. In this 
replacement, the QoS of the atomic task tj is set to the workflow QoS of the task ti, i.e, 
X(tj) = X(ti), X ∈  {T, C, R}. 

 

Figure 9 - Network system reduction 

The input and output transitions of the network task ns are transferred to the atomic 
task tj. 

7 QoS Model Implementation  

In the previous sections, we presented a QoS model and the SWR algorithm to address 
non-functional issues of workflows, rather than workflow process operations. The model 
and algorithm that we have developed has been implemented for the METEOR workflow 
management system.  

The METEOR project is represented by both a research system (METEOR 2002), and 
a suite of commercial systems that provide an open system based, high-end workflow 
management solution, as well as an enterprise application integration infrastructure. The 
system has been used in prototyping and deploying workflow applications in various 
domains, such as bio-informatics (Hall, Miller et al. 2003), healthcare (Anyanwu, Sheth 
et al. 2003), telecommunications (Luo, Sheth et al 2003), defense (Kang, Froscher et al. 
1999), and university administration (CAPA 1997). 

(a) (b)

ti
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The METEOR system has two enactment engines, ORBWork (Kochut, Sheth et al. 
1999) and WEBWork (Miller, Palaniswami et al. 1998). In this section we describe the 
components that make up the METEOR system and the components that have been 
modified, extended, and created to enable QoS management in the context of the 
ORBWork engine.  

The work discussed in this paper is part of the research system and is not part of any 
commercial product yet. It is necessary to make changes to four main components: the 
Enactment, the Manager, the Builder, and the Repository. These components and their 
relationship to the overall workflow system are illustrated in Figure 10. 
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Figure 10 – QoS Management Architecture 

7.1 Enactment System 

The modifications that have been made to the ORBWork enactment system include 
alterations to the task schedulers, task managers, tasks, and monitors.  

In ORBWork enactment system, task schedulers, and tasks are responsible for 
managing runtime QoS metrics. From the implementation point of view, we divide the 
management of the QoS dimensions into two classes: the system and the application 
class. The dimensions of the system class are managed by system components (e.g. a task 
scheduler), while the dimensions of the applications class are managed by components 
dynamically created to support a particular workflow application (e.g. a task 
implementation). In our system, the system class includes the time and reliability 
dimensions, while the application class includes the cost dimension. 

Since task schedulers decide the starting time of task execution and are notified of task 
completion, they are responsible for managing the dimensions of the system class. Task 
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realizations are the candidate components to manage the cost dimension since they 
include the necessary functions to dynamically change initial estimates. 

7.2 Managing Time 

In section 2 we have described task response time (T) as the time an instance takes to be 
processed by a task. Task response time is composed of two major components: delay 
time (DT) and process time (PT). Delay time is further broken down into queuing delay 
(QD) and setup delay (SD). This makes the response time of a task t represented as 
followed: 

T(t) = DT(t) + PT(t) = QD(t) + SD(t) + PT(t) 

To efficiently manage the time dimension, workflow systems must register values for 
each of the functions involved in the calculation of task response time (T). Currently, we 
register values for all the functions, except for the setup delay. The time dimension has its 
values set according to the task structure illustrated in Figure 11. Each state has been 
mapped to one of the functions that compose the time dimension. ORBWork system 
follows this task structure to represent workflow task execution behavior (Krishnakumar 
and Sheth 1995). To more effectively support QoS management, the original structure 
has been extended, with the inclusion of the Pre-Init, as shown in Figure 11. 

 

Figure 11 – Revised task structure (extended from (Krishnakumar and Sheth 1995)) 

The synchronization delay time is calculated based on the difference between the time 
registered when a task leaves the pre-init state and the time registered when it enters the 
state. A task t remains in the pre-init state as long as its task scheduler is waiting for 
another transition to be enabled in order to place the task into an initial state. This only 
happens with synchronization tasks, i.e. and-join tasks (Kochut 1999), since they need to 
wait until all their incoming transitions are enabled before continuing to the next state. 
For all other types of input and output logic (xor-split, xor-join, and-split) the 
synchronization delay time is set to zero. 

