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1. Definition of Hochschild homology and its properties

Let k be a commutative ring and A an associative k-algebra, not necessarily commutative,
not necessarily unitary.

Definition 1.1 (Hochschild (standard) complex, or Cyclic Bar complex). Let M be an
A-bimodule. Let Cn(A,M) := M ⊗k A⊗n. Define operators di : Cn(A,M) → Cn−1(A,M)
by

d0(m⊗ a1 ⊗ · · · ⊗ an) = ma1 ⊗ a2 ⊗ · · · ⊗ an
di(m⊗ a1 ⊗ · · · ⊗ an) = m⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an, i ≤ i ≤ n

dn(m⊗ a1 ⊗ · · · ⊗ an) = anm⊗ a1 ⊗ · · · ⊗ an−1.

Note that for i < j, didj = dj−1di so that (Cn(A,M), di) is a presimplicial module, and
for b =

∑n
i=0(−1)idi, (Cn(A,M), b) is a complex called the Hochschild (standard) complex.

When M = A, we call it the Cyclic Bar complex.

Definition 1.2 (Hochschild Homology). The n-th homology Hn(A,M) := Hn(C∗(A,M), b).
When M = A, we denote it by HHn(A).

Remark. (1) Though Hn(A,M) doesn’t mention k, k plays an important role. For
example, if k = C, HH1(C) = 0 but, for k = Q, HH1(C) 6= 0.

(2) (Functoriality) Hochschild homology Hn(A,M) is covariant on both places. For
f : M → M ′, an A-bimodule homomorphism, then, f∗ : Hn(A,M) → Hn(A,M ′),
f∗(m⊗ a1 ⊗ · · · ⊗ an) = f(m)⊗ a1 ⊗ · · · ⊗ an is well-defined.

For g : A → A′, a k-algebra homomorphism, M ′, an A′-bimodule, then, g∗ :
Hn(A,M ′) → Hn(A′,M ′), g∗(m ⊗ a1 ⊗ · · · ⊗ an) = m ⊗ g(a1) ⊗ · · · ⊗ g(an) is
well-defined.

(3) (Respect products) HHn(A × A′) ' HHn(A) ⊕ HHn(A′), for A,A′: k-algebras.
[Hint: if A,A′ are flat k-algebras, then, use the Tor definition which will be given
soon, and apply the Künneth formula. Otherwise, construct a homotopy. Later we
will give a geeneralized result.

(4) Let Z(A) = {z ∈ A|za = az, a ∈ A} be the center of A. Then, naturally C∗(A,M) is
a Z(A)-module via z ·(m⊗a1⊗· · ·⊗an) = (zm)⊗a1⊗· · ·⊗an. By the commutativity
of z, it commutes with b, so that Hn(A,M) is also a Z(A)-module.

Example 1.3. From the Hochchild complex C1(A,M) = M ⊗ A b→ C0(A,M) = M → 0,
obviously we have

H0(A,M) = MA = M/imb = M/{am−ma|a ∈ A,m ∈M}.

In particular, HH0(A) = A/[A,A]. When A = M = k, then the Hochschild complex is

→ k
1→ k

0→ k
1→ · · · 1→ k

0→ k

so that HH0(k) = k and HHn(k) = 0 for n > 0.

Lemma 1.4. Let R be any unitary ring. Then, the abelianized trace map Tr : Mr(R) →
R→ R/[R,R] induces an isomorphism

Tr : Mr(R)/[Mr(R),Mr(R)] '→ R/[R,R].
1
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Proof. Use elementary matrices to show that kerTr = [Mr(R),Mr(R)].
�

Corollary 1.5. HH0(Mr(A)) = A/[A,A].
This is a special case of Morita invariance.

Proposition 1.6. If A is commutative, then HH1
'→ Ω1

A/k canonically. Further if M is a
symmetric bimodule, then, H1(A,M) 'M ⊗k Ω1

A/k.

Proof. A being commutative, C1(A,A) = A ⊗ A b→ C0(A,A) = A is 0. Hence, HH1(A) =
A ⊗ A/ab ⊗ c − a ⊗ bc + ca ⊗ b. Define φ : A ⊗ A → Ω1

A/k by a ⊗ b 7→ adb. Then,
φ(ab⊗ c− a⊗ bc+ ca⊗ b) = abdc− adbc+ cadb = abdc− abdc− acdb+ cadb = 0 so that we
have φ̄ : HH1(A)→ Ω1

A/k. Conversely, we can give φ : Ω1
A/k → HH1(A) by adb 7→ a⊗ b. It

is trivial to check that they are inverse to each other.
�

2. The 2nd description of Hochchild Homology

Now we assume that A is a unitary k-algebra.

