Mental Models of Recursion

Tina Gotschi, lan Sanders, Vashti Galpin
School of Computer Science
University of the Witwatersrand
Johannesburg,South Africa
tgotschi@cs.wits.ac.za, ian@cs.wits.ac.za, vashti@cs.wits.ac.za

Abstract

Recursion is a fundamental concept in Computer Science. A
student’s knowledge of recursion can be termed their men-
tal model of recursion. A student’s mental model is viable
if it allows them to accurately and consistently represent
the mechanics of recursion. Non-viable mental models are
constructed if students have misconceptions about the mech-
anisms of recursion or have misconceptions about concepts
fundamental to recursion. This paper presents a study of
the mental models of recursion that first year students at the
University of the Witwatersrand have constructed in 2000,
2001 and 2002. It was found that while the majority of stu-
dents constructed the viable copies model, many non-viable
models such as the looping, active, step, magic, return-value
and various odd models were also constructed. Identifying
the models that students have can allow lecturers to target
individual students’ specific problems and analysis of the
models can provide insight into learning.

Categories & Subject Descriptors

K.3 Computers € Education: Computer & Information Sci-
ence Education - Computer Science Education.

General Terms

Human Factors, Algorithms

Keywords:

Recursion, Mental Models, Constructivism, Programming,
Learning, Pedagogy

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGCSE ’ 03 February 19-23, 2003, Reno, Nevada, USA.
Copyright 2003, ACM 1-58113-648-X/03/0002...$5.00.

346

1 Introduction

Recursion is a difficult concept to teach and learn [9, 15] but
a fundamental concept in Computer Science. Students at the
University of the Witwatersrand (Wits) are taught recursion
in the first year Fundamental Algorithmic Concepts course
[12] and demonstrate their understanding by implementing
recursive programs in Scheme and by tracing the execution
of recursive programs and algorithms in tests and exams.
This research is concerned with studying those traces and
identifying the mental model of recursion that Wits students
in 2000, 2001 and 2002 have constructed.

The term mental model is one that is used by cognitive psy-
chologists such as Johnson-Laird [7] and Norman [11] to de-
fine cognitive representations of knowledge (For a compre-
hensive survey on mental models see [13]). Mental models
have been used in computer science education to describe
students’ knowledge of recursion [8, 4, 3]. Kahney defines
recursion as “a process that is capable of triggering new in-
stantiations of itself, with control passing forward to succes-
sive instantiations and back from terminated ones” [8, p.315].
George [5] named these two flows of control the active flow
(when control is passed forward to new instantiations) and
the passive flow (when control flows back from terminated
ones). A viable mental model of recursion features both
flows of control. Kahney called this the copies model [8].

While a “conceptual” model is the tool a teacher uses to
teach the concept of recursion, a “mental” model is the un-
derstanding that an individual learner constructs [16]. Kah-
ney found that novices possess mental models at variance
with the conceptual model of recursion and thus are not
able to accurately predict the behaviour of a recursive pro-
gram. Non-viable models are not unexpected as construc-
tivism, a philosophy of learning becoming increasingly in-
fluential in computer science [1], posits that learning is an
active process where the learner is continually making sense
of their experiential world. Thus, if experience changes, so
does knowledge, and an educator’s role is to guide students
towards the shared common knowledge of recursion held by
computer scientists.

In this research, mental models were identified from stu-
dents’ traces of the execution of recursive programs. A
“trace” is a student’s representation of the flow of control
and the calculation of the solution of a recursive program.
Traces were obtained from examinations and class tests.
Each trace was coded into categories. The categories de-
fined characteristics of recursion such as the active flow, the
passive flow and the base case. As students’ traces were
examined, further categories were added to describe other

features of students’ traces. Mental models were identified
from the combination of categories a trace exhibited.

It was found that from 2000 to 2002, the majority of Wits
first year students constructed Kahney’s copies model, but
students also constructed the non-viable looping and magic
models. New models were identified, these are the active,
step, and return-value models. This research also found
that some non-viable models, such as the magic and active
seemed to be precursors of the copies model and students
who had these models would need only a little more guidance
from lecturers in order to construct a viable model. Other
models, such as the step and return-value models indicate
that students had many misconceptions about the process
of recursion and a non-viable model of computer behaviour.

