
Quality of Service for Workflows and
Web Service Processes

Jorge Cardoso1, Amit Sheth2, John Miller2, Jonathan Arnold3, and Krys Kochut2

1 Departamento de Matemática e Engenharias

Universidade da Madeira
9050-078 Funchal – Portugal

jcardoso@uma.pt

2 LSDIS Lab, Department of Computer Science
3 Fungal Genome Resource laboratory, Department of Genetics

University of Georgia
Athens, GA 30602 – USA

Abstract
Workflow management systems (WfMSs) have been used to support
various types of business processes for more than a decade now. In
workflows or Web processes for e-commerce and Web service
applications, suppliers and customers define a binding agreement or
contract between the two parties, specifying Quality of Service (QoS)
items such as products or services to be delivered, deadlines, quality of
products, and cost of services. The management of QoS metrics directly
impacts the success of organizations participating in e-commerce.
Therefore, when services or products are created or managed using
workflows or Web processes, the underlying workflow engine must accept
the specifications and be able to estimate, monitor, and control the QoS
rendered to customers. In this paper, we present a predictive QoS model
that makes it possible to compute the quality of service for workflows
automatically based on atomic task QoS attributes. We also present the
implementation of our QoS model for the METEOR workflow system.
We describe the components that have been changed or added, and discuss
how they interact to enable the management of QoS.

1 Introduction

With the advent and evolution of global scale economies, organizations need to be more
competitive, efficient, flexible, and integrated in the value chain at different levels,
including the information system level. In the past decade, Workflow Management

 2

Systems (WfMSs) have been distinguished due to their significance and their impact on
organizations. WfMSs allow organizations to streamline and automate business processes
and reengineer their structure; in addition, they increase efficiency and reduce costs.

Several researchers have identified workflows as the computing model that enables a
standard method of building Web service applications and processes to connect and
exchange information over the Web (Chen, Dayal et al. 2000; Leymann 2001; Shegalov,
Gillmann et al. 2001; Fensel and Bussler 2002). The new advances and developments in
e-services and Web services set new requirements and challenges for workflow systems.

One important missing requirement is the management of Quality of Service (QoS).
Organizations operating in modern markets, such as e-commerce activities and
distributed Web services interactions, require QoS management. Appropriate control of
quality leads to the creation of quality products and services; these, in turn, fulfill
customer expectations and achieve customer satisfaction.

While QoS has been a major concern in the areas of networking (Cruz 1995;
Georgiadis, Guerin et al. 1996), real-time applications (Clark, Shenker et al. 1992) and
middleware (Zinky, Bakken et al. 1997; Frolund and Koistinen 1998; Hiltunen,
Schlichting et al. 2000), few research groups have concentrated their efforts on enhancing
workflow systems to support Quality of Service management. Most of the research
carried out to extend the functionality of workflow systems QoS has only been done in
the time dimension, which is only one of the dimensions under the QoS umbrella.
Furthermore, the solutions and technologies presented are still preliminary and limited
(Eder, Panagos et al. 1999). The industry has a major interest on the QoS of workflows
and workflow systems. Currently, ad-hoc techniques can be applied to estimate the QoS
of workflows.

For organizations, being able to characterize workflows based on QoS has four distinct
advantages.

(1) QoS-based design. It allows organizations to translate their vision into their
business processes more efficiently, since workflow can be designed according to
QoS metrics. For e-commerce processes it is important to know the QoS an
application will exhibit before making the service available to its customers.

(2) QoS-based selection and execution. It allows for the selection and execution of
workflows based on their QoS, to better fulfill customer expectations. As
workflow systems carry out more complex and mission-critical applications, QoS
analysis serves to ensure that each application meets user requirements.

(3) QoS monitoring. It makes possible the monitoring of workflows based on QoS.
Workflows must be rigorously and constantly monitored throughout their life
cycles to assure compliance both with initial QoS requirements and targeted
objectives. QoS monitoring allows adaptation strategies to be triggered when
undesired metrics are identified or when threshold values are reached.

(4) QoS-based adaptation. It allows for the evaluation of alternative strategies when
workflow adaptation becomes necessary. In order to complete a workflow
according to initial QoS requirements, it is necessary to expect to adapt, replan,
and reschedule a workflow in response to unexpected progress, delays, or
technical conditions. When adaptation is necessary, a set of potential alternatives
is generated, with the objective of changing a workflow as its QoS continues to

 3

meet initial requirements. For each alternative, prior to actually carrying out the
adaptation in a running workflow, it is necessary to estimate its impact on the
workflow QoS.

This paper is composed of two parts. The first part presents a comprehensive model
for the specification of workflow QoS as well as methods to compute and predict QoS.
We start by investigating the relevant QoS dimensions that are necessary to correctly
characterize workflows. We not only target the time dimension, but also investigate other
dimensions required to develop a usable workflow QoS model. Once the QoS model is
defined, algorithms are necessary to compute the QoS of workflows. Quality metrics are
associated with tasks, and tasks compose workflows. The computation of workflow QoS
is done based on the QoS of the tasks that compose a workflow.

The second part of this paper describes the enhancements that need to be made to
workflow systems to support processes constrained by QoS requirements. The
enhancements include the implementation of a QoS model, the implementation of
algorithms to compute and predict workflow QoS, and the implementation of methods to
record and manage QoS metrics. These enhancements have been carried out for the
METEOR system (Kochut, Sheth et al. 1998) to allow the specification, recording, and
computation of QoS. The support of QoS requires the modification and extension of
several workflow system components, and the development of additional modules. While
the implementation was made for the METEOR system and the development is based on
a specific conceptual model, the main ideas presented in this study can be applied to the
vast majority of workflow systems available.

This paper is structured as follows. Section 2 describes a workflow process that
illustrates a real world scenario, which will be used to exemplify QoS through the rest of
the paper. Based on our scenario, a set of new requirements is derived and the current
limitations of WfMSs technology are stated. In section 3, we introduce our workflow
QoS model and describe each of its dimensions. Section 4 describes how the quality of
service of workflow tasks is calculated. Section 5 described how QoS estimates are set. In
Section 6, we present an algorithm to compute and estimate workflow QoS. Section 7 is
extensive and describes the modification of existing workflow system components and
the creation of new modules that have been developed to support the workflow QoS
management for the METEOR system. Each of the workflow components and new
modules are analyzed individually. Section 8 presents an example of how to compute the
QoS for the workflow introduced in our initial scenario. Section 9 discusses the related
work in the QoS area. Finally, section 10 presents our conclusions.

2 Workflows, Tasks, Web services, and Web processes

Web services and e-services have been announced as the next wave of Internet-based
business applications that will dramatically change the use of the Internet (Fabio Casati,
Ming-Chien Shan et al. 2001). With the development and maturity of infrastructures and
solutions that support e-services, we expect organizations to incorporate Web services as
part of their business processes. While in some cases Web services may be utilized in an
isolated form, it is natural to expect that Web services will be integrated as part of
workflows (Fensel and Bussler 2002). The increasingly global economy requires

 4

advanced information systems such as those supporting multi-enterprise and Web-scale
processes. Important developments have already been made with the construction of
systems to support workflows (enterprise level), distributed workflows (inter-enterprise
and B2B level), and Web processes (global level) (Bussler 2003).

In the QoS model presented in this paper, tasks and Web services can be treated with
no difference. Workflow systems require tasks to have a structure which includes
information such as task name, formal parameters, relevant data, and invoked
applications. Web services include the same kind of information. For example, in
METEOR workflow system (Kochut, Sheth et al. 1999), business tasks have been
wrapped with CORBA objects to enable a transparent remote invocation. With recent
technological developments, a business task can now be wrapped with a Web service
interface. One of the advantages of using Web services is to enable easier and greater
interoperability and integration among systems and applications.

The analogy drawn between tasks and Web services is also valid for workflows and
Web processes. Workflows represent the automation of a business process, in whole or
part, during which documents, information or tasks are passed from one participant to
another for action, according to a set of procedural rules and are made of elements which
comprise transitions, logic conditions, data flows, parallel and conditional building
blocks, starting and ending points, splits, and joins. Web processes have precisely the
same characteristics. These allows us to conclude that Web processes can be viewed as
workflows that manage Web services instead of tasks (Cardoso and Sheth 2003).

Therefore, throughout this paper, the term ‘task’ or ‘workflow task’ corresponds to a
traditional workflow task or a Web service. It will later become evident that in order for
our model to be applied to workflows or Web processes, tasks or Web service only have
to adhere to the QoS model.

3 Scenario

The Fungal Genome Resource laboratory (FGR 2002) at the University of Georgia has
realized that to be competitive and efficient it must adopt a new and modern information
system infrastructure. Therefore, a first step was taken in that direction with the adoption
of a workflow management system (METEOR (Kochut, Sheth et al. 1999)) to support its
laboratory processes (Hall, Miller et al. 2003). Since the laboratory supplies several
genome services to its customers, the adoption of a WfMS has enabled the logic of
laboratory processes to be captured in a workflow schema. As a result, all the services
available to customers are stored and executed under the supervision of the workflow
system.

3.1 Workflow Structure

Before discussing this scenario in detail, we review the basis elements of the METEOR
workflow model.

A workflow is composed of tasks, networks and transitions. Tasks are represented
using circles, networks (sub-workflows) using rounded rectangles, and transitions are
represented using arrows. Transitions express dependencies between tasks and are

 5

associated with an enabling probability (p1, p2,.., pn). When a task has only one outgoing
transition, the enabling probability is 1. In such a case, the probability can be omitted
from the graph. A task with more than one outgoing transition can be classified as an
and-split or xor-split. And-split tasks enable all their outgoing transitions after completing
their execution. Xor-split tasks enable only one outgoing transition after completing their
execution. And-split tasks are represented with a ‘*’ and xor-split tasks are represented
with a ‘+’. A task with more than one incoming transition can be classified as an and-join
or xor-join. And-join tasks start their execution when all their incoming transitions are
enabled. Xor-join tasks are executed as soon as one of the incoming transitions is
enabled. As with and-split and xor-split tasks, and-join tasks and xor-join tasks are
represented with the symbol ‘*’ and ‘+’, respectively. When no symbol is present to
indicate the input or output logic of a task, then it is assumed to be an xor.

3.2 Workflow Description

Genomic projects involve highly specialized personnel and researchers, sophisticated
equipment, and specialized computations involving large amounts of data. The
characteristics of the human and technological resources involved, often geographically
distributed, require a sophisticated coordination infrastructure to manage not only
laboratory personnel and equipment, but also the flow of data generated.

One of the services supplied by the research laboratory is the DNA Sequencing
workflow. A simplified version of the DNA Sequencing workflow is depicted in Figure
1.

Figure 1– DNA Sequencing workflow

The workflow is composed of eight main tasks: Setup, Prepare Sample, Prepare
Clone and Sequence, Assembly, Get Sequences, Sequence Processing, and Process
Report. Each individual task carries out a particular function; if necessary, the workflow
can be spread across multiple research centers.

The Setup task is responsible for initializing internal variables of the workflow
process.

