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Abstract 
Simulations for modern designs are often performed on Field 
Programmable Gate Array technology in a functional test and 
debugging process known as emulation, allowing for more 
complex simulations than possible in software.  One drawback to 
emulation is the lengthy time spent in the back-end CAD tools for 
each debugging iteration, including debugging changes and the 
introduction of control and observation logic.  We have developed 
a technique that confines the re-place-and-route area to only the 
portions of the design affected by the introduction of the test logic 
and by the debugging changes.  Therefore, the back-end CAD 
effort for error detection, localization, and correction is reduced.  
This benefit is achieved by partitioning the design at the physical 
level into independent blocks, and the test logic and design 
changes are localized to the affected blocks.  The result is a 
shortened time between debugging iterations, and thus a shortened 
time-to-market for the design. 

1 Introduction 
Debugging is an inherently cyclic process.  At each cycle, four 
steps are essential: test pattern generation, error detection, error 
localization, and error correction.  These steps are repeated until 
sufficient design confidence is established.  Software simulation 
has been, and continues to be, a common tool for hardware 
debugging, and the introduction of control and observation logic 
for error detection and localization as well as the process of error 
correction are straightforward in software. 

However, these software tools are often unable to simulate 
designs at high enough speeds to enable complex testing.  
Therefore, recent hardware design testing strategies have emerged 
that involve mapping designs to Field Programmable Gate Arrays 
(FPGAs) for more efficient functional testing through logic 
emulation.  For example, emulation was used in designing the 
UltraSPARC-I and provided “advanced debug facilities to rapidly 
isolate any functional problems [3].”  Pre-tapeout confidence also 
was increased due to the more complex simulations made possible 

by the enhanced testing environment.  Therefore, the number of 
silicon iterations, a costly and lengthy process, was reduced.  Such 
advantages helped to shorten the time-to-market of the design [3]. 

1.1 Motivation 
For emulation, the four step debugging sequence is done in 
hardware.  Test pattern generation remains the same as in 
software simulation, but error detection, localization, and 
correction must all be implemented in the emulation hardware.  
Detection and localization require the insertion of control and 
observation logic in the areas to be examined.  Error correction 
requires the changing of the FPGA physical layout.  This insertion 
and correction requires extensive use of the back-end CAD tools 
for the physical layout alterations.  For emulation to remain an 
effective alternative to software simulation, the added CAD tool 
effort to implement these last three debugging steps in hardware 
must not be excessive.  To generate an entire UltraSPARC-I 
configuration for emulation consumed approximately 36 hours 
using five computers for the main work and 70 computers during 
logic mapping [3].  Spending 36 hours between each debugging 
iteration would be unreasonably inefficient. 

We have developed an FPGA physical design partitioning 
technique that shortens the time between debugging iterations by 
reducing the back-end CAD tool effort required to implement 
these three debugging steps.  The physical design is partitioned 
into independent blocks, and the design alterations resulting from 
the introduction of the test logic and the debugging changes are 
localized to these blocks.  Therefore, the modified area is 
confined to only the affected portions of the design. 

Currently, design partitioning techniques for emulation are only as 
fine-grained as the synthesis tools allow, and rarely is the 
structure that exists at higher levels in the design hierarchy carried 
through to the physical level.  Therefore, each change to the 
design (in the hardware description language (HDL) or in a design 
representation at a different level (e.g. the design netlist)) for any 
debugging step likely is not localized in the physical layout 
further than the often large functional blocks as defined by high 
level partitioning.  This flattening of the design requires back-end 
CAD tools to re-place-and-route large blocks for every debugging 
cycle, regardless of how small the logic introduced and debugging 
changes are.  A significant amount of time is lost between each 
debugging iteration, needlessly extending the debug cycle. 

While recent advances in incremental place-and-route have helped 
to reduce the time spent in the back-end tools, the process is still 
lengthy.  Adding logic (either for error detection and localization 
or as an error correction) to high density areas may require an 
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incremental tool to re-place-and-route a much larger portion of the 
design to make sufficient room for the new logic.  Consequently, 
portions of a design originally unaltered during these debugging 
steps are often re-placed-and-routed by incremental tools due to 
necessary surrounding physical design alterations. 

To minimize this re-place-and-route effort, the proposed physical 
design partitioning technique increases the granularity and 
localizes the necessary physical design alterations for each 
debugging step.  Because only the affected portions of the design 
need be re-placed-and-routed, the back-end CAD tool effort is 
reduced to a fraction of that required by existing approaches (e.g. 
incremental place-and-route, Quick_ECO [2], etc.).  Therefore, 
the time between emulation and debugging iterations is reduced, 
and emulation’s advantages over software simulation for complex 
testing is enhanced. 