Definition 2.1 (Standard complex, or Bar complex). Let C ′n(A) = Cbarn (A) = A⊗A⊗n ⊗
A = A⊗n+2 with di : C ′n(A) → C ′n−1(A) defined only for 0 ≤ i ≤ n− 1, which is a presim-
plicial module. Let b′ =

∑n−1
i=0 (−1)idi and b′ : C ′0(A) = A ⊗ A → A be the multiplication

which is an augmentation for the complex.
Let Ae = A⊗Aop, then, above complex is a complex of left Ae-modules with a⊗a′ ∈ A⊗Aop

acts via
(a⊗ a′)(a0 ⊗ · · · ⊗ an+1) = (aa0)⊗ a1 ⊗ · · · ⊗ an ⊗ (an+1a

′).

Proposition 2.2 (and Definition). The augmented bar complex is a resolution of the Ae-
module A called the bar resolution of A.

Remark. An n-chain of the bar resolution is often denoted by a0[a1| · · · |an]an+1.

Proof. The cokernel of the last map is clearly µ : A ⊗ A → A. Define a homotopy s :
A⊗n+1 → A⊗n+2, s(a0 ⊗ · · · ⊗ an) = 1 ⊗ a0 ⊗ · · · ⊗ an. Then, dis = sdi−1 for i ≥ 1 and
d0s = id. Hence b′s+ sb′ = id i.e. b′-complex is acyclic.

�

Remark. Note that Cn(A,A⊗Aop) = (A⊗Aop)⊗A⊗n ' A⊗A⊗n ⊗A = C ′n(A).

In case A is a flat k-algebra, we have the following 2nd description of the Hochschild
homology.

Proposition 2.3 (2nd description of Hochschild Homology). Let A be a flat k-algebra.
Then, for any A-bimodule M ,

Hn(A,M) = TorA
e

n (M,A).

Proof. A being k-flat. A⊗n is k-flat, so that C ′n(A) = A ⊗ A⊗n ⊗ A = A ⊗ Ae ⊗ A⊗n is
Ae-flat.

Now, by tensoring with M over Ae, we have 1M ⊗Ae b′ = b via

M ⊗Ae C ′n(A) = M ⊗Ae (A⊗A⊗n⊗A) 'M ⊗Ae (A⊗Aop⊗A⊗n) 'M ⊗kA⊗n = Cn(A,M)

whose homology is by definition Hn(A,M) and TorA
e

n (M,A).
�
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Definition 2.4 (Relative Hochschild Homology). Let I ⊂ A be a two-sided ideal. Consider
the canonical morphism C∗(A) → C∗(A/I) of complexes. Let K∗(A, I) = ker(C∗(A) →
C∗(A/I)). Then, define HHn(A, I) := Hn(K∗(A, I)). Obviously, by definition, it has a
long exact sequence:

· · · → HHn(A, I)→ HHn(A)→ HHn(A/I)→ HHn−1(A, I)→ · · · .
Definition 2.5 (Birelative Hochschild Homology). Let I, J be two two-sided ideals of A.
Consider

0 // K∗(A, I)

��

// C∗(A)C∗(A/I)

��

////

��

0

0 // K∗(A/J, I + J/J) // C∗(A/J) // C∗(A/I + J) // 0

.

Here, vertical arrows are surjective. Hence Let K∗(A; I, J) be ker(K∗(A, I)→ K∗(A, J, I +
J/J)), which gives a short exact sequence of complexes:

0→ K∗(A; I, J)→ K∗(A, I)→ K∗(A/J, I + J/J)→ 0.

Define HHn(A; I, J) = Hn(K ∗(A; I, J)) then, we have the following long exact sequence:

· · · → HHn(A; I, J)→ HHn(A, I)→ HHn(A/J, I + J/J)→ HHn−1(A; I, J)→ · · · .
Proposition 2.6 (Localization). Let S ⊂ Z(A) be a multiplicative subset of the center and
1 ∈ S, 0 6∈ S. Define MS := Z(A)S ⊗AM . When A is a flat k-algebra, we have

Hn(A,M)S ' Hn(A,MS) ' Hn(AS ,MS).

Proof. A-being k-flat, Hochschild homologies are derived functors, so that it is enough to
check it for n = 0, in which case, it is obvious.

�

Proposition 2.7 (localization of the ground ring). Let S ⊂ k be a multiplicative subset.
When A is flat over k, the natural map HH∗(A/k)⊗kkS → HH∗(AS/kS) is an isomorphism.
In particular, if A is a Q-algebra,

HH∗(A/Z)⊗Q ' HH∗(A/Q).

3. The Dennis Trace map and Morita invariance

Let M be an A-bimodule, A is a k-algebra, k is a commutative ring. For the obvious
map Mr(M) ↪→Mr+1(M), we form lim

−→r
Mr(M) = M(M) which we also denote by gl(M).

Definition 3.1 (The Dennis Trace map). Tr : Mr(M)⊗Mr(A⊗n)→M ⊗ A⊗n is defined
by

Tr(m(0)⊗ a(1)⊗ · · · ⊗ a(n)) =
∑

1≤i0,··· ,in≤r
m(0)i0,i1 ⊗ a(1)i1,i2 ⊗ · · · ⊗ a(n)in,i0 .