The second task, Prepare Sample, consists of isolating DNA from a biological sample.
The samples can be prepared using a variety of protocols. These protocols need to be
followed rigorously in order to obtain DNA that is not degraded in any form. A correctly
prepared sample will originate a better DNA sequencing, since the quality of the DNA
template is one of the most critical factors in DNA sequencing.

t3

t6t5

t4t2

Prepare
Sample

Prepare Clones
and

Sequence

Get SequencesTest Quality

Assembly

p1

t7

Sequence
Processing

p2

+

t1

Setup

t8

Proces
Report

+

 6

The task Prepare Clones and Sequence clones specific regions of the genome from
DNA isolated in the previous step. This step can be fully automated by computer control
(using, for example, a robotic system). This task also executes the sequencing, which
uses DNA sequencing machines to read each biochemical “letter” (A, G, C or T) of a
cloned DNA fragment. The output is composed of short decoded segments (a sequence
such as AGGCATTCCAG…). The use of automated sequencers has revolutionized the
field of bioinformatics by enabling scientists to catalogue sequence information hundreds
of times faster than was possible with pre-existing scanning techniques. This new
approach allows for automatic recognition, without major human intervention.

The Assembly task analyzes the DNA segments generated in the sequencing task. This
step includes the assembly of larger contiguous blocks of sequences of DNA from small
overlapping fragments. This is complicated by the fact that similar sequences occur many
times in many places of the genome.

The Test Quality task screens for the Escherichia coli (E. coli) contaminant in DNA
contigs. The clones grown in bacterial hosts are likely to be contaminated. A quick and
effective way to screen for the E. coli contaminant is to compare a given DNA sequence
to the E. coli genome. For E. coli, this task is made easier by the availability of its full
genome.

Get Sequences is a simple task that downloads the sequences created in the assembly
step, using the FTP protocol.

The Sequence Processing task analyzes the DNA segments generated in the assembly
step. The goal of this task is to find DNA sequences in order to identify macromolecules
with related structures and functions. The new DNA sequence is compared to a
repository of known sequences (e.g., Swiss-Prot or GenBank), using one of a number of
computational biology applications for comparison.

After obtaining the desired data from the Sequence Processing task, the results are
stored, e-mailed, and a report is created. The Process Report task stores the data
generated in the previous task in a database and creates a final report. It is responsible for
electronically mailing the sequencing results to the persons involved in this process, such
as researchers and lab technicians.

3.3 Workflow Application Requirements

In its normal operation, the Fungal Genome Resource laboratory executes the DNA
Sequencing workflow in a regular manner. Workflow instances are started in order to
render the sequencing services. In this scenario, and with current workflow technology,
the execution of the workflow instances is carried out without any quality of service
management on important parameters such as delivery deadlines, reliability, and cost of
service. The laboratory wishes to be able to state a detailed list of requirements for the
service to be rendered to its customers. Its requirements include the following:
! The final report has to be delivered in 31 weeks or less, as specified by the

customer (e.g., NIH).
! The profit margin has to be 10%. For example, if a customer pays $1,100 for a

sequencing, then the execution of the DNA Sequencing workflow must have a
cost for the laboratory that is less than $1,000.

 7

! In some situations, the client may require an urgent execution of DNA
sequencing. Therefore, the workflow has to exhibit high levels of reliability, since
workflow failures would delay the sequencing process.

The requirements for the genetic workflow application presented underline three non-
functional requirements: time, cost, and reliability. While the specification of such quality
requirements is important, current WfMSs do not supply a model to delineate their
specification or management.

Having already given a good description of the problem and motivating why a solution
is needed for the specification and management of QoS, in the next section we present a
QoS model which captures the specification of QoS metrics. This model is a basic stone
of our work, and will be used, not only to specify the QoS, but also compute the QoS of
workflows.

4 Workflow Quality of Service

Workflow QoS represents the quantitative and qualitative characteristics of a workflow
application necessary to achieve a set of initial requirements. Quantitative characteristics
can be evaluated in terms of concrete measures such as workflow execution time, cost,
etc. Qualitative characteristics specify the expected services offered by the system, such
as security and fault-tolerance mechanisms. QoS should be seen as an integral aspect of
workflows; therefore, it should be integrated with workflow specifications. The first step
is to define a workflow QoS model.

4.1 Characteristics of the QoS Model

One of the most popular workflow classifications distinguishes between ad hoc
workflows, administrative workflows, and production workflows. This classification was
first mentioned by (McCready 1992). The main differences between these types include
structure, repetitiveness, predictability, complexity, and degree of automation.

The QoS model presented here is better suited for production workflows (McCready
1992) since they are more structured, predictable, and repetitive. Production workflows
involve complex and highly-structured processes, whose execution requires a high
number of transaction accessing different information systems. These characteristics
allow the construction of adequate QoS models for workflow tasks. In the case of ad hoc
workflows, the information, the behavior, and the timing of tasks are largely
unstructured, which makes the procedure of constructing a good QoS model more
difficult and complex.

4.2 Workflow QoS Model

Quality of service can be characterized according to various dimensions. We have
investigated related work to decide which dimensions would be relevant to compose our
QoS model. Our research targeted two distinct areas: operations management for
organizations and quality of service for software systems. The study of those two areas is

 8

important, since workflow systems are widely used to model organizational business
processes, and workflow systems are themselves software systems.

On the organizational side, Stalk and Hout (1990) and Rommel et al. (1995)
investigated the features with which successful companies assert themselves in
competitive world markets. Their results indicated that success is related to the capability
to compete with other organizations, and it is based upon three essential pillars: time,
cost, and quality. Kobielus (1997) suggests that these dimensions should constitute the
criteria that workflow systems should include and might benefit from. On the software
system side, Frolund and Koistinen present a set of practical dimensions for distributed
object systems’ reliability and performance, which include TTR (time to repair), TTF
(time to failure), and availability. Chung et al., (2000) present a framework, a set of tools,
and methodology to make system design decisions based on analysis non-functional
requirements.

Based on previous studies and our experience in the workflow domain, we have
constructed a QoS model composed of the following dimensions: time, cost, and
reliability. QoS specifications are set for task definitions. Based on this information, QoS
metrics are computed for workflows (see section 6).

4.3 Task Time

Time is a common and universal measure of performance. The philosophy behind a time-
based strategy usually demands that businesses deliver the most value as rapidly as
possible. Shorter workflow execution time allows for a faster production of new products,
thus providing a competitive advantage.

The first measure of time is task response time (T). Task response time corresponds to
the time an instance takes to be processed by a task. The task response time can be
broken down into two major components: delay time and process time. Delay time (DT)
refers to the non-value-added time needed in order for an instance to be processed by a
task. This includes, for example, the instance queuing delay and the setup time of the
task. While, those two metrics are part of the task operation, they do not add any value to
it. Process time (PT) is the time a workflow instance takes at a task while being
processed; in other words, it corresponds to the time a task needs to process an instance.
Therefore, task response time for a task t can be computed as follows:

T(t) = DT(t) + PT(t)

The delay time can be further broken down into queuing delay and setup delay.
Queuing delay is the time instances spend waiting in a tasklist, before the instance is
selected for processing. Setup delay is the time an instance spends waiting for the task to
be set up. Setup activities may correspond to the warming process carried out by a
machine before executing any operation, or to the execution of self-checking procedures.
Another time metric that may be considered to integrate with the delay time is the
synchronization delay, which corresponds to the time a workflow instance waits for other
instances in an and-join task (synchronization). In our QoS model, this metric is not part
of the task response time. This is because the algorithm we use to estimate workflow QoS

 9

can derive this metric directly from the workflow structure and from the task response
time. This will become more clear when we describe workflow QoS computation.

Breaking task response time into various pieces is important since it gives a more
detailed model to be used by business analysts. Each piece correspond to an important
attribute that needs to be analyzed and should not be overlooked. In many situations the
different attributes are set by different people.

4.4 Task Cost

Task cost represents the cost associated with the execution of workflow tasks. During
workflow design, both prior to workflow instantiation and during workflow execution, it
is necessary to estimate the cost of the execution in order to guarantee that financial plans
are followed. The cost of executing a single task includes the cost of using equipment, the
cost of human involvement, and any supplies and commodities needed to complete the
task. The following cost functions are used to compute the cost associated with the
execution of a task.

Task cost (C) is the cost incurred when a task t is executed; it can be broken down
into two major components: enactment cost and realization cost.

C(t) = EC(t) + RC(t)

The enactment cost (EC) is the cost associated with the management of the workflow
system and with the monitoring of workflow instances. The realization cost (RC) is the
cost associated with the runtime execution of the task. It can be broken down into: direct
labor cost, machine cost, direct material cost, and setup cost. Direct labor cost is the cost
associated with the person carrying out the execution of a workflow human task (Kochut,
Sheth et al. 1999), or the cost associated with the execution of an automatic task with
partial human involvement. Machine cost is the cost associated with the execution of an
automatic task. This can correspond to the cost of running a particular piece of software
or the cost of operating a machine. Direct material cost is the cost of the materials,
resources, and inventory used during the execution of a workflow task. Setup cost is the
cost to set up any resource used prior to the execution of a workflow task.

The EC and RC captures the distinction between the running costs of the workflow
system deployment, operation, maintenance and monitoring vs. the costs associated with
the execution of tasks.

4.5 Task Reliability

To model the reliability dimension of workflows, we have used concepts from system
and software reliability theory (Hoyland and Rausand 1994; Ireson, Jr. et al. 1996; Musa
1999). The reliability analysis of systems often uses reliability block diagrams (RBD) as
a representation of how the components of a system are connected. Elementary
configurations of a RBD include the series and parallel configurations. Our approach is to
create a mapping between RBD and workflow structures. This allows us to view a
workflow as a system of independent components which can be then modeled and

 10

analyzed using similar functions applied to RBD. The first step is to model the reliability
of an individual task.

Task reliability (R) models what can be considered the most important class of
workflow failures, task failures (Eder and Liebhart 1996) (also known as activity
failures). Task failures can be organized into two main classes: system failures and
process failures ((Eder and Liebhart) calls this second type of failures, semantic failures).

System failures. These consist of information technology and software failures which
lead to a task terminating abnormally. Information technology and software include
operating systems, communication protocols, hardware, etc. For example, a task manager
is not able to contact its task because the CORBA server managing the task has failed due
to a system breakdown is a system failure.

Process failures. These consist of business process exceptions which lead to an
anomalous termination of a task. In a workflow, task structure (Krishnakumar and Sheth
1995) has an initial state, an execution state, and two distinct terminating states. For non-
transactional tasks, one of the terminating states indicates that a task has failed, while the
other state indicates that a task is done (Figure 2). For transactional and open 2PC tasks,
the terminating states are aborted and committed. The model used to represent each task
indicates that only one starting point exists when performing a task, but two different
states can be reached upon its execution. For example, a database access task fails
because of an invalid user password. The task enters the aborted state.

Figure 2 - Two task structures (Krishnakumar and Sheth 1995)

To describe task reliability we follow a discrete-time modeling approach. We have
selected this solution since workflow task behavior is most of the time characterized in
respect to the number of executions. Discrete-time models are adequate for systems that
respond to occasional demands, such as database systems (i.e, discrete-time domain).
This dimension follows from one of the popular discrete-time stable reliability models
proposed in (Nelson 1973) and it is shown below.