1.2 Motivational Example 
Our scheme centers around partitioning the physical design into 
independent blocks (tiles) with fixed interfaces, much in the same 
way that design partitioning is done during synthesis.  As a result, 
logic addition and debugging changes can be made within each 
tile without affecting the rest of the design. 

Consider the Boolean function Y=(A∧B)∧(C∨D), which might be 
implemented in a tile containing four logic blocks as shown in 
Figure 1.I.  The same function can be implemented in a number of 
different ways (e.g. Figures 1.II-IV), but the fixed interface leaves 
the rest of the design unchanged with the possible exception of the 
performance of the circuit due to changes in routing, which is 
unimportant for emulation1. 
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Figure 1. Four Functionally Equivalent Tile Implementations 

Similarly, the functionality of the tile can be altered without 
affecting the rest of the physical design.  For example, a 
debugging change may alter the tile’s functionality to 
Y=(A∧B)∨(C∨D).  Figure 2 shows how the change could be 
locally implemented using tiling.  Again, the fixed interface 
allows the back-end CAD tool to re-place-and-route only the 
affected tile.  This not only shortens the time spent in the back-
end CAD tool, but keeping the rest of the design fixed insures that 
                                                                 
1 Emulation is primarily concerned with functional testing.  
Therefore, circuit performance is not a paramount issue. 

no errors will be introduced in the unchanged portions of the 
design during re-place-and-route. 

Finally, given enough unused resources in a tile, logic can be 
introduced.  The amount of logic required for controllability and 
observability varies, as does that introduced by a debugging 
change.  Therefore, if there are enough unused resources in a 
single tile, logic can be introduced into the tile without affecting 
the rest of the design.  If more resources are needed, neighboring 
tiles can also be re-placed-and-routed as they may contribute 
some of their unused resources for the addition.  Tile boundaries 
are then re-established, and the interfaces are re-locked. 
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Figure 2. Example of Localized Functional Change 

The CAD tool effort to re-place-and-route these small tiles is 
much less than is required for the coarser grained partitions 
created by higher levels in the design process.  As a result, the 
turnaround time for debugging iterations is reduced. 

2 Related Work 
Emulation has been used for functional verification for several 
years.  Recently, advancements have been made improving 
debugging through emulation that reduce the time it takes to 
implement debugging changes by shortening the previously long 
trips through back-end CAD tools.  In the past, entire designs 
would be re-synthesized, remapped, repartitioned, and re-placed-
and-routed.  The Quick_ECO approach, developed by Fang, Wu, 
and Yen, tracks the partitioning through the design process in 
order to isolate design changes [2].  The system traces debugging 
changes through partitioning down to the netlist level, reducing 
the amount of the design that needs to run through the time 
consuming CAD tool process.  Therefore, the level of granularity 
was the functional bock, as partitioned at the netlist level.  Instead 
of having to re-place-and-route the entire design for each 
debugging change, only the affected functional blocks (linked by 
Quick_ECO) were processed. 

Tiling reduces the time between iterations further, as it enables a 
more fine-grained approach than the Quick_ECO system.  
Quick_ECO stops its tracing at the netlist level, while tiling 
continues the tracing down to the physical level.  This allows the 
designer to control the size of the physical design portions that 
must be re-placed-and-routed instead of entire functional blocks, 
which are often quite large and may span multiple FPGAs.  Tiling 
also enables the efficient introduction of control and observation 
logic with this fine granularity.  Therefore, back-end CAD tool 
effort is minimized for debugging changes. 

Other techniques have been developed to minimize logic re-
synthesis [12] and restrict synthesis to modified portions of the 
design after an engineering change [1], reducing the front-end 
CAD effort.  Similarly, lower level design perturbation due to 
high level engineering changes has been limited by another 
methodology [4], thus helping to minimize the number of affected 



tiles at the physical level.  Employing these time and effort 
reduction front-end techniques, as opposed to synthesis tools that 
focus on power, speed, or area [7, 10, 11], along with tiling at the 
back-end reduces the total time between debugging iterations. 

