A personal note on Hochschild and Cyclic homology

by Jinhyun Park
February 18, 2004 (last modified, February 24, 2004)

1. Definition of Hochschild homology and its properties

Let k be a commutative ring and A an associative k-algebra, not necessarily commutative, not necessarily unitary.

Definition 1.1 (Hochschild (standard) complex, or Cyclic Bar complex). Let M be an A-bimodule. Let $C_{n}(A, M):=M \otimes_{k} A^{\otimes n}$. Define operators $d_{i}: C_{n}(A, M) \rightarrow C_{n-1}(A, M)$ by

$$
\begin{gathered}
d_{0}\left(m \otimes a_{1} \otimes \cdots \otimes a_{n}\right)=m a_{1} \otimes a_{2} \otimes \cdots \otimes a_{n} \\
d_{i}\left(m \otimes a_{1} \otimes \cdots \otimes a_{n}\right)=m \otimes a_{1} \otimes \cdots \otimes a_{i} a_{i+1} \otimes \cdots \otimes a_{n}, \quad i \leq i \leq n \\
d_{n}\left(m \otimes a_{1} \otimes \cdots \otimes a_{n}\right)=a_{n} m \otimes a_{1} \otimes \cdots \otimes a_{n-1} .
\end{gathered}
$$

Note that for $i<j, d_{i} d_{j}=d_{j-1} d_{i}$ so that $\left(C_{n}(A, M), d_{i}\right)$ is a presimplicial module, and for $b=\sum_{i=0}^{n}(-1)^{i} d_{i},\left(C_{n}(A, M), b\right)$ is a complex called the Hochschild (standard) complex. When $M=A$, we call it the Cyclic Bar complex.

Definition 1.2 (Hochschild Homology). The n-th homology $H_{n}(A, M):=H_{n}\left(C_{*}(A, M), b\right)$. When $M=A$, we denote it by $H H_{n}(A)$.

Remark. (1) Though $H_{n}(A, M)$ doesn't mention k, k plays an important role. For example, if $k=\mathbb{C}, H H_{1}(\mathbb{C})=0$ but, for $k=\mathbb{Q}, H H_{1}(\mathbb{C}) \neq 0$.
(2) (Functoriality) Hochschild homology $H_{n}(A, M)$ is covariant on both places. For $f: M \rightarrow M^{\prime}$, an A-bimodule homomorphism, then, $f_{*}: H_{n}(A, M) \rightarrow H_{n}\left(A, M^{\prime}\right)$, $f_{*}\left(m \otimes a_{1} \otimes \cdots \otimes a_{n}\right)=f(m) \otimes a_{1} \otimes \cdots \otimes a_{n}$ is well-defined.

For $g: A \rightarrow A^{\prime}$, a k-algebra homomorphism, M^{\prime}, an A^{\prime}-bimodule, then, g_{*} : $H_{n}\left(A, M^{\prime}\right) \rightarrow H_{n}\left(A^{\prime}, M^{\prime}\right), g_{*}\left(m \otimes a_{1} \otimes \cdots \otimes a_{n}\right)=m \otimes g\left(a_{1}\right) \otimes \cdots \otimes g\left(a_{n}\right)$ is well-defined.
(3) (Respect products) $H H_{n}\left(A \times A^{\prime}\right) \simeq H H_{n}(A) \oplus H H_{n}\left(A^{\prime}\right)$, for $A, A^{\prime}: k$-algebras. [Hint: if A, A^{\prime} are flat k-algebras, then, use the Tor definition which will be given soon, and apply the Künneth formula. Otherwise, construct a homotopy. Later we will give a geeneralized result.
(4) Let $Z(A)=\{z \in A \mid z a=a z, a \in A\}$ be the center of A. Then, naturally $C_{*}(A, M)$ is a $Z(A)$-module via $z \cdot\left(m \otimes a_{1} \otimes \cdots \otimes a_{n}\right)=(z m) \otimes a_{1} \otimes \cdots \otimes a_{n}$. By the commutativity of z, it commutes with b, so that $H_{n}(A, M)$ is also a $Z(A)$-module.

Example 1.3. From the Hochchild complex $C_{1}(A, M)=M \otimes A \xrightarrow{b} C_{0}(A, M)=M \rightarrow 0$, obviously we have

$$
H_{0}(A, M)=M_{A}=M / \operatorname{imb}=M /\{a m-m a \mid a \in A, m \in M\} .
$$

In particular, $H H_{0}(A)=A /[A, A]$. When $A=M=k$, then the Hochschild complex is

$$
\rightarrow k \xrightarrow{1} k \xrightarrow{0} k \xrightarrow{1} \cdots \xrightarrow{1} k \xrightarrow{0} k
$$

so that $H H_{0}(k)=k$ and $H H_{n}(k)=0$ for $n>0$.
Lemma 1.4. Let R be any unitary ring. Then, the abelianized trace map $\operatorname{Tr}: M_{r}(R) \rightarrow$ $R \rightarrow R /[R, R]$ induces an isomorphism

$$
\operatorname{Tr}: M_{r}(R) /\left[M_{r}(R), M_{r}(R)\right] \stackrel{\simeq}{\leftrightarrows} R /[R, R] .
$$

Proof. Use elementary matrices to show that ker $\operatorname{Tr}=\left[M_{r}(R), M_{r}(R)\right]$.

Corollary 1.5. $H H_{0}\left(M_{r}(A)\right)=A /[A, A]$.
This is a special case of Morita invariance.
Proposition 1.6. If A is commutative, then $H H_{1} \stackrel{\cong}{\rightrightarrows} \Omega_{A / k}^{1}$ canonically. Further if M is a symmetric bimodule, then, $H_{1}(A, M) \simeq M \otimes_{k} \Omega_{A / k}^{1}$.
Proof. A being commutative, $C_{1}(A, A)=A \otimes A \xrightarrow{b} C_{0}(A, A)=A$ is 0 . Hence, $H H_{1}(A)=$ $A \otimes A / a b \otimes c-a \otimes b c+c a \otimes b$. Define $\phi: A \otimes A \rightarrow \Omega_{A / k}^{1}$ by $a \otimes b \mapsto a d b$. Then, $\phi(a b \otimes c-a \otimes b c+c a \otimes b)=a b d c-a d b c+c a d b=a b d c-a b d c-a c d b+c a d b=0$ so that we have $\bar{\phi}: H H_{1}(A) \rightarrow \Omega_{A / k}^{1}$. Conversely, we can give $\phi: \Omega_{A / k}^{1} \rightarrow H H_{1}(A)$ by $a d b \mapsto a \otimes b$. It is trivial to check that they are inverse to each other.

