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ABSTRACT
Power consumption has become an increasingly important factor in
the field of computer architecture. It affects issues such as heat
dissipation and packaging cost, which in turn affects the design and
cost of a mobile terminal. Today, a lot of effort is put into the design
of architectures and software implementation to increase
performance. However, little is done on a system level to minimize
power consumption, which is crucial in mobile systems.

We propose an adaptive chip-multiprocessor (CMP)
architecture, where the number of active processors is dynamically
adjusted to the current workload need in order to save energy while
preserving performance. The architecture is suitable in future
mobile terminals where we anticipate a bursty and performance
demanding workload.

We have carried out an evaluation of the performance and
power consumption of the proposed architecture using previously
validated high-level simulation models. Our experiments show that
orders of magnitude in power consumption can be saved compared
to a conventional architecture to a negligable performance cost. The
method used is complementary to other power saving techniques
such as voltage and frequency scaling.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures – Mobile
processors.

General Terms
Measurement, Performance, Design, Experimentation.

Keywords
Mobile terminals, chip-multiprocessor (CMP), power consump-
tion, energy-aware scheduling.

1. INTRODUCTION
Power consumption has played an increasingly important role in
the field of computer architecture and will continue to do so in the
future. As the number of available transistors on a chip increases,
so does power consumption, which indirectly affects heat dissipa-

tion and packaging costs. This is currently a major problem for
high-performance computers. Mobile terminals, such as personal
digital assistants (PDAs) and mobile phones, depend on batteries
as the main source of power. Unfortunately, the advances in battery
technology have increased the available energy by only a few per-
cent per year so far. Also, future mobile terminals will require
more performance than most of today’s embedded architectures
can deliver. Considering the visions published by the Wireless
World Research Forum, it is obvious that the performance
demands on the computing platform in future mobile terminals
will be very challenging [16].

The need for high performance will be highly dependent on the
behavior of the load, which is anticipated to be bursty in these sys-
tems. For long periods, the performance demand will be negligible,
which puts the terminal into standby-mode. At other times, such as
during video encoding and/or relaying between different radio
standards using software defined radio (SDR), the need for perfor-
mance will be high, causing peaks in performance demand.

Common approaches to enhancing the performance of a comput-
ing platform involve increasing the clock frequency or utilizing
some sort of parallelism. Increasing the clock frequency is effec-
tive but may require redesigning the circuits to deal with the
shorter cycle time, but most importantly, it increases the dynamic
power consumption (see equation 2 below). Since the supply volt-
age limits the clock frequency, it might be necessary to increase
this factor as well, resulting in a cubic increase in power consump-
tion. This is clearly not acceptable in an energy-effective mobile
terminal.

A common way of using parallelism in high-performance comput-
ers is to utilize the available instruction-level parallelism (ILP) in
the applications. This is a hardware-intensive approach to
improved performance and gives diminishing returns making it
unsuitable in embedded mobile systems [15]. A more promising
approach to achieve high system performance is to utilize the
available thread-level parallelism (TLP) which we believe will be
common in systems we are considering. With several processors
on one chip we can build a chip-multiprocessor (CMP) that can
easily scale performance efficiently. However, the increased per-
formance can cause the power consumption of the system to
increase if no effort is put into making it energy-efficient.

A device uses energy by consuming power statically and dynami-
cally. Dynamic power is consumed due to switching of transistors
and short circuit currents during transistor switches (eq. 1). Static
power is consumed due to leakage currents dissipated from the
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device. Today, switching power accounts for about 90 percent of
the total power consumption and leakage power for less than 10
percent. In this paper, we mainly tried to minimize the dynamic
power. However, it is anticipated that power consumption due to
leakage will increase to about 50 percent in the future with the
advent of new process technologies.

Switching power depends on several parameters: voltage (Vdd),

frequency (f), capacative load (CL) and the probability of switch-

ing (α) (eq. 2).