3 Tiling and Emulation 
FPGA physical design partitioning introduces simplicity and fine 
granularity to FPGA designs, capitalizing on the same benefits as 
higher level synthesis and place-and-route partitioning do.  The IC 
design process is not completely linear or terminal;  it can often 
be cyclical or tangential.  Therefore, partitioning at the physical 
level may provide some needed simplicity and fine granularity as 
it does at other levels in the design hierarchy.2 

Emulation-based debugging is a perfect example of the often 
cyclical nature of the IC design process.  The physical design is 
not a terminal point, but rather a level that is iteratively revisited 
for each debugging iteration.  Therefore, simplicity and fine 
granularity at this level are valuable. 

3.1 Global Flow 
Tiling provides this simplicity and granularity by partitioning the 
FPGA physical design into independent blocks, as discussed in 
Section 1.2.  Upon each return to the physical design for each 
debugging iteration, the independent nature of the blocks allows 
the back-end CAD tool to focus only on the affected portions of 
the design.  The pseudo-code below reveals the cyclical nature of 
emulation-based debugging and how tiling fits within it. 

1. synthesize original HDL file(s); 
2. partition, map, place-and-route original netlist(s); 
3. emulate; 
4. if design error { 
5. re-place-and-route with resource slack; 
6. draw tile boundaries; 
7. lock tile interfaces; 
8. } 
9. while design error { 
10. generate test patterns; 
11. amend HDL file(s) { 
12. incorporate changes from previous iteration; 
13. } 
14. synthesize amended HDL file(s); 
15. map new netlist(s); 
16. determine test points; 
17. identify and clear affected tiles; 
18. introduce control logic; 
19. introduce observation logic; 
20. place-and-route affected tiles; 
21. emulate; 
22. } 

The tiling performed in steps 4-8 sets up the links to the physical 
level and creates independent blocks that can be altered based on 
test logic introduction or debugging changes.  Step 5 leaves 
enough resources (a user-controlled parameter) in each tile unused 
for future logic introduction.  If an error is discovered during 

                                                                 
2 Designs are at their highest level of complexity at the physical 
level, and the complexity will continue to increase with deeper 
sub-micron technologies [9]. 

emulation, the iterative process of steps 9-22 begins.  Step 10 does 
not affect tiling, as test patterns are determined by software.  Steps 
11-15 are performed just as they would be with current emulation 
systems, using the synthesis discussed in Section 2 to minimize 
front-end CAD effort.  The test points (desired control and 
observation logic locations) are determined in step 16.  Tiling 
becomes a factor at step 17 when the physical design is linked to 
the amended files (with back annotation as discussed in Section 5) 
and test points.  The affected tiles are cleared for re-place-and-
route and the introduction of the test logic.  The test logic is 
introduced in steps 18 and 19 and is placed-and-routed with the 
tile’s functional logic in step 20.  The tiles affected by debugging 
changes are also re-placed-and-routed at this time.  Tiles 
unaffected by a debugging change or a test point remain 
untouched.  If newly introduced logic requires more area than the 
amount of unused resources in the affected tile, neighboring tiles 
are included in the re-place-and-route, as their unused resources 
may be used for logic introduction.  After, the tile interfaces are 
re-locked.  The process repeats until no design errors are found 
during emulation.  Depending on the changes made and test logic 
introduced, tiling boundaries can be kept the same or 
reestablished for each debugging iteration. 

3.2 Tiling 
Tiling is achieved through physical design constraints imposed on 
the place-and-route tool.  Tiling boundaries are transparent in the 
layout, as they are simply conceptual boundaries of constraints.  
The default is that all resources are locked, and when a specific 
tile must be changed, the resources within that tile are unlocked.  
Therefore, the layout of that tile may be altered while the rest of 
the design remains unchanged and unaffected due to the locked 
interface between the tile and its surroundings.  If one side of an 
interface is locked, the interface itself is locked. 

Tile boundaries are determined by a number of factors.  First, 
inter-tile interconnect is minimized.  Locked interfaces are a 
hindrance to circuit performance and place-and-route flexibility.  
Therefore, interfaces must be as simple as possible. 

Tiling should also be performed to user specifications.  
Parameters include acceptable area overhead, acceptable 
performance degradation (not relevant for pure functional test), 
and the type of test logic and debugging changes to be introduced 
(i.e. size of control and observation logic for error detection and 
localization, large block changes or small functional and 
implementation alterations).  These variables are not entirely 
independent (e.g. the need for large test logic requires a large area 
overhead), but tiling remains flexible to user specifications. 