As for the synchronization delay time, the queuing time is the difference between the 
time a task leaves and enters the initial state. A task in the initial state indicates that the 
task is in a queue waiting to be scheduled (by its task scheduler). ORBWork task 
schedulers treat their queues with a FIFO policy. One interesting queuing policy variation 
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is associated with the scheduling of human-tasks. For a human-task instance, being in the 
initial state means that the task has been placed in a worklist for human processing. A 
user can select any human-task in a worklist, as long as the user role matches the task 
role. In this case, the queuing policy is SIRO (Serve In Random Order). Depending on 
the workflow system, other useful queuing policies can be used, such as priority queues. 
When a task instance enters a queue a time-stamp is attached to it. When the task is 
removed from the queue for scheduling, another time-stamp is attached to it so that the 
total queuing time can be calculated later. When a task is ready to be executed it transits 
to the executing state. As with the previous calculations, the time a task remains in this 
state corresponds to the processing time. 

Another important time metric is the synchronization delay (SyncD). This measure 
corresponds to the time and-join tasks spend waiting for all the incoming transitions to be 
enabled. The SyncD(t) of a task t is the difference of tb, the time registered when all the 
incoming transitions of task t are enabled, and ta, the time registered when the first 
incoming transition was enabled, i.e. tb - ta. This measure gives valuable information that 
can be used to re-engineer business processes to increase their time efficiency.  

7.3 Managing Reliability 

When a task is ready to execute, a task scheduler activates an associated task manager. 
The task manager invokes and oversees the execution of the task itself. Once activated, 
the task manager stays active until the task itself completes. When the task has completed 
or terminated prematurely with an exception, the task manager notifies its task scheduler.  

During a task invocation or realization, a number of undesirable events may occur. 
Two distinct types of failure may arise (see section 4.5): system failure and process 
failure. A system failure occurs when the task scheduler is not able to create a task 
manager or when a task manager is not able to invoke its task. A process failure occurs 
when an exception is raised during the realization of the task. An exception is viewed as 
an occurrence of some abnormal event that the underlying workflow management system 
can detect and react to. If an exception occurs during the realization of a task, it can be 
placed in the done or fail state (for non-transactional tasks) and commit or abort (for 
transactional tasks). The former state indicates that the task execution was unsuccessful, 
while the latter state indicates that a task is executed successfully (Krishnakumar and 
Sheth 1995). 

In our implementation, it is the responsibility of task schedulers to identify the failures 
of a task invocation or execution in order to subsequently set the reliability dimension. 
Later this information is used to compute the failure rate, which is the ratio between the 
number of times the failed/aborted state is reached and the number of times a task was 
invoked for execution plus the ratio between the number of times the task scheduler is not 
able to create a task manager or when a task manager is not able to invoke its task and the 
number of times a task was scheduled for execution by the workflow system.  
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7.4 Managing the Cost  

Task managers are implemented as an object and are classified as transactional or non-
transactional, depending on the task managed. Human tasks do not have an associated 
task manager.  

The task manager is responsible for creating and initializing a QoS cost data structure 
from QoS specifications for the task overseen. When the supervised task starts its 
execution, the data structure is transferred to it. If the task is a non-transactional one 
(typically performed by a computer program), a set of methods is available to 
programmatically manage the initial QoS estimates. No methods are supplied to change 
the time and reliability dimensions since the task schedulers are responsible for 
controlling these dimensions. For transactional tasks (i.e. a database operation), only the 
time and reliability dimensions are dynamically set at runtime. The cost dimension, once 
initialized from the QoS specifications, cannot be changed. This is because database 
systems do not make available information evaluating the cost of the operations executed. 
Once the task completes its execution, the QoS data structure is transferred back to the 
task manager, and later from the task manager to the task scheduler. The only 
responsibility of the task scheduler will be to incorporate the metrics registered for the 
time and reliability dimensions (see section 4.2) into the QoS data structure and send it to 
the monitor to be processed (see next section). 

In the case of human tasks (performed directly by end-users), the QoS specifications 
for the cost dimension is included in interface page(s) (as HTML templates) presented to 
the end-user. When executing a human task, the user can directly set the cost dimension 
to values reflecting how the task was carried out. As mentioned previously, human-tasks 
do not have a task manager associated with them, and therefore a specific task scheduler 
is responsible for the task supervision. When the task completes its realization, the task 
scheduler parses the interface page(s) and retrieves the new QoS metrics that the user 
may have modified. 

7.5 Monitor 

When workflows are installed and instances are executed, the enactment system 
generates information messages (events) describing the activities being carried out. The 
monitor is an independent component represented by an object that records all of the 
events for all of the workflows being processed by the enactment system. 