The outcome of this research is a method that allows lectur-
ers to identify students’ mental models of recursion. Men-
tal models can be used to identify students’ misconceptions
and this can provide lecturers with understanding of what
specific help students need. It should also make lecturers re-
flect on their own teaching methods and the examples they
use when explaining recursion. Already the course lecturer
at Wits is taking a different approach to teaching recursion.
The first example that students are presented with is a more
complicated program with embedded recursion rather than
a simple recursive program that could lead to a non-viable
looping model. Also, when students demonstrate their un-
derstanding of recursion, the lecturer requires that they indi-
cate an understanding the passive flow. It is hoped that the
method to identify mental models can be applied elsewhere
and that this gives lecturers a diagnostic tool that will aid
in the development of teaching targeting specific students’
non-viable mental models.

The next section, Section 2, provides a description of con-
structivism and the Wits pedagogy. Section 3 describes the
process of data collection and analysis. A discussion of the
results is presented in Section 4 and some ideas for the ap-
plication of this research and further work are proposed in
section 5.

2 Background

Constructivism is a philosophical perspective on knowledge
and learning, hypothesising that learners actively construct
their own knowledge, they don’t passively receive it [14].
Furthermore, knowledge is seen to be “viable” rather than
“true” as constructivism holds that the only world known is
that of our experience [14]. Knowledge is “viable” if it fits
with our real-world experiences [6] and allows us to make
accurate predictions of phenomena. Social interaction and
communication through language accounts for the fact that
individuals construct knowledge that is common to a group,
for example computer scientists. It is the shared common
knowledge that computer scientists have of recursion that
lecturers want their students to construct.

Constructivism influences pedagogy because it gives lectur-
ers insights into what their role should be to foster successful
learning. Teachers cannot “tell” and expect learners to “get”
knowledge. Teachers should generate perturbations in stu-
dents’ existing conceptual structures and hence foster new
combinations of concepts [14]. This means that lecturers
should present students with problems and examples that
challenge their current understanding and reveal non-viable
constructions.

347

Shared common knowledge of recursion is embodied in the
many conceptual models of recursion [16]. At Wits, process
tracing models, showing the copies or successive instantia-
tions of the recursive program, and the abstract mathemat-
ical basis of recursion, namely mathematical induction are
the conceptual models used to teach recursion. Wits stu-
dents are introduced to recursion with a simple dramatisa-
tion, an approach that Ben-Ari [2, p.47] recommends since:
“The behaviour of elementary programs can be faithfully
reflected in dramatisations”. Once students have grasped
the basic mechanisms of recursion (the diminishing argu-
ments, the base case and the building of the solution) pro-
cess tracing models are presented to give a more precise rep-
resentation of the mechanisms of recursion. Students then
trace recursive programs written in Scheme, the language
of instruction at Wits [12]. Scheme is a functional language
which isolates the abstract expression of algorithms from im-
plementation details such as the stack [10]. Scheme is used
so that students need not learn complex syntax or imple-
mentation details which are premature if introduced at the
beginning of CS1 [2]. However, students do need to under-
stand parameter passing and how a function’s return value
is evaluated, as misconceptions about these can lead to the
construction of non-viable models of recursion.

3 Data Collection and Analysis

The research began in October 2001 and the first set of data
was obtained from the June 2001 exams. Each student’s
trace of the given recursive program was coded into cate-
gories derived from the definition of recursion. New cate-
gories, describing features found in students’ traces, were
added as the analysis progressed. Exam data proved to be
a suitable source for identifying students’ understanding of
recursion, thus the previous year’s exams were also obtained
for analysis. Coding of this second set of data (June 2000
exams) began with the categories used in stage 1. Again
more categories were added to describe features of students’
traces and the existing categories became more clearly de-
fined. A student’s mental model was then identified from
the combination of categories that their trace. Since both
exams contained only one recursive program it was not possi-
ble to draw any conclusions about whether students possess
more than one mental model of recursion and apply them
selectively depending on the program they are tracing. Thus
both questions were incorporated into a class test, which was
given to the first years in 2002. Mental models were identi-
fied directly from this third data set. The following sections
discuss each stage in detail.

3.1 Data collection and analysis — stage 1

The June 2001 exam provided 172 traces of Question 1, given
in the box below.

Development of coding method The initial cate-
gories were derived from conceptual models of recursion [8, 5]
and as analysis progressed, more categories were added ac-
cording to features found in the traces. The final categories
used are defined in Table 1.