The type, size, and number of points of test logic likely to be 
inserted are also concerns for tiling.  If large pieces of logic for 
controllability and observability must be inserted (e.g. a large 
counter), the amount of unused resources in each tile should be 
large.  If the area overhead must be low, the tiles must be larger to 
accommodate the insertion of large blocs of logic.  Similarly, if a 
large number of test points may be inserted into the design, area 
overhead must again be increased to accommodate the dispersion 
of a large amount of logic.  However, if a tile cannot support the 
introduction of a large amount of logic, neighboring tiles may also 
be used, and tile boundaries may be redrawn. 

The types of debugging changes that may be made must also be 
taken into account during tiling.  Large block changes are often 



made during the early stages of debugging, while small functional 
and implementation alterations are more likely to be performed 
during the final stages3.  Large block changes may require the 
addition of considerable extra logic and/or extreme malleability, 
while small alterations add little, if any, logic and create fewer 
routing concerns.  Larger tiles allow for greater malleability and a 
larger amount of unused resources per tile without added area 
overhead.  Therefore, tile size can be altered based on the current 
debugging needs and the various expected design changes.4 

During actual implementation, most users will likely desire a 
reasonable tradeoff among these features.  Extremely small tiles 
require more area and timing overhead and have less malleability, 
but extremely large tiles reduce the granularity and therefore 
lengthen the amount of time spent in the back-end CAD tools.  
The average tile size will likely be between 20 and 50 Xilinx 4000 
Configurable Logic Blocks [13], much smaller than the functional 
blocks created by CAD tool partitioning that are the minimum 
affected unit for existing emulation debugging techniques. 5 

4 Error Detection and Localization 
Effective debugging begins with a formalized process for testing 
to detect, isolate, and identify errors.  Software simulation has 
tools to perform such tasks, but emulation requires that they be 
performed in hardware.  Therefore, control and observation logic 
must be introduced into the physical layout. 

4.1 Controllability and Observability 
For an error to be detected, it must actually occur.  Therefore, the 
design must be put in a state at which the error arises.  This can be 
done by operating the circuit normally until the proper state arises 
and the error occurs, but this may take a long time, if it occurs at 
all.  Therefore, control logic is introduced into the circuit to 
induce certain states artificially.  That is, the logic inputs specific 
state to suspected design error areas to the run exhaustive tests 
that are necessary for maximum design confidence. 

A design error must also be detected once it occurs.  Observation 
can be performed manually with a user reading the outputs of 
suspected design areas waiting for an error to occur.  However, 
logic may be inserted which automatically detects an error upon 
its occurrence.  This observation logic is designed to raise a flag 
once an erroneous output state is achieved.  Therefore, the control 
logic creates artificially and potentially problematic input states, 
and the observation logic detects any error that results.  If the 
observation raises a flag, the error can be localized and diagnosed 
based on the control inputs. 

4.2 Logic Introduction 
The combination of controllability and observability can detect 
and localize errors, but the necessary test logic must be embedded 

                                                                 
3 Using the synthesis techniques discussed in Section 2, changes 
made at a higher level in the design hierarchy perturb the physical 
design as little as possible. 
4 Tile sizes need not be uniform across a design.  Large tiles can 
be used in areas of expected large block changes, and smaller tiles 
can be used for small alteration areas. 
5 Tiling algorithmic details can be found in [5][6]. 

in the design.  Tiling ensures that the smallest possible amount of 
the design is re-placed-routed to incorporate the test logic, but 
enough resources in the layout must be free to accommodate the 
test logic, the size of which may vary depending on the control 
and observation that are being inserted.  If the affected tile does 
not have enough free resources, neighboring tiles can also be 
labeled “affected” and may contribute their unused resources.  
(Section 6.1 examines the number of tiles that are affected for 
different sizes of introduced test logic given a certain area 
overhead and tile size.)  Once the affected tiles are identified, they 
are cleared (i.e. all of the logic and routing must be removed), and 
the logic is re-placed-and-routed along with the test logic.  Error 
detection and localization may then be performed as the control 
and observation logic test for errors. 

5 Error Correction 
Upon error detection and localization, debugging changes can be 
made to the design at some level in the design hierarchy for the 
next emulation iteration.  Assuming that most changes will be 
made in the HDL and the RTL level, synthesis must be 
performed.  Modern techniques noted in Section 2 can be used to 
minimize the impact at the physical level.  Those changes must 
then be linked to the physical level and specific tiles before they 
are updated in the layout. 