2. The 2nd description of Hochchild Homology

Now we assume that A is a unitary k-algebra.
Definition 2.1 (Standard complex, or Bar complex). Let $C_{n}^{\prime}(A)=C_{n}^{\text {bar }}(A)=A \otimes A^{\otimes n} \otimes$ $A=A^{\otimes n+2}$ with $d_{i}: C_{n}^{\prime}(A) \rightarrow C_{n-1}^{\prime}(A)$ defined only for $0 \leq i \leq n-1$, which is a presimplicial module. Let $b^{\prime}=\sum_{i=0}^{n-1}(-1)^{i} d_{i}$ and $b^{\prime}: C_{0}^{\prime}(A)=A \otimes A \rightarrow A$ be the multiplication which is an augmentation for the complex.

Let $A^{e}=A \otimes A^{o p}$, then, above complex is a complex of left A^{e}-modules with $a \otimes a^{\prime} \in A \otimes A^{o p}$ acts via

$$
\left(a \otimes a^{\prime}\right)\left(a_{0} \otimes \cdots \otimes a_{n+1}\right)=\left(a a_{0}\right) \otimes a_{1} \otimes \cdots \otimes a_{n} \otimes\left(a_{n+1} a^{\prime}\right)
$$

Proposition 2.2 (and Definition). The augmented bar complex is a resolution of the A^{e} module A called the bar resolution of A.

Remark. An n-chain of the bar resolution is often denoted by $a_{0}\left[a_{1}|\cdots| a_{n}\right] a_{n+1}$.
Proof. The cokernel of the last map is clearly $\mu: A \otimes A \rightarrow A$. Define a homotopy s : $A^{\otimes n+1} \rightarrow A^{\otimes n+2}, s\left(a_{0} \otimes \cdots \otimes a_{n}\right)=1 \otimes a_{0} \otimes \cdots \otimes a_{n}$. Then, $d_{i} s=s d_{i-1}$ for $i \geq 1$ and $d_{0} s=i d$. Hence $b^{\prime} s+s b^{\prime}=i d$ i.e. b^{\prime}-complex is acyclic.

Remark. Note that $C_{n}\left(A, A \otimes A^{o p}\right)=\left(A \otimes A^{o p}\right) \otimes A^{\otimes n} \simeq A \otimes A^{\otimes n} \otimes A=C_{n}^{\prime}(A)$.
In case A is a flat k-algebra, we have the following 2nd description of the Hochschild homology.

Proposition 2.3 (2nd description of Hochschild Homology). Let A be a flat k-algebra. Then, for any A-bimodule M,

$$
H_{n}(A, M)=\operatorname{Tor}_{n}^{A^{e}}(M, A) .
$$

Proof. A being k-flat. $A^{\otimes n}$ is k-flat, so that $C_{n}^{\prime}(A)=A \otimes A^{\otimes n} \otimes A=A \otimes A^{e} \otimes A^{\otimes n}$ is A^{e}-flat.

Now, by tensoring with M over A^{e}, we have $1_{M} \otimes_{A^{e}} b^{\prime}=b$ via
$M \otimes_{A^{e}} C_{n}^{\prime}(A)=M \otimes_{A^{e}}\left(A \otimes A^{\otimes n} \otimes A\right) \simeq M \otimes_{A^{e}}\left(A \otimes A^{o p} \otimes A^{\otimes n}\right) \simeq M \otimes_{k} A^{\otimes n}=C_{n}(A, M)$ whose homology is by definition $H_{n}(A, M)$ and $\operatorname{Tor}_{n}^{A^{e}}(M, A)$.

Definition 2.4 (Relative Hochschild Homology). Let $I \subset A$ be a two-sided ideal. Consider the canonical morphism $C_{*}(A) \rightarrow C_{*}(A / I)$ of complexes. Let $K_{*}(A, I)=\operatorname{ker}\left(C_{*}(A) \rightarrow\right.$ $\left.C_{*}(A / I)\right)$. Then, define $H H_{n}(A, I):=H_{n}\left(K_{*}(A, I)\right)$. Obviously, by definition, it has a long exact sequence:

$$
\cdots \rightarrow H H_{n}(A, I) \rightarrow H H_{n}(A) \rightarrow H H_{n}(A / I) \rightarrow H H_{n-1}(A, I) \rightarrow \cdots .
$$

Definition 2.5 (Birelative Hochschild Homology). Let I, J be two two-sided ideals of A. Consider

Here, vertical arrows are surjective. Hence Let $K_{*}(A ; I, J)$ be $\operatorname{ker}\left(K_{*}(A, I) \rightarrow K_{*}(A, J, I+\right.$ $J / J)$), which gives a short exact sequence of complexes:

$$
0 \rightarrow K_{*}(A ; I, J) \rightarrow K_{*}(A, I) \rightarrow K_{*}(A / J, I+J / J) \rightarrow 0
$$

Define $H H_{n}(A ; I, J)=H_{n}(K *(A ; I, J))$ then, we have the following long exact sequence:

$$
\cdots \rightarrow H H_{n}(A ; I, J) \rightarrow H H_{n}(A, I) \rightarrow H H_{n}(A / J, I+J / J) \rightarrow H H_{n-1}(A ; I, J) \rightarrow \cdots .
$$

Proposition 2.6 (Localization). Let $S \subset Z(A)$ be a multiplicative subset of the center and $1 \in S, 0 \notin S$. Define $M_{S}:=Z(A)_{S} \otimes_{A} M$. When A is a flat k-algebra, we have

$$
H_{n}(A, M)_{S} \simeq H_{n}\left(A, M_{S}\right) \simeq H_{n}\left(A_{S}, M_{S}\right) .
$$

Proof. A-being k-flat, Hochschild homologies are derived functors, so that it is enough to check it for $n=0$, in which case, it is obvious.