(eq. 1)

(eq. 2)

From (eq. 2) we can see that a quadratic reduction in power con-
sumption can be achieved by reducing the input voltage. Another
possibility is to reduce the frequency. These techniques–voltage
and frequency scaling–can reduce overall power consumption at
the expense of performance. The performance cost comes from
reducing the frequency, thus lowering the rate of execution.
Another factor is the added delays when changing the voltage and
frequency dynamically during execution.

As a complement to voltage and frequency scaling, we propose an
adaptive chip-multiprocessor (ACMP) architecture that has two
main goals: to satisfy the performance need of future mobile appli-
cations and at the same time minimize the energy consumed by the
system. The proposed CMP architecture will minimize switching
power by shutting off inactive processor cores dynamically. This is
achieved by using the existing power modes of the embedded pro-
cessor cores integrated on the CMP. Although several CMPs exist
today as either commercial products or academic projects [2, 8, 9,
11, 12 , 14], few have considered high-level power reduction tech-
niques [6, 10] and we found no published results of their effi-
ciency compaired against competing systems. The proposed CMP
architecture is adaptive in the sense that the available performance
and power consumption can be altered dynamically. This is accom-
plished by using run-time operating system information to shut
down inactive processors and thereby save energy. Several strate-
gies are possible; one can maximize the computing power by acti-
vating as many processors as possible or deactivate them if the
power consumption has a higher priority.

We have evaluated the proposed architecture using a high-level
simulation technique and an example of a bursty multiprogrammed
workload consisting of Commbench application programs [17].
The results show that the used energy can be reduced by an order
of magnitude while still meeting performance demands using a
four-processor ACMP running at 200 MHz as compared to a uni-
processor running at 800 MHz.

The rest of the paper is organized as follows. Section 2 describes
the proposed ACMP architecture. Section 3 describes the experi-
mental methodology we have used for estimating the performance
and power consumption. Section 4 then presents the results from
simulation using different energy-saving techniques and compar-

ing the proposed adaptive CMP architecture to a more traditional
embedded uni-processor system. Section 5 discusses the results
and draws some final conclusions.

2. ARCHITECTURE MODEL
Figure 1 shows the proposed architecture, which is a shared mem-
ory on-chip multiprocessor with a number of embedded processor
cores. Each processor core has separate instruction and data caches
and translation-lookaside buffers (TLBs). The processors share a
common unified 2nd level cache on-chip through a shared bus.

This is in itself a rather conventional CMP model. The novel
approach here lies in the capability of dynamically switching pro-
cessors on and off as the need arises. This opens up a number of
possibilities. The one that we are investigating in this paper is the
ability to disable inactive processors when they are not needed for
performance reasons. However, future work will look at the possi-
bility of very fast context switches by activating processors in
which a process context already resides in the registers and cache
memories. The same technique can be used for ultra-fast interrupt
handlings. However, in this paper we are only concerned with the
capability of dynamically adjusting power and performance to the
processing need.

We utilize the different power-saving modes often found in todays
embedded cores [1]. The processors usually run in normal mode
when using their full capability. In standby mode, the clock tree is
disabled, which eliminates most of the dynamic power. Finally, in
dormant mode the processor consumes minimal leakage power and
no dynamic power. Table 1 also shows how many cycles are
needed to reenter run mode from each state.

As stated earlier, a processor module in dormant mode will con-
sume minimal leakage power, making this mode effective in future
processor technologies when static power consumption becomes
increasingly significant. On the other hand, it requires more time to
recover from such a state. The 100 cycles given in table 1 only
refer to the recovery of processor state. In addition to this, the
cache memory needs to be reloaded with relevant contents.

Ptotal Pstatic Pswitch Pshort circuit+ +=

Pswitch Vdd
2

f CL α⋅ ⋅ ⋅∼

L2

CPU CPU

CPU CPU

RAM

Figure 1. An ACMP with four embedded cores.

on-chip multiprocessor

Table 1: Processor power modes

Mode Description Recovery Time

RUN Processor executing instructions. > 1 cycle
STANDBY Processor clocks stopped. > 10 cycles

DORMANT
Processor power rails off. Context
need to be loaded from external
memory.