R(t) = 1 – (system failure rate + process failure rate)

System failure rate is the ratio between the numbers of time a task did not perform for

its users and the number of times the task was called for execution, i.e. #(unsuccessful
executions)/#(called for execution). Process failure rate provides information concerning
the relationship between the number of times the state done/committed is reached and the

 11

number of times the failed/aborted state is reached after the execution of a task (see the
task model structure shown in Figure 2). It is calculated using the formula #(failed or
aborted)/(#(failed or aborted) + #(done or commit)).

Alternatively, continuous-time reliability models can be used when the failures of the
malfunctioning equipment or software can be expressed in terms of times between
failures, or in terms of the number of failures that occurred in a given time interval. Such
reliability models are more suitable when workflows include tasks that control equipment
or machines that have failure specifications determined by the manufacturer. Ireson, Jr et
al. (1996) presents several software reliability models which can be used to model this
QoS dimension. The ideal situation would be to associate with each workflow task a
reliability model representing its working behavior. While this is possible, we believe that
the common workflow system users do not have enough knowledge and expertise to
apply such models.

5 Creation of QoS Estimates

In order to facilitate the analysis of workflow QoS, it is necessary to initialize task QoS
metrics and also initialize stochastic information which indicates the probability of
transitions being fired at runtime. Once tasks and transitions have their estimates set,
algorithms and mechanisms, such as simulation, can be applied to compute overall
workflow QoS.

5.1 Creation of QoS Estimates for Tasks

Having previously defined the QoS dimensions for tasks, we now target the estimation of
QoS metrics of tasks. The specification of QoS metrics for tasks is made at design time
and re-computed at runtime, when tasks are executed. During the graphical construction
of a workflow process, the business analyst and domain expert set QoS estimates for each
task. The estimates characterize the quality of service that the tasks will exhibit at
runtime.

Setting initial QoS metrics for some workflow tasks may be relatively simple. For
example, setting the QoS for a task controlling a DNA sequencer can be done based on
the time, cost, and reliability specifications given by the manufacturer of the DNA
sequencer. In other cases, setting initial QoS metrics may prove to be difficult. This is the
case for tasks that heavily depend on user input and system environment. For such tasks,
it is convenient to study the workflow task based on real operations. The estimates are
based on data collected while testing the task. The idea is to test the task based on
specific inputs. This can be achieved by the elaboration of an operational profile (Musa
1993). In an operational profile, the input space is partitioned into domains, and each
input is associated with a probability of being selected during operational use. The
probability is employed in the input domain to guide input generation. The density
function built from the probabilities is called the operational profile of the task. At
runtime, tasks have a probability associated with each input. Musa (1999) described a
detailed procedure for developing a practical operational profile for testing purposes.

 12

The task runtime behavior specification is composed of two classes of information
(Table 1): basic and distributional. The basic class associates with each task’s QoS
dimension the minimum value, average value, and maximum value the dimension can
take. For example, the cost dimension corresponds to the minimum, average, and
maximum cost associated with the execution of a task. The second class, the
distributional class, corresponds to the specification of a constant or of a distribution
function (such as Exponential, Normal, Weibull, and Uniform) which statistically
describes task behavior at runtime. In some situations it may not be practical to derive a
distribution function, an alternative is to sample the distribution and specify it in the form
of a histogram rather than an analytical formula. For example, Table 1 and Table 2 show
the QoS dimensions for an automatic task (the SP FASTA task) and for a manual task (the
Prepare Sample task; see section 3.2 for tasks descriptions).

 Basic class Distributional class
 Min value Avg value Max value Dist. Function

Time 0.291 0.674 0.895 Normal(0.674, 0.143)
Cost 0 0 0 0.0
Reliability - 100% - 1.0

Table 1 – Task QoS for an automatic task

 Basic class Distributional class
 Min value Avg value Max value Dist. Function

Time 192 196 199 Normal(196, 1)
Cost 576 576 576 576.0
Reliability - 100% - 1.0

Table 2 – Task QoS for a manual task

The values specified in the basic class are typically employed by mathematical
methods in order to compute workflow QoS metrics, while the distributional class
information is used by simulation systems to compute workflow QoS (Chandrasekaran,
Silver et al. 2002; Miller, Cardoso et al. 2002). To devise values for the two classes, the
designer typically applies the functions presented in the previous section to derive the
task’s QoS metrics. We recognize that the specification of time, cost, and reliability is a
complex operation, which when not carried out properly can lead to the specification of
incorrect values. Additionally, the initial specification may not remain valid over time.
To overcome this difficulty, a task’s QoS values can be periodically re-computed for the
basic class, based on previous executions. The distributional class may also need to have
its distribution re-computed. At runtime, the workflow system keeps track of actual
values for the QoS dimensions monitored. QoS runtime metrics are saved and used to re-
compute the QoS values for the basic class which were specified at design time. The
workflow system re-computes the QoS values for each dimension; this allows the system
to make more accurate estimations based on recent instance executions.

 13

The re-computation of QoS task metrics is based on data coming from designer
specifications and from the workflow system log. Depending on the workflow data
available, four scenarios can occur: a) For a specific task t and a particular dimension
Dim, the average is calculated based only on information introduced by the designer
(Designer AverageDim(t)); b) the average of a task t dimension is calculated based on all
its executions independently of the workflow that executed it (Multi-Workflow
AverageDim (t)); c) the average of the dimension Dim is calculated based on all the times
task t was executed in any instance from workflow w (Workflow AverageDim(t, w)); and
d) the average of the dimension of all the times task t was executed in instance i of
workflow w (Instance AverageDim(t, w, i)). Scenario d) can only occur when loops exist in
a workflow.

While the formulae presented only show how to compute average metrics, similar
formulae are used to compute minimum and maximum values.

The task QoS for a particular dimension can be determined at different levels; it is
computed following the equations described in Table 3.

a) QoSDim(t) = Designer AverageDim(t)

b) QoSDim’(t) = wi1* Designer AverageDim(t) + wi2* Multi-Workflow AverageDim(t)

c) QoSDim(t, w) = wi1* Designer AverageDim(t) + wi2* Multi-Workflow AverageDim(t) +
wi3*Workflow AverageDim(t, w)

d) QoSDim(t, w, i) = wi1* Designer AverageDim(t) + wi2* Multi-Workflow AverageDim(t) +
wi3* Workflow AverageDim(t, w) + wi4* Instance Workflow
AverageDim(t,w, i)

Table 3 – QoS dimensions computed at runtime

The workflow system uses the formulae from Table 3 to predict the QoS of tasks. The
weights wik are set manually. They reflect the degree of correlation between the
workflow under analysis and other workflows for which a set of common tasks is shared.

The different equations are used based on the historical data available from past
executions of tasks and workflows. For example, if the workflow system does not have
any historical data in its log describing the QoS metrics of task tn, then the equation a)
will be used to predict a QoS model for task tn. In the other hand, if the workflow system
log’s contains historical data describing the QoS metrics of task tn, then equation b), c)
and d) will be used to predict QoS metrics. The section of an equation depends on how
much data is available.

Let us assume that we have an instance i of workflow w running and that we desire to
predict the QoS of task t ∈ w. The following rules are used to choose which formula to
apply when predicting QoS. If task t has never been executed before, then formula a) is
chosen to predict task QoS, since there is no other data available. If task t has been
executed previously, but in the context of workflow wn, and w != wn, then formula b) is
chosen. In this case we can assume that the execution of t in workflow wn will give a
good indication of its behavior in workflow w. If task t has been previously executed in
the context of workflow w, but not from instance i, then formula c) is chosen. Finally, if

 14

task t has been previously executed in the context of workflow w, and instance i, meaning
that a loop has been executed, then formula d) is used.

5.2 Probabilities Estimates for Transitions

In the same way we seed tasks’ QoS, we also need to seed workflow transitions. Initially,
the designer sets the transition probabilities at design time. At runtime, the transitions’
probabilities are re-computed. The method used to re-compute the transitions’
probabilities follows the same lines of the method used to re-compute tasks’ QoS. When
a workflow has never been executed, the values for the transitions are obviously taken
from initial designer specifications. When instances of a workflow w have already been
executed, then the data used to re-compute the probabilities come from initial designer
specifications for workflow w, from other executed instances of workflow w, and if
available, from the instance of workflow w for which we wish to predict the QoS. This
corresponds to the use of functions similar to the ones previously defined for tasks’ QoS
(see Table 3).

The initialization of tasks QoS metrics and the initialization of stochastic information
indicating the probability of transitions being fired at runtime give the necessary data to
carry out the QoS computation of workflows. The QoS computation is investigated in the
next section.

6 Workflow QoS Computation

Once QoS estimates for tasks and for transitions are determined, we can compute overall
workflow QoS. We describe a mathematical modeling technique that can be used to
compute QoS metrics for a given workflow process.

6.1 Mathematical Modeling

To compute QoS metrics for workflows based on task’s QoS metrics we have developed
the Stochastic Workflow Reduction (SWR) algorithm (Cardoso 2002). The SWR
algorithm repeatedly applies a set of reduction rules to a workflow until only one atomic
task (Kochut, Sheth et al. 1999) remains. Each time a reduction rule is applied, the
workflow structure changes. After several iterations only one task will remain. When this
state is reached, the remaining task contains the QoS metrics corresponding to the
workflow under analysis.

Graph reduction rules have already been successfully used to verify the correctness of
workflows. Sadiq and Orlowska (1999) present an algorithm that employs a set of graph
reduction rules to identify structural conflicts in workflows. The algorithm starts by
removing all structures from the workflow graph that are correct. This is achieved by
iteratively applying a conflict-preserving reduction process. The reduction process
eventually reduces a structurally correct workflow to an empty graph. If the workflow is
not completely reduced, then structural conflicts exist.

In our approach, the set of reduction rules that can be applied to a given workflow
corresponds to the set of inverse operations that can be used to construct a workflow. We

 15

have decided to only allow the construction of workflows which are based on a set of
predefined construction systems; this protects users from designing invalid workflows.
Invalid workflows contain design errors, such as non-termination, deadlocks, and spliting
of instances (Aalst 1999).

Additional reduction rules can be developed. We have decided to present the reduction
concept with only six reduction rules, for three reasons. The first reason is because a vast
majority of workflow systems support the implementation of the reduction rules
presented. A study on fifteen major workflow systems (Aalst, Barros et al. 2000) show
that most systems support, the reduction rules presented. The study does not discuss
network patterns. The network pattern is intended to provide a structural and hierarchical
division of a given workflow design into levels, in order to facilitate its understanding by
the grouping of related tasks into functional units. The second reason is that the reduction
rules are simple, making it easy to understand the idea behind the workflow reduction
process. The last reason is that these rules are supported by the METEOR workflow
management system and form a basic set of rules that should be supported by any modern
workflow system.

The algorithm uses a set of six distinct reduction rules: (1) sequential, (2) parallel, (3)
conditional, (4) fault-tolerant, (5) loop, and (6) network.