Emergence of mental models After this stage of
analysis and coding, the copies and looping models could
be identified. Data coded into copy/switch/copy categories
indicated a copies model and those with looping/stop/none,
a looping model. Some categories indicated misconceptions

Active flow

Copy a new invocation with a new argument shown

Loop operation is done on the list element by element

Not shown only answer given or the trace is not detailed

None no recursion, one or two step evaluation (see Section 3.1)

Null nothing can be concluded

Algebraic algebraic manipulation of function call (see section 3.2)

Base case

Stop recursion stops once base case is reached

Switch once base case reached, switch from active flow to passive flow

Check incorrect incorrect test for base case

Base omitted operation at base case omitted

Passive flow

Copy

None

Return values
Return problem
Operation changed

solution evaluated at base case

a partial solution is calculated at each level and returned to the previous invocation

each invocation’s return value saved and used in calculating a solution
misconceptions about parameter passing and return value evaluation
|| changed to + or X or combination, or order of operations changed

Table 1: Coding Categories

Suppose you are given the algorithm below.

Algorithml (numlist)
if nulist is empty
then
1
else
2*head (numlist) || Algorithmi(tail(numlist))

Note: Remember that | | means concatenation (joining)
of two lists.

What would the output of the algorithm be if the input
list was (4 1 3 5)? Show your workings.

Question 1 (Q1)

a student could have even though their model of recursion
was viable, for example, using an incorrect base case test or
changing the operation. Other combinations indicated dif-
ferent models, but before defining these precisely, the coding
method needed validation and additional data needed to be
analysed.

Validation of coding The initial categories, defined by
Gotschi, were discussed with the other researchers and a
course tutor. Sanders, the course lecturer, suggested a cate-
gory for a “two step” evaluation where students evaluated a
solution by combining the base case operation and the recur-
sive call and associated operation in calculating a solution.
Evidence for this (as well as a “one step” evaluation) was
found and these categories were added.

Galpin found that some students did not trace the execu-
tion of the program but evaluated an answer. The data was
re-examined and sorted into one of 3 categories: trace, eval-
uation and answer. A trace had a representation of the me-
chanics of recursion. Many traces used a graphical process
tracing method or showed the flow of control using arrows.

348

Most traces showed new instantiations of the recursive pro-
gram with its associated argument value and many indicated
the passive flow of control and the building of the solution.
Since these traces showed the student’s thought processes
clearly, it was possible to use them to identify mental mod-
els.

An evaluation showed that a student had little or no un-
derstanding of the recursive process and therefore could not
show the process of recursion. It became clear that evalua-
tions were often indicators of non-viable models.

An answer had no indication of how the student calculated
that answer and the student simply gave the final output of
the program. These provided no information for identifying
mental models and were excluded from the study.

3.2 Data collection and analysis — stage 2

The June 2000 exams provided 160 traces of Question 2,
given in the box below.

You are given the algorithm

c(n)
if n=1
then 1
else 4 c(n/2) + 3

What value would be returned if the algorithm was run
with the initial value of n = 8. Show your workings.

Question 2 (Q2)

Coding began with the categories developed in stage 1. Since
this recursive program defined a recurrence relation which
manipulated numbers, traces had different features to the
previous list manipulation question.

Traces where students attempted to derive a closed form
algebraic expression and used this to calculate the solu-
tion were coded into a new category called “algebraic”.
Traces with an interpretation of the function call c(n/2)
as 4xc*n/2+3 = 16c¢+3 or, ignoring the c, 16+3 = 19 were
also coded as “algebraic”. This category was an indicator of
a step or return-value model (see Section 3.3).

It was found that, in this question, students did not change
the adding and multiplying operations but changed the order
of operations during the passive flow. Thus the “operation
changed” category was reinterpreted. This category was an
indicator of the magic model.

3.3 Mental models identified

A students’ mental model was indicated by the combination
of categories their trace or evaluation was coded into.
Kahney’s viable copies (C) model was identified and the
following models were all thought to be non-viable models:
Looping model (L): With this model the recursive
procedure is viewed as a single object rather than a series
of instantiations and thus recursion is seen as a form of
iteration. The solution is calculated once the base case is
reached, thus the base case is seen as the stopping condition
of the loop.

Active model (Ac): Although many students did show
evidence of understanding the active flow of control and
the instantiations of the recursive functions with smaller
argument values, as well as reaching the base case correctly,
they did not show the passive flow and simply calculated
the solution at the base case. In the case of some recur-
sive programs (such as Q1), the correct solution can be
evaluated at the base case, but this is not always possible.
For example, in Q2, because of the order and precedence
of the operations, the base case must be evaluated and
the solution passed back to previous invocations before a
solution can be calculated. It is possible that students use
the active model when it is viable and the copies model
otherwise.