> 100 cycles
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The ACMP architecture we are considering can be run in three dif-
ferent modes: normal, adaptive, and perfect adaptive. In normal
mode, processors not executing any user applications will execute
an idle process, thus still consuming power. In adaptive mode, pro-
cessors assigned to execute the idle process will be deactivated to
save energy. They can be deactivated in two ways: either they are
put into standby mode, which shuts off the clock tree, or they are
put into dormant mode, where leakage currents from the processor
are minimized as well. When returning from dormant mode, the
processor must load its context from the main memory, thus intro-
ducing a delay. In adaptive mode, we put half of the inactive pro-
cessors into standby mode and the other half into dormant mode.
We assume that a processor that is about to be deactivated initiates
this algorithm which might lead to another processor moving from
the standby mode to the dormant mode before putting itself in the
standby mode.

In perfect adaptive mode, the processors are deactivated perfectly,
which means that they can be deactivated or activated in one cycle,
consuming zero power when deactivated. The motivation for this
seemingly unrealistic mode is that it allows the optimal energy
saving to be estimated this way.

3. EXPERIMENTAL METHODOLOGY

3.1 Simulation model
We have modified and augmented an existing simulator from the
SimpleScalar simulation suite in order to estimate the performance
and power saving effects of our proposed architecture [4]. The
SimpleScalar suite is validated against existing processor models
and is a common and accepted tool in the computer architecture
community. The processor cores are modeled with a functional
simulator assuming each instruction takes one clock cycle to exe-
cute. We augmented the original simulator, sim-cache, to be a mul-
tiprocessor simulator where the processor cores are scalar RISC
processors running on a frequency of typically 200 Mhz at less
than one volt. Each processor core has an instruction and data
write-back cache and an instruction and data TLB. The processor
cores share a unified level 2 on-chip write-back cache. Each core is
connected to a shared bus which is arbitrated in a round-robin fash-
ion. The modeled ACMP chip is finally connected to an off-chip
RAM running at 133 Mhz.

The multiprocessor version of sim-cache was implemented by
duplicating the processor core, the level 1 caches and the TLBs.
Furthermore, the original inner loop in the simulator was modified
to a state machine to be able to handle concurrent bus requests. To
support execution of multiple processes on each processor and to
enable time-sharing on the processor cores, a simple scheduler ker-
nel with a period of 20 milliseconds was implemented. It was inte-
grated into the simulator source code and should not be regarded as
one of the user processes, thus it does not add any overhead in
terms of performance or energy. The processes in the workload are
also independent of each other so no cache coherence is required in
this model. The simulator starts each simulation session by reading
a workload file containing a list of release times and filenames of
process-traces created by a trace-generation tool from the Sim-
pleScalar suite, sim-eio. Processes are dynamically allocated to
processors, thus the scheduler assigns a process to an idle proces-
sor or the processor with least amount load during run-time.

Finally, the ACMP simulator, sim-acmp, was augmented with
power consumption models for the processor cores, caches, inter-
connect, off-chip bus and off-chip RAM memory. All on-chip
models were configured to produce results according to 0.18µm
process technology. The processor cores are functionally simulated
and their power consumption is estimated by assigning an energy
estimate, base cost, for each executed instruction. The base cost
was derived from typical embedded processor specifications [5]. It
has been shown that the power consumption of an embedded pro-
cessor can be accurately measured by assigning a base cost for
each executed instruction [13]. The cache hierarchy is simulated
using existing performance models from SimpleScalar and power
consumption is estimated using models from Wattch, which is a
simulator based on one of the SimpleScalar simulators and
extended with power consumption models [3]. The interconnect is
modeled as a 10 mm, 512-bit shared bus with round-robin arbitra-
tion and its power consumption is estimated using wire capaci-
tance models [18]. Also, the off-chip bus and DRAM memory is
modeled using an existing power model [7].

All power models are assumed to consume maximum power when
referenced, and zero dynamic power otherwise. This corresponds
to the cc1 clock gating mode in Wattch. Static power is only con-
sidered during simulation in adaptive mode, where processors turn
off the clock tree, but still dissipate leakage currents. In that case,
10% of maximum power is approximated as leakage power and
added to the total power.