Proposition 2.7 (localization of the ground ring). Let $S \subset k$ be a multiplicative subset. When A is flat over k, the natural map $H H_{*}(A / k) \otimes_{k} k_{S} \rightarrow H H_{*}\left(A_{S} / k_{S}\right)$ is an isomorphism. In particular, if A is a \mathbb{Q}-algebra,

$$
H H_{*}(A / \mathbb{Z}) \otimes \mathbb{Q} \simeq H H_{*}(A / \mathbb{Q})
$$

3. The Dennis Trace map and Morita invariance

Let M be an A-bimodule, A is a k-algebra, k is a commutative ring. For the obvious map $M_{r}(M) \hookrightarrow M_{r+1}(M)$, we form $\lim _{l_{r}} M_{r}(M)=M(M)$ which we also denote by $g l(M)$.
Definition 3.1 (The Dennis Trace map). $\operatorname{Tr}: M_{r}(M) \otimes M_{r}\left(A^{\otimes n}\right) \rightarrow M \otimes A^{\otimes n}$ is defined by

$$
\operatorname{Tr}(m(0) \otimes a(1) \otimes \cdots \otimes a(n))=\sum_{1 \leq i_{0}, \cdots, i_{n} \leq r} m(0)_{i_{0}, i_{1}} \otimes a(1)_{i_{1}, i_{2}} \otimes \cdots \otimes a(n)_{i_{n}, i_{0}}
$$

Remark. Any $M_{r}(M)=M_{r}(k) \otimes_{k} M$.
Lemma 3.2. Let $u_{i} \in M_{r}(k), a_{0} \in M, a_{i} \in A$ for $i \geq 1$. Then, $\operatorname{Tr}\left(u_{0} a_{0} \otimes u_{1} a_{1} \otimes \cdots \otimes\right.$ $\left.u_{n} a_{n}\right)=\operatorname{Tr}\left(u_{0} \cdots u_{n}\right) a_{0} \otimes a_{1} \otimes \cdots \otimes a_{n}$, where the 2nd trace map is the ordinary trace map.

The proof is obvious.
Corollary 3.3. The Dennis Trace map gives a morphism of complexes

$$
C_{*}\left(M_{r}(A), M_{r}(M)\right) \rightarrow C_{*}(A, M) .
$$

Proof. Enough to show that $\operatorname{Tr} \circ d_{i}=d_{i} \circ \operatorname{Tr}$ on $u_{0} a_{0} \otimes \cdots \otimes u_{n} a_{n}$ which is obvious.
Theorem 3.4 (Morita invariance for matrices). Let $i: M \hookrightarrow M_{r}(M)$. Then, for all $r \geq 1$ (including $r=\infty$),

$$
\begin{aligned}
T r_{*} & : H_{*}\left(M_{r}(A), M_{r}(M)\right) \rightarrow H_{*}(A, M) \\
i_{*} & : H_{*}(A, M) \rightarrow H_{*}\left(M_{r}(A), M_{r}(M)\right)
\end{aligned}
$$

are isomorphisms and inverse to each other.
Proof. $\operatorname{Tr} \circ i=i d$ is obvious. So, ETS, $i \circ \operatorname{Tr} \sim i d$. We can construct an explicit homotopy. See Loday.

Definition 3.5 (Morita equivalence). R, S, k-algebras, are said to be Morita equivalent if there are (R, S)-bimodule $P,(S, R)$-bimodule Q and isomorphisms u: $P \otimes S Q \simeq R$, $v: Q \otimes_{R} P \simeq S$.
Example 3.6. $R=A, S=M_{r}(A)$ are Morita equivalent: take $P=A^{r}$ (row vectors) $Q=A^{r}$ (column vectors).

Theorem 3.7. If R, S are Morita equivalent and M is an R-bimodule, there is a natural isomorphism

$$
H_{*}(R, M) \simeq H_{*}\left(S, Q \otimes_{R} M \otimes_{R} P\right)
$$

Proof. See Loday.
We record the following useful result. See Loday.
Theorem 3.8. Let A, A^{\prime} be k-algebras, and M is an $\left(A, A^{\prime}\right)$-bimodule. Let $T=\left(\begin{array}{cc}A & M \\ 0 & A^{\prime}\end{array}\right)$. Then, projections $T \rightarrow A, A^{\prime}$ induce an isomorphism $H H_{*}(T) \simeq H H_{*}(A) \oplus H H_{*}\left(A^{\prime}\right)$.

Remark. The Dennis trace map is transitive:

$$
M_{r s}(A) \xrightarrow{T r} M_{r}\left(M_{s}(A)\right) \xrightarrow{T r} A
$$

is the same as the trace map for $r s \times r s$ matrices.

4. Introduction to Kähler differentials and Hochschild Homology

Recall that for $a \in A$ and M an A-bimodule, we have an inner derivation

$$
a d(a): M \rightarrow M, \quad a d(a)(m)=[a, m]=a m-m a .
$$

Remark. $a d(a)$ extends to $C_{n}(A, M)$:

$$
a d(a)\left(a_{0} \otimes \cdots \otimes a_{n}\right)=\sum_{i=0}^{n}\left(a_{0} \otimes \cdots \otimes a_{i-1} \otimes\left[a, a_{i}\right] \otimes a_{i+1} \otimes \cdots \otimes a_{n}\right) .
$$

Proposition 4.1. Define $h(a): C_{n}(A, M) \rightarrow C_{n+1}(A, M)$ by

$$
h(a)\left(a_{0} \otimes \cdots \otimes a_{n}\right)=\sum_{i=0}^{n}(-1)^{i}\left(a_{0} \otimes \cdots \otimes a_{i} \otimes a \otimes a_{i+1} \otimes \cdots \otimes a_{n}\right) .
$$

Then, $b h(a)+h(a) b=-a d(a)$ so that $a d(a)_{*}: H_{n}(A, M) \rightarrow H_{n}(A, M)$ is 0.
It is just a direct computation.

Definition 4.2 (Antisymmetrization map). For $\sigma \in S_{n}$ and $a_{0} \otimes \cdots \otimes a_{n} \in C_{n}(A, M)$, define

$$
\sigma \cdot\left(a_{0} \otimes \cdots \otimes a_{n}\right)=a_{0} \otimes a_{\sigma^{-1}(1)} \otimes a_{\sigma^{-1}(2)} \otimes \cdots \otimes a_{\sigma^{-1}(n)}
$$

which extends to an action of $k\left[S_{n}\right]$ on $C_{n}(A, M)$. Let $\epsilon_{n}:=\sum_{\sigma \in S_{n}}(\operatorname{sgn} \sigma) \cdot \sigma \in k\left[S_{n}\right]$ which is called the antisymmetrization map.

