
Efficient Error Detection, Localization, and Correction for
FPGA-Based Debugging

John Lach
UCLA EE Department

56-125B Engineering IV
Los Angeles, CA 90095

310-794-1630
jlach@icsl.ucla.edu

William H. Mangione-Smith
UCLA EE Department

56-125B Engineering IV
Los Angeles, CA 90095

310-206-4195
billms@ee.ucla.edu

Miodrag Potkonjak
UCLA CS Department

3532G Boelter Hall
Los Angeles, CA 90095

310-825-0790
miodrag@cs.ucla.edu

Abstract
Simulations for modern designs are often performed on Field
Programmable Gate Array technology in a functional test and
debugging process known as emulation, allowing for more
complex simulations than possible in software. One drawback to
emulation is the lengthy time spent in the back-end CAD tools for
each debugging iteration, including debugging changes and the
introduction of control and observation logic. We have developed
a technique that confines the re-place-and-route area to only the
portions of the design affected by the introduction of the test logic
and by the debugging changes. Therefore, the back-end CAD
effort for error detection, localization, and correction is reduced.
This benefit is achieved by partitioning the design at the physical
level into independent blocks, and the test logic and design
changes are localized to the affected blocks. The result is a
shortened time between debugging iterations, and thus a shortened
time-to-market for the design.

1 Introduction
Debugging is an inherently cyclic process. At each cycle, four
steps are essential: test pattern generation, error detection, error
localization, and error correction. These steps are repeated until
sufficient design confidence is established. Software simulation
has been, and continues to be, a common tool for hardware
debugging, and the introduction of control and observation logic
for error detection and localization as well as the process of error
correction are straightforward in software.

However, these software tools are often unable to simulate
designs at high enough speeds to enable complex testing.
Therefore, recent hardware design testing strategies have emerged
that involve mapping designs to Field Programmable Gate Arrays
(FPGAs) for more efficient functional testing through logic
emulation. For example, emulation was used in designing the
UltraSPARC-I and provided “advanced debug facilities to rapidly
isolate any functional problems [3].” Pre-tapeout confidence also
was increased due to the more complex simulations made possible

by the enhanced testing environment. Therefore, the number of
silicon iterations, a costly and lengthy process, was reduced. Such
advantages helped to shorten the time-to-market of the design [3].

1.1 Motivation
For emulation, the four step debugging sequence is done in
hardware. Test pattern generation remains the same as in
software simulation, but error detection, localization, and
correction must all be implemented in the emulation hardware.
Detection and localization require the insertion of control and
observation logic in the areas to be examined. Error correction
requires the changing of the FPGA physical layout. This insertion
and correction requires extensive use of the back-end CAD tools
for the physical layout alterations. For emulation to remain an
effective alternative to software simulation, the added CAD tool
effort to implement these last three debugging steps in hardware
must not be excessive. To generate an entire UltraSPARC-I
configuration for emulation consumed approximately 36 hours
using five computers for the main work and 70 computers during
logic mapping [3]. Spending 36 hours between each debugging
iteration would be unreasonably inefficient.

We have developed an FPGA physical design partitioning
technique that shortens the time between debugging iterations by
reducing the back-end CAD tool effort required to implement
these three debugging steps. The physical design is partitioned
into independent blocks, and the design alterations resulting from
the introduction of the test logic and the debugging changes are
localized to these blocks. Therefore, the modified area is
confined to only the affected portions of the design.

Currently, design partitioning techniques for emulation are only as
fine-grained as the synthesis tools allow, and rarely is the
structure that exists at higher levels in the design hierarchy carried
through to the physical level. Therefore, each change to the
design (in the hardware description language (HDL) or in a design
representation at a different level (e.g. the design netlist)) for any
debugging step likely is not localized in the physical layout
further than the often large functional blocks as defined by high
level partitioning. This flattening of the design requires back-end
CAD tools to re-place-and-route large blocks for every debugging
cycle, regardless of how small the logic introduced and debugging
changes are. A significant amount of time is lost between each
debugging iteration, needlessly extending the debug cycle.