Table 2 shows the various architecture configurations that have
been simulated and evaluated.

3.2 Workload
The workload of mobile terminals is usually divided into smaller
processes or threads and tend to have a bursty behavior due to
unpredictable user interaction. This means that besides some peri-
odical tasks, the workload is usually very modest. An user interac-
tion with the terminal causes a number of processes to execute,
forming workload peaks that demand high performance. Also, the
applications are highly parallel by nature, which means that they
can be easily distributed among the ACMP processors.

To model the bursty behavior, a workload scenario has been cre-
ated using applications from the Commbench benchmark suite
[17]. Figure 2 shows how the selected applications were organized
to represent a workload scenario where processes are started at
various time intervals. The workload consists of periodic and ape-
riodic processes. The periodic processes (FRAG and DRR) repre-
sent tasks that need to be done on a regular basis on a mobile
terminal while the aperiodic processes are typically activated upon
an external event like user interaction. We assume a situation
where the performance demand of each separate program can be
satisfied with a single processor in the ACMP running at 200
MHz. Figure 2 shows a situation where each process can run on its
own processor. With the previously explained assumption and the
given workload scenario it can be seen that at most five processors
are needed to satisfy the performance demand. When fewer than
five processors are used, some programs will be executed using
time-sharing. A process always finishes execution on the processor
to which it was allocated; thus no load balancing or process migra-
tion is utilized.
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The Commbench benchmark suite consists of a number of applica-
tions aimed at producing a workload typical in telecommunication
environments. The applications can be distinguished with respect
to how data is processed. The header-processing applications
(HPA) only process packet headers whereas the payload-process-
ing applications (PPA) process the entire dataset as a single packet.
A performance and energy characterization of the selected pro-
grams from Commbench listed below can be seen in tables 4 and
5. In this characterization, each application was executed using the
ACMP simulator with a single processor configuration according
to table 3. The processor is assumed to execute one instruction per
cycle if memory is not referenced. Otherwise, memory stall cycles
are added to the execution time. The power consumption of each
module is estimated using known models or figures from existing
components [3, 5, 7, 18]. The results from the energy characteriza-
tion show that applications with high memory stall-rate have a low
average power consumption. This is because the modeled second-
level cache and the off-chip memory are very energy efficient but
slow upon access; thus the energy is consumed over a long period
of time, which results in a low average power consumption.

The header-processing applications perform operations on a per-
packet basis independent of the size and packet payload type. The
Radix-Tree Routing (RTR) application performs a table lookup on
every packet in a datagram-based network, and on every connec-
tion in a connection-based network. In FRAG, packets are split into

multiple fragments and additional operations like header adjust-
ment and checksum computation are performed. The Deficit
Round Robin (DRR) fair scheduling algorithm is commonly used
in switches.

Table 2: ACMP configurations used in the experiments.

Model Power-saving modes Processor parameters

ACMPx_N
No adaption. All processors execute all the
time.

200 MHz, 0.7 V, x processors, 16/x kB instruction and data
L1 caches. 64 kB unified L2 cache. 0.275 nJ per inst.

ACMPx_A
Adaption where an idle processor is put into
the standby mode. Half of the idle proces-
sors are put into dormant mode.

ACMPx_PA
Perfect adaption into dormant mode without
execution time overhead.

SP_N
No power-saving mode. Total running time
set to the shortest ACMP execution time.

800 MHz, 1.65 V, single-processor, 16 kB instruction and
data L1 caches. 64 kB unified L2 cache. 1.125 nJ per inst.

SP_PA
Perfect power-saving mode when idle. Total
running time set to the shortest ACMP exe-
cution time.

SP_S
Scaled performance to match the need.
Never idle.

450 MHz, 1.09 V, single-processor, 16 kB instruction and
data L1 caches. 64 kB unified L2 cache. 0.556 nJ per inst.

SP
No power-saving mode. Total execution
time set to when program finishes all tasks.