Remark. ϵ_{n} defines $\epsilon_{n}: M \otimes \Lambda^{n} A \rightarrow C_{n}(A, M), a_{0} \otimes a_{1} \wedge \cdots \wedge a_{n}=\epsilon_{n}\left(a_{0} \otimes \cdots \otimes a_{n}\right)$.
Definition 4.3 (Chevalley-Eilenberg map). $\delta: M \otimes \Lambda^{n} A \rightarrow M \otimes \Lambda^{n-1} A$ defined by

$$
\begin{aligned}
& \delta\left(a_{0} \otimes a_{1} \wedge \cdots \wedge a_{n}\right)=\sum_{i=1}^{n}(-1)^{i}\left[a_{0}, a_{i}\right] \otimes a_{1} \wedge \cdots \wedge \hat{a_{i}} \wedge \cdots \wedge a_{n} \\
+ & \sum_{1 \leq i<j \leq n}(-1)^{i+j-1} a_{0} \otimes\left[a_{i}, a_{j}\right] \wedge a_{1} \wedge \cdots \wedge \hat{a_{i}} \wedge \cdots \wedge \hat{a_{j}} \wedge \cdots \wedge a_{n} .
\end{aligned}
$$

Proposition 4.4. The following diagram is commutative:

Note that when A is commutative and M is symmetric, $b \circ \epsilon_{n}=0$.
Proof. Proof is done by induction on n using $h(a)$ defined before.
Let A be commutative. Then,
Proposition 4.5. There is a canonical map

$$
\epsilon_{n}: M \otimes_{A} \Omega_{A / k}^{n} \rightarrow H_{n}(A, M), \quad a_{0} \otimes d a_{1} \wedge \cdots \wedge d a_{n} \mapsto a_{0} \otimes a_{1} \otimes \cdots \otimes a_{n}
$$

In particular, if $M=A$, then, we have $\epsilon_{n}: \Omega_{A / k}^{n} \rightarrow H H_{n}(A)$.
Proposition 4.6. Let A be commutative. Then there is a canonical map

$$
\pi: H_{n}(A, M) \rightarrow M \otimes_{A} \Omega_{A / k}^{n} \quad a_{0} \otimes \cdots \otimes a_{n} \mapsto a_{0} \otimes d a_{1} \wedge \cdots \wedge d a_{n} .
$$

If $M=A, \pi_{n}: H H_{n}(A) \rightarrow \Omega_{A / k}^{n}$.
Proposition 4.7. $\pi_{n} \circ \epsilon_{n}: M \otimes_{A} \Omega_{A / k}^{n} \rightarrow M \otimes_{A} \Omega_{A / k}^{n}$ is multiplication by n ! so that if $k \supset \mathbb{Q}, M \otimes A \Omega_{A / k}^{n}$ is a direct summand of $H_{n}(A, M)$.
Remark. If A is smooth, they are in fact isomorphic, which is a theorem of Hochschild-Kostant-Rosenberg.

5. Definition of Cyclic Homology and its properties

5.1. Cyclic homology; 1st description (general case). Define the cyclic action of $\mathbb{Z} /(n+1) \mathbb{Z}$ on $C_{n}(A)=A \otimes A^{\otimes n}=A^{\otimes n+1}$ via the action of its generator $t=t_{n}$:

$$
t_{n}\left(a_{0} \otimes a_{1} \otimes \cdots \otimes a_{n}\right)=(-1)^{n} a_{n} \otimes a_{0} \otimes \cdots \otimes a_{n-1}
$$

called the cyclic operator. Let $N=1+t+\cdots+t^{n}$ called the norm operator.
Consider b and b^{\prime} introduced in the preveious sections.
Lemma 5.1. $(1-t) b^{\prime}=b(1-t)$ and $b^{\prime} N=N b$.

Proof. Let $J=d_{0} t$ and observe that $t_{i} J t^{-i-1}=(-1)^{i} d_{i}$ for $0<i<n$ and $t^{n} J t^{-n-1}=$ J. Then, it is just a direct straightforward computation. See Loday or Husemöller for detail.

So that we have the following cyclic bicomplex $C C_{* *}$:

Note that odd columns are exact, if A is unitary. Here $C C_{p q}=C_{q}(A)=A^{\otimes q+1}$.
Definition 5.2 (Cyclic homology). The cyclic homology $H C_{n}(A / k):=H C_{n}(A):=H_{n}\left(t o t C C_{* *}(A)\right)$.
Here we did not assume that A is unitary.
Remark. (1) (Functoriality) Let $f: A \rightarrow A^{\prime}$ be a morphism of k-algebras. It induces $f_{*}: C C_{* *}(A) \rightarrow C C_{* *}\left(A^{\prime}\right)$ in an obvious way, so that we have $f_{*}: H C_{n}(A) \rightarrow$ $H C_{n}\left(A^{\prime}\right)$.
(2) (Ground ring) If $k \rightarrow K \rightarrow A$ is a sequence of ring homomorphisms, then, we have $H C_{n}(A / k) \rightarrow H C_{n}(A / K)$.

5.2. Cyclic homology; 2nd description ($k \supset \mathbb{Q}$).

Definition 5.3 (The Connes complex). Let $C_{n}^{\lambda}(A):=C_{n}(A)_{1-t}=\operatorname{coker}(1-t)=A^{\otimes n+1} / \mathrm{im}(1-$ t), which is the coinvariant space of $A^{\otimes n+1}$ for the action of $\mathbb{Z} /(n+1) \mathbb{Z}$.

This is called the Connes complex. Let $H_{n}^{\lambda}(A)=H_{n}\left(C_{*}^{\lambda}(A)\right)$.
Consider the natural surjection $p: \operatorname{tot}\left(C C_{* *}(A)\right) \rightarrow C_{*}^{\lambda}(A)$ which is the quotient map $A^{\otimes n+1} \rightarrow A^{\otimes n+1} / 1-t$ on the first column and 0 on other columns.
Theorem 5.4 (The 2nd description of Cyclic homology). Assume that $k \supset \mathbb{Q}$. Then, $p_{*}: H C_{*}(A) \rightarrow H_{*}^{\lambda}(A)$ is an isomorphism.
Proof. Let $\theta=-\left(t+2 t^{2}+\cdots+t^{n}\right)$. Then, by a simple computation, we can check that $n+1=N+\theta(1-t)$, i.e. $i d=\frac{1}{n+1} N+\frac{\theta}{n+1}(1-t)=N \frac{1}{n+1}+(1-t) \frac{\theta}{n+1}$. Hence, $\frac{1}{n+1}$ and $\frac{\theta}{n+1}$ define the following homotopy:

and $i d$ is homotopic to 0 , i.e. it is contractible, hence acyclic. Hence, the row is an acyclic augmented complex with $H_{0}=C_{n}^{\lambda}(A)$.