Reduction of a Sequential System. Figure 3 illustrates how two sequential workflow
tasks ti and tj can be reduced to a single task tij. In this reduction, the incoming transitions
of ti and outgoing transition of tasks tj are transferred to task tij.

Figure 3 - Sequential system reduction

This reduction can only be applied if the following two conditions are satisfied: a) ti is
not a xor/and split and b) tj is not a xor/and join. These conditions prevent this reduction
from being applied to parallel, conditional, and loop systems. To compute the QoS of the
reduction, the following formulae are applied:

T(tij) = T(ti) + T(tj)
C(tij)= C(ti) + C(tj)
R(tij) = R(ti) * R(tj)

Reduction of a Parallel System. Figure 4 illustrates how a system of parallel tasks t1, t2,
…, tn, an and split task ta, and an and join task tb can be reduced to a sequence of three
tasks ta, t1n, and tb. In this reduction, the incoming transitions of ta and the outgoing
transition of tasks tb remain the same. The only outgoing transitions from task ta and the
only incoming transitions from task tb are the ones shown in the figure below.

tij

(a) (b)

ti tj

 16

Figure 4 - Parallel system reduction

The QoS of tasks ta and tb remain unchanged. To compute the QoS of the reduction the
following formulae are applied:

T(t1n) = MaxI∈ {1..n} {T(ti)}

C(t1n) = ∑
≤≤ ni .1

C(ti)

R(t1n) = ∏
≤≤ ni .1

R(ti)

Reduction of a Conditional System. Figure 5 illustrates how a system of conditional
tasks t1, t2, …, tn, a xor split (task ta), and a xor join (task tb) can be reduced to a sequence
of three tasks ta, t1n, and tb. Task ta and task tb do not have any other outgoing transitions
and incoming transitions, respectively, other than the ones shown in the figure. In this
reduction the incoming transitions of ta and outgoing transition of tasks tb remain the
same

Figure 5 - Conditional system reduction

The QoS of tasks ta and tb remain unchanged. To compute the QoS of the reduction the
following formulae are applied:

tbta
+

(a) (b)

+
tbta t1n

pa1

pan

pa2

t1

t2

tn

tbta
*

(a) (b)

* tbta t1n

t1

t2

tn

 17

T(t1n) = ∑
≤≤ ni .1

 pai * T(ti)

C(t1n) = ∑
≤≤ ni .1

 pai * C(ti)

R(t1n) = ∑
≤≤ ni .1

pai * R(ti)

Reduction of a Loop System. Loop systems can be characterized by simple and dual
loop systems. Figure 6 illustrates how a simple loop system can be reduced. A simple

loop system in task ti can be reduced to a task tli. In this reduction, pi +∑
=

=
n

i
oip

1
1.

Once the reduction is applied, the probabilities of the outgoing transitions of task tli are

changed to plk =
i

ok

p-1
p

, and ∑
=

=
n

k
lkp

1
1. In the reduction of a loop system the loop is

removed. Since the loop is removed we need to update the remaining outgoing
transitions. Therefore, the probability of each outgoing transition needs to be divided by
the probability of the loop not being followed (i.e., 1-pi).

Figure 6 – Simple loop system reduction

To compute the QoS of the reduction the following formulae are applied:

T(tli) =
ip-1
)(T it

C(tli) =
ip-1
)(C it

R(tli) =
)(Rp-1

)(R*)p-(1
i

i

i

i

t
t

Figure 7 illustrates how a dual loop system can be reduced. A dual loop system

composed of two tasks ti and tj can be reduced to a single task tij. In this reduction,

(a) (b)

tli
+ +

pi

po1 pl1ti… …

pon

… …

pln

+ +

 18

pi+∑
=

=
n

i
oip

1
1. Once the reduction is applied, the probabilities of the outgoing transitions

of task tij are changed to plk =
i

ok

p-1
p

 and ∑
=

=
n

k
lkp

1
1.

(a) (b)

tij
+ +

pj

pl1

tj

ti …

pln

+ +

…… …

pon

po1

Figure 7 – Dual loop system reduction

To compute the QoS of the reduction the following formulae are applied:

T(tij) =
)p-(1

)(T)p-(1)(T)(T

j

j jji ttt −+

C(tij) =
)p-(1

)(C)p-(1)(C)(C

j

j jji ttt −+

R(tij) =
)(R)(Rp-1

)(R*)p-(1

j

j

ji

i

tt
t

Reduction of a Fault-Tolerant System. Figure 8 illustrates how a fault-tolerant system
with tasks t1, t2, …, tn, an and split (task ta), and a xor join (task tb) can be reduced to a
sequence of three tasks ta, t1n, and tb. The execution of a fault-tolerant system starts with
the execution of task ta and ends with the completion of task tb. Task tb will be executed
only if k tasks from the set {t1, t2, …, tn} are executed successfully. In this reduction, the
incoming transitions of ta and the outgoing transition of tasks tb remain the same. The
idea of this reduction system is to allow several tasks {t1, t2, …, tn} to be executed in
parallel, carrying out the same function but in a different way, until k tasks have
completed their execution. For example, in genomics several algorithms can be used to
query genome databases given an initial probe. Let us assume that the tasks t1, t2, …, t5
are execute in parallel and each task executes a distinct algorithm. Using a fault-tolerant
system, we can specify that the parallel execution of the tasks continues until two of them
complete their execution. In this scenario, we consider that the answers of the first two
queries to complete are sufficient for the process to continue.

 19

tbta
*

(a) (b)

tbta t1n

t1

t2

tn

K

Figure 8 – Fault-Tolerant system reduction

The QoS of tasks ta and tb remain unchanged. To compute the QoS of the reduction the
following formulae are applied:

The function)(sMin
k

selects the set of the k smallest numbers from the set s, and

function)(xg is defined as followed:

≥

<
=

0,1

0,0
)(

x

x
xg

T(t1n) =)})(T),...,(T({ 1 nk

ttMin

C(t1n) = ∑
≤≤ ni .1

C(tI)

R(t1n) = ∑
=

1

01i

…∑ ∑
= =

−+−−+−−
1

0
111

1

))(R)12()1((*...*))(R)12()1((*)(
ni

nnn

n

j
j tiitiikig

The formula R(t1n) is utilized to compute reliability and corresponds to the sum of all

the probabilistic states for which at least k tasks execute successfully.
A fault-tolerant system with n tasks can generate 2n distinct probabilistic states (the

power set). The function R(t1n) adds all the probabilistic states that leads to the successful
execution of the fault-tolerant system (i.e. at least k tasks execute successfully).

In the formula R(t1n), the summation over i1, …, in generates all the possible
probabilistic states. Each probabilistic state is represented with a binary sequence (i1 …
in) for which 0 represents the failing of a task, and 1 represents its success.

For example, in a fault-tolerant system with three parallel tasks (n=3), the values of
the indexes i1=1, i2=0, and i3=1 represent the probabilistic state for which tasks t1 and t3
succeed and task t2 fails.

The term)(
1
∑

=

−
n

j
j kig is used to indicate if a probabilistic state should be considered

in the reliability computation. A probabilistic state is considered only if the number of

tasks succeeding is greater or equal to k, i.e. ∑
=

≥
n

j
j ki

1
 (or equivalently∑

=

≥−
n

j
j ki

1
0). In

 20

our previous example, since i1=1, i2=0, i3=1 and ∑
=

=
n

j
ji

1
2 , the probabilistic state (i1=1,

i2=0, i3=1) will be only considered if 2≤k .
The reliability of a valid state (i.e., a state for which at least k tasks are executed

successfully) is computed based on the product of the reliability of the tasks that compose
the state. In our previous example, where i1=1, i2=0, i3=1, and with k=2, the reliability of
this state is g(2-2)*((1- i1)+(2i1-1)R(t1))*((1- i2)+(2i2-1)R(t2))*((1- i3)+(2i3-1)R(t3)) which
can be reduced to 1*R(t1)*(1-R(t2))*R(t3). This corresponds to the product of the
probability of task t1 to succeed, the probability of task t2 to fail, and the probability of
task t3 to succeed.

Reduction of a Network System. A network task represents a sub-workflow (Figure 9).
It can be viewed as a black box encapsulating an unknown workflow realization with a
certain QoS. A network task ns, having only one task ti, can be replaced by an atomic task
tj. This reduction can be applied only when the QoS of task ti is known. In this
replacement, the QoS of the atomic task tj is set to the workflow QoS of the task ti, i.e,
X(tj) = X(ti), X ∈ {T, C, R}.

Figure 9 - Network system reduction

The input and output transitions of the network task ns are transferred to the atomic
task tj.

7 QoS Model Implementation

In the previous sections, we presented a QoS model and the SWR algorithm to address
non-functional issues of workflows, rather than workflow process operations. The model
and algorithm that we have developed has been implemented for the METEOR workflow
management system.

The METEOR project is represented by both a research system (METEOR 2002), and
a suite of commercial systems that provide an open system based, high-end workflow
management solution, as well as an enterprise application integration infrastructure. The
system has been used in prototyping and deploying workflow applications in various
domains, such as bio-informatics (Hall, Miller et al. 2003), healthcare (Anyanwu, Sheth
et al. 2003), telecommunications (Luo, Sheth et al 2003), defense (Kang, Froscher et al.
1999), and university administration (CAPA 1997).

(a) (b)

ti

tj

ns

 21

The METEOR system has two enactment engines, ORBWork (Kochut, Sheth et al.
1999) and WEBWork (Miller, Palaniswami et al. 1998). In this section we describe the
components that make up the METEOR system and the components that have been
modified, extended, and created to enable QoS management in the context of the
ORBWork engine.

The work discussed in this paper is part of the research system and is not part of any
commercial product yet. It is necessary to make changes to four main components: the
Enactment, the Manager, the Builder, and the Repository. These components and their
relationship to the overall workflow system are illustrated in Figure 10.

CORBA server, communications,
OS, Hardware, etc.

Schema Level

Workflow Level

Infrastructure Level

A

B

C D

N1 N2 FEA

B

C D

N1 N2 FE

Instance Level

Workflow schema

WfMS
components

Load

Enactment
Service

QoS Model

Time
Reliability

Cost

System
Dimensions

Application
Dimensions

A

B

C D

N1 N2 FE

Builder

A

B

C D

N1 N2 FEA

B

C D

N1 N2 FE

Builder

Workflow

Transitions
Tasks

InstancesQoS

DBLog

Workflow

Transitions
Tasks

InstancesQoS

Workflow

Transitions
Tasks

InstancesQoS

DBLog

Create and Manage
workflow instances

Monitor QoS

Control Flow
Data flow
QoS metrics

Workflow
Instance
QoS Data

uses

uses

uses

RepositoryRepository

uses

Simulation System

Task QOS Estimator

Manager Monitor

Figure 10 – QoS Management Architecture

7.1 Enactment System

The modifications that have been made to the ORBWork enactment system include
alterations to the task schedulers, task managers, tasks, and monitors.

In ORBWork enactment system, task schedulers, and tasks are responsible for
managing runtime QoS metrics. From the implementation point of view, we divide the
management of the QoS dimensions into two classes: the system and the application
class. The dimensions of the system class are managed by system components (e.g. a task
scheduler), while the dimensions of the applications class are managed by components
dynamically created to support a particular workflow application (e.g. a task
implementation). In our system, the system class includes the time and reliability
dimensions, while the application class includes the cost dimension.