While recent advances in incremental place-and-route have helped
to reduce the time spent in the back-end tools, the process is still
lengthy. Adding logic (either for error detection and localization
or as an error correction) to high density areas may require an

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

incremental tool to re-place-and-route a much larger portion of the
design to make sufficient room for the new logic. Consequently,
portions of a design originally unaltered during these debugging
steps are often re-placed-and-routed by incremental tools due to
necessary surrounding physical design alterations.

To minimize this re-place-and-route effort, the proposed physical
design partitioning technique increases the granularity and
localizes the necessary physical design alterations for each
debugging step. Because only the affected portions of the design
need be re-placed-and-routed, the back-end CAD tool effort is
reduced to a fraction of that required by existing approaches (e.g.
incremental place-and-route, Quick_ECO [2], etc.). Therefore,
the time between emulation and debugging iterations is reduced,
and emulation’s advantages over software simulation for complex
testing is enhanced.

1.2 Motivational Example
Our scheme centers around partitioning the physical design into
independent blocks (tiles) with fixed interfaces, much in the same
way that design partitioning is done during synthesis. As a result,
logic addition and debugging changes can be made within each
tile without affecting the rest of the design.

Consider the Boolean function Y=(A∧B)∧(C∨D), which might be
implemented in a tile containing four logic blocks as shown in
Figure 1.I. The same function can be implemented in a number of
different ways (e.g. Figures 1.II-IV), but the fixed interface leaves
the rest of the design unchanged with the possible exception of the
performance of the circuit due to changes in routing, which is
unimportant for emulation1.

A

B

D

C

Y A

B

D

C

Y

A

B

D

C

Y A

B

D

C

Y

I II

III IV
Figure 1. Four Functionally Equivalent Tile Implementations

Similarly, the functionality of the tile can be altered without
affecting the rest of the physical design. For example, a
debugging change may alter the tile’s functionality to
Y=(A∧B)∨(C∨D). Figure 2 shows how the change could be
locally implemented using tiling. Again, the fixed interface
allows the back-end CAD tool to re-place-and-route only the
affected tile. This not only shortens the time spent in the back-
end CAD tool, but keeping the rest of the design fixed insures that

1 Emulation is primarily concerned with functional testing.
Therefore, circuit performance is not a paramount issue.

no errors will be introduced in the unchanged portions of the
design during re-place-and-route.

Finally, given enough unused resources in a tile, logic can be
introduced. The amount of logic required for controllability and
observability varies, as does that introduced by a debugging
change. Therefore, if there are enough unused resources in a
single tile, logic can be introduced into the tile without affecting
the rest of the design. If more resources are needed, neighboring
tiles can also be re-placed-and-routed as they may contribute
some of their unused resources for the addition. Tile boundaries
are then re-established, and the interfaces are re-locked.

A

B

D

C

Y A

B

D

C

Y

I II
Figure 2. Example of Localized Functional Change

The CAD tool effort to re-place-and-route these small tiles is
much less than is required for the coarser grained partitions
created by higher levels in the design process. As a result, the
turnaround time for debugging iterations is reduced.

2 Related Work
Emulation has been used for functional verification for several
years. Recently, advancements have been made improving
debugging through emulation that reduce the time it takes to
implement debugging changes by shortening the previously long
trips through back-end CAD tools. In the past, entire designs
would be re-synthesized, remapped, repartitioned, and re-placed-
and-routed. The Quick_ECO approach, developed by Fang, Wu,
and Yen, tracks the partitioning through the design process in
order to isolate design changes [2]. The system traces debugging
changes through partitioning down to the netlist level, reducing
the amount of the design that needs to run through the time
consuming CAD tool process. Therefore, the level of granularity
was the functional bock, as partitioned at the netlist level. Instead
of having to re-place-and-route the entire design for each
debugging change, only the affected functional blocks (linked by
Quick_ECO) were processed.

Tiling reduces the time between iterations further, as it enables a
more fine-grained approach than the Quick_ECO system.
Quick_ECO stops its tracing at the netlist level, while tiling
continues the tracing down to the physical level. This allows the
designer to control the size of the physical design portions that
must be re-placed-and-routed instead of entire functional blocks,
which are often quite large and may span multiple FPGAs. Tiling
also enables the efficient introduction of control and observation
logic with this fine granularity. Therefore, back-end CAD tool
effort is minimized for debugging changes.