Remark. Any Mr(M) = Mr(k)⊗kM .

Lemma 3.2. Let ui ∈ Mr(k), a0 ∈ M , ai ∈ A for i ≥ 1. Then, Tr(u0a0 ⊗ u1a1 ⊗ · · · ⊗
unan) = Tr(u0 · · ·un)a0⊗a1⊗· · ·⊗an, where the 2nd trace map is the ordinary trace map.

The proof is obvious.

Corollary 3.3. The Dennis Trace map gives a morphism of complexes

C∗(Mr(A),Mr(M))→ C∗(A,M).
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Proof. Enough to show that Tr ◦ di = di ◦ Tr on u0a0 ⊗ · · · ⊗ unan which is obvious. �

Theorem 3.4 (Morita invariance for matrices). Let i : M ↪→Mr(M). Then, for all r ≥ 1
(including r =∞),

Tr∗ : H∗(Mr(A),Mr(M))→ H∗(A,M)

i∗ : H∗(A,M)→ H∗(Mr(A),Mr(M))

are isomorphisms and inverse to each other.

Proof. Tr ◦ i = id is obvious. So, ETS, i ◦Tr ∼ id. We can construct an explicit homotopy.
See Loday. �

Definition 3.5 (Morita equivalence). R, S, k-algebras, are said to be Morita equivalent
if there are (R, S)-bimodule P , (S,R)-bimodule Q and isomorphisms u : P ⊗ SQ ' R,
v : Q⊗R P ' S.

Example 3.6. R = A, S = Mr(A) are Morita equivalent: take P = Ar(row vectors)
Q = Ar (column vectors).

Theorem 3.7. If R, S are Morita equivalent and M is an R-bimodule, there is a natural
isomorphism

H∗(R,M) ' H∗(S,Q⊗RM ⊗R P ).

Proof. See Loday. �

We record the following useful result. See Loday.

Theorem 3.8. Let A,A′ be k-algebras, and M is an (A,A′)-bimodule. Let T =
(
A M
0 A′

)
.

Then, projections T → A,A′ induce an isomorphism HH∗(T ) ' HH∗(A)⊕HH∗(A′).

Remark. The Dennis trace map is transitive:

Mrs(A) Tr→Mr(Ms(A)) Tr→ A

is the same as the trace map for rs× rs matrices.

4. Introduction to Kähler differentials and Hochschild Homology

Recall that for a ∈ A and M an A-bimodule, we have an inner derivation

ad(a) : M →M, ad(a)(m) = [a,m] = am−ma.

Remark. ad(a) extends to Cn(A,M):

ad(a)(a0 ⊗ · · · ⊗ an) =
n∑
i=0

(a0 ⊗ · · · ⊗ ai−1 ⊗ [a, ai]⊗ ai+1 ⊗ · · · ⊗ an).

Proposition 4.1. Define h(a) : Cn(A,M)→ Cn+1(A,M) by

h(a)(a0 ⊗ · · · ⊗ an) =
n∑
i=0

(−1)i(a0 ⊗ · · · ⊗ ai ⊗ a⊗ ai+1 ⊗ · · · ⊗ an).

Then, bh(a) + h(a)b = −ad(a) so that ad(a)∗ : Hn(A,M)→ Hn(A,M) is 0.

It is just a direct computation.
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Definition 4.2 (Antisymmetrization map). For σ ∈ Sn and a0 ⊗ · · · ⊗ an ∈ Cn(A,M),
define

σ · (a0 ⊗ · · · ⊗ an) = a0 ⊗ aσ−1(1) ⊗ aσ−1(2) ⊗ · · · ⊗ aσ−1(n)

which extends to an action of k[Sn] on Cn(A,M). Let εn :=
∑

σ∈Sn(sgnσ) ·σ ∈ k[Sn] which
is called the antisymmetrization map.

Remark. εn defines εn : M ⊗ ΛnA→ Cn(A,M), a0 ⊗ a1 ∧ · · · ∧ an = εn(a0 ⊗ · · · ⊗ an).

Definition 4.3 (Chevalley-Eilenberg map). δ : M ⊗ ΛnA→M ⊗ Λn−1A defined by

δ(a0 ⊗ a1 ∧ · · · ∧ an) =
n∑
i=1

(−1)i[a0, ai]⊗ a1 ∧ · · · ∧ âi ∧ · · · ∧ an

+
∑

1≤i<j≤n
(−1)i+j−1a0 ⊗ [ai, aj ] ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ âj ∧ · · · ∧ an.

Proposition 4.4. The following diagram is commutative:

M ⊗ ΛnA

δ
��

εn // Cn(A,M)

b
��

M ⊗ Λn−1A
εn−1 // Cn−1(A,M)

.

Note that when A is commutative and M is symmetric, b ◦ εn = 0.