Since task schedulers decide the starting time of task execution and are notified of task
completion, they are responsible for managing the dimensions of the system class. Task

 22

realizations are the candidate components to manage the cost dimension since they
include the necessary functions to dynamically change initial estimates.

7.2 Managing Time

In section 2 we have described task response time (T) as the time an instance takes to be
processed by a task. Task response time is composed of two major components: delay
time (DT) and process time (PT). Delay time is further broken down into queuing delay
(QD) and setup delay (SD). This makes the response time of a task t represented as
followed:

T(t) = DT(t) + PT(t) = QD(t) + SD(t) + PT(t)

To efficiently manage the time dimension, workflow systems must register values for
each of the functions involved in the calculation of task response time (T). Currently, we
register values for all the functions, except for the setup delay. The time dimension has its
values set according to the task structure illustrated in Figure 11. Each state has been
mapped to one of the functions that compose the time dimension. ORBWork system
follows this task structure to represent workflow task execution behavior (Krishnakumar
and Sheth 1995). To more effectively support QoS management, the original structure
has been extended, with the inclusion of the Pre-Init, as shown in Figure 11.

Figure 11 – Revised task structure (extended from (Krishnakumar and Sheth 1995))

The synchronization delay time is calculated based on the difference between the time
registered when a task leaves the pre-init state and the time registered when it enters the
state. A task t remains in the pre-init state as long as its task scheduler is waiting for
another transition to be enabled in order to place the task into an initial state. This only
happens with synchronization tasks, i.e. and-join tasks (Kochut 1999), since they need to
wait until all their incoming transitions are enabled before continuing to the next state.
For all other types of input and output logic (xor-split, xor-join, and-split) the
synchronization delay time is set to zero.

As for the synchronization delay time, the queuing time is the difference between the
time a task leaves and enters the initial state. A task in the initial state indicates that the
task is in a queue waiting to be scheduled (by its task scheduler). ORBWork task
schedulers treat their queues with a FIFO policy. One interesting queuing policy variation

Failed/aborted

Done/Commit
Initial ExecutingPre-Init

Task Reliability

Processing
Time

Task Response Time

Queuing
Delay

Synchronization
Delay

 23

is associated with the scheduling of human-tasks. For a human-task instance, being in the
initial state means that the task has been placed in a worklist for human processing. A
user can select any human-task in a worklist, as long as the user role matches the task
role. In this case, the queuing policy is SIRO (Serve In Random Order). Depending on
the workflow system, other useful queuing policies can be used, such as priority queues.
When a task instance enters a queue a time-stamp is attached to it. When the task is
removed from the queue for scheduling, another time-stamp is attached to it so that the
total queuing time can be calculated later. When a task is ready to be executed it transits
to the executing state. As with the previous calculations, the time a task remains in this
state corresponds to the processing time.

Another important time metric is the synchronization delay (SyncD). This measure
corresponds to the time and-join tasks spend waiting for all the incoming transitions to be
enabled. The SyncD(t) of a task t is the difference of tb, the time registered when all the
incoming transitions of task t are enabled, and ta, the time registered when the first
incoming transition was enabled, i.e. tb - ta. This measure gives valuable information that
can be used to re-engineer business processes to increase their time efficiency.

7.3 Managing Reliability

When a task is ready to execute, a task scheduler activates an associated task manager.
The task manager invokes and oversees the execution of the task itself. Once activated,
the task manager stays active until the task itself completes. When the task has completed
or terminated prematurely with an exception, the task manager notifies its task scheduler.

During a task invocation or realization, a number of undesirable events may occur.
Two distinct types of failure may arise (see section 4.5): system failure and process
failure. A system failure occurs when the task scheduler is not able to create a task
manager or when a task manager is not able to invoke its task. A process failure occurs
when an exception is raised during the realization of the task. An exception is viewed as
an occurrence of some abnormal event that the underlying workflow management system
can detect and react to. If an exception occurs during the realization of a task, it can be
placed in the done or fail state (for non-transactional tasks) and commit or abort (for
transactional tasks). The former state indicates that the task execution was unsuccessful,
while the latter state indicates that a task is executed successfully (Krishnakumar and
Sheth 1995).

In our implementation, it is the responsibility of task schedulers to identify the failures
of a task invocation or execution in order to subsequently set the reliability dimension.
Later this information is used to compute the failure rate, which is the ratio between the
number of times the failed/aborted state is reached and the number of times a task was
invoked for execution plus the ratio between the number of times the task scheduler is not
able to create a task manager or when a task manager is not able to invoke its task and the
number of times a task was scheduled for execution by the workflow system.

 24

7.4 Managing the Cost

Task managers are implemented as an object and are classified as transactional or non-
transactional, depending on the task managed. Human tasks do not have an associated
task manager.

The task manager is responsible for creating and initializing a QoS cost data structure
from QoS specifications for the task overseen. When the supervised task starts its
execution, the data structure is transferred to it. If the task is a non-transactional one
(typically performed by a computer program), a set of methods is available to
programmatically manage the initial QoS estimates. No methods are supplied to change
the time and reliability dimensions since the task schedulers are responsible for
controlling these dimensions. For transactional tasks (i.e. a database operation), only the
time and reliability dimensions are dynamically set at runtime. The cost dimension, once
initialized from the QoS specifications, cannot be changed. This is because database
systems do not make available information evaluating the cost of the operations executed.
Once the task completes its execution, the QoS data structure is transferred back to the
task manager, and later from the task manager to the task scheduler. The only
responsibility of the task scheduler will be to incorporate the metrics registered for the
time and reliability dimensions (see section 4.2) into the QoS data structure and send it to
the monitor to be processed (see next section).

In the case of human tasks (performed directly by end-users), the QoS specifications
for the cost dimension is included in interface page(s) (as HTML templates) presented to
the end-user. When executing a human task, the user can directly set the cost dimension
to values reflecting how the task was carried out. As mentioned previously, human-tasks
do not have a task manager associated with them, and therefore a specific task scheduler
is responsible for the task supervision. When the task completes its realization, the task
scheduler parses the interface page(s) and retrieves the new QoS metrics that the user
may have modified.

7.5 Monitor

When workflows are installed and instances are executed, the enactment system
generates information messages (events) describing the activities being carried out. The
monitor is an independent component represented by an object that records all of the
events for all of the workflows being processed by the enactment system.

The DBlog is a suitable interface that the monitor uses to store workflow runtime data
in a database. The runtime data generated from workflow installations and instances
execution is propagated to the DBlog that will be in charge of storing the information into
a specified database.

The data model includes metadata describing workflows and workflow versions, tasks,
instances, transitions, and runtime QoS metrics. In addition to storing runtime QoS, we
also store designer-defined QoS estimates. The data model captures the information
necessary to subsequently run suitable tools to analyze workflow QoS. One of the
primary goals of using a database system loosely coupled with the workflow system is to
enable different tools to be used to analyze QoS, such as project management and
statistical tools.

 25

DBlog is populated when workflows are installed and instances executed. The DBlog
schema was designed to store three distinct categories of information, reflecting
workflow systems operations with QoS management. The first category corresponds to
data events generated when workflows are installed. During installation, information
describing workflow structure (which includes tasks and transitions) is stored. The
second category of information to be stored corresponds to the QoS estimates for tasks
and transitions that are specified at the workflow design phase. The third category
corresponds to the information which describes how instances are behaving at runtime.
This includes data indicating the tasks’ processing time, cost, and the enabling of
transitions. The monitoring of transitions is important to build functions which
probabilistically describe their enabled rate. The computation of workflow QoS metrics is
based on this stochastic structure.

Since the database stores real-time runtime information of tasks QoS metrics, we are
also investigating the implementation of mechanisms to automatically notify or alert
operators and supervisors when QoS metrics reach threshold values, so that corrective
actions can be taken immediately.

7.6 Workflow Builder

The workflow builder tool is used to graphically design and specify a workflow. In most
cases, after a workflow design no extra work is necessary and it can be converted
automatically to an application by a code generator. The builder is used to specify
workflow topology, tasks, transitions (control flow and data flow), data objects, task
invocation, roles, and security domains (Kang, Park et al. 2001). During the design phase,
the designer is shielded from the underlying details of the runtime environment and
infrastructure, separating the workflow definition from the enactment system on which it
will be installed and executed. To support workflow QoS management the designer must
be able to set estimates for transition probabilities and QoS estimates for tasks. This
information is later combined with historical data, which plays a larger role as more
instances are executed, to create a runtime QoS model for tasks and a probability model
for transitions.

The workflow model and the task model have been extended to support the
specification of QoS metrics. To support these extensions, the builder has been enhanced
to allow designers to associate probabilities with transitions and to make possible the
specification of initial QoS metrics for tasks (see section 5.1). Previously, the workflow
model only included data flow mappings associated with transitions. The association of
probabilities with transitions transforms a workflow into a stochastic workflow. The
stochastic information indicates the probability of a transition being fired at runtime. The
QoS model specified for each task and transitions probabilities are embedded into the
workflow definition and stored in XML format.

7.6.1 Setting Initial Task QoS Estimates

At design time, each task receives information which includes its type, input and output
parameters, input and output logic, realization, exceptions generated, etc. All this
information makes up the task model. The task model has been extended to accommodate

 26

the QoS model. Task QoS is initialized at design time and re-computed at runtime when
tasks are executed. During the graphical construction of a workflow process, each task
receives information estimating its quality of service behavior at runtime. This includes
information about its cost, time (duration), and reliability.

The task QoS estimates are composed of two classes of information (see section 5.1):
basic and distributional. The basic class associates with each task QoS dimension the
estimates of the minimum, average, and maximum values that the dimension can take.
The second class, the distributional class, corresponds to the specification of a
distribution function which statistically describes tasks behavior at runtime. Figure 12
illustrates the graphical interface that is used to specify the basic and distributional
information to setup initial QoS metrics.

 Figure 12 – Task QoS basic and distributional class

The values specified in the basic class are used by mathematical methods, while the
distributional class information is used by simulation systems.

Once the design of a workflow is completed, it is compiled. The compilation generates
a set of specification files and realization files for each task. The specification files (Spec
files) include information describing the control and data flow of each task. The
realization files include the operations or instructions for a task to be executed at runtime.
For human tasks, HTML files are generated, since they are carried out using a web
browser. For non-transactional tasks, java code files are generated and compiled. At
runtime, the executables are executed automatically by the enactment system. Finally, for
non-transactional tasks a file containing the necessary data to connect to databases is
generated. To enable the enactment system to acquire and manipulate QoS information,
the builder has been extended to generate QoS specification files for each task. For
human tasks we have decided to embed the QoS metrics directly into the HTML forms
that are generated.

7.6.2 Re-Computing QoS Estimates

The initial QoS specifications may not be valid over time. To overcome this difficulty we
re-compute task QoS values for the basic class, based on previous executions, as
described in section 5.1. The same applies for transitions. The distributional class also
needs to have its distribution re-computed. This involves the analysis of runtime QoS

 27

metrics to make sure that the QoS distribution functions associated with a task remain
valid or need to be modified.