Consider the standard vertical increasing filtrations on $C C_{* *}(A)$. Since each row is an acyclic augmented complex with $H_{0}=C_{n}^{\lambda}(A)$, we have

$$
E_{p, q}^{1}= \begin{cases}0 & p>0 \\ C_{q}^{\lambda}(A) & p=0\end{cases}
$$

$$
E_{p, q}^{2}= \begin{cases}0 & p>0 \\ H_{q}^{\lambda}(A) & p=0\end{cases}
$$

and it generates at $r=2$. Hence, having $E_{p, q}^{r} \Rightarrow H C_{n}(A)$, we must have $H C_{q}(A)=$ $H_{q}^{\lambda}(A)$.
5.3. Cyclic homology; 3rd description (A unitary). Now we go to the third description. We assume that A is a unitary k-algebra, i.e. it has a unity. Then, the odd degree columns with b^{\prime} of the cyclic bicomplex are contractible (having s; extra degeneracy as a homotopy) hence acyclic. We try to simplify $C C_{* *}(A)$ to obtain another simpler complex $\mathcal{B}(A)$.

Lemma 5.5 (Killing contractible complexes). Let

$$
\cdots \rightarrow A_{n} \oplus A_{n}^{\prime} \stackrel{d=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)}{A_{n-1} \oplus A_{n-1}^{\prime} \rightarrow \cdots}
$$

be a complex of k-modules such that $\left(A_{*}^{\prime}, \delta\right)$ is a contractible complex with a contraction homotopy $h: A n^{\prime} \rightarrow A_{n+1}^{\prime}$. Then, the following inclusion of complexes is a quasi-isomorphism:

$$
(i d-h \gamma):\left(A_{*}, \alpha-\beta h \gamma\right) \hookrightarrow\left(A_{*} \oplus A_{*}^{\prime}, d\right)
$$

Proof. We need to see

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \cdot\binom{i d}{-h \gamma}=\binom{i d}{-h \gamma} \cdot(\alpha-\beta h \gamma)
$$

Note that LHS $=\binom{\alpha-\beta h \gamma}{\gamma-\delta h \gamma}$ and $R H S=\binom{\alpha-\beta h \gamma}{-h \gamma \alpha+h \gamma \beta h \gamma}$.
Also note that $d^{2}=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)^{2}=\left(\begin{array}{ll}\alpha^{2}+\beta \gamma & \alpha \beta+\beta \delta \\ \gamma \alpha+\delta \gamma & \gamma \beta+\delta^{2}\end{array}\right)=0$ and $\delta^{2}=0$ implies that $\gamma \alpha+\delta \gamma=0$ and $\gamma \beta=0$.

Hence, we need to see $\gamma-\delta h \gamma=-h \gamma \alpha$ i.e. $\gamma=\delta h \gamma-h \gamma \alpha$. Since $\gamma \alpha=-\delta \gamma$, we have $\delta h \gamma-h \gamma \alpha=\delta h \gamma+h \delta \gamma=(\delta h+h \delta) \gamma=\gamma$. Hence $(i d,-h \gamma): A_{n} \rightarrow A_{n} \oplus A_{n}^{\prime}$ is a morphism of complexes.

Since $\operatorname{ker}(i d,-h \gamma)=0$ and $\operatorname{coker}(i d,-h \gamma) \simeq\left(A_{*}^{\prime}, \delta\right)$ which is acyclic, $(i d,-h \gamma)$ is a quasi-isomorphism.

Using above lemma with $d=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)=\left(\begin{array}{cc}b & 1-t \\ N & -b^{\prime}\end{array}\right)$ and $h=-s$ (extra degeneracy), we can define the Connes operator (or the Connes boundary map) $B=(1-t) s N: C_{q}(A) \rightarrow$ $C_{q+1}(A)$.

Proposition 5.6. For above $B, b^{2}=0, B^{2}=0$ and $B b+b B=0$.
Proof. $b^{2}=0$ was already done.
$B^{2}=(1-t) s N(1-t) s N=(1-t) s(N(1-t)) s N=0$ because $N(1-t)=0$.
$B b+b B=(1-t) s N b+b(1-t) s N=(1-t) s b^{\prime} N+(1-t) b^{\prime} s N=(1-t)\left(s b^{\prime}+b^{\prime} s\right) N=$ $(1-t) N=0$.

Hence we have a double complex $\mathcal{B}(A) \mathcal{B}_{p q}=\left\{\begin{array}{ll}A^{\otimes q-+1} & q \geq p \\ 0 & \text { otherwise }\end{array}\right.$ with

i.e.

Remark. $B b+b B=0$ implies that B induces a map on Hochschild homology B_{*} : $H H_{n}(A) \rightarrow H H_{n+1}(A)$.

Note that we have a natural injection

$$
\operatorname{tot}(\mathcal{B}(A)) \hookrightarrow \operatorname{tot}\left(C C_{* *}(A)\right)
$$

sending $x \in \mathcal{B}(A)_{p q}=C_{q-p}(A)$ to $x \oplus s N(x) \in C_{q-p}(A) \oplus C_{q-p+1}(A)=C C_{2 p, q-p} \oplus$ $C C_{2 p-1, q-p+1} \subset \operatorname{tot}(C C(A))_{p+q}$. The killing lemma implies that it is an isomorphism so that we have

Theorem 5.7 (3rd description of Cyclic homology). Let A be a unitary k-algebra. Then, $\operatorname{tot}(\mathcal{B}(A)) \hookrightarrow \operatorname{tot}(C C(A))$ is a quasi-isomorphism so that $H_{n}(\operatorname{tot}(\mathcal{B}(A)))=H C_{n}(A)$.

In general, we have the following concept which generalizes above idea:
Definition 5.8 (Mixed complex). Let \mathcal{A} be an abelian category. A mixed complex X is a triple $\left(X_{*}, b, B\right)$ where X_{*} is a \mathbb{Z}-graded object in $\mathcal{A}, b: X_{*} \rightarrow X_{*}$ is a morphism of degree $-1, B: X_{*} \rightarrow X_{*}$ is a morphism of degree +1 , satisfying $b^{2}=B^{2}=B b+b B=0$.

A morphism $f: X \rightarrow Y$ of mixed complexes is a morphism of \mathbb{Z}-graded objects such that $b f=f b$ and $B f=f B$. A mixed complex is called positive if $X_{q}=0$ for $q<0$.
Remark. B in the cyclic homology can be written explicitly as follows: $B: A^{\otimes n+1} \rightarrow$ $A^{\otimes n+2}$ is given by
$B\left(a_{0} \otimes \cdots a_{n}\right)=\sum_{i=0}^{n-1}(-1)^{n i} 1 \otimes a_{i} \otimes \cdots \otimes a_{n} \otimes a_{0} \otimes \cdots \otimes a_{i-1}-(-1)^{n(i-1)} a_{i 1} \otimes 1 \otimes a_{i} \otimes \cdots \otimes a_{n} \otimes a_{0} \otimes \cdots \otimes a_{i-2}$.
In low degrees, we have $B\left(a_{0}\right)=1 \otimes a_{0}-a_{0} \otimes 1$ and $B\left(a_{0} \otimes a_{1}\right)=\left(1 \otimes a_{0} \otimes a_{1}-1 \otimes a_{1} \otimes\right.$ $\left.a_{0}\right)+\left(a_{0} \otimes 1 \otimes a_{1}-a_{1} \otimes 1 \otimes a_{0}\right)$.