Proof. Proof is done by induction on n using h(a) defined before. �

Let A be commutative. Then,

Proposition 4.5. There is a canonical map

εn : M ⊗A Ωn
A/k → Hn(A,M), a0 ⊗ da1 ∧ · · · ∧ dan 7→ a0 ⊗ a1 ⊗ · · · ⊗ an.

In particular, if M = A, then, we have εn : Ωn
A/k → HHn(A).

Proposition 4.6. Let A be commutative. Then there is a canonical map

π : Hn(A,M)→M ⊗A Ωn
A/k a0 ⊗ · · · ⊗ an 7→ a0 ⊗ da1 ∧ · · · ∧ dan.

If M = A, πn : HHn(A)→ Ωn
A/k.

Proposition 4.7. πn ◦ εn : M ⊗A Ωn
A/k → M ⊗A Ωn

A/k is multiplication by n! so that if
k ⊃ Q, M ⊗AΩn

A/k is a direct summand of Hn(A,M).

Remark. If A is smooth, they are in fact isomorphic, which is a theorem of Hochschild-
Kostant-Rosenberg.

5. Definition of Cyclic Homology and its properties

5.1. Cyclic homology; 1st description (general case). Define the cyclic action of
Z/(n+ 1)Z on Cn(A) = A⊗A⊗n = A⊗n+1 via the action of its generator t = tn:

tn(a0 ⊗ a1 ⊗ · · · ⊗ an) = (−1)nan ⊗ a0 ⊗ · · · ⊗ an−1

called the cyclic operator. Let N = 1 + t+ · · ·+ tn called the norm operator.
Consider b and b′ introduced in the preveious sections.

Lemma 5.1. (1− t)b′ = b(1− t) and b′N = Nb.
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Proof. Let J = d0t and observe that tiJt−i−1 = (−1)idi for 0 < i < n and tnJt−n−1 =
J . Then, it is just a direct straightforward computation. See Loday or Husemöller for
detail. �

So that we have the following cyclic bicomplex CC∗∗:

b
��

−b′
��

b
��

−b′
��

A⊗3

b
��

A⊗3

−b′
��

1−too A⊗3

b
��

Noo A⊗3

−b′
��

1−too Noo

A⊗2

��

A⊗2

−b′
��

1−too A⊗2

b
��

Noo A⊗2

−b′
��

1−too Noo

A A
1−too A

Noo A
1−too Noo

.

Note that odd columns are exact, if A is unitary. Here CCpq = Cq(A) = A⊗q+1.

Definition 5.2 (Cyclic homology). The cyclic homology HCn(A/k) := HCn(A) := Hn(totCC∗∗(A)).
Here we did not assume that A is unitary.

Remark. (1) (Functoriality) Let f : A → A′ be a morphism of k-algebras. It induces
f∗ : CC∗∗(A) → CC∗∗(A′) in an obvious way, so that we have f∗ : HCn(A) →
HCn(A′).

(2) (Ground ring) If k → K → A is a sequence of ring homomorphisms, then, we have
HCn(A/k)→ HCn(A/K).

5.2. Cyclic homology; 2nd description (k ⊃ Q).

Definition 5.3 (The Connes complex). Let Cλn(A) := Cn(A)1−t = coker(1−t) = A⊗n+1/im(1−
t), which is the coinvariant space of A⊗n+1 for the action of Z/(n+ 1)Z.

This is called the Connes complex. Let Hλ
n(A) = Hn(Cλ∗ (A)).

Consider the natural surjection p : tot(CC∗∗(A)) → Cλ∗ (A) which is the quotient map
A⊗n+1 → A⊗n+1/1− t on the first column and 0 on other columns.

Theorem 5.4 (The 2nd description of Cyclic homology). Assume that k ⊃ Q. Then,
p∗ : HC∗(A)→ Hλ

∗ (A) is an isomorphism.

Proof. Let θ = −(t + 2t2 + · · · + tn). Then, by a simple computation, we can check that
n+ 1 = N + θ(1− t), i.e. id = 1

n+1N + θ
n+1(1− t) = N 1

n+1 + (1− t) θ
n+1 . Hence, 1

n+1 and
θ

n+1 define the following homotopy:

A⊗n+1
θ

n+1

%%KKKKKKKKK

id
��

A⊗n+1
1−too

id
��

1
n+1

%%KKKKKKKKK A⊗n+1Noo

id
��

θ
n+1

%%KKKKKKKKK A⊗n+1
1−too

id
��

A⊗n+1 A⊗n+1
1−too A⊗n+1Noo A⊗n+1

1−too

and id is homotopic to 0, i.e. it is contractible, hence acyclic. Hence, the row is an acyclic
augmented complex with H0 = Cλn(A).