5.1 Linking Debugging Changes 
One of the most important areas of future development involves 
allowing synthesis and front-end tools to account for physical 
resource allocation in a cooperative manner with back-end tools.  
This move toward rationalizing multiple design hierarchies 
throughout the design process has its origin in existing approaches 
for back annotation, but it involves the maintenance of 
significantly more consistency information.  The goal is to 
improve the synthesis results for a given amount of optimization 
time by capitalizing on designer knowledge regarding the physical 
device and overall design structure.  Preliminary tools moving in 
this direction have been announced and released by a number of 
CAD companies (e.g. Synplicity). 

Currently, we manually exploit the one-to-one linkage between 
the high-level and the low-level using back annotation to localize 
the change requirements to a set of tiles.  Partitioning done 
throughout the design process creates a tree structure with 
children being dependent on their parents.  Therefore, using back 
annotation, we trace the debugging changes made at any level in 
the design process through the sub-trees of all the altered nodes 
down to the affected tiles.  Current forms of this type of tracing 
stop (e.g. Quick_ECO [2]) before they reach the physical level 
and are, therefore, not as fine-grained as made possible by tiling.  
This minimal physical design perturbation is necessary for full 
exploitation of the fine granularity that tiling provides. 

5.2 Updating Debugging Changes 
With the links from the altered files to the physical level made, it 
becomes possible to update the changes so the revised design 
bitstream can be created.  Any tile that contains a design portion 
affected by the debugging change must be cleared, while still 
maintaining the locked interface to its surrounding tiles.  If an 
interface is affected, the tiles comprising the interface must be 
cleared.  Similarly, if two adjacent tiles are both affected, the 
fixed interface between the tiles can be removed.  Once all of the 



affected tiles are cleared, the remainder of the design is locked to 
its location.  The affected portions are then re-placed-and-routed 
in the cleared tiles, any removed interfaces are re-locked, and the 
links from the higher levels to the physical level are reestablished 
via back annotation and the tree structures discussed in Section 
5.1.  Not only is the time spent in the back-end CAD tool 
shortened, but no errors can be introduced in the locked portions 
of the design as may occur when everything is re-placed-and-
routed.  This allows for more efficient error localization. 

This approach is very different from incremental place-and-route, 
which re-places-and-routes a much greater portion of the design.  
Tiling imposes many more constraints on the back-end CAD tools 
that disallow changes that an incremental tool would make, and 
incremental tools do not account for logic to be added into the 
design.  Ultimately, incremental place-and-route achieves better 
design performance but with a large added design effort as 
reflected in Section 6.1. 

6 Experimental Results 
The proposed approach was executed on nine designs, including 
seven MCNC designs (three combinatorial and four sequential) of 
various size and two larger, real world designs.  The two large 
designs were a MIPS R2000 processor core designed for FPGAs 
developed at Brigham Young University and a digital encryption 
standard (DES) design [8].  All experiments were performed on 
the Xilinx XC4000 family with configurable logic blocks (CLBs) 
each containing two 16-bit lookup tables (LUTs) [13].6 

Although the designs in question are small enough to be 
implemented on a single FPGA, the results can be accurately 
applied to larger designs that span multiple FPGA devices, as the 
UltraSPARC-I emulation required.  Tiling breaks such designs 
into smaller portions, just as the non-tiled approaches do, though 
at the physical level for more fine-grained results.  Therefore, 
experiments compare tiling results to approaches looking only at 
blocks as small as CAD defined functional blocks and incremental 
place-and-route tools.  It is then irrelevant that a larger design 
may contain multiple functional blocks across multiple FPGA 
devices.  For experimental purposes, each design will be 
considered the size of one functional block.  The designs chosen 
for experimentation are a wide range of sizes and fit into the size 
variation of functional blocks, thus allowing the accurate analogy. 

6.1 Results 
The overhead of the proposed approach comes in the form of area 
(physical resources) and timing.  However, as discussed in 
Section 3.2, this overhead is variable depending on user 
specifications.  Area overhead can be as little as 10% (less would 
not allow enough room for additional logic or malleability for 
easy placement and routing) or as large as the FPGA allows.  
Timing overhead depends on user specifications and the design 
changes made.  Small design changes may have no, or even a 
positive, impact on timing, while large changes that negatively 
affect or create a new critical path may severely affect timing.  
Whatever the timing degradation becomes during debugging, the 
entire design may be re-placed-and-routed for better performance 
if timing critical tests must be executed during emulation. 
                                                                 