6. Some elementary properties of cyclic homology

Proposition 6.1. The followings are true:
(1) $H C_{0}(A)=H H_{0}(A)=A /[A, A]$.
(2) Though $H H_{n}(A)$ are $Z(A)$-modules, for $H C_{n}(A)$, it is not true. Try for $H C_{1}(A)$.
(3) If A is commutative and unitary, then $H C_{1}(A) \simeq \Omega_{A / k}^{1} / d A$.
(4) (Relative cyclic homology) Let $I \subset A$ be a twosided ideal. Let $C C(A, I)=\operatorname{ker}(C C(A) \rightarrow$ $C C(A / I))$ and let $H C_{n}(A, I)=H_{n}(t o t(C C(A, I)))$. Then, we have a long exact sequence

$$
\cdots \rightarrow H C_{n}(A, I) \rightarrow H C_{n}(A) \rightarrow H C_{n}(A / I) \rightarrow H C_{n-1}(A, I) \rightarrow \cdots .
$$

(5) Without any condition on the characteristic, still we always have

$$
H C_{1}(A)=H_{1}^{\lambda}(A)
$$

(6) Let $A^{o p}$ be the opposite ring of A. Then, there are canonical isomorphisms

$$
\begin{gathered}
H H_{n}(A) \simeq H H_{n}\left(A^{o p}\right), \quad H C_{n}(A) \simeq H C_{n}\left(A^{o p}\right) . \\
{\left[\text { Use } \omega_{n}\left(a-0, \cdots a_{n}\right)=\left(a_{0}, a_{n}, a_{n-1}, \cdots, a_{2}, a_{1}\right) .\right]}
\end{gathered}
$$

Proof. All of the above are very easy. Let's try (3) for example. By the 3rd description of cyclic homology, we can look at $\mathcal{B}(A)$:

A being commutative, $b: A^{\otimes 2} \rightarrow A, a \otimes b \mapsto a b-b a=0$ so that $H C_{1}(A)=A \otimes$ $A / \operatorname{im} b, \operatorname{im} B$. Note that imb is generated by $a b \otimes c-a \otimes b c+c a \otimes b$ and $\operatorname{im} B$ is generated by $1 \otimes a-a \otimes 1$. Define $\phi: A \otimes A \rightarrow \frac{\Omega_{A / k}^{1}}{d A}$ by $a \otimes b \mapsto a d b$. Obviously, the 1 st one dies in $\Omega_{A / k}^{1}$ and the 2 nd one dies in the quotient. Hence we have $H C_{1}(A) \rightarrow \frac{\Omega_{A / k}^{1}}{d A}$. The obvious inverse is given by $a d b \mapsto a \otimes b$.

7. Connes exact couple

Theorem 7.1 (Connes exact couple). Let A be a k-algebra. Then, we have an exact couple, called the Connes exact couple

with $\operatorname{deg} S=-2, \operatorname{deg} B=1$ and $\operatorname{deg} I=0$.
Proof. Consider the cyclic bicomplex $C C_{* *}(A)$ and let $C C_{* *}(A)^{\{2\}}$ be the bicomplex consisting of the first two columns of $C C_{* *}(A)$. Then, we have an exact sequence of bicomplexes:

$$
0 \rightarrow C C_{* *}(A)^{\{2\}} \rightarrow C C_{* *}(A) \rightarrow C C_{* *}(A)[2,0] \rightarrow 0
$$

where $\left(C C_{* *}(A)[2,0]\right)_{p, q}=C C_{p-2, q}(A)$. It gives a rise to an exact sequence of the corresponding total complexes, and obviously $\operatorname{tot}\left(C C_{* *}(A)^{\{2\}}\right)$ is quasisomorphic to $\left(C_{*}(A), b\right)$ so that we have the exact couple, as required.

Corollary 7.2. Let $f: A \rightarrow A^{\prime}$ be a k-algebra homomorphism. Ten, $f_{*}: H H_{*}(A) \rightarrow$ $H H_{*}\left(A^{\prime}\right)$ is an isomorphism if and only if $f_{*}: H C_{*}(A) \rightarrow H C_{*}\left(A^{\prime}\right)$ is an isomorphicm.

Proof. In low dimensions, from the Connes couple, we have an exact sequence

$$
H C_{1} \rightarrow H C_{-1}=0 \rightarrow H H_{0} \rightarrow H C_{0} \rightarrow H C_{-2}=0
$$

i.e. $H H_{0} \simeq H C_{0}$. Hence it is true for $n=0$. In general, $f: A \rightarrow A^{\prime}$ induces $f_{*}: C C(A) \rightarrow$ $C C\left(A^{\prime}\right)$ so that we have a commutative diagram with exact rows:

If $H H_{n}(A) \rightarrow H H_{n}\left(A^{\prime}\right)$ is an isomorphism, then, by induction and by the five lemma, $H C_{n-1}(A) \simeq H C_{n-1}\left(A^{\prime}\right), H C_{n-2}(A) \simeq H C_{n-2}\left(A^{\prime}\right)$ implies $H C_{n}(A) \simeq H C_{n}\left(A^{\prime}\right)$.

Conversely, if $H C_{*}(A) \rightarrow H C_{*}\left(A^{\prime}\right)$ is an isomorphism, just a simple application of the five lemma gives the result.

Corollary 7.3. If $k \supset \mathbb{Q}$, then,

$$
\cdots \rightarrow H H_{n}(A) \xrightarrow{I} H_{n}^{\lambda}(A) \xrightarrow{S} H_{n-2}^{\lambda}(A) \xrightarrow{B} H H_{n-2}(A) \xrightarrow{I} \cdots
$$

is exact.
Proof. If $k \supset \mathbb{Q}, H C_{*}(A) \simeq H_{*}^{\lambda}(A)$.

Theorem 7.4 (Morita invariance for cyclic homology). If A, A^{\prime} are Morita equivalent, then there is a canonical isomorphism $H C_{*}(A) \rightarrow H C_{*}\left(A^{\prime}\right)$.