800 MHz, 1.65 V, single-processor, 16 kB instruction and
data L1 caches. 64 kB unified L2 cache. 1.125 nJ per inst.

Figure 2. Workload scenario using the Commbench applications.
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Table 3: Processor configuration for benchmark
characterization.

Module Performance model
Power
(mW)

CPU
600 Mhz @ 1.3 Volt (0.18 µm),
1 inst/cycle

450

L1 I-cache (IL1)
4 kB, write-back, directly mapped,
32 B line, 6 cycle miss penalty

154

I-TLB
32 entries, 2-way associative, 4 kB
pages, 1000 cycle miss penalty

28

L1 D-cache (DL1)
4 kB, write-back, 4-way associative,
32 B line, 6 cycle miss penalty,
32-entry

411

D-TLB
32 entries, 2-way associative, 4 kB
pages, 1000 cycle miss penalty

57

L2 unified cache (UL2)
16 kB, write-back, direct mapped,
64 B line, 50 cycle miss penalty

91

Off-chip bus 64 bit wide 154
Off-chip memory 256 MB DRAM, 133 Mhz @ 3.3 V 352
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Payload processing applications usually consist of an encoding and
decoding section that operates on a stream of packets. ZIP is a data
compression application based on the Lempel-Ziv (LZ) algorithm.
The Reed-Solomon Forward Error Correction scheme is imple-
mented in the REED application. It adds redundancy to data trans-
missions.

4. EXPERIMENTAL RESULTS
Figure 3 shows a comparison of the performance as normalized
execution time for each ACMP and uniprocessor configuration
(see Table 2) running the example workload scenario. The graph is
normalized to the fastest uniprocessor configuration (SP).

The ACMP architecture is varied in the number of processors (1, 2,
4), cache sizes, and previously described power-saving modes
(normal, adaptive, perfect adaptive). The uniprocessor is executed
in normal mode (SP_N), then in dormant when inactive (SP_PA)
and finally voltage and frequency is scaled to 450 Mhz at 1.09 V to
save energy while providing just about the same processing power
as the ACMP with four processors (SP_S). For the sake of this
study, we assume that the necessary computing power is satisfied
with an ACMP with four processors. The execution time of the
ACMP with four processors will serve as a reference for how long
the uniprocessor will be running. Furthermore, we assume that the
amount of chip area is limited. This means that the first level
caches sizes are decreased as more processors are added to the
architecture. The single-CPU ACMP has data and instruction
caches of 16 kB each and a 64 kB level 2 cache. When another
processor is added, the level 1 caches will be halved to 8 kB each
and a four-processor ACMP has 4 kB caches.

As expected, the ACMP configuration with one processor running
at 200 MHz is four times slower than the reference processor.
When we add one processor to the ACMP configuration, we
almost get a linear speedup and the execution time is further
reduced using four processors. Since the workload processes are
totally independent, this is not a controversial result.

The are several reasons for not achieving perfectly linear speedup.
First, the ACMP configurations could perform better using load
balancing, which is not implemented here. As cache sizes
decreases, their miss rate increases, which also degrades perfor-
mance. Since the workload is bursty, the ACMP processor utiliza-
tion decreases when the idle time increases, which contributes to
the performance degradation. Another factor is that there are appli-
cations that require the processor computing power for a long time,
thereby keeping the processors occupied while others might be
inactive. Examples of such applications are reed_encode, rtr, and
reed_decode.

The results also show that the performance overhead when running
in adaptive mode as compared to perfect adaptive mode is very
small. In a two-processor ACMP, the overhead is non-existent
because both processors are occupied during the majority of the
simulation and therefore have few opportunities to enter power-
saving modes. In a four-processor configuration, more processors

Table 4: Performance characterization of selected
Commbench applications.

Application Dataset
# cycles

(106)
# inst
(106)

miss rates

RTR
32,239 entries of rout-
ing prefixes and IP
addresses.