Other techniques have been developed to minimize logic re-
synthesis [12] and restrict synthesis to modified portions of the
design after an engineering change [1], reducing the front-end
CAD effort. Similarly, lower level design perturbation due to
high level engineering changes has been limited by another
methodology [4], thus helping to minimize the number of affected

tiles at the physical level. Employing these time and effort
reduction front-end techniques, as opposed to synthesis tools that
focus on power, speed, or area [7, 10, 11], along with tiling at the
back-end reduces the total time between debugging iterations.

3 Tiling and Emulation
FPGA physical design partitioning introduces simplicity and fine
granularity to FPGA designs, capitalizing on the same benefits as
higher level synthesis and place-and-route partitioning do. The IC
design process is not completely linear or terminal; it can often
be cyclical or tangential. Therefore, partitioning at the physical
level may provide some needed simplicity and fine granularity as
it does at other levels in the design hierarchy.2

Emulation-based debugging is a perfect example of the often
cyclical nature of the IC design process. The physical design is
not a terminal point, but rather a level that is iteratively revisited
for each debugging iteration. Therefore, simplicity and fine
granularity at this level are valuable.

3.1 Global Flow
Tiling provides this simplicity and granularity by partitioning the
FPGA physical design into independent blocks, as discussed in
Section 1.2. Upon each return to the physical design for each
debugging iteration, the independent nature of the blocks allows
the back-end CAD tool to focus only on the affected portions of
the design. The pseudo-code below reveals the cyclical nature of
emulation-based debugging and how tiling fits within it.

1. synthesize original HDL file(s);
2. partition, map, place-and-route original netlist(s);
3. emulate;
4. if design error {
5. re-place-and-route with resource slack;
6. draw tile boundaries;
7. lock tile interfaces;
8. }
9. while design error {
10. generate test patterns;
11. amend HDL file(s) {
12. incorporate changes from previous iteration;
13. }
14. synthesize amended HDL file(s);
15. map new netlist(s);
16. determine test points;
17. identify and clear affected tiles;
18. introduce control logic;
19. introduce observation logic;
20. place-and-route affected tiles;
21. emulate;
22. }

The tiling performed in steps 4-8 sets up the links to the physical
level and creates independent blocks that can be altered based on
test logic introduction or debugging changes. Step 5 leaves
enough resources (a user-controlled parameter) in each tile unused
for future logic introduction. If an error is discovered during

2 Designs are at their highest level of complexity at the physical
level, and the complexity will continue to increase with deeper
sub-micron technologies [9].

emulation, the iterative process of steps 9-22 begins. Step 10 does
not affect tiling, as test patterns are determined by software. Steps
11-15 are performed just as they would be with current emulation
systems, using the synthesis discussed in Section 2 to minimize
front-end CAD effort. The test points (desired control and
observation logic locations) are determined in step 16. Tiling
becomes a factor at step 17 when the physical design is linked to
the amended files (with back annotation as discussed in Section 5)
and test points. The affected tiles are cleared for re-place-and-
route and the introduction of the test logic. The test logic is
introduced in steps 18 and 19 and is placed-and-routed with the
tile’s functional logic in step 20. The tiles affected by debugging
changes are also re-placed-and-routed at this time. Tiles
unaffected by a debugging change or a test point remain
untouched. If newly introduced logic requires more area than the
amount of unused resources in the affected tile, neighboring tiles
are included in the re-place-and-route, as their unused resources
may be used for logic introduction. After, the tile interfaces are
re-locked. The process repeats until no design errors are found
during emulation. Depending on the changes made and test logic
introduced, tiling boundaries can be kept the same or
reestablished for each debugging iteration.

3.2 Tiling
Tiling is achieved through physical design constraints imposed on
the place-and-route tool. Tiling boundaries are transparent in the
layout, as they are simply conceptual boundaries of constraints.
The default is that all resources are locked, and when a specific
tile must be changed, the resources within that tile are unlocked.
Therefore, the layout of that tile may be altered while the rest of
the design remains unchanged and unaffected due to the locked
interface between the tile and its surroundings. If one side of an
interface is locked, the interface itself is locked.