The DBlog is a suitable interface that the monitor uses to store workflow runtime data 
in a database. The runtime data generated from workflow installations and instances 
execution is propagated to the DBlog that will be in charge of storing the information into 
a specified database.  

The data model includes metadata describing workflows and workflow versions, tasks, 
instances, transitions, and runtime QoS metrics. In addition to storing runtime QoS, we 
also store designer-defined QoS estimates. The data model captures the information 
necessary to subsequently run suitable tools to analyze workflow QoS. One of the 
primary goals of using a database system loosely coupled with the workflow system is to 
enable different tools to be used to analyze QoS, such as project management and 
statistical tools. 
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DBlog is populated when workflows are installed and instances executed. The DBlog 
schema was designed to store three distinct categories of information, reflecting 
workflow systems operations with QoS management. The first category corresponds to 
data events generated when workflows are installed. During installation, information 
describing workflow structure (which includes tasks and transitions) is stored. The 
second category of information to be stored corresponds to the QoS estimates for tasks 
and transitions that are specified at the workflow design phase. The third category 
corresponds to the information which describes how instances are behaving at runtime. 
This includes data indicating the tasks’ processing time, cost, and the enabling of 
transitions. The monitoring of transitions is important to build functions which 
probabilistically describe their enabled rate. The computation of workflow QoS metrics is 
based on this stochastic structure. 

Since the database stores real-time runtime information of tasks QoS metrics, we are 
also investigating the implementation of mechanisms to automatically notify or alert 
operators and supervisors when QoS metrics reach threshold values, so that corrective 
actions can be taken immediately. 

7.6 Workflow Builder 

The workflow builder tool is used to graphically design and specify a workflow. In most 
cases, after a workflow design no extra work is necessary and it can be converted 
automatically to an application by a code generator. The builder is used to specify 
workflow topology, tasks, transitions (control flow and data flow), data objects, task 
invocation, roles, and security domains (Kang, Park et al. 2001). During the design phase, 
the designer is shielded from the underlying details of the runtime environment and 
infrastructure, separating the workflow definition from the enactment system on which it 
will be installed and executed. To support workflow QoS management the designer must 
be able to set estimates for transition probabilities and QoS estimates for tasks. This 
information is later combined with historical data, which plays a larger role as more 
instances are executed, to create a runtime QoS model for tasks and a probability model 
for transitions. 

The workflow model and the task model have been extended to support the 
specification of QoS metrics. To support these extensions, the builder has been enhanced 
to allow designers to associate probabilities with transitions and to make possible the 
specification of initial QoS metrics for tasks (see section 5.1). Previously, the workflow 
model only included data flow mappings associated with transitions. The association of 
probabilities with transitions transforms a workflow into a stochastic workflow. The 
stochastic information indicates the probability of a transition being fired at runtime. The 
QoS model specified for each task and transitions probabilities are embedded into the 
workflow definition and stored in XML format. 

7.6.1 Setting Initial Task QoS Estimates 

At design time, each task receives information which includes its type, input and output 
parameters, input and output logic, realization, exceptions generated, etc. All this 
information makes up the task model. The task model has been extended to accommodate 
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the QoS model. Task QoS is initialized at design time and re-computed at runtime when 
tasks are executed. During the graphical construction of a workflow process, each task 
receives information estimating its quality of service behavior at runtime. This includes 
information about its cost, time (duration), and reliability. 

The task QoS estimates are composed of two classes of information (see section 5.1): 
basic and distributional. The basic class associates with each task QoS dimension the 
estimates of the minimum, average, and maximum values that the dimension can take. 
The second class, the distributional class, corresponds to the specification of a 
distribution function which statistically describes tasks behavior at runtime. Figure 12 
illustrates the graphical interface that is used to specify the basic and distributional 
information to setup initial QoS metrics. 

 

 
 Figure 12 – Task QoS basic and distributional class 

The values specified in the basic class are used by mathematical methods, while the 
distributional class information is used by simulation systems. 

Once the design of a workflow is completed, it is compiled. The compilation generates 
a set of specification files and realization files for each task. The specification files (Spec 
files) include information describing the control and data flow of each task. The 
realization files include the operations or instructions for a task to be executed at runtime. 
For human tasks, HTML files are generated, since they are carried out using a web 
browser. For non-transactional tasks, java code files are generated and compiled. At 
runtime, the executables are executed automatically by the enactment system. Finally, for 
non-transactional tasks a file containing the necessary data to connect to databases is 
generated. To enable the enactment system to acquire and manipulate QoS information, 
the builder has been extended to generate QoS specification files for each task. For 
human tasks we have decided to embed the QoS metrics directly into the HTML forms 
that are generated. 