8. Differential forms and Cyclic homology

Let A be a commutative unitary k-algebra. Recall that we have the exterior derivative

$$
d: \Omega_{A / k}^{n} \rightarrow \Omega_{A / k}^{n+1}, \quad d\left(a_{0} d a_{1} \wedge \cdots \wedge d a_{n}\right):=d a_{0} \wedge d a_{1} \wedge \cdots \wedge d a_{n}
$$

Since $d 1=0$, we have $d^{2}=0$ so that we hace a complex, called the de Rham complex

$$
A=\Omega_{A / k}^{0} \xrightarrow{d} \Omega_{A / k}^{1} \xrightarrow{d} \Omega_{A / k}^{2} \xrightarrow{d} \cdots
$$

and its cohomology is denoted by $H_{D R}^{n}(A)$. Note that $\left(\Omega_{A / k}^{*}, d\right)$ is a DG-algebra with $\left(a_{0} d a_{1} \wedge \cdots \wedge d a_{n}\right) \wedge\left(a_{0}^{\prime} d a_{1}^{\prime} \wedge \cdots \wedge d a_{m}^{\prime}\right)=a_{0} a_{0}^{\prime} d a_{1} \wedge \cdots \wedge d a_{n} \wedge d a_{1}^{\prime} \wedge \cdots \wedge d a_{m}^{\prime}$.

We state the following propositions, whose proofs are straightforward:
Proposition 8.1. Let A be a commutative unitary k-algebra. Then, the following diagrams are commutative:

Corollary 8.2. Let A be a commutative unitary k-algebra. Then, there is a functorial map

$$
\epsilon_{n}: \Omega_{A / k}^{n} / d \Omega_{A / k}^{n-1} \rightarrow H C_{n}(A) .
$$

Proof. If we look at $\mathcal{B}(A), B_{*}: H H_{n-1}(A) \rightarrow H H_{n}(A)$ factors through $H C_{n-1}$ so that

$$
H H_{n} \xrightarrow{I} H C_{n}
$$

is commutative. Now, $I \circ B: H C_{n-1} \rightarrow H C_{n}$ is 0 , being a part of the Connes exact sequence, we have $I \epsilon_{n}\left(d \Omega^{n-1}\right)=0$ as well. Hence, ϵ_{n} induces a map $\Omega^{n} / d \Omega^{n-1} \rightarrow H C_{n}$ as desired.

Proposition 8.3. When $k \supset \mathbb{Q}$ and A is commutative and unitary, we have a natural map

$$
\pi_{n}: H C_{n}(A) \rightarrow \Omega_{A / k}^{n} / d \Omega_{A / k}^{n-1} \oplus H_{D R}^{n-2}(A) \oplus H_{D R}^{n-4}(A) \oplus \cdots
$$

Proof. Since $k \supset \mathbb{Q}, \frac{1}{n!} \pi_{n}$ induces a morphism of mixed complexes $\mathcal{B}(A)=(C(A), b, B) \rightarrow$ $\mathcal{D}(A)=\left(\Omega_{A / k}^{*}, 0, d\right)$ where $\mathcal{D}(A)$ is called the reduced Delign complex with $\mathcal{D}(A)_{p, q}=\Omega^{q-p}$ if $q \geq p$ and 0 otherwise. Give the vertical increasing filtration and look at the map of spectral sequences from $\mathcal{B}(A) \rightarrow \mathcal{D}(A)$. For $\mathcal{D}(A)$, note that

$$
E_{p, q}^{1}=H_{p, q}^{h o r}(\mathcal{D}(A))=\left\{\begin{array}{ll}
H_{D R}^{q-p}(A)=H_{D R}^{n-2 p}(A) & p>0 \\
\Omega^{q} / d \Omega^{q-1} & p=0
\end{array} .\right.
$$

Since the vertical maps are all 0 , it generates at E^{1} so that we have a natural map

$$
H C_{n}(A)=H_{n}(t o t(\mathcal{B}(A))) \rightarrow \coprod_{p+q=n} E_{p, q}^{1}=\Omega^{n} / d \Omega^{n-1} \oplus H_{D R}^{n-2}(A) \oplus H_{D R}^{n-4}(A) \oplus \cdots
$$

9. Сономology

Recall that $\left(C_{*}(A, M), b\right)=\left(M \otimes_{A^{e}} C_{*}^{\prime}(A), b^{\prime}\right)$, so that $H_{n}(A, M)=H_{n}\left(M \otimes_{A^{e}} C_{*}^{\prime}(A), b^{\prime}\right)$. In the same fasion, we define the Hochschild cohomology as follows:

Definition 9.1 (Hochschild cohomology). The Hochschild cohomology of A with coefficients in M is $H^{n}(A, M)=H_{n}\left(\operatorname{Hom}_{A^{e}}\left(C_{*}^{\prime}(A), M\right)\right)$ and $\beta^{\prime}(\phi)=-(-1)^{n} \phi \circ b^{\prime}$.

Explicitly, if for a cochain $\phi, f: A^{\otimes n} \rightarrow M$ satisfies

$$
\phi\left(a_{0}\left[a_{1}|\cdots| a_{n}\right] a_{n+1}\right)=a_{0} f\left(a_{1} \otimes \cdots \otimes a_{n}\right) a_{n+1}
$$

then
$\beta(f)\left(a_{1} \otimes \cdots a_{n+1}\right)=a_{1} f\left(a_{2} \otimes \cdots \otimes a_{n+1}\right)+\sum_{0<i<n+1}(-1)^{i} f\left(a_{1} \otimes \cdots \otimes a_{i} a_{i+1} \otimes \cdots \otimes a_{n+1}\right)+(-1)^{n+1} f\left(a_{1} \otimes \cdots a_{n}\right) a_{n+}$
Hence we have, in fact,

$$
H^{n}(A, M)=H_{n}\left(C^{*}(A, M), b\right)
$$

where $C^{n}(A, M)=\operatorname{Hom}_{k}\left(A^{\otimes n}, M\right)$.