Tile boundaries are determined by a number of factors. First,
inter-tile interconnect is minimized. Locked interfaces are a
hindrance to circuit performance and place-and-route flexibility.
Therefore, interfaces must be as simple as possible.

Tiling should also be performed to user specifications.
Parameters include acceptable area overhead, acceptable
performance degradation (not relevant for pure functional test),
and the type of test logic and debugging changes to be introduced
(i.e. size of control and observation logic for error detection and
localization, large block changes or small functional and
implementation alterations). These variables are not entirely
independent (e.g. the need for large test logic requires a large area
overhead), but tiling remains flexible to user specifications.

The type, size, and number of points of test logic likely to be
inserted are also concerns for tiling. If large pieces of logic for
controllability and observability must be inserted (e.g. a large
counter), the amount of unused resources in each tile should be
large. If the area overhead must be low, the tiles must be larger to
accommodate the insertion of large blocs of logic. Similarly, if a
large number of test points may be inserted into the design, area
overhead must again be increased to accommodate the dispersion
of a large amount of logic. However, if a tile cannot support the
introduction of a large amount of logic, neighboring tiles may also
be used, and tile boundaries may be redrawn.

The types of debugging changes that may be made must also be
taken into account during tiling. Large block changes are often

made during the early stages of debugging, while small functional
and implementation alterations are more likely to be performed
during the final stages3. Large block changes may require the
addition of considerable extra logic and/or extreme malleability,
while small alterations add little, if any, logic and create fewer
routing concerns. Larger tiles allow for greater malleability and a
larger amount of unused resources per tile without added area
overhead. Therefore, tile size can be altered based on the current
debugging needs and the various expected design changes.4

During actual implementation, most users will likely desire a
reasonable tradeoff among these features. Extremely small tiles
require more area and timing overhead and have less malleability,
but extremely large tiles reduce the granularity and therefore
lengthen the amount of time spent in the back-end CAD tools.
The average tile size will likely be between 20 and 50 Xilinx 4000
Configurable Logic Blocks [13], much smaller than the functional
blocks created by CAD tool partitioning that are the minimum
affected unit for existing emulation debugging techniques. 5

4 Error Detection and Localization
Effective debugging begins with a formalized process for testing
to detect, isolate, and identify errors. Software simulation has
tools to perform such tasks, but emulation requires that they be
performed in hardware. Therefore, control and observation logic
must be introduced into the physical layout.

4.1 Controllability and Observability
For an error to be detected, it must actually occur. Therefore, the
design must be put in a state at which the error arises. This can be
done by operating the circuit normally until the proper state arises
and the error occurs, but this may take a long time, if it occurs at
all. Therefore, control logic is introduced into the circuit to
induce certain states artificially. That is, the logic inputs specific
state to suspected design error areas to the run exhaustive tests
that are necessary for maximum design confidence.

A design error must also be detected once it occurs. Observation
can be performed manually with a user reading the outputs of
suspected design areas waiting for an error to occur. However,
logic may be inserted which automatically detects an error upon
its occurrence. This observation logic is designed to raise a flag
once an erroneous output state is achieved. Therefore, the control
logic creates artificially and potentially problematic input states,
and the observation logic detects any error that results. If the
observation raises a flag, the error can be localized and diagnosed
based on the control inputs.

4.2 Logic Introduction
The combination of controllability and observability can detect
and localize errors, but the necessary test logic must be embedded

3 Using the synthesis techniques discussed in Section 2, changes
made at a higher level in the design hierarchy perturb the physical
design as little as possible.
4 Tile sizes need not be uniform across a design. Large tiles can
be used in areas of expected large block changes, and smaller tiles
can be used for small alteration areas.
5 Tiling algorithmic details can be found in [5][6].

in the design. Tiling ensures that the smallest possible amount of
the design is re-placed-routed to incorporate the test logic, but
enough resources in the layout must be free to accommodate the
test logic, the size of which may vary depending on the control
and observation that are being inserted. If the affected tile does
not have enough free resources, neighboring tiles can also be
labeled “affected” and may contribute their unused resources.
(Section 6.1 examines the number of tiles that are affected for
different sizes of introduced test logic given a certain area
overhead and tile size.) Once the affected tiles are identified, they
are cleared (i.e. all of the logic and routing must be removed), and
the logic is re-placed-and-routed along with the test logic. Error
detection and localization may then be performed as the control
and observation logic test for errors.