Step model (S): Students with these models have no
concept of any recursive flow of control. With this model,
students simply evaluate the IF-THEN-ELSE and execute
either the recursive condition once (one-step), both the
recursive condition and the base case (two-step).

Return value model (R): This model stems from
misconceptions about when return values from a function
call are evaluated. Many students hold the misconception
that at each instantiation a value is evaluated, before the
next instantiation is complete. These values are stored and
all combined into a solution.

Magic or Syntactic model (M): This model was also
defined by Kahney [8]. Students with this model recognise
programs with recursive syntax and trace a program
without a clear idea of how the program achieves its effect.
Thus they do not have a viable model for the behaviour
of a recursive program but recognise syntactic elements as
indicants of recursive behaviour and use some idea of what
recursion entails (instantiations with smaller arguments, a
base case and finally the building of a solution) to determine
a solution.

Algebraic Model (Al): Students with this model interpret
the program as an algebraic problem. This model was only
observed with the recurrence relation.

Odd models (O): These are also models described by
Kahney and are held by students with idiosyncratic ideas
about some features of the programs and thus do not

349

correctly predict the behaviour of the programs. These
students often had so many misconceptions that their
traces showed aspects of looping, algebraic and return value
models, or their trace was simply incomprehensible.

3.4 Data collection and analysis — stage 3

The same recurrence relation and list manipulation ques-
tions were put in a class test in 2002 written by 169 stu-
dents. All 169 of the recurrence relation questions (Q1)
were analysed, while 30 of the list manipulation questions
were disregarded because they were simply answers (17) or
left out (13). The students’ traces of the recursive programs
were coded directly into mental models. Table 2 gives a
summary of the mental models of recursion identified from
the 3 years.

[Model [C [L JAc[S |R |[M [Al [O |
Recurrence Relation (Q1)

2000 50.6| 8.8 | 2.5 | 17.5] 5.6 | 10.0| 3.1 | 1.9
n=160

2002 45.71 0.0 | 4.7 | 26.0| 15.4| 4.7 | 0.5 | 3.0
n=169

List Manipulation (Q2)

2001 44.41 13.9| 32,51 1.3 | 2.0 | 2.6 | 0.0 | 3.3
n=151

2002 26.0| 13.7| 25.0| 11.5| 5.0 | 8.0 | 0.0 | 10.8
n=139

Table 2: Mental Models of Recursion (values as %)

4 Discussion

This research presents a method for identifying mental mod-
els of recursion, and has identified new mental models of re-
cursion. These new models clarify the range of understand-
ing that students have of recursion. Students with odd and
step models have been the least active in their learning and
have no viable understanding of recursion. Those with al-
gebraic models have applied their existing, often non-viable,
knowledge of mathematics without success. Students with
a return-value model could not construct a viable model of
recursion because they did not have a viable model of pa-
rameter passing and return value evaluation, which are re-
quired before students can understand how a recursive pro-
gram executes. Next in the range are those with magic mod-
els. These students have constructed some idea of recursion,
usually the active flow and the base case, but need to be
exposed to more examples that will demonstrate how recur-
sive programs achieve their effect. Finally those with active
and looping models might be using them selectively, when
they are viable, but if not, need their understanding to be
challenged with examples where active and looping models
will not be viable.

It is pleasing to see that the majority of students over the 3
years constructed the viable copies model of recursion. The
lower numbers in 2002 could be because it was earlier in the
year so students had not had as much practice and because
they had probably studied less for the class test than they
would have for an exam. Another reason for the low 26%
of copies models (Q2 in 2002), could be because looping

and active models would allow students to obtain correct
solutions and thus were viable. This was because operation
during the passive flow was simply the concatenation of the
elements into the final list and thus the solution could be
determined at the base case. So a high number of students
had viable models (90.8% in 2001, 64.7% in 2002) for Q2.

Of the 45.7% students with a copies model for Q1 in 2002,
17% also had copies models for Q2 while 6% had a looping
and 15% had an active model. This shows that students have
more than one model and use them selectively depending on
the problem at hand.

The many students with step (17.5% in 2000, 26% and 11.5%
in 2002) and odd models (10.8% in 2002) is a cause for con-
cern. These students have constructed no viable knowledge
about a concept fundamental in their course of study. It is
not possible to determine whether this is because they have
not had enough practice or whether there are other barriers
that prevent viable constructions.

The high number of magic models (10% in 2000, 8% in 2002)
is not as problematic as these students do have some under-
standing of recursion and, with more instruction, their cur-
rent understanding can be challenged and new viable mod-
els constructed. The relatively high number of return-value
models in 2002 (15.4%) indicates that students do not under-
stand how Scheme handles recursive function calls and how
return values are evaluated. Lecturers should be aware that
an understanding of this is a pre-requisite to a viable model
of recursion and thus needs to be taught before recursion is.