Remark. (1) If $n=0, H^{0}(A, M)=M^{A}=\{m \in M \mid a m=m a, \forall a \in A\}$.
(2) If $H^{1}(A, M)=\operatorname{Der}(A, M) /\{$ inner derivations $\}$.
(3) If $M=A^{*}=\operatorname{Hom}_{k}(A, k)$, then we define $H H^{n}(A):=H^{n}\left(A, A^{*}\right)$.
(4) We also ahve a cotrace map and Morita invariance.
(5) If A is unitary and k-flat, then,

$$
H^{n}(A, M)=\operatorname{Ext}_{A^{e}}^{n}(A, M) .
$$

(6) If $g: A \rightarrow A^{\prime}$ is a k-morphism, then, we have $g^{*}: H H^{n}\left(A^{\prime}\right) \rightarrow H H^{n}(A)$.
9.1. Duality. Let M, M^{\prime} be two A-bimodules. Then we have

$$
\begin{gathered}
C^{n}(A, M) \times C_{n}\left(A, M^{\prime}\right) \rightarrow M \otimes_{A^{e}} M^{\prime} \\
\left(f, m^{\prime} \otimes a_{1} \otimes \cdots \otimes a_{n}\right) \mapsto f\left(a_{1} \otimes \cdots \otimes a_{n}\right) \otimes m^{\prime} .
\end{gathered}
$$

This is obviously satisfying

$$
<\beta(f), x>=<f, b(x)>
$$

for $f \in C^{n}(A, M)$ and $x \in C_{n+1}\left(A, M^{\prime}\right)$. Hence we have

$$
<,>: H^{n}(A, M) \otimes H_{n}\left(A, M^{\prime}\right) \rightarrow M \otimes_{A^{e}} M^{\prime}
$$

Here, the left hand side \otimes can be taken over $Z(A)$.
Remark. (1) If $n=0$, above pairing is the surjection $M \otimes_{Z(A)} M^{\prime} \rightarrow M \otimes_{A^{e}} M^{\prime}$.
(2) If $n=1$, let $D \in \operatorname{Der}(A, M),(D) \in H^{1}(A, M)$, then, for $M^{\prime}=A$,

$$
\begin{gathered}
<,>: H^{1}(A, M) \otimes_{Z(A)} \Omega_{A / k}^{1} \rightarrow M_{A}=H_{0}(A, M) \\
(D) \otimes a d b \mapsto a D b .
\end{gathered}
$$

Similar jobs can be done for cyclic cohomologies as well.

10. Normalized Complexes

10.1. Normalized Hochschild complex. Let A be a unitary k-algebra. Then, $C_{*}(A, M)$ has a large subcomplex D_{*} which is acyclic; $D_{n} \subset M \otimes A^{\otimes n}$ is generated by elements $m \otimes a_{1} \otimes \cdots \otimes a_{n}$ with one of $a_{i}=0 . \quad M \otimes A^{\otimes n} / D_{n}$ is called the normalized Hochschild complex. Let $\bar{A}=A / k$. Then, we have $\bar{C}_{n}(A, M):=M \otimes A^{n} / D_{n}=M \otimes \bar{A}^{\otimes n}$. Obviously, D_{*} being acyclic, the quotient map $C_{*}(A, M) \rightarrow \bar{C}_{*}(A, M)$ is a quasi-isomorphism.
10.2. Normalized (b, B) complex. Let A be a unitary k-algebra. The (b, B)-complex $\mathcal{B}(A)$ for $H C_{n}(A)$ can be further simplied as well. Define $\overline{\mathcal{B}}(A)$ as follows:

where $\bar{B}=s N: A \otimes \bar{A}^{\otimes n} \rightarrow A \otimes \bar{A}^{\otimes n+1}$. Explicitly,

$$
\bar{B}\left(a_{0} \otimes \cdots \otimes a_{n}\right)=\sum_{i=0}^{n}(-1)^{n i} 1 \otimes a_{i} \otimes \cdots \otimes a_{n} \otimes a_{0} \otimes \cdots \otimes a_{i-1} .
$$

For lower degrees, we have

$$
\bar{B}(a)=1 \otimes a, \quad \bar{B}\left(a \otimes a^{\prime}\right)=1 \otimes a \otimes a^{\prime}-1 \otimes a^{\prime} \otimes a .
$$

Columns are normalized Hochschild complexes whose homologies are still the Hochschild homologies. Hence, by a standard spectral sequence argument, the surjection $\mathcal{B}(A) \rightarrow \overline{\mathcal{B}}(A)$ is a quasi-isomorphis, so that $H_{*}(\operatorname{tot}(\overline{\mathcal{B}}(A)))=H C_{*}(A)$.

Remark (Summary). Let A be a k-algebra. There are three canonical morphisms of complexes

$$
\operatorname{tot}(\overline{\mathcal{B}}(A)) \stackrel{1}{\leftarrow} \operatorname{tot}(\mathcal{B}(A)) \xrightarrow{2} \operatorname{tot}(C C(A)) \xrightarrow{3} C^{\lambda}(A) .
$$

Note that 2 is always a quasi-isomorphism. 1 is a quasi-isomorphism if A is unitary. 3 is a quasi-isomorphism if $k \supset \mathbb{Q}$.

Example 10.1. When $A=k$, then, $A \otimes \bar{A}^{\otimes n} \simeq\left\{\begin{array}{ll}k & \text { if } n=0 \\ 0 & \text { if } n>0\end{array}\right.$, so that $\overline{\mathcal{B}}(k)$ is in fact, the following one:

Then, $(\operatorname{tot} \overline{\mathcal{B}}(k))_{2 n}=k$ and $(\operatorname{tot} \overline{\mathcal{B}}(k))_{2 n+1}=0$ and obviously, $H C_{2 n}(k)=k$ and $H C_{2 n+1}(k)=$ 0.

11. Reduced Hochschild and Cyclic homology

11.1. Reduced Hoshchild homology. Assume that $k \hookrightarrow A$. Let $k[0]$ be the complex consisting in k in degree 0 . The reduced Hochshild complex is defined by the following short exact sequence:

$$
0 \rightarrow k[0] \rightarrow\left(\bar{C}_{n}(A), b\right) \rightarrow\left(\bar{C}_{n}(A), b\right)_{\text {red }} \rightarrow 0
$$

and its homology is called the reduced Hochschild homology and denoted by $\overline{H H}_{n}(A)$. From the definition, we just see that

$$
0 \rightarrow H H_{1}(A) \rightarrow \overline{H H}_{1}(A) \rightarrow k \rightarrow H H_{0}(A) \rightarrow \overline{H H}_{0}(A) \rightarrow 0
$$

and $\overline{H H}_{n}(A) \rightarrow H H_{n}(A)$ for $n \geq 2$.
11.2. Reduced Cyclic homology. Assume that $k \hookrightarrow A$. Then the reduced Cyclic homology $\overline{H C}_{n}(A)$ is the homology of the total complex of the bicomplex $\mathcal{B}(A)_{\text {red }}$ which is defined by

$$
0 \rightarrow \overline{\mathcal{B}}(k) \rightarrow \overline{\mathcal{B}}(A) \rightarrow \mathcal{B}(A)_{\text {red }} \rightarrow 0 .
$$

From the homology long exact sequence, we have

$$
\cdots \rightarrow H C_{n}(k) \rightarrow H C_{n}(A) \rightarrow \overline{H C}_{n}(A) \rightarrow H C_{n-1}(k) \rightarrow \cdots .
$$

Remark. We have the following reduced Connes exact couple:

where the numbers are the degrees of the maps.