5 Error Correction
Upon error detection and localization, debugging changes can be
made to the design at some level in the design hierarchy for the
next emulation iteration. Assuming that most changes will be
made in the HDL and the RTL level, synthesis must be
performed. Modern techniques noted in Section 2 can be used to
minimize the impact at the physical level. Those changes must
then be linked to the physical level and specific tiles before they
are updated in the layout.

5.1 Linking Debugging Changes
One of the most important areas of future development involves
allowing synthesis and front-end tools to account for physical
resource allocation in a cooperative manner with back-end tools.
This move toward rationalizing multiple design hierarchies
throughout the design process has its origin in existing approaches
for back annotation, but it involves the maintenance of
significantly more consistency information. The goal is to
improve the synthesis results for a given amount of optimization
time by capitalizing on designer knowledge regarding the physical
device and overall design structure. Preliminary tools moving in
this direction have been announced and released by a number of
CAD companies (e.g. Synplicity).

Currently, we manually exploit the one-to-one linkage between
the high-level and the low-level using back annotation to localize
the change requirements to a set of tiles. Partitioning done
throughout the design process creates a tree structure with
children being dependent on their parents. Therefore, using back
annotation, we trace the debugging changes made at any level in
the design process through the sub-trees of all the altered nodes
down to the affected tiles. Current forms of this type of tracing
stop (e.g. Quick_ECO [2]) before they reach the physical level
and are, therefore, not as fine-grained as made possible by tiling.
This minimal physical design perturbation is necessary for full
exploitation of the fine granularity that tiling provides.

5.2 Updating Debugging Changes
With the links from the altered files to the physical level made, it
becomes possible to update the changes so the revised design
bitstream can be created. Any tile that contains a design portion
affected by the debugging change must be cleared, while still
maintaining the locked interface to its surrounding tiles. If an
interface is affected, the tiles comprising the interface must be
cleared. Similarly, if two adjacent tiles are both affected, the
fixed interface between the tiles can be removed. Once all of the

affected tiles are cleared, the remainder of the design is locked to
its location. The affected portions are then re-placed-and-routed
in the cleared tiles, any removed interfaces are re-locked, and the
links from the higher levels to the physical level are reestablished
via back annotation and the tree structures discussed in Section
5.1. Not only is the time spent in the back-end CAD tool
shortened, but no errors can be introduced in the locked portions
of the design as may occur when everything is re-placed-and-
routed. This allows for more efficient error localization.

This approach is very different from incremental place-and-route,
which re-places-and-routes a much greater portion of the design.
Tiling imposes many more constraints on the back-end CAD tools
that disallow changes that an incremental tool would make, and
incremental tools do not account for logic to be added into the
design. Ultimately, incremental place-and-route achieves better
design performance but with a large added design effort as
reflected in Section 6.1.

6 Experimental Results
The proposed approach was executed on nine designs, including
seven MCNC designs (three combinatorial and four sequential) of
various size and two larger, real world designs. The two large
designs were a MIPS R2000 processor core designed for FPGAs
developed at Brigham Young University and a digital encryption
standard (DES) design [8]. All experiments were performed on
the Xilinx XC4000 family with configurable logic blocks (CLBs)
each containing two 16-bit lookup tables (LUTs) [13].6

Although the designs in question are small enough to be
implemented on a single FPGA, the results can be accurately
applied to larger designs that span multiple FPGA devices, as the
UltraSPARC-I emulation required. Tiling breaks such designs
into smaller portions, just as the non-tiled approaches do, though
at the physical level for more fine-grained results. Therefore,
experiments compare tiling results to approaches looking only at
blocks as small as CAD defined functional blocks and incremental
place-and-route tools. It is then irrelevant that a larger design
may contain multiple functional blocks across multiple FPGA
devices. For experimental purposes, each design will be
considered the size of one functional block. The designs chosen
for experimentation are a wide range of sizes and fit into the size
variation of functional blocks, thus allowing the accurate analogy.