7.6.2 Re-Computing QoS Estimates 

The initial QoS specifications may not be valid over time. To overcome this difficulty we 
re-compute task QoS values for the basic class, based on previous executions, as 
described in section 5.1. The same applies for transitions. The distributional class also 
needs to have its distribution re-computed. This involves the analysis of runtime QoS 
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metrics to make sure that the QoS distribution functions associated with a task remain 
valid or need to be modified. 

The re-computation of QoS estimates for tasks and for transition probabilities is done 
based on runtime data generated from past workflow executions that have been stored in 
the database log. We have developed a QoS Estimator module that lies between the 
builder and the database log. The QoS Estimator creates a QoS model for tasks based on 
the information stored in the DBlog. It also calculates transition probability functions 
based on the transitions enabled at runtime. Figure 13 illustrate the architecture of the 
QoS Estimator module. When a workflow is being designed, if the tasks selected to 
compose the workflow have been previously executed, then their QoS metrics are re-
computed automatically using the QoS Estimator module.  
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Figure 13 – QoS Estimator Module 

DB connector. The DB Connector is responsible for the establishment of a connection to 
the database. Currently, we support relational databases that implement the JDBC 
protocol. 

Data Selection. The data selection component allows for the selection of task QoS 
metrics, as defined by the designer and tasks previously executed. Four distinct selection 
modes exist, and for each one a specific selection function has been constructed. Each 
function corresponds to one of the functions presented to re-compute QoS estimates for 
tasks in section 5.1. The component can select tasks QoS metrics from information 
introduced by the user at design time, from tasks executed in the context of any 
workflow, from tasks executed in the context of a specific workflow w, and from tasks 
executed from a particular instance i of workflow w.  

Data Convertion. Once a subset of the tasks present in the database log is selected, the 
data describing their QoS may need to be converted to a suitable format in order to be 
processed by the Statistical Computation component. The data conversion component is 
responsible for this conversion. For example, if the processing time of a task is stored 
using its start execution date and end execution date, the data conversion component 
applies the function f(t) = end_execution_date(t) - start_execution_date(t) to compute the 
processing time (PT). As another example, let us assume that the reliability of a task is 
stored in the database using the keywords done, fail, commit, and abort (as in 
ORBWork). In this case, the data conversion component converts the keywords done and 
commit to the value 1, indicating the success of the task, and converts the keywords fail 
and abort to the value 0, indicating the failure of the task. This abstraction allows the 
statistical component to be independent from any particular choice of storing runtime 
information. 
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Figure 14 – GUI to calculate QoS estimates 

Statistical Computation. Once an appropriate set of tasks has been retrieved from the 
database and their QoS data has been converted to a suitable format, it is transferred to 
the statistical computation component to estimate QoS metrics. Currently, the module 
only computes the minimum, average, and maximum for QoS dimensions, but additional 
statistical functions can be easily included, such as standard deviations, average 
deviation, and variance. 

Four distinct functions have been developed to compute estimates for the tasks 
selected in the previous step. Each function is to be used when computing QoS 
dimensions and corresponds to four scenarios that can occur.   

Model Construction. The QoS Model Construction component uses the information 
from the Statistical Computation component and applies a set of functions to re-compute 
the QoS model (the functions have been presented in Table 3) for each task. Figure 14 
shows the graphical user interface available to set the QoS functions and their associated 
weights, and to visualize the QoS estimates automatically computed for workflows, 
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instances, tasks, and transitions. The QoS computation is carried out using the SWR 
algorithm (described in the next section). 

8 Workflow QoS Computation Example 

The Fungal Genome Resource (FGR) laboratory is in the process of reengineering their 
workflows. The laboratory technicians, domain experts, and managers have agreed that 
an alteration to the Prepare and Sequence and Sequence Processing workflows would 
potentially be beneficial when sequencing DNA. 

 

 
Figure 15 – Prepare and Sequence Workflow 

 
Figure 16 – Sequence Processing Workflow 

To improve the efficiency of the processes being managed by the workflow system, 
the bioinformatics researchers decided to merge the two processes. The researchers 
noticed that the quality of the DNA sequencing obtained was in some cases useless due to 
E. coli contamination. Additionally, it was felt that it would be advantageous to use other 
algorithms in the sequence processing phase. Therefore, to improve the quality of the 
process, the Test Quality task and the SP FASTA task were added. 