5 Application and future research

Identifying students’ mental models of recursion not only
brings non-viable models and misconceptions to light, but
can also encourage lecturers to reflect on their teaching. The
Wits first year lecturer has reflected on his choice of exam-
ples used to illustrate the recursive process. He also places
more emphasis on the passive flow and its role in recursion.

To further test this method it should be applied with a dif-
ferent first year group in another university. This could be-
come a diagnostic tool, such as that described by Dicheva
and Close [4], in which students are tested then placed into
tutorial groups according to their mental models and then
provided with specific help aimed at correcting their miscon-
ception.

Mental model research can be used to gain a greater under-
standing of what students learn about other fundamental
concepts in computer science.

6 Conclusion

It is expected that some students will construct non-viable
mental models of recursion. Identifying non-viable models
provides insight into the misconceptions that can cause these
non-viable models and gives lecturers ideas of how to teach
recursion. Students with non-viable models need to be more
active in their learning and need to be provided with specific
instruction to facilitate the construction of the copies model.
This could be done using examples and exercises aimed at
challenging their current understanding which their existing
mental models shows. Therefore a method to identify a stu-
dents’ mental model is useful as it provides lecturers with
information that will allow them to address individual needs
and enhance learning.

350

References

[1] Ben-Ari, M. Constructivism in Computer Science Ed-
ucation. SIGCSE Bulletin 30, 1 (1998), 257-261.

Ben-Ari, M., and Reich, N. Recursion: From Drama
to Program. Aspects of Teaching Computer Science 7
(1996), 45-47.

2l

[3] Bhuiyan, S., Greer, J., and McCalla, G. Supporting
the learning of recursive problem solving. Interactive
Learning Environments 4, 2 (1994), 115-139.

[4] Dicheva, D., and Close, J. Misconceptions in Recursion:
Diagnostic Teaching. In Proceedings of the Sixth EU-
ROLOGO Conference — Learning and Ezploring with

Logo (Budapest, Hungary, 1997), pp. 234-239.

George, C. EROSI-visualising recursion and discov-
ering new errors. In Proceedings of the 31st SIGCSE
Technical Symposium (Austin, TX USA, Mar. 2000),
pp- 305 — 309.

[6] Jaworski, B. Investigating Mathematics Teaching. The
Falmer Press, London, 1994.

[7] Johnson-Laird, P. Mental Models. Cambridge Univer-
sity Press, Cambridge, 1983.

Kahney, K. What do novice programmers know about
recursion? In Studying the Nowvice Programmer,
E. Soloway and J. Spohrer, Eds. L.Erlbaum, Hillsdale,
New Jersey, 1989, pp. 315-323.

[9] Levy, D., and Lapidot, T. Recursively Speaking: Ana-
lyzing Students’ Discourse of Recursive Phemomena. In
Proceedings of the 31st SIGCSE Technical Symposium
(Austin, TX, USA, Mar. 2000), pp. 315-319.

[10] Manis, V., and Little, J. The Schematics of Computa-
tion. Prentice Hall, 1995.

[11] Norman, D. Some observations on mental models.
In Mental Models, D. Gentner and A. Stevens, Eds.
L.Erlbaum, Hillsdale, New Jersey, 1983.

[12] Sanders, 1., and Mueller, C. A Fundamentals-based
First Year Computer Science Curriculum. In Proceed-
ings of the 31st SIGCSE Technical Symposium (Austin,
TX, USA, Mar. 2000), pp. 227-231.

[13] Schwamb, K. B. Mental models: A survey.
URL:citeseer.nj.nec.com/schwamb90mental.html.
[14] Von Glasersfeld, E. Questions and answers about radi-
cal constructivism. In Scope Sequence and co-ordination
of secondary School Science Vol 2 Relevant Research.,
K. Pearsall, M., Ed. National Science Teachers Associ-
ation, Washington DC, 1992, pp. 169-192.

[15] Wiedenbeck, S. Learning Recursion as a Concept and
as a Programming Technique. SIGCSE Bulletin 20, 1
(Jan. 1988), 275-278.

[16] Wu, C., Dale, N., and Bethel, L. Conceptual models
and cognitive learning styles in teaching recursion. In
Proceedings of the 29th SIGCSE technical symposium
(Atlanta, GA, USA, Feb. 1998), pp. 223-227.