1,414 811
IL1 : 1.66%
DL1: 0.34%
UL2: 8.72%

FRAG
100,000 packets of 20
bytes size, maximum
fragment size: 567

58 43
IL1 : 0.02%
DL1: 1.98%
UL2: 19.14%

DRR
1,000,000 packets,
quantum size: 10

425 213
IL1 : 0.03%
DL1: 6.72%
UL2: 4.40%

ZIP_ENC
Default html code,
compression level 6

2,399 227
IL1 : 0.00%
DL1: 19.59%
UL2: 62.11%

ZIP_DEC Encoded html code 132 40
IL1 : 0.08%
DL1: 2.87%
UL2: 24.17%

REED_ENC Default html code 761 623
IL1 : 0.02%
DL1: 0.16%
UL2: 7.50%

REED_DEC Encoded html code 1,428 1,205
IL1 : 0.03%
DL1: 0.15%
UL2: 10.41%

Table 5: Energy characterization of selected
Commbench applications.

Application
# mem ref

(103)
Memory
stall rate

Power
(mW)

Energy (J)

RTR
Loads: 245,966
Stores: 58,046

19% 490 1.15

FRAG
L: 7,637
S: 3,921

7% 593 0.06

DRR
L: 104,484
S: 21,836

18% 507 0.36

ZIP_ENC
L: 47,560
S: 15,104

87% 147 0.59

ZIP_DEC
L: 8,512
S: 1,846

62% 252 0.06

REED_ENC
L: 100,773
S: 33,639

0.4% 608 0.77

REED_DEC
L: 146,876
S: 68,455

0.4% 612 1.457

Figure 3. The performance of the different models.
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are inactive and therefore able to enter power-saving mode. How-
ever, this configuration did not introduce a significant performance
degradation. The estimated performance overhead amounted to
only 3 percent, which is due to several possible factors. First, the
state transition time is quite low considering the total simulation
time. Second, the performance of the processors does not seem to
decrease significantly even though their cache contents need to be
reloaded from main memory when recovering from dormant mode.
This could indicate that the applications have a relatively small
data set, which could be reloaded rapidly upon context loss.

One of the prerequisites in our experiments is that the performance
of a four-processor CMP is sufficient for the workload needs. In
order to make a fair comparison with a uniprocessor configuration
we scaled the clock frequency to 450 MHz which is represented by
the SP_S configuration in figure 3. As seen, it has about the same
performance as the four-processor CMP models. The energy cost
per instruction and voltage level for the scaled processor was inter-
polated from previously known values [5].

Any power reduction technique is useless if it reduces the perfor-
mance more than it improves power consumption. Not only is it
annoying for the user with low performance, but it might the final
energy consumption the same as before, or even higher, unless the
power consumption is reduced more than the performance is
reduced. In relation to the executions times of each process as seen
in figure 2, the overheads of adapting the number of processors are
very low and we do not anticipate any significant effect on the exe-
cution times. This can be verified in figure 3 where we can see that
the adaptive models (ACMPx_A) have only a slight performance
degradation due to the adaptation process. We will now see the
effect of the adaptive algorithm on the power consumption which
we hope will be more substantial.

Figure 4 depicts the energy consumption of the different architec-
ture configurations, broken down in energy consumed in the vari-
ous system components. The energy bars are normalized against
the energy of the uniprocessor without any energy-saving tech-
niques (SP).

First of all we can note that the dominating amount of energy is
spent in the CPU and the level-one data and instruction caches.
The rest of the memory system and interconnect is not very
energy-consuming. The reason for this is that the level-one caches
are accessed on every clock cycle and since the miss-rates with one
exception (see table 4) are very low, the energy spent in the rest of
the memory system becomes almost negligible.