Clones grown in bacterial hosts are likely to become contaminated. A quick and 
effective way to screen for the Escherichia coli (E. coli) contaminants is to compare the 
clones against the E. coli genome. For E. coli, this task is made easier with the 
availability of its full genome.  
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The task SP FASTA has of the same objective of the task SP BLAST (a task of the 
sequence processing sub-workflow). Both tasks compare new DNA sequences to a 
repository of known sequences (e.g., Swiss-Prot or GenBank.) The objective is to find 
sequences with homologous relationships to assign potential biological functions and 
classifying sequences into functional families. All sequence comparison methods, 
however, suffer from certain limitations. Consequently, it is advantageous to try more 
than one comparison algorithm during the sequence processing phase. For this reason, it 
was decided to employ the BLAST (Altschul, Gish et al. 1990) and FASTA (Pearson and 
Lipman 1988) programs to compare sequences. 

The following actions were taken to reengineer the existing workflows: 
a) Merge the Prepare and Sequence workflow from Figure 15 and the Sequence 

Processing workflow from Figure 16, 
b) Add the task Test Quality to test the existence of E. coli in sequences, and 
c) Execute the search for sequences in genome databases using an additional search 

algorithm (FASTA). 
At this point, the alterations to introduce into the processes have been identified. From 

the functional perspective, the lab personnel, domain experts, and workflow designer all 
agreed that the new workflow will accomplish the intended objective. The new re-
engineered workflow is named DNA Sequencing. It is illustrated in Figure 17. 

 

 
Figure 17 – DNA Sequencing Workflow 

8.1 Setting QoS Metrics 

While the workflow design meets the functional objectives, non-functional requirements 
also need to be met. Prior to the execution of the new workflow, an analysis is necessary 
to guarantee that the changes to be introduced will actually produce a workflow that 
meets desired QoS requirements, i.e., that the workflow time, cost, and reliability remain 
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within acceptable thresholds. To accomplish this, it is necessary to analyze the QoS 
metrics and use the SWR algorithm (Cardoso 2002; Cardoso 2002) to compute workflow 
quality of service metrics. 

The first step is to gather QoS estimates for the tasks involved in the Prepare and 
Sequence and Sequence Processing workflows. These workflows have been executed 
several times in the past, and the workflow system has recorded their QoS metrics. The 
designer QoS estimates have been set using the following methods. For human tasks, the 
laboratory technicians and researchers have provided estimates for the QoS dimensions. 
For automated tasks, we have used training sets. For example, for the SP BLAST task we 
have constructed a training set of sequences of different lengths. The sequences have 
been processed with BLAST, and their QoS has been recorded. For the time dimension, 
we have used linear regression to predict future metrics (the BLAST algorithm has a 
linear running time (Altschul, Gish et al. 1990).) Equation 1 was used to estimate the 
BLAST running time to process a sequence: 
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where x is the independent data (input size) and y is the dependent data (running time). 

The estimated function is defined as: 
 
                                               0071.0,37.87    with , ==+= babxay  (2) 
 
For the new tasks introduced (Test Quality and SP FASTA), no QoS runtime 

information is available. The only QoS information that can be used to compute the 
workflow QoS is the one the designer specified at design time. The initial QoS estimates 
are shown in Table 4.  

 

Tasks T(t) C(t) R(t)
Quality Test 0.01 $0.0 100%
SP FASTA 9.59 $0.0 100%

Designer Specifications

 
Table 4 – Test Quality and FASTA initial QoS estimates 

Since the SP FASTA task is an automated task, we have used a training set of 
sequences to derive and set designer QoS estimates. For the time dimension, we have 
used the linear regression from Equation 1 and defined the function represented in 
Equation 3 to estimate its duration (FASTA has a linear running time (Pearson and 
Lipman 1988).) 
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                                                    11.4,9.1061    with , ==+= babxay  (3) 