Consider the standard vertical increasing filtrations on CC∗∗(A). Since each row is an
acyclic augmented complex with H0 = Cλn(A), we have

E1
p,q =

{
0 p > 0
Cλq (A) p = 0
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E2
p,q =

{
0 p > 0
Hλ
q (A) p = 0

and it generates at r = 2. Hence, having Erp,q ⇒ HCn(A), we must have HCq(A) =
Hλ
q (A). �

5.3. Cyclic homology; 3rd description (A unitary). Now we go to the third descrip-
tion. We assume that A is a unitary k-algebra, i.e. it has a unity. Then, the odd degree
columns with b′ of the cyclic bicomplex are contractible (having s; extra degeneracy as a
homotopy) hence acyclic. We try to simplify CC∗∗(A) to obtain another simpler complex
B(A).

Lemma 5.5 (Killing contractible complexes). Let

· · · → An ⊕A′n

d=

(
α β
γ δ

)
−→ An−1 ⊕A′n−1 → · · ·

be a complex of k-modules such that (A′∗, δ) is a contractible complex with a contraction ho-
motopy h : An′ → A′n+1. Then, the following inclusion of complexes is a quasi-isomorphism:

(id− hγ) : (A∗, α− βhγ) ↪→ (A∗ ⊕A′∗, d).

Proof. We need to see (
α β
γ δ

)
·
(
id
−hγ

)
=
(
id
−hγ

)
·
(
α− βhγ

)
.

Note that LHS =
(
α− βhγ
γ − δhγ

)
and RHS =

(
α− βhγ

−hγα+ hγβhγ

)
.

Also note that d2 =
(
α β
γ δ

)2

=
(
α2 + βγ αβ + βδ
γα+ δγ γβ + δ2

)
= 0 and δ2 = 0 implies that

γα+ δγ = 0 and γβ = 0.
Hence, we need to see γ − δhγ = −hγα i.e. γ = δhγ − hγα. Since γα = −δγ, we have

δhγ − hγα = δhγ + hδγ = (δh+ hδ)γ = γ. Hence (id,−hγ) : An → An⊕A′n is a morphism
of complexes.

Since ker(id,−hγ) = 0 and coker(id,−hγ) ' (A′∗, δ) which is acyclic, (id,−hγ) is a
quasi-isomorphism.

�

Using above lemma with d =
(
α β
γ δ

)
=
(
b 1− t
N −b′

)
and h = −s (extra degeneracy),

we can define the Connes operator (or the Connes boundary map) B = (1− t)sN : Cq(A)→
Cq+1(A).

Proposition 5.6. For above B, b2 = 0, B2 = 0 and Bb+ bB = 0.

Proof. b2 = 0 was already done.
B2 = (1− t)sN(1− t)sN = (1− t)s(N(1− t))sN = 0 because N(1− t) = 0.
Bb+ bB = (1− t)sNb+ b(1− t)sN = (1− t)sb′N + (1− t)b′sN = (1− t)(sb′ + b′s)N =

(1− t)N = 0.
�
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Hence we have a double complex B(A) Bpq =
{
A⊗q−+1 q ≥ p
0 otherwise with

A⊗3

b
��

A⊗3

b
��

A⊗3

b
��

A⊗2

b
��

A⊗2

B
bbFFFFFFFF

b
��

A⊗2

B
bbFFFFFFFF

b
��

A A

B
ccFFFFFFFFF

A

B
ccFFFFFFFFF

i.e.

A⊗3

b
��

A⊗2

b

��

Boo A
Boo

A⊗2

b
��

A
Boo

A

.

Remark. Bb + bB = 0 implies that B induces a map on Hochschild homology B∗ :
HHn(A)→ HHn+1(A).

Note that we have a natural injection

tot(B(A)) ↪→ tot(CC∗∗(A))

sending x ∈ B(A)pq = Cq−p(A) to x ⊕ sN(x) ∈ Cq−p(A) ⊕ Cq−p+1(A) = CC2p,q−p ⊕
CC2p−1,q−p+1 ⊂ tot(CC(A))p+q. The killing lemma implies that it is an isomorphism so
that we have

Theorem 5.7 (3rd description of Cyclic homology). Let A be a unitary k-algebra. Then,
tot(B(A)) ↪→ tot(CC(A)) is a quasi-isomorphism so that Hn(tot(B(A))) = HCn(A).

In general, we have the following concept which generalizes above idea:

Definition 5.8 (Mixed complex). Let A be an abelian category. A mixed complex X is a
triple (X∗, b, B) where X∗ is a Z-graded object in A, b : X∗ → X∗ is a morphism of degree
−1, B : X∗ → X∗ is a morphism of degree +1, satisfying b2 = B2 = Bb+ bB = 0.

A morphism f : X → Y of mixed complexes is a morphism of Z-graded objects such that
bf = fb and Bf = fB. A mixed complex is called positive if Xq = 0 for q < 0.

Remark. B in the cyclic homology can be written explicitly as follows: B : A⊗n+1 →
A⊗n+2 is given by

B(a0⊗· · · an) =
n−1∑
i=0

(−1)ni1⊗ai⊗· · ·⊗an⊗a0⊗· · ·⊗ai−1−(−1)n(i−1)ai1⊗1⊗ai⊗· · ·⊗an⊗a0⊗· · ·⊗ai−2.