6.1 Results
The overhead of the proposed approach comes in the form of area
(physical resources) and timing. However, as discussed in
Section 3.2, this overhead is variable depending on user
specifications. Area overhead can be as little as 10% (less would
not allow enough room for additional logic or malleability for
easy placement and routing) or as large as the FPGA allows.
Timing overhead depends on user specifications and the design
changes made. Small design changes may have no, or even a
positive, impact on timing, while large changes that negatively
affect or create a new critical path may severely affect timing.
Whatever the timing degradation becomes during debugging, the
entire design may be re-placed-and-routed for better performance
if timing critical tests must be executed during emulation.

6 Xilinx claims that XC4000 CLBs can roughly implement an
average of 20 logic gates [13].

Table 1 shows the physical layout statistics for the designs after
they were tiled. An approximately 20% area overhead was
introduced in each case for future logic introduction and
flexibility. As the table shows, tiling actually increases design
performance in some situations. This is due to the dramatically
different placement and corresponding timing that often result
from relatively small design changes. The timing impact of tiling
appears to be below the characteristic variance associated with
such small changes.

design # CLBs area overhead timing overhead
9sym 56 0.217 -0.045
styr 98 0.210 0.074
sand 100 0.220 0.129
c499 115 0.223 0.000

planet1 115 0.211 0.137
c880 135 0.227 -0.055
s9234 235 0.205 -0.014

MIPS R2000 900 0.190 0.047
DES 1050 0.200 0.036

Table 1. Tiled Physical Layout Statistics

Given the 20% area overhead for each design, tile size affects the
number of tiles that will be affected when control and observation
logic is introduced. For example, if s9234 were partitioned into
ten tiles that average 23.5 CLBs, each tile would have
approximately 4.7 CLBs to implement test logic. If this is
sufficient, only one tile is affected. However, if large blocks are
introduced, neighboring tiles must be re-placed-and-routed to
provide the necessary resources. This technique ensures fine-
granularity for small changes but remains functional when large
changes must be made, all while maintaining low area overhead.
Figure 3 shows the percentage of tiles that would be affected for
various sizes of test logic introduction. The same results hold if
the logic introduced is a debugging change rather than logic for
error detection and localization.

0

10

20

30

40

50

60

70

80

90

100

1 10 19 28 37 46 55 64 73 82 91 100

size of new logic (# CLBs)

%
 a

ff
ec

te
d

 ti
le

s

9sym styr
sand c499
planet1 c880
s9234 MIPS R2000
DES

Figure 3. Number of Tiles Affected by Logic Introduction

Similarly, the number of points of controllability and
observability impacts the number of tiles affected. Figure 4
shows the maximum size of the test logic for a variable number of
test points for the same design and overhead assumptions as were
used for Figure 3. The percentage of tiles affected by a variable
number of test points depends on the distribution of the points. If
the test points are clustered, then the number of test points may be
multiplied by the size of the test logic for Figure 3 to be used for
the percentage of affected tiles. If the many test points are
randomly distributed, then all of the tiles may be affected,
regardless of the size of the test logic.

0

2

4

6

8

10

12

14

16

18

20

1 10 19 28 37 46 55 64 73 82 91 100

test points

m
ax

im
u

m
 lo

g
ic

 in
tr

o
d

u
ct

io
n

 (

C
L

B
s)

9sym styr
sand c499
planet1 c880
s9234 MIPS R2000
DES

Figure 4. Maximum Test Logic Size

The most relevant result is the amount of time that is saved
between emulation and debugging iterations due to the finer
granularity tiling (as opposed to function block partitioning and
incremental place-and-route) provides. Since granularity (i.e. tile
size) is variable, the amount of time saved varies. Also, the
introduction of large pieces of test logic and some significant
design changes may affect a large number of tiles, thereby
increasing the granularity to a non-tiled level. However, the
resulting CAD tool effort will never exceed that required by a
non-tiled approach.