8.2 Computing QoS Metrics 

The domain experts believe that there is a strong agreement between the tasks QoS 
exhibited during the execution of the Prepare and Sequence and the Sequence Processing 
workflows, and the expected QoS of the tasks to be scheduled by the DNA Sequencing 
workflow. This belief is based on the fact that the tasks executed in the two initial 
workflows will be executed without any change by the newly constructed workflow. The 
following functions have been utilized to re-compute QoS metrics based on designer and 
runtime information: 

 
b) QoSDim’(t) 0.2*Designer AverageDim(t) + 0.8*Multi-Workflow AverageDim(t) 
c) QoSDim(t, w) 0.2*Designer AverageDim(t) + 0.2*Multi-Workflow AverageDim(t) + 

0.6*Workflow AverageDim(t, w) 

Table 5 – Re-computation of the QoS dimensions for the DNA Sequencing workflow 

To represent the QoS agreement among tasks from different workflows, the domain 
experts have decided to set the weights according to the following beliefs. For formula b), 
the domain experts believe that the recorded QoS of tasks previously executed will give 
good estimates for the execution of tasks scheduled by the new workflow. Thus, the 
experts set the weights wi1 and wi2 of formula b) to 0.2 and 0.8, respectively. The domain 
experts also believe that as soon as tasks are scheduled by the new workflow, the QoS 
estimates should rely on the latest QoS data recorded from the DNA Sequencing 
workflow. Also, they consider that when QoS data is available from the DNA Sequencing 
workflow, the importance given to the designer estimates should have the same influence 
as the QoS estimates recorded for the execution of tasks scheduled by other workflows 
than the DNA Sequencing. Therefore, for formula c), the experts set the weights wi1, wi2, 
and wi3 to 0.2, 0.2, and 0.6, respectively. In our experiments, we only predict workflow 
QoS metrics before the execution of workflow, not during workflow execution; thus, we 
did not to set the weights for formula d) from Table 3. 

Since the new workflow has a loop that did not exist in any of the previously executed 
workflows, it is necessary to estimate the probability of the transition (Test Quality, 
Prepare Sample) to be enabled at runtime. Based on prior knowledge of sequencing 
experiments, the researchers calculate that approximately 10% of the DNA sequence will 
contain E. coli bacteria and that thus there is a 10% probability of the loop back transition 
being enabled. 

8.3 Results 

We have run a set of ten experiments. Each experiment involved the execution of the 
SWR algorithm to predict QoS metrics of the DNA Sequencing workflow and the actual 
execution of the workflow. The results are shown for the four QoS dimensions in Figure 
18. The diamonds indicate the QoS estimates (moving average) given by the SWR 
algorithm and the squares indicate empirical runtime metrics. The three dimensions 
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analyzed and presented in Figure 13 show that the predicted results are a good estimation 
for the measured ones. 
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Figure 18 – Experiment results 

For the time analysis, the most relevant information that can be interpreted from the 
chart is the observation that the instances 3 and 4 have registered actual running times 
that are considerably different from the values estimated. This is due to the topology of 
the workflow. During the process, it is expected that some DNA sequences will contain 
E. coli contamination. When this happens, re-work is needed, and the first part of the 
workflow, involving the tasks Prepare Sample, Prepare Clone and Sequence, and 
Assembly, has to be re-executed. The first part of the workflow takes approximately 99% 
of the overall workflow execution time. Thus, when E. coli contamination is present in a 
sequence, the time needed to execute the workflow almost doubles. Since it is impossible 
to know if a DNA sequence will contain E. coli or not, the SWR algorithm gives an 
estimate for instance 3 which is significantly different from the registered values. When 
instance 4 is executed, the QoS metrics from the previous instance are considered for the 
QoS estimation. As a result, it can be seen in the chart that the SWR estimation 
approximates the mean of the recent time metrics recorded, i.e. there is an increase of the 
time estimate in response to the recent increase of workflow time. If more instances 
detect the presence of E. coli contamination, the results of the SWR algorithm for the 
time dimension will gradually approximate the 550 hours level. When instances number 
5 through 10 are executed, they do not detect the presence of contamination in the 
sequences processed. As a result, the SWR estimates are more accurate, and the estimates 
start to slowly approximate lower time values.  

The costs associated with each task have been provided from technical datasheets 
describing the DNA Sequencing process. For the cost analysis, the explanation of the 
results observed follows the same rational as the one provided for the time analysis.  