In low degrees, we have B(a0) = 1⊗ a0− a0⊗ 1 and B(a0⊗ a1) = (1⊗ a0⊗ a1− 1⊗ a1⊗
a0) + (a0 ⊗ 1⊗ a1 − a1 ⊗ 1⊗ a0).

6. Some elementary properties of cyclic homology

Proposition 6.1. The followings are true:
(1) HC0(A) = HH0(A) = A/[A,A].
(2) Though HHn(A) are Z(A)-modules, for HCn(A), it is not true. Try for HC1(A).
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(3) If A is commutative and unitary, then HC1(A) ' Ω1
A/k/dA.

(4) (Relative cyclic homology) Let I ⊂ A be a twosided ideal. Let CC(A, I) = ker(CC(A)→
CC(A/I)) and let HCn(A, I) = Hn(tot(CC(A, I))). Then, we have a long exact se-
quence

· · · → HCn(A, I)→ HCn(A)→ HCn(A/I)→ HCn−1(A, I)→ · · · .
(5) Without any condition on the characteristic, still we always have

HC1(A) = Hλ
1 (A)

.
(6) Let Aop be the opposite ring of A. Then, there are canonical isomorphisms

HHn(A) ' HHn(Aop), HCn(A) ' HCn(Aop).

[Use ωn(a− 0, · · · an) = (a0, an, an−1, · · · , a2, a1).]

Proof. All of the above are very easy. Let’s try (3) for example. By the 3rd description of
cyclic homology, we can look at B(A):

A⊗3

b
��

A⊗2

b
��

A
Boo

A

.

A being commutative, b : A⊗2 → A, a ⊗ b 7→ ab − ba = 0 so that HC1(A) = A ⊗
A/imb, imB. Note that imb is generated by ab⊗ c− a⊗ bc+ ca⊗ b and imB is generated

by 1⊗ a− a⊗ 1. Define φ : A⊗ A→
Ω1
A/k

dA by a⊗ b 7→ adb. Obviously, the 1st one dies in

Ω1
A/k and the 2nd one dies in the quotient. Hence we have HC1(A) →

Ω1
A/k

dA . The obvious
inverse is given by adb 7→ a⊗ b.

�

7. Connes exact couple

Theorem 7.1 (Connes exact couple). Let A be a k-algebra. Then, we have an exact couple,
called the Connes exact couple

HC∗(A) S // HC∗(A)

Bxxrrrrrrrrrr

HH∗(A)
I

ffLLLLLLLLLL

with degS = −2, degB = 1 and deg I = 0.

Proof. Consider the cyclic bicomplex CC∗∗(A) and let CC∗∗(A){2} be the bicomplex consist-
ing of the first two columns of CC∗∗(A). Then, we have an exact sequence of bicomplexes:

0→ CC∗∗(A){2} → CC∗∗(A)→ CC∗∗(A)[2, 0]→ 0

where (CC∗∗(A)[2, 0])p,q = CCp−2,q(A). It gives a rise to an exact sequence of the corre-
sponding total complexes, and obviously tot(CC∗∗(A){2}) is quasiisomorphic to (C∗(A), b)
so that we have the exact couple, as required.

�
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Corollary 7.2. Let f : A → A′ be a k-algebra homomorphism. Ten, f∗ : HH∗(A) →
HH∗(A′) is an isomorphism if and only if f∗ : HC∗(A)→ HC∗(A′) is an isomorphicm.

Proof. In low dimensions, from the Connes couple, we have an exact sequence

HC1 → HC−1 = 0→ HH0 → HC0 → HC−2 = 0

i.e. HH0 ' HC0. Hence it is true for n = 0. In general, f : A→ A′ induces f∗ : CC(A)→
CC(A′) so that we have a commutative diagram with exact rows:

· · · // HHn(A) I //

��

HCn(A)

��

S // HCn−2(A)

��

B // HHn−1(A)

��

I // · · ·

· · · // HHn(A′) I // HCn(A′) S // HCn−2(A′) B // HHn−1(A′) I // · · ·

.

If HHn(A) → HHn(A′) is an isomorphism, then, by induction and by the five lemma,
HCn−1(A) ' HCn−1(A′), HCn−2(A) ' HCn−2(A′) implies HCn(A) ' HCn(A′).

Conversely, if HC∗(A) → HC∗(A′) is an isomorphism, just a simple application of the
five lemma gives the result.

�

Corollary 7.3. If k ⊃ Q, then,

· · · → HHn(A) I→ Hλ
n(A) S→ Hλ

n−2(A) B→ HHn−2(A) I→ · · ·

is exact.

Proof. If k ⊃ Q, HC∗(A) ' Hλ
∗ (A).