Figure 5 shows the place-and-route speedup provided by tiling
with different tile sizes (in percentage of total design) compared
to the incremental and Quick_ECO techniques. These results
assume that only one tile was affected by each physical design
change, but the effort can be scaled as if the affected tiles equal
one larger tile. For example, a change affecting three adjacent
tiles that are 5% of the total design effectively affects one tile that
is 15% of the design.

0

2

4

6

8

10

12

14

16

18

20

2.5 5 15 25

tile size (% total)

sp
ee

d
u

p

9sym

styr

sand

c499

planet1

c880

s9234

MIPS R2000

DES

Figure 5. Place-and-Route Speedup

The three largest designs (DES, MIPS R2000, and s9234) can be
partitioned into tiles 2.5% the size of the total design. In those
cases, speedup was 2.8, 5.6, and 17.0 respectively. As tile size
grows to 5% and 15% of the total design, the average (median)
speedup reduces to 7.6 (2.6) and 2.1 (1.7). Finally, as the tile size
reaches 1/4 of the total design size (effectively eliminating the
purpose of tiling), the average (median) speedup falls to 1.5 (1.3).

7 Conclusion
Design debugging is growing increasingly laborious due to the
increase in design and simulation complexity. Therefore,

emulation for functional verification has become a more
widespread technique, enabling the execution of more complex
simulations. However, design complexity has been a barrier to
efficient emulation as a large design space must be re-placed-and-
routed for each debugging iteration.

Tiling uses partitioning to introduce simplicity at the physical
level. Fine-grained, independent partitioned blocks enable the
localization of physical design changes due to test logic
introduction or debugging changes. Therefore, the back-end CAD
tool must re-place-and-route only those blocks affected by the
alterations, resulting in a shorter time between debugging
iterations and, therefore, time-to-tapeout. Experiments show that
re-place-and-route CAD tool effort can be reduced significantly
for the finest-grained physical design partitioning.

Acknowledgements
This work was supported by the Air Force Research Laboratory of
the United States of America, under contract F30602-96-C-0350
and subcontract QS5200 from Sanders, a Lockheed Martin
company.

References
[1] Brand, D. et al., “Incremental synthesis,” International

Conference on Computer-Aided Design, 1994, 14-18.
[2] Fang, W.-J., A. Wu, and T.-Y. Yen, “A real-time RTL

engineering-change method supporting on-line debugging
for logic-emulation applications,” Design Automation
Conference, 1997, 101-106.

[3] Gateley, J. et al., “UltraSPARC-I emulation,” Design
Automation Conference, 1995, 13-18.

[4] Kirovski, D. and M. Potkonjak, “Engineering change:
methodology and applications to behavioral and system
synthesis,” Design Automation Conference, 1999.

[5] Lach, J., W. H. Mangione-Smith, and M. Potkonjak, “Low
overhead fault-tolerant FPGA systems,” IEEE Transactions
on VLSI, vol. 6, no.2, June 1998, 212-221.

[6] Lach, J., W. H. Mangione-Smith, and M. Potkonjak,
“Fingerprinting digital circuits on programmable hardware,”
International Workshop on Information Hiding, 1998, 16-
31.

[7] Lakshminarayana, G. et al., “Power management in high-
level synthesis,” IEEE Transactions on Very Large Scale
Integration, vol.7, no.1, March 1999, 7-15.

[8] Leonard, J. and W.H. Mangione-Smith, “A case study of
partially evaluated hardware circuits: key-specific DES,”
Field Programmable Logic, 1997, 151-160.

[9] Mitsuhashi, T. et al., “Physical design CAD in deep sub-
micron era,” European Design Automation Conference,
1996, 350-355.

[10] Pan, K.-R.R. and M. Pedram, “FPGA synthesis for
minimum area, delay and power,” European Design and
Test Conference, 1996, 603.

[11] Schaumont, P. et al., “Synthesis of multi-rate and variable
rate circuits for high speed telecommunications
applications,” European Design and Test Conference, 1997,
542-546.

[12] Swamy, G. et al., “Minimal logic re-synthesis for
engineering change,” International Symposium on Circuits
and Systems, 1997, 1596-1599.

[13] Xilinx, The Programmable Logic Data Book, San Jose, CA,
1996.

	Main
	DAC00
	Front Matter
	Table of Contents
	Session Index
	Author Index