The reliability analysis is relatively easy to interpret. For the first instance executed, 
the SWR algorithm has used information specified by the designer and derived from task 
executions from the Prepare and Sequence and Sequence Processing workflows. The 
information suggests that the reliability of the new workflow design will be 99.4%. But 
during our experiments, the ten instances executed never failed. Thus, a 100% reliability 
value has been registered for each workflow instance. During the instance executions, the 
reliability estimates given by the SWR algorithm slowly approximate 100%. 
Nevertheless, it is expected that as the workflow system executes more instances, the 
reliability of the DNA Sequencing workflow will decrease. 
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For all the QoS dimensions, the speed of approximation of the SWR algorithm is 
directly dependent on the weights that have been set for the re-computation of the QoS 
dimensions (see Table 5 for the weights used in the DNA Sequencing workflow). A 
higher weight associated with the multi-workflow function implies a faster approximation 
when the SWR algorithm is applied. The same principal applies to the instance workflow 
function.  

9 Related Work 

While a significant amount of QoS research has been done in the areas of networking 
(Cruz 1995; Georgiadis, Guerin et al. 1996), real-time applications (Clark, Shenker et al. 
1992) and middleware (Zinky, Bakken et al. 1997; Frolund and Koistinen 1998; 
Hiltunen, Schlichting et al. 2000), the work found in the literature on quality of service 
for WfMS is limited. The Crossflow project (Klingemann, Wäsch et al. 1999; Damen, 
Derks et al. 2000; Grefen, Aberer et al. 2000) has made a major contribution. In their 
approach, the information about past workflow executions is collected in a log. From this 
information, a continuous-time Markov chain (CTMC) is derived and used to 
subsequently calculate the time and the cost associated with workflow executions. An 
estimation component provides QoS predictions of running workflow instances. These 
estimates are based on performance models given as CTMC models and produced by the 
offline monitoring component, which analyzes past executions of workflows, and on the 
online monitoring component. Compared to the Crossflow project, our approach includes 
reliability as part of the QoS model. Our model allows for the computation of workflow 
QoS using two distinct methods: a mathematical and a simulation approach. When the 
mathematical approach is used, there is no need to define distribution functions. This 
makes its use simple for business analysts and domain experts. The simulation approach 
allows the association of distributions with workflow activities (Chandrasekaran, Silver 
et al. 2002). Not only exponential functions can be employed, as with the Crossflow, but 
any distribution made available by the simulation system can be used.   

While the research on QoS for WfMS is limited, the research on time management, 
which is under the umbrella of workflow QoS, has been more active and productive. 
Gillmann et al., (Gillmann, Weissenfels et al. 2000; Gillmann, Weikum et al. 2002) 
present a tool for the configuration of distributed workflow systems in order to meet 
specified goals for throughput, response time, availability, and performability. Their 
approach is based on continuous-time Markov chains and Markov reward models to 
predict the performance, availability, and performability of a WfMS under a given load. 
The performance model estimates the throughput of workflow instances and the waiting 
time for service requests. The availability model estimates the downtime of the a WfMS 
given the failure and restart rates for the various components. The performability model 
predicts the performance taking into account temporarily non-available servers. The use 
of Markov models makes this approach very similar with the Crossflow system. 

Eder et al. (1999) and Pozewaunig et al. (1997) present an extension of CMP and 
PERT frameworks by annotating workflow graphs with time, in order to check the 
validity of time constraints at process build-time and instantiation-time, and to take pre-
emptive actions at run-time. Their approach is only applicable to directed acyclic graphs 
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(DAG). While DAGs can be extended with a special construct that formally maintains the 
overall structure of a graph to support loops, this has not been contemplated. This is a 
significant limitation since many of workflows have cyclic graphs. Cycles are, in general, 
used to represent re-work actions or repetitive activities within a workflow. Our approach 
deals with acyclic workflows as well as with cyclic workflows.  

Researchers at Ulm (Reichert and Dadam 1998; Dadam, Reichert et al. 2000) also 
recognize that time is an important aspect of workflow execution. The ADEPT project 
includes the modeling of real-time deadline constraints and the consequences of missing 
deadlines in the case of structural changes of a workflow instance during its execution. 
With each workflow task, minimal, and maximal durations may be specified. The system 
only supports the specification and monitoring of deadlines. The monitoring system 
notifies users when deadlines are going to be missed.  There is no provision for the 
estimation of QoS metrics. Bauer and Dadam  (Bauer and Dadam 2000) also show how a 
distributed WfMS can be developed to minimized the communication load of the 
components at run time. Their approach uses a cost model and a distribution algorithm to 
calculate an appropriate variable server assignment expressions at build time. 