�

Theorem 7.4 (Morita invariance for cyclic homology). If A,A′ are Morita equivalent, then
there is a canonical isomorphism HC∗(A)→ HC∗(A′).

8. Differential forms and Cyclic homology

Let A be a commutative unitary k-algebra. Recall that we have the exterior derivative

d : Ωn
A/k → Ωn+1

A/k , d(a0da1 ∧ · · · ∧ dan) := da0 ∧ da1 ∧ · · · ∧ dan.

Since d1 = 0, we have d2 = 0 so that we hace a complex, called the de Rham complex

A = Ω0
A/k

d→ Ω1
A/k

d→ Ω2
A/k

d→ · · ·

and its cohomology is denoted by Hn
DR(A). Note that (Ω∗A/k, d) is a DG-algebra with

(a0da1 ∧ · · · ∧ dan) ∧ (a′0da
′
1 ∧ · · · ∧ da′m) = a0a

′
0da1 ∧ · · · ∧ dan ∧ da′1 ∧ · · · ∧ da′m.

We state the following propositions, whose proofs are straightforward:

Proposition 8.1. Let A be a commutative unitary k-algebra. Then, the following diagrams
are commutative:

Ωn
A/k

d−−−−→ Ωn+1
A/k

εn

y yεn+1

HHn(A) B∗−−−−→ HHn+1(A)
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HHn(A) B∗−−−−→ HHn+1(A)

πn

y yπn+1

Ωn
A/k

(n+1)d−−−−→ Ωn+1
A/k

.

Corollary 8.2. Let A be a commutative unitary k-algebra. Then, there is a functorial map

εn : Ωn
A/k/dΩn−1

A/k → HCn(A).

Proof. If we look at B(A), B∗ : HHn−1(A)→ HHn(A) factors through HCn−1 so that

Ωn−1 d //

εn−1

��

Ωn

εn

��
HHn−1

I // HCn−1
B // HHn

I // HCn

is commutative. Now, I ◦ B : HCn−1 → HCn is 0, being a part of the Connes exact
sequence, we have Iεn(dΩn−1) = 0 as well. Hence, εn induces a map Ωn/dΩn−1 → HCn as
desired. �

Proposition 8.3. When k ⊃ Q and A is commutative and unitary, we have a natural map

πn : HCn(A)→ Ωn
A/k/dΩn−1

A/k ⊕H
n−2
DR (A)⊕Hn−4

DR (A)⊕ · · · .

Proof. Since k ⊃ Q, 1
n!πn induces a morphism of mixed complexes B(A) = (C(A), b, B) →

D(A) = (Ω∗A/k, 0, d) where D(A) is called the reduced Delign complex with D(A)p,q = Ωq−p

if q ≥ p and 0 otherwise. Give the vertical increasing filtration and look at the map of
spectral sequences from B(A)→ D(A). For D(A), note that

E1
p,q = Hhor

p,q (D(A)) =
{
Hq−p
DR (A) = Hn−2p

DR (A) p > 0
Ωq/dΩq−1 p = 0

.

Since the vertical maps are all 0, it generates at E1 so that we have a natural map

HCn(A) = Hn(tot(B(A)))→
∐

p+q=n

E1
p,q = Ωn/dΩn−1 ⊕Hn−2

DR (A)⊕Hn−4
DR (A)⊕ · · · .

�

9. Cohomology

Recall that (C∗(A,M), b) = (M⊗AeC ′∗(A), b′), so that Hn(A,M) = Hn(M⊗AeC ′∗(A), b′).
In the same fasion, we define the Hochschild cohomology as follows:

Definition 9.1 (Hochschild cohomology). The Hochschild cohomology of A with coefficients
in M is Hn(A,M) = Hn(HomAe(C ′∗(A),M)) and β′(φ) = −(−1)nφ ◦ b′.

Explicitly, if for a cochain φ, f : A⊗n →M satisfies

φ(a0[a1| · · · |an]an+1) = a0f(a1 ⊗ · · · ⊗ an)an+1

then

β(f)(a1⊗· · · an+1) = a1f(a2⊗· · ·⊗an+1)+
∑

0<i<n+1

(−1)if(a1⊗· · ·⊗aiai+1⊗· · ·⊗an+1)+(−1)n+1f(a1⊗· · · an)an+1.

Hence we have, in fact,
Hn(A,M) = Hn(C∗(A,M), b)

where Cn(A,M) = Homk(A⊗n,M).
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Remark. (1) If n = 0, H0(A,M) = MA = {m ∈M |am = ma,∀a ∈ A}.
(2) If H1(A,M) = Der(A,M)/{ inner derivations }.
(3) If M = A∗ = Homk(A, k), then we define HHn(A) := Hn(A,A∗).
(4) We also ahve a cotrace map and Morita invariance.
(5) If A is unitary and k-flat, then,

Hn(A,M) = ExtnAe(A,M).

(6) If g : A→ A′ is a k-morphism, then, we have g∗ : HHn(A′)→ HHn(A).