The re-computation of QoS estimates for tasks and for transition probabilities is done
based on runtime data generated from past workflow executions that have been stored in
the database log. We have developed a QoS Estimator module that lies between the
builder and the database log. The QoS Estimator creates a QoS model for tasks based on
the information stored in the DBlog. It also calculates transition probability functions
based on the transitions enabled at runtime. Figure 13 illustrate the architecture of the
QoS Estimator module. When a workflow is being designed, if the tasks selected to
compose the workflow have been previously executed, then their QoS metrics are re-
computed automatically using the QoS Estimator module.

Database

QoS Model Construction
Transition Probability
QoS Model Construction

Transition Probability

DB
Connector

Data
Selection

Statistical
Computation

Data
Conversion

Figure 13 – QoS Estimator Module

DB connector. The DB Connector is responsible for the establishment of a connection to
the database. Currently, we support relational databases that implement the JDBC
protocol.

Data Selection. The data selection component allows for the selection of task QoS
metrics, as defined by the designer and tasks previously executed. Four distinct selection
modes exist, and for each one a specific selection function has been constructed. Each
function corresponds to one of the functions presented to re-compute QoS estimates for
tasks in section 5.1. The component can select tasks QoS metrics from information
introduced by the user at design time, from tasks executed in the context of any
workflow, from tasks executed in the context of a specific workflow w, and from tasks
executed from a particular instance i of workflow w.

Data Convertion. Once a subset of the tasks present in the database log is selected, the
data describing their QoS may need to be converted to a suitable format in order to be
processed by the Statistical Computation component. The data conversion component is
responsible for this conversion. For example, if the processing time of a task is stored
using its start execution date and end execution date, the data conversion component
applies the function f(t) = end_execution_date(t) - start_execution_date(t) to compute the
processing time (PT). As another example, let us assume that the reliability of a task is
stored in the database using the keywords done, fail, commit, and abort (as in
ORBWork). In this case, the data conversion component converts the keywords done and
commit to the value 1, indicating the success of the task, and converts the keywords fail
and abort to the value 0, indicating the failure of the task. This abstraction allows the
statistical component to be independent from any particular choice of storing runtime
information.

 28

Figure 14 – GUI to calculate QoS estimates

Statistical Computation. Once an appropriate set of tasks has been retrieved from the
database and their QoS data has been converted to a suitable format, it is transferred to
the statistical computation component to estimate QoS metrics. Currently, the module
only computes the minimum, average, and maximum for QoS dimensions, but additional
statistical functions can be easily included, such as standard deviations, average
deviation, and variance.

Four distinct functions have been developed to compute estimates for the tasks
selected in the previous step. Each function is to be used when computing QoS
dimensions and corresponds to four scenarios that can occur.

Model Construction. The QoS Model Construction component uses the information
from the Statistical Computation component and applies a set of functions to re-compute
the QoS model (the functions have been presented in Table 3) for each task. Figure 14
shows the graphical user interface available to set the QoS functions and their associated
weights, and to visualize the QoS estimates automatically computed for workflows,

 29

instances, tasks, and transitions. The QoS computation is carried out using the SWR
algorithm (described in the next section).

8 Workflow QoS Computation Example

The Fungal Genome Resource (FGR) laboratory is in the process of reengineering their
workflows. The laboratory technicians, domain experts, and managers have agreed that
an alteration to the Prepare and Sequence and Sequence Processing workflows would
potentially be beneficial when sequencing DNA.

Figure 15 – Prepare and Sequence Workflow

Figure 16 – Sequence Processing Workflow

To improve the efficiency of the processes being managed by the workflow system,
the bioinformatics researchers decided to merge the two processes. The researchers
noticed that the quality of the DNA sequencing obtained was in some cases useless due to
E. coli contamination. Additionally, it was felt that it would be advantageous to use other
algorithms in the sequence processing phase. Therefore, to improve the quality of the
process, the Test Quality task and the SP FASTA task were added.

Clones grown in bacterial hosts are likely to become contaminated. A quick and
effective way to screen for the Escherichia coli (E. coli) contaminants is to compare the
clones against the E. coli genome. For E. coli, this task is made easier with the
availability of its full genome.

 30

The task SP FASTA has of the same objective of the task SP BLAST (a task of the
sequence processing sub-workflow). Both tasks compare new DNA sequences to a
repository of known sequences (e.g., Swiss-Prot or GenBank.) The objective is to find
sequences with homologous relationships to assign potential biological functions and
classifying sequences into functional families. All sequence comparison methods,
however, suffer from certain limitations. Consequently, it is advantageous to try more
than one comparison algorithm during the sequence processing phase. For this reason, it
was decided to employ the BLAST (Altschul, Gish et al. 1990) and FASTA (Pearson and
Lipman 1988) programs to compare sequences.

The following actions were taken to reengineer the existing workflows:
a) Merge the Prepare and Sequence workflow from Figure 15 and the Sequence

Processing workflow from Figure 16,
b) Add the task Test Quality to test the existence of E. coli in sequences, and
c) Execute the search for sequences in genome databases using an additional search

algorithm (FASTA).
At this point, the alterations to introduce into the processes have been identified. From

the functional perspective, the lab personnel, domain experts, and workflow designer all
agreed that the new workflow will accomplish the intended objective. The new re-
engineered workflow is named DNA Sequencing. It is illustrated in Figure 17.

Figure 17 – DNA Sequencing Workflow

8.1 Setting QoS Metrics

While the workflow design meets the functional objectives, non-functional requirements
also need to be met. Prior to the execution of the new workflow, an analysis is necessary
to guarantee that the changes to be introduced will actually produce a workflow that
meets desired QoS requirements, i.e., that the workflow time, cost, and reliability remain

 31

within acceptable thresholds. To accomplish this, it is necessary to analyze the QoS
metrics and use the SWR algorithm (Cardoso 2002; Cardoso 2002) to compute workflow
quality of service metrics.

The first step is to gather QoS estimates for the tasks involved in the Prepare and
Sequence and Sequence Processing workflows. These workflows have been executed
several times in the past, and the workflow system has recorded their QoS metrics. The
designer QoS estimates have been set using the following methods. For human tasks, the
laboratory technicians and researchers have provided estimates for the QoS dimensions.
For automated tasks, we have used training sets. For example, for the SP BLAST task we
have constructed a training set of sequences of different lengths. The sequences have
been processed with BLAST, and their QoS has been recorded. For the time dimension,
we have used linear regression to predict future metrics (the BLAST algorithm has a
linear running time (Altschul, Gish et al. 1990).) Equation 1 was used to estimate the
BLAST running time to process a sequence:

 2

11

2

1 11 and ,

−

−

=−=+=

∑∑

∑ ∑∑

==

= ==

n

m
m

n

l
l

n

i

n

k
k

n

j
jii

xxn

yxyxn
bXbYabxay (1)

where x is the independent data (input size) and y is the dependent data (running time).

The estimated function is defined as:

 0071.0,37.87 with , ==+= babxay (2)

For the new tasks introduced (Test Quality and SP FASTA), no QoS runtime

information is available. The only QoS information that can be used to compute the
workflow QoS is the one the designer specified at design time. The initial QoS estimates
are shown in Table 4.

Tasks T(t) C(t) R(t)
Quality Test 0.01 $0.0 100%
SP FASTA 9.59 $0.0 100%

Designer Specifications

Table 4 – Test Quality and FASTA initial QoS estimates

Since the SP FASTA task is an automated task, we have used a training set of
sequences to derive and set designer QoS estimates. For the time dimension, we have
used the linear regression from Equation 1 and defined the function represented in
Equation 3 to estimate its duration (FASTA has a linear running time (Pearson and
Lipman 1988).)

 32

 11.4,9.1061 with , ==+= babxay (3)

8.2 Computing QoS Metrics

The domain experts believe that there is a strong agreement between the tasks QoS
exhibited during the execution of the Prepare and Sequence and the Sequence Processing
workflows, and the expected QoS of the tasks to be scheduled by the DNA Sequencing
workflow. This belief is based on the fact that the tasks executed in the two initial
workflows will be executed without any change by the newly constructed workflow. The
following functions have been utilized to re-compute QoS metrics based on designer and
runtime information:

b) QoSDim’(t) 0.2*Designer AverageDim(t) + 0.8*Multi-Workflow AverageDim(t)
c) QoSDim(t, w) 0.2*Designer AverageDim(t) + 0.2*Multi-Workflow AverageDim(t) +

0.6*Workflow AverageDim(t, w)

Table 5 – Re-computation of the QoS dimensions for the DNA Sequencing workflow

To represent the QoS agreement among tasks from different workflows, the domain
experts have decided to set the weights according to the following beliefs. For formula b),
the domain experts believe that the recorded QoS of tasks previously executed will give
good estimates for the execution of tasks scheduled by the new workflow. Thus, the
experts set the weights wi1 and wi2 of formula b) to 0.2 and 0.8, respectively. The domain
experts also believe that as soon as tasks are scheduled by the new workflow, the QoS
estimates should rely on the latest QoS data recorded from the DNA Sequencing
workflow. Also, they consider that when QoS data is available from the DNA Sequencing
workflow, the importance given to the designer estimates should have the same influence
as the QoS estimates recorded for the execution of tasks scheduled by other workflows
than the DNA Sequencing. Therefore, for formula c), the experts set the weights wi1, wi2,
and wi3 to 0.2, 0.2, and 0.6, respectively. In our experiments, we only predict workflow
QoS metrics before the execution of workflow, not during workflow execution; thus, we
did not to set the weights for formula d) from Table 3.

Since the new workflow has a loop that did not exist in any of the previously executed
workflows, it is necessary to estimate the probability of the transition (Test Quality,
Prepare Sample) to be enabled at runtime. Based on prior knowledge of sequencing
experiments, the researchers calculate that approximately 10% of the DNA sequence will
contain E. coli bacteria and that thus there is a 10% probability of the loop back transition
being enabled.

8.3 Results

We have run a set of ten experiments. Each experiment involved the execution of the
SWR algorithm to predict QoS metrics of the DNA Sequencing workflow and the actual
execution of the workflow. The results are shown for the four QoS dimensions in Figure
18. The diamonds indicate the QoS estimates (moving average) given by the SWR
algorithm and the squares indicate empirical runtime metrics. The three dimensions

 33

analyzed and presented in Figure 13 show that the predicted results are a good estimation
for the measured ones.