Chandra, Gong et al. (2003) use dynamic resource allocation techniques to provide 
guarantees to web applications running on shared data centers. The authors use a system 
architecture that combines online measurements with prediction and resource allocation 
techniques. Their work can be paired with our QoS model and the techniques can be use 
to compute, predict, and analyze the time dimensions of Web services and workflow.  

Marjanovic and Orlowska (1999) describe a workflow model enriched with modeling 
constructs and algorithms for checking the consistency of workflow temporal constraints. 
The rules that regulate the time component of a workflow are modeled by a set of 
temporal constraints. Three time constraints are specified. A task duration constraint, a 
deadline constraint, and an interdependent temporal constraint. This last constraint limits 
when a task should start/finish relative to the start/finish of another task. At build time 
and at run time the consistency of temporal constraints is verified. Their work mainly 
focuses on how to manage workflow changes, while accounting for temporal constraints, 
and do not target the prediction of workflows execution duration.  

Other researchers have also identified the need for a QoS process model. A good 
example is the DAML-S specification (Ankolekar, Burstein et al. 2001; DAML-S 2001), 
which semantically describes business processes (as in the composition of Web services). 
The use of semantic information facilitates process interoperability between trading 
partners involved in e-commerce activities. This specification includes constructs which 
specify quality of service parameters, such as quality guarantees, quality rating, and 
degree of quality. While DAML-S has identified the importance of Web services and 
business processes specifications, the QoS model adopted should be significantly 
improved in order to supply a more functional solution for its users. One current 
limitation of DAML-S’ QoS model is that it does not provide a detailed set of classes and 
properties to represent quality of service metrics. Their QoS model needs to be extended 
to allow for a precise characterization of each dimension, and we hope our work can be 
one of the inputs in that direction. The addition of semantic concepts, such as minimum, 
average, maximum, and the distribution function associated with a dimension, will allow 
the implementation of algorithms, for the automatic computation of QoS metrics for 
processes based on atomic tasks and sub-processes’ QoS metrics. 
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10 Conclusions 
The evaluation of how business is conducted, such as with e-commerce, brings a new set 
of challenges and requirements that need to be explored and answered. Many e-
commerce applications are composed of Web services forming workflows. The 
composition these workflows cannot be undertaken while ignoring the importance of 
QoS measurements. The correct management of such QoS specifications directly impacts 
the success of organizations participating in e-commerce and also directly impacts the 
success and evolution of e-commerce itself. 

In this paper, as a starting point, we show the importance of QoS management for 
workflows and WfMSs. We then presente a comprehensive QoS model. This model 
allows for the description of workflow components from a QoS perspective; it includes 
three dimensions: time, cost, and reliability. The use of QoS increases the added value of 
workflow systems to organizations, since non-functional aspects of workflows can be 
described. The model is predictive; based on the QoS of workflow components (tasks or 
Web services), the QoS of workflows (networks) can be automatically computed. This 
feature is important, especially for large processes that in some cases may contain 
hundreds of tasks. We present a mathematical model that formally describes the formulae 
to compute QoS metrics among workflow tasks. Based on these formulae, we develop an 
algorithm (SWR algorithm) to automatically compute the overall QoS of a workflow. 
The algorithm applies a set of reduction rules to a workflow, until only one task remains 
which represents the QoS for the entire workflow.  

Having a theoretical QoS model, we explain how the model was implemented in the 
METEOR workflow management system. The objective was to identify the challenges 
and difficulties that the implementation of QoS faces. The support of QoS management 
requires the modification and extension of most of workflow system components. This 
includes the enactment system, the workflow builder (or designer), the monitor, the code 
generator, the repository, the workflow model, and the task model. Additionally, new 
components need to be implemented, such as a QoS estimator module to create QoS 
estimates for tasks and probabilities for transitions. The monitor needs an additional 
interface so that runtime tasks QoS metrics are propagated and logged into a database for 
data processing purposes.  

To test the validity of the QoS model, the SWR algorithm, and the QoS 
implementation we have deployed a set of production workflows in the area of genetics at 
the Fungal Genome Resource laboratory. We executed workflow instances based on real 
data and the generated QoS data have been collected and analyzed. We have use these 
settings to collect data points and validate them with the help of scientists but the process 
itself was not made operational. The analysis of the data indicates that the QoS model and 
algorithm presented give a suitable framework to predict and analyze the QoS of 
production workflows. 
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