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Neuromotor prostheses are a type of brain-machine interface (BMI) that seek to extract 
signals from the central or peripheral nervous system and deliver them to control devices. 
A brain-machine interface is necessary to detect activity that can be voluntarily 
modulated for use as a motor control signal.  It is generally accepted that electrical 
potentials are the most valuable sources of information.  Neural commands for voluntary 
movement are essentially issued as electrical signals produced by the spiking (action 
potentials) and synaptic input of individual neurons; both can be recorded with varying 
degrees of fidelity and difficulty. The goal is to be able to detect signals that have the 
largest amount of information about movement and that change about as rapidly as 
movement commands themselves change. Clearly, recording at the source of the motor 
commands most readily fulfills these requirements, but indirect recordings of surrogate 
signals can provide an alternative or supplemental source, if one can learn to make 
indirect signals mimic motor commands.  The decoding methods for use in neuromotor 
prostheses are the culmination of many years of basic research on the motor system. 
Whereas recovering movement dynamics and kinematics from neural activity alone 
comprises a feat of basic science, their use as a control signal marks a shift to applied 
neuroprosthetics. In this chapter we review mathematical algorithms that have been tested 
in prototypes of intracortical neuromotor prostheses. ‘Closed-loop’ refers to the situation 
wherein the subject is provided access to recovered movement information, and is 
required to use this prediction signal in a behaviorally useful manner. This access may be 
afforded visually (neurally derived cursor trajectories), mechanically (as in stimulation of 
muscles via implanted electrodes), or any number of output devices.  We will consider 
several features that are unique to the closed-loop context of online control, including 
those specific to use in paralyzed human patients. We consider here the advantages and 
disadvantages of field potentials and spikes; in the final section of the chapter, we argue 
that a principled combination of all available information channels, processed by a 
multiplicity of decoding algorithms, will result in the most effective neuromotor 
prosthesis. 
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1.  Introduction 
 
Neural prostheses that can restore or augment human functions are now appearing as the 
result of rapid engineering and biomedical advances in the emerging field of 
neurotechnology.  Devices to restore hearing already are available, while those to 
reinstate sight and movement are advancing rapidly. While sensory devices have as their 
goal to inject signals into nervous system (typically the brain), motor prostheses seek to 
extract signals from the central or peripheral nervous system and deliver them to control 
devices. It is often forgotten that all voluntary output of the nervous system, whether it is 
cognitive or a low level reflex, must be produced by a signal from the central nervous 
system (CNS) to the muscles.  This includes a wide range of functions as speech, 
walking, emotive expression, as well as bowel, bladder and sexual function. Thus loss 
these actions when the pathways are damaged could be reversed by extracting control 
signals from the CNS and using them to drive output devices, including physical systems 
such as computers or robotic devices, other parts of the nervous system, or the muscles 
themselves. 
 In a fundamental sense, paralysis restricts the ability of the individual to interact with 
their environment.  In many motor disorders, such as ALS, muscular dystrophy, or spinal 
cord injury, the individual can be cognitively normal and fully able to generate detailed 
movement plans using higher motor control structures.  Neuromotor prostheses (NMPs) 
may either re-create the actual lost function or to provide a useful surrogate action to 
return the ability for the individual to interact with their environment.   
 Three overarching components are necessary for any NMP (Fig. 1).  First, an 
interface with the nervous system must be developed. This brain machine interface (BMI) 
must provide a means to detect or inject signals, be safe, last for long periods of time.  
The interface may contain only passive components, but active signal processing may be 
required for weak or noisy electrical signals.  For devices that are implanted into the 
body, both the interface and attached processing units must be biocompatible, immune to 
tissue damage, and sufficiently compact to fit into or onto the body.  The second essential 
design component is signal decoding.  Once signals are acquired, subsequent 
instrumentation must further process signals into a form appropriate for mathematically-
based decoding algorithms. The output of the second processing stage is in a form that 
can be used by physical or biological devices that produce intended actions.  In a sense 
this component is a decoder that translates brain language into machine language. The 
third component required for an NMP are devices that make effective use of the neural 
control signals.  This includes not only the identification of devices that serve practical 
purposes, but