Time Analyzis

250.0
350.0
450.0
550.0
650.0

1 2 3 4 5 6 7 8 9 10

Instance #

Ti
m

e
(h

ou
rs

)

Estimate Runtime

Cost Analyzis

$1,000

$1,500

$2,000

$2,500

1 2 3 4 5 6 7 8 9 10

Instance #

C
os

t

Reliability Analyzis

99.2%

99.4%

99.6%

99.8%

100.0%

1 2 3 4 5 6 7 8 9 10

Instance #

R
el

ia
bi

lit
y

Time Analyzis

250.0
350.0

450.0
550.0

650.0

1 2 3 4 5 6 7 8 9 10

Instance #

Ti
m

e
(h

ou
rs

)

Figure 18 – Experiment results

For the time analysis, the most relevant information that can be interpreted from the
chart is the observation that the instances 3 and 4 have registered actual running times
that are considerably different from the values estimated. This is due to the topology of
the workflow. During the process, it is expected that some DNA sequences will contain
E. coli contamination. When this happens, re-work is needed, and the first part of the
workflow, involving the tasks Prepare Sample, Prepare Clone and Sequence, and
Assembly, has to be re-executed. The first part of the workflow takes approximately 99%
of the overall workflow execution time. Thus, when E. coli contamination is present in a
sequence, the time needed to execute the workflow almost doubles. Since it is impossible
to know if a DNA sequence will contain E. coli or not, the SWR algorithm gives an
estimate for instance 3 which is significantly different from the registered values. When
instance 4 is executed, the QoS metrics from the previous instance are considered for the
QoS estimation. As a result, it can be seen in the chart that the SWR estimation
approximates the mean of the recent time metrics recorded, i.e. there is an increase of the
time estimate in response to the recent increase of workflow time. If more instances
detect the presence of E. coli contamination, the results of the SWR algorithm for the
time dimension will gradually approximate the 550 hours level. When instances number
5 through 10 are executed, they do not detect the presence of contamination in the
sequences processed. As a result, the SWR estimates are more accurate, and the estimates
start to slowly approximate lower time values.

The costs associated with each task have been provided from technical datasheets
describing the DNA Sequencing process. For the cost analysis, the explanation of the
results observed follows the same rational as the one provided for the time analysis.

The reliability analysis is relatively easy to interpret. For the first instance executed,
the SWR algorithm has used information specified by the designer and derived from task
executions from the Prepare and Sequence and Sequence Processing workflows. The
information suggests that the reliability of the new workflow design will be 99.4%. But
during our experiments, the ten instances executed never failed. Thus, a 100% reliability
value has been registered for each workflow instance. During the instance executions, the
reliability estimates given by the SWR algorithm slowly approximate 100%.
Nevertheless, it is expected that as the workflow system executes more instances, the
reliability of the DNA Sequencing workflow will decrease.

 34

For all the QoS dimensions, the speed of approximation of the SWR algorithm is
directly dependent on the weights that have been set for the re-computation of the QoS
dimensions (see Table 5 for the weights used in the DNA Sequencing workflow). A
higher weight associated with the multi-workflow function implies a faster approximation
when the SWR algorithm is applied. The same principal applies to the instance workflow
function.

9 Related Work

While a significant amount of QoS research has been done in the areas of networking
(Cruz 1995; Georgiadis, Guerin et al. 1996), real-time applications (Clark, Shenker et al.
1992) and middleware (Zinky, Bakken et al. 1997; Frolund and Koistinen 1998;
Hiltunen, Schlichting et al. 2000), the work found in the literature on quality of service
for WfMS is limited. The Crossflow project (Klingemann, Wäsch et al. 1999; Damen,
Derks et al. 2000; Grefen, Aberer et al. 2000) has made a major contribution. In their
approach, the information about past workflow executions is collected in a log. From this
information, a continuous-time Markov chain (CTMC) is derived and used to
subsequently calculate the time and the cost associated with workflow executions. An
estimation component provides QoS predictions of running workflow instances. These
estimates are based on performance models given as CTMC models and produced by the
offline monitoring component, which analyzes past executions of workflows, and on the
online monitoring component. Compared to the Crossflow project, our approach includes
reliability as part of the QoS model. Our model allows for the computation of workflow
QoS using two distinct methods: a mathematical and a simulation approach. When the
mathematical approach is used, there is no need to define distribution functions. This
makes its use simple for business analysts and domain experts. The simulation approach
allows the association of distributions with workflow activities (Chandrasekaran, Silver
et al. 2002). Not only exponential functions can be employed, as with the Crossflow, but
any distribution made available by the simulation system can be used.

While the research on QoS for WfMS is limited, the research on time management,
which is under the umbrella of workflow QoS, has been more active and productive.
Gillmann et al., (Gillmann, Weissenfels et al. 2000; Gillmann, Weikum et al. 2002)
present a tool for the configuration of distributed workflow systems in order to meet
specified goals for throughput, response time, availability, and performability. Their
approach is based on continuous-time Markov chains and Markov reward models to
predict the performance, availability, and performability of a WfMS under a given load.
The performance model estimates the throughput of workflow instances and the waiting
time for service requests. The availability model estimates the downtime of the a WfMS
given the failure and restart rates for the various components. The performability model
predicts the performance taking into account temporarily non-available servers. The use
of Markov models makes this approach very similar with the Crossflow system.

Eder et al. (1999) and Pozewaunig et al. (1997) present an extension of CMP and
PERT frameworks by annotating workflow graphs with time, in order to check the
validity of time constraints at process build-time and instantiation-time, and to take pre-
emptive actions at run-time. Their approach is only applicable to directed acyclic graphs

 35

(DAG). While DAGs can be extended with a special construct that formally maintains the
overall structure of a graph to support loops, this has not been contemplated. This is a
significant limitation since many of workflows have cyclic graphs. Cycles are, in general,
used to represent re-work actions or repetitive activities within a workflow. Our approach
deals with acyclic workflows as well as with cyclic workflows.

Researchers at Ulm (Reichert and Dadam 1998; Dadam, Reichert et al. 2000) also
recognize that time is an important aspect of workflow execution. The ADEPT project
includes the modeling of real-time deadline constraints and the consequences of missing
deadlines in the case of structural changes of a workflow instance during its execution.
With each workflow task, minimal, and maximal durations may be specified. The system
only supports the specification and monitoring of deadlines. The monitoring system
notifies users when deadlines are going to be missed. There is no provision for the
estimation of QoS metrics. Bauer and Dadam (Bauer and Dadam 2000) also show how a
distributed WfMS can be developed to minimized the communication load of the
components at run time. Their approach uses a cost model and a distribution algorithm to
calculate an appropriate variable server assignment expressions at build time.

Chandra, Gong et al. (2003) use dynamic resource allocation techniques to provide
guarantees to web applications running on shared data centers. The authors use a system
architecture that combines online measurements with prediction and resource allocation
techniques. Their work can be paired with our QoS model and the techniques can be use
to compute, predict, and analyze the time dimensions of Web services and workflow.

Marjanovic and Orlowska (1999) describe a workflow model enriched with modeling
constructs and algorithms for checking the consistency of workflow temporal constraints.
The rules that regulate the time component of a workflow are modeled by a set of
temporal constraints. Three time constraints are specified. A task duration constraint, a
deadline constraint, and an interdependent temporal constraint. This last constraint limits
when a task should start/finish relative to the start/finish of another task. At build time
and at run time the consistency of temporal constraints is verified. Their work mainly
focuses on how to manage workflow changes, while accounting for temporal constraints,
and do not target the prediction of workflows execution duration.

Other researchers have also identified the need for a QoS process model. A good
example is the DAML-S specification (Ankolekar, Burstein et al. 2001; DAML-S 2001),
which semantically describes business processes (as in the composition of Web services).
The use of semantic information facilitates process interoperability between trading
partners involved in e-commerce activities. This specification includes constructs which
specify quality of service parameters, such as quality guarantees, quality rating, and
degree of quality. While DAML-S has identified the importance of Web services and
business processes specifications, the QoS model adopted should be significantly
improved in order to supply a more functional solution for its users. One current
limitation of DAML-S’ QoS model is that it does not provide a detailed set of classes and
properties to represent quality of service metrics. Their QoS model needs to be extended
to allow for a precise characterization of each dimension, and we hope our work can be
one of the inputs in that direction. The addition of semantic concepts, such as minimum,
average, maximum, and the distribution function associated with a dimension, will allow
the implementation of algorithms, for the automatic computation of QoS metrics for
processes based on atomic tasks and sub-processes’ QoS metrics.

 36

10 Conclusions
The evaluation of how business is conducted, such as with e-commerce, brings a new set
of challenges and requirements that need to be explored and answered. Many e-
commerce applications are composed of Web services forming workflows. The
composition these workflows cannot be undertaken while ignoring the importance of
QoS measurements. The correct management of such QoS specifications directly impacts
the success of organizations participating in e-commerce and also directly impacts the
success and evolution of e-commerce itself.

In this paper, as a starting point, we show the importance of QoS management for
workflows and WfMSs. We then presente a comprehensive QoS model. This model
allows for the description of workflow components from a QoS perspective; it includes
three dimensions: time, cost, and reliability. The use of QoS increases the added value of
workflow systems to organizations, since non-functional aspects of workflows can be
described. The model is predictive; based on the QoS of workflow components (tasks or
Web services), the QoS of workflows (networks) can be automatically computed. This
feature is important, especially for large processes that in some cases may contain
hundreds of tasks. We present a mathematical model that formally describes the formulae
to compute QoS metrics among workflow tasks. Based on these formulae, we develop an
algorithm (SWR algorithm) to automatically compute the overall QoS of a workflow.
The algorithm applies a set of reduction rules to a workflow, until only one task remains
which represents the QoS for the entire workflow.

Having a theoretical QoS model, we explain how the model was implemented in the
METEOR workflow management system. The objective was to identify the challenges
and difficulties that the implementation of QoS faces. The support of QoS management
requires the modification and extension of most of workflow system components. This
includes the enactment system, the workflow builder (or designer), the monitor, the code
generator, the repository, the workflow model, and the task model. Additionally, new
components need to be implemented, such as a QoS estimator module to create QoS
estimates for tasks and probabilities for transitions. The monitor needs an additional
interface so that runtime tasks QoS metrics are propagated and logged into a database for
data processing purposes.

To test the validity of the QoS model, the SWR algorithm, and the QoS
implementation we have deployed a set of production workflows in the area of genetics at
the Fungal Genome Resource laboratory. We executed workflow instances based on real
data and the generated QoS data have been collected and analyzed. We have use these
settings to collect data points and validate them with the help of scientists but the process
itself was not made operational. The analysis of the data indicates that the QoS model and
algorithm presented give a suitable framework to predict and analyze the QoS of
production workflows.

11 References

Aalst, W. M. P. v. d. (1999). Generic Workflow Models: How to Handle Dynamic Change and
Capture Management Information. Proceedings of the Fourth IFCIS International

 37

Conference on Cooperative Information Systems (CoopIS'99), Edinburgh, Scotland,
IEEE Computer Society Press. pp. 115-126.

Aalst, W. M. P. v. d., A. P. Barros, et al. (2000). Advanced Workflow Patterns. Seventh IFCIS
International Conference on Cooperative Information Systems. pp. 18-29.

Altschul, S. F., W. Gish, et al. (1990). "Basic local alignment search tool." Journal of Molecular
Biology 215: 403-410.

Ankolekar, A., M. Burstein, et al. (2001). DAML-S: Semantic Markup for Web Services.
Proceedings of the International Semantic Web Working Symposium (SWWS), Stanford
University, California. pp. 39-54.

Anyanwu, K., A. Sheth, et al. (2003). "Healthcare Enterprise Process Development and
Integration." Journal of Research and Practice in Information Technology, Special Issue
in Health Knowledge Management 35(2): 83-98.