9.1. Duality. Let M,M ′ be two A-bimodules. Then we have

Cn(A,M)× Cn(A,M ′)→M ⊗Ae M ′

(f,m′ ⊗ a1 ⊗ · · · ⊗ an) 7→ f(a1 ⊗ · · · ⊗ an)⊗m′.
This is obviously satisfying

< β(f), x >=< f, b(x) >
for f ∈ Cn(A,M) and x ∈ Cn+1(A,M ′). Hence we have

< , >: Hn(A,M)⊗Hn(A,M ′)→M ⊗Ae M ′.
Here, the left hand side ⊗ can be taken over Z(A).

Remark. (1) If n = 0, above pairing is the surjection M ⊗Z(A) M
′ →M ⊗Ae M ′.

(2) If n = 1, let D ∈ Der(A,M), (D) ∈ H1(A,M), then, for M ′ = A,

< , >: H1(A,M)⊗Z(A) Ω1
A/k →MA = H0(A,M)

(D)⊗ adb 7→ aDb.

Similar jobs can be done for cyclic cohomologies as well.

10. Normalized Complexes

10.1. Normalized Hochschild complex. Let A be a unitary k-algebra. Then, C∗(A,M)
has a large subcomplex D∗ which is acyclic; Dn ⊂ M ⊗ A⊗n is generated by elements
m ⊗ a1 ⊗ · · · ⊗ an with one of ai = 0. M ⊗ A⊗n/Dn is called the normalized Hochschild
complex. Let Ā = A/k. Then, we have C̄n(A,M) := M ⊗An/Dn = M ⊗ Ā⊗n. Obviously,
D∗ being acyclic, the quotient map C∗(A,M)→ C̄∗(A,M) is a quasi-isomorphism.

10.2. Normalized (b,B) complex. Let A be a unitary k-algebra. The (b,B)-complex
B(A) for HCn(A) can be further simplied as well. Define B̄(A) as follows:

b
��

b
��

b
��

A⊗ Ā⊗2

b
��

A⊗ ĀB̄oo

b

��

A
B̄oo

A⊗ Ā
b

��

A
B̄oo

A

where B̄ = sN : A⊗ Ā⊗n → A⊗ Ā⊗n+1. Explicitly,

B̄(a0 ⊗ · · · ⊗ an) =
n∑
i=0

(−1)ni1⊗ ai ⊗ · · · ⊗ an ⊗ a0 ⊗ · · · ⊗ ai−1.
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For lower degrees, we have

B̄(a) = 1⊗ a, B̄(a⊗ a′) = 1⊗ a⊗ a′ − 1⊗ a′ ⊗ a.

Columns are normalized Hochschild complexes whose homologies are still the Hochschild
homologies. Hence, by a standard spectral sequence argument, the surjection B(A)→ B̄(A)
is a quasi-isomorphis, so that H∗(tot(B̄(A))) = HC∗(A).

Remark (Summary). Let A be a k-algebra. There are three canonical morphisms of
complexes

tot(B̄(A)) 1← tot(B(A)) 2→ tot(CC(A)) 3→ Cλ(A).

Note that 2 is always a quasi-isomorphism. 1 is a quasi-isomorphism if A is unitary. 3 is a
quasi-isomorphism if k ⊃ Q.

Example 10.1. When A = k, then, A ⊗ Ā⊗n '
{
k if n = 0
0 if n > 0 , so that B̄(k) is in fact,

the following one:

0

��

0oo

��

koo

0

��

koo

k

.

Then, (totB̄(k))2n = k and (totB̄(k))2n+1 = 0 and obviously, HC2n(k) = k andHC2n+1(k) =
0.

11. Reduced Hochschild and Cyclic homology

11.1. Reduced Hoshchild homology. Assume that k ↪→ A. Let k[0] be the complex
consisting in k in degree 0. The reduced Hochshild complex is defined by the following
short exact sequence:

0→ k[0]→ (C̄n(A), b)→ (C̄n(A), b)red → 0

and its homology is called the reduced Hochschild homology and denoted by HHn(A).
From the definition, we just see that

0→ HH1(A)→ HH1(A)→ k → HH0(A)→ HH0(A)→ 0

and HHn(A)→ HHn(A) for n ≥ 2.

11.2. Reduced Cyclic homology. Assume that k ↪→ A. Then the reduced Cyclic ho-
mology HCn(A) is the homology of the total complex of the bicomplex B(A)red which is
defined by

0→ B̄(k)→ B̄(A)→ B(A)red → 0.

From the homology long exact sequence, we have

· · · → HCn(k)→ HCn(A)→ HCn(A)→ HCn−1(k)→ · · · .
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Remark. We have the following reduced Connes exact couple:

HC∗(A)
S;−2 // HC∗(A)

B;+1yyrrrrrrrrrr

HH∗(A)
I;0

eeLLLLLLLLLL

where the numbers are the degrees of the maps.