6 Xilinx claims that XC4000 CLBs can roughly implement an 
average of 20 logic gates [13]. 

Table 1 shows the physical layout statistics for the designs after 
they were tiled.  An approximately 20% area overhead was 
introduced in each case for future logic introduction and 
flexibility.  As the table shows, tiling actually increases design 
performance in some situations.  This is due to the dramatically 
different placement and corresponding timing that often result 
from relatively small design changes.  The timing impact of tiling 
appears to be below the characteristic variance associated with 
such small changes. 

design # CLBs area overhead timing overhead 
9sym 56 0.217 -0.045 
styr 98 0.210 0.074 
sand 100 0.220 0.129 
c499 115 0.223 0.000 

planet1 115 0.211 0.137 
c880 135 0.227 -0.055 
s9234 235 0.205 -0.014 

MIPS R2000 900 0.190 0.047 
DES 1050 0.200 0.036 

Table 1. Tiled Physical Layout Statistics 

Given the 20% area overhead for each design, tile size affects the 
number of tiles that will be affected when control and observation 
logic is introduced.  For example, if s9234 were partitioned into 
ten tiles that average 23.5 CLBs, each tile would have 
approximately 4.7 CLBs to implement test logic.  If this is 
sufficient, only one tile is affected.  However, if large blocks are 
introduced, neighboring tiles must be re-placed-and-routed to 
provide the necessary resources.  This technique ensures fine-
granularity for small changes but remains functional when large 
changes must be made, all while maintaining low area overhead.  
Figure 3 shows the percentage of tiles that would be affected for 
various sizes of test logic introduction.  The same results hold if 
the logic introduced is a debugging change rather than logic for 
error detection and localization. 
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Figure 3. Number of Tiles Affected by Logic Introduction 

Similarly, the number of points of controllability and 
observability impacts the number of tiles affected.  Figure 4 
shows the maximum size of the test logic for a variable number of 
test points for the same design and overhead assumptions as were 
used for Figure 3.  The percentage of tiles affected by a variable 
number of test points depends on the distribution of the points.  If 
the test points are clustered, then the number of test points may be 
multiplied by the size of the test logic for Figure 3 to be used for 
the percentage of affected tiles.  If the many test points are 
randomly distributed, then all of the tiles may be affected, 
regardless of the size of the test logic. 
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Figure 4. Maximum Test Logic Size 

The most relevant result is the amount of time that is saved 
between emulation and debugging iterations due to the finer 
granularity tiling (as opposed to function block partitioning and 
incremental place-and-route) provides.  Since granularity (i.e. tile 
size) is variable, the amount of time saved varies.  Also, the 
introduction of large pieces of test logic and some significant 
design changes may affect a large number of tiles, thereby 
increasing the granularity to a non-tiled level.  However, the 
resulting CAD tool effort will never exceed that required by a 
non-tiled approach. 

Figure 5 shows the place-and-route speedup provided by tiling 
with different tile sizes (in percentage of total design) compared 
to the incremental and Quick_ECO techniques.  These results 
assume that only one tile was affected by each physical design 
change, but the effort can be scaled as if the affected tiles equal 
one larger tile.  For example, a change affecting three adjacent 
tiles that are 5% of the total design effectively affects one tile that 
is 15% of the design. 
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Figure 5. Place-and-Route Speedup 

The three largest designs (DES, MIPS R2000, and s9234) can be 
partitioned into tiles 2.5% the size of the total design.  In those 
cases, speedup was 2.8, 5.6, and 17.0 respectively.  As tile size 
grows to 5% and 15% of the total design, the average (median) 
speedup reduces to 7.6 (2.6) and 2.1 (1.7).  Finally, as the tile size 
reaches 1/4 of the total design size (effectively eliminating the 
purpose of tiling), the average (median) speedup falls to 1.5 (1.3). 

7 Conclusion 
Design debugging is growing increasingly laborious due to the 
increase in design and simulation complexity.  Therefore, 

emulation for functional verification has become a more 
widespread technique, enabling the execution of more complex 
simulations.  However, design complexity has been a barrier to 
efficient emulation as a large design space must be re-placed-and-
routed for each debugging iteration. 

Tiling uses partitioning to introduce simplicity at the physical 
level.  Fine-grained, independent partitioned blocks enable the 
localization of physical design changes due to test logic 
introduction or debugging changes.  Therefore, the back-end CAD 
tool must re-place-and-route only those blocks affected by the 
alterations, resulting in a shorter time between debugging 
iterations and, therefore, time-to-tapeout.  Experiments show that 
re-place-and-route CAD tool effort can be reduced significantly 
for the finest-grained physical design partitioning. 
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