Bauer, T. and P. Dadam (2000). Efficient Distributed Workflow Management Based on Variable
Server Assignments. Advanced Information Systems Engineering, 12th International
Conference CAiSE 2000, Stockholm, Sweden. pp. 94-109.

Bussler, C. (2003). B2B Integration: Concepts and Architecture, Springer-Verlag.

CAPA (1997). Course Approval Process Automation (CAPA). Athens, GA., LSDIS Lab,
Department of Computer Science, University of Georgia.

Cardoso, J. (2002). Quality of Service and Semantic Composition of Workflows. Department of
Computer Science. Athens, GA, University of Georgia: 215.

Cardoso, J. (2002). Stochastic Workflow Reduction Algorithm, LSDIS Lab, Department of
Computer Science, University of Georgia.
http://lsdis.cs.uga.edu/proj/meteor/QoS/SWR_Algorithm.htm

Cardoso, J. and A. Sheth (2003). "Semantic e-Workflow Composition." Journal of Intelligent
Information Systems (JIIS). 21(3): 191-225.

Chandra, A., W. Gong, et al. (2003). Dynamic Resource Allocation for Shared Data Centers
Using Online Measurements. Proceedings of the Eleventh International Workshop on
Quality of Service (IWQoS 2003), Berkeley, Monterey, CA, Springer. pp. 381-400.

Chandrasekaran, S., G. Silver, et al. (2002). Service Technologies and their Synergy with
Simulation. Proceedings of the 2002 Winter Simulation Conference (WSC'02), San
Diego, California. pp. 606-615.

Chen, Q., U. Dayal, et al. (2000). Dynamic-Agents, Workflow and XML for E-Commerce
Automation. EC-Web. pp. 314-323.

Chung, L., B. Nixon, et al. (2000). Non-Functional Requirements in Software Engineering,
Kluwer Academic Publishers.

Clark, D., S. Shenker, et al. (1992). Supporting Real-Time Applications in an Integrated Services
Packet Network: Architecture and Mechanism. Proceedings of ACM SIGCOMM. pp. 14-
26.

Cruz, R. L. (1995). "Quality of service guarantees in virtual circuit switched networks." IEEE J.
Select. Areas Commun. 13(6): 1048-1056.

Dadam, P., M. Reichert, et al. (2000). Clinical Workflows: the Killer Application for Process
Oriented Information Systems. 4th International Conference on Business Information
Systems (BIS 2000), Poznan, Poland. pp. 36-59.

 38

Damen, Z., W. Derks, et al. (2000). Business-to-business E-Commerce in a Logistics Domain.
The CAiSE*00 Workshop on Infrastructures for Dynamic Business-to-Business Service
Outsourcing, Stockholm, Sweden.

DAML-S (2001). Technical Overview - a white paper describing the key elements of DAML-S.

Eder, J. and W. Liebhart (1996). Workflow Recovery. IFCIS Conference on Cooperative
Information Systems, Brussels, Belgium. pp. 124-134.

Eder, J., E. Panagos, et al. (1999). Time Management in Workflow Systems. BIS'99 3rd
International Conference on Business Information Systems, Poznan, Poland, Springer
Verlag. pp. 265-280.

Fabio Casati, Ming-Chien Shan, et al. (2001). "E-Services - Guest editorial." The VLDB Journal
10(1): 1.

Fensel, D. and C. Bussler (2002). The Web Service Modeling Framework, Vrije Universiteit
Amsterdam (VU) and Oracle Corporation.http://www.cs.vu.nl/~dieter/ftp/paper/wsmf.pdf

FGR (2002). Fungal Genome Resource laboratory, http://gene.genetics.uga.edu/

Frolund, S. and J. Koistinen (1998). "Quality-of-Service Specification in Distributed Object
Systems." Distributed Systems Engineering Journal 5(4): 179-202.

Georgiadis, L., R. Guerin, et al. (1996). "Efficient Network QoS Provisioning Based on Per Node
Traffic Shaping." IEEE ACM Transactions on Networking 4(4): 482-501.

Gillmann, M., G. Weikum, et al. (2002). Workflow Management with Service Quality
Guarantees. ACM SIGMOD'2002 International Conference on Management of Data,
Madison, Wisconsin.

Gillmann, M., J. Weissenfels, et al. (2000). Performance and Availability Assessment for the
Configuration of Distributed Workflow Management Systems. International Conference
on Extending Database Technology (EDBT), Konstanz, Germany.

Grefen, P., K. Aberer, et al. (2000). "CrossFlow: Cross-Organizational Workflow Management in
Dynamic Virtual Enterprises." International Journal of Computer Systems Science &
Engineering 15(5): 227-290.

Hall, R. D., J. A. Miller, et al. (2003). Using Workflow to Build an Information Management
System for a Geographically Distributed Genome Sequence Initiative. Genomics of
Plants and Fungi. Eds. R. A. Prade and H. J. Bohnert. New York, NY, Marcel Dekker,
Inc.: 359-371.

Hiltunen, M. A., R. D. Schlichting, et al. (2000). Survivability through Customization and
Adaptability: The Cactus Approach. DARPA Information Survivability Conference and
Exposition (DISCEX 2000). pp. 294-307.

Hoyland, A. and M. Rausand (1994). System Reliability Theory: Models and Statistical Methods,
Wiley, John & Sons, Incorporated.

Ireson, W. G., C. F. C. Jr., et al. (1996). Handbook of reliability engineering and management.
New York, McGraw Hill.

Kang, M. H., J. N. Froscher, et al. (1999). A Multilevel Secure Workflow Management System.
Proceedings of the 11th Conference on Advanced Information Systems Engineering,
Heidelberg, Germany, Springer-Verlag. pp. 271-285.

 39

Kang, M. H., J. S. Park, et al. (2001). Access Control Mechanisms for Inter-organizational
Workflows. Proceedings of 6th ACM Symposium on Access Control Models and
Technologies, Chantilly, VA.

Klingemann, J., J. Wäsch, et al. (1999). Deriving Service Models in Cross-Organizational
Workflows. Proceedings of RIDE - Information Technology for Virtual Enterprises
(RIDE-VE '99), Sydney, Australia. pp. 100-107.

Kobielus, J. G. (1997). Workflow Strategies, IDG Books Worldwide.

Kochut, K., A. P. Sheth, et al. (1999). "Optimizing Workflow." Component Strategies 1(9): 45-
57.

Kochut, K. J. (1999). METEOR Model version 3. Athens, GA, Large Scale Distributed
Information Systems Lab, Department of Computer Science, University of Georgia.

Kochut, K. J., A. P. Sheth, et al. (1999). ORBWork: A CORBA-Based Fully Distributed,
Scalable and Dynamic Workflow Enactment Service for METEOR. Athens, GA,
Technical Report, UGA-CS-TR-98-006, LSDIS Lab, Department of Computer Science,
University of Georgia, 1998.

Krishnakumar, N. and A. P. Sheth (1995). "Managing Heterogeneous Multi-system Tasks to
Support Enterprise-wide Operations." Distributed and Parallel Databases Journal 3(2):
155-186.

Leymann, F. (2001). Web Services Flow Language (WSFL 1.0), IBM Corporation. http://www-
4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

Luo, Z., A. P. Sheth, K. J. Kochut, and I.B. Arpinar (2003): Exception Handling for Conflict
Resolution in Cross-Organizational Workflows. Distributed and Parallel Databases 13(3):
271-306.

Marjanovic, O. and M. Orlowska (1999). "On modeling and verification of temporal constraints
in production workflows." Knowledge and Information Systems 1(2): 157-192.

McCready, S. (1992). There is more than one kind of workflow software. Computerworld.
November 2: 86-90.

METEOR (2002). METEOR (Managing End-To-End OpeRations) Project Home Page, LSDIS
Lab. http://lsdis.cs.uga.edu/proj/meteor/meteor.html

Miller, J. A., J. S. Cardoso, et al. (2002). Using Simulation to Facilitate Effective Workflow
Adaptation. Proceedings of the 35th Annual Simulation Symposium (ANSS'02), San
Diego, California. pp. 177-181.

Miller, J. A., D. Palaniswami, et al. (1998). "WebWork: METEOR2's Web-based Workflow
Management System." Journal of Intelligence Information Management Systems:
Integrating Artificial Intelligence and Database Technologies (JIIS) 10(2): 185-215.

Musa, J. D. (1993). "Operational Profiles in Software-Reliability Engineering." IEEE Software
10(2): 14-32.

Musa, J. D. (1999). Software reliability engineering: more reliable software, faster development
and testing. New York, McGraw-Hill.

Nelson, E. C. (1973). A Statistical Basis for Software Reliability, TRW Software Series.

Pearson, W. R. and D. J. Lipman (1988). Improved tools for biological sequence comparison.
Proceedings of the National Academy of Science of the USA. pp. 2444-2448.

 40

Pozewaunig, H., J. Eder, et al. (1997). ePERT: Extending PERT for workflow management
systems. First European Symposium in Advances in Databases and Information Systems
(ADBIS), St. Petersburg, Russia. pp. 217-224.

Reichert, M. and P. Dadam (1998). "ADEPTflex - Supporting Dynamic Changes of Workflows
Without Losing Control." Journal of Intelligent Information Systems - Special Issue on
Workflow Managament 10(2): 93-129.

Rommel, G. (1995). Simplicity wins: how Germany's mid-sized industrial companies succeed.
Boston, Mass, Harvard Business School Press.

Sadiq, W. and M. E. Orlowska (1999). Applying Graph Reduction Techniques for Identifying
Structural Conflicts in Process Models. Proceedings of the 11th International Conference
on Advanced Information Systems Engineering (CAiSE '99), Lecture Notes in Computer
Science, Springer-Verlag, Berlin. pp. 195--209.

Shegalov, G., M. Gillmann, et al. (2001). "XML-enabled workflow management for e-services
across heterogeneous platforms." The VLDB Journal 10(1): 91-103.

Stalk, G. and T. M. Hout (1990). Competing against time: how timebased competition is
reshaping global markets. New York, Free Press.

Zinky, J., D. Bakken, et al. (1997). "Architectural Support for Quality of Service for CORBA
Objects." Theory and Practice of Object Systems 3(1): 1-20.

	Introduction
	Workflows, Tasks, Web services, and Web processes
	Scenario
	Workflow Structure
	Workflow Description
	Workflow Application Requirements

	Workflow Quality of Service
	Characteristics of the QoS Model
	Workflow QoS Model
	Task Time
	Task Cost
	Task Reliability

	Creation of QoS Estimates
	Creation of QoS Estimates for Tasks
	Probabilities Estimates for Transitions

	Workflow QoS Computation
	Mathematical Modeling

	QoS Model Implementation
	Enactment System
	Managing Time
	Managing Reliability
	Managing the Cost
	Monitor
	Workflow Builder
	Setting Initial Task QoS Estimates
	Re-Computing QoS Estimates

	Workflow QoS Computation Example
	Setting QoS Metrics
	Computing QoS Metrics
	Results

	Related Work
	Conclusions
	References