Moreover, the results show that the total energy of the ACMP
architecture in normal mode first tends to decrease when going
from a single processor to a two-processor configuration. The
decrease in energy consumed is small. There are several reasons
why the reduction is so modest. The two-processor configuration is
first of all almost twice as fast as the single-processor configura-
tion. One could then argue that the total energy should also
decrease to about half of the single-processor configuration. The
reason is that there are cases when an application is executed on
one of the processors while the other processor is inactive. The
inactive processor is executing the idle process, which is very
energy-consuming because its high hitrate causes high stress to the
instruction cache and the CPU pipeline.When moving to a four-

processor configuration, the total energy increases to a level higher
than that of the single-processor configuration. Although this con-
figuration is faster than the previous configurations, the number of
processors executing the idle process is higher, which results in
even more wasted energy.

In adaptive mode (ACMPx_A), power is saved by putting the pro-
cessor in either standby or dormant mode. This reduces almost all
of the wasted energy because dynamic power, the source of the
majority of energy consumption today, is eliminated in both
standby and dormant mode. In adaptive mode half of the idle pro-
cessors are kept in standby mode and the rest in dormant mode. At
least one processor must be active to be able to activate or deacti-
vate the other processors. When using two processors, one proces-
sor is held dormant when possible and the other is kept in active
state. This removes the majority of the idle process execution and
introduces a small performance degradation since very few state
transitions are made due to high processor utilization. The energy
savings can be noted in the CPU and instruction cache. These com-
ponents suffer the most when running the idle thread. The four-
processor configuration saves even more energy by utilizing the
available parallelism and thereby executing faster. The energy
overhead compared to perfect adaptive mode was 2 percent.

The perfectly adaptive configuration (ACMPx_PA) shows how
much energy could be saved in the optimal case. As the idle pro-
cess time increases with the number of processors, so do the
energy savings in the optimal case, since idle processors are opti-
mally deactivated. One can see that a four-processor configuration
consumes about a third of the energy than the reference uniproces-
sor. Another observation is that there is a very small energy over-
head in the adaptive case compared to the perfect adaptive case.

The voltage and frequency scaled processor (SP_S) uses less
energy than the reference processor because it can run on a lower
operating voltage. As stated earlier, this has a quadratic effect on
power savings. However, the reduced voltage level also reduces
the maximum operating frequency. This results in a longer execu-
tion time than the reference processor, which degrades its energy-
efficiency. The energy savings and performance degradation
results in a energy-efficiency almost equal to the reference proces-
sor.

Figure 4. Energy distributions in the different models.
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Figure 5 depicts the energy-efficiency of each configuration with
respect to its performance. The efficiency is measured using the
Energy-Delay product where the energy from figure 4 is multiplied
by the execution time in figure 3. As expected, the single-proces-
sor ACMP configuration is not very energy-efficient mainly due to
its poor performance. When adding a processor, both execution
time and energy consumption are reduced, resulting in about the
same EDP values as the reference processor. The adaptive ACMP
architecture with four processors proves to be about twice as
energy-effective compared to the reference processor and orders of
magnitude more efficient than the uniprocessor with no special
power modes

5. CONCLUSIONS
We have proposed an adaptive chip-multiprocessor architecture
suitable for future mobile terminals with high processing demands
and bursty workloads. The idea is to adapt the number of proces-
sors dynamically to the current workload needs. To our knowl-
edge, this is the first study to report on performance and energy
effects of this kind of architecture under these premises.

Using high-level simulation models we have shown that an adap-
tive CMP can save an order of magnitude in energy as compared to
a uniprocessor system with no power reduction methods. Even if
adaption is not used, we have shown that a CMP architecture is
more energy-efficient than the powerful uniprocessor architecture
which would have been needed to cope with the peak performance
demands. We have shown that considerable energy can be saved
by deactivating processors whose computing power is not utilized.

We have in this study used a simulation based algorithm to decide
when processors should go to a power-saving state. In reality, the
decision should, of course, be taken by the operating system.
Future studies will investigate operating system algorithms for this
purpose, and we will then also have the possibility to study more
elaborate scheduling policies.

We will also look at the possibility to switch off parts of a proces-
sor to share cache memory state for fast context switching, or
interrupt servicing, without reloading cache state. Another impor-
tant issue is to look at representative workloads with real-time con-
straints and with inter-process communications.
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Figure 5. The Energy-Delay Product of the different models.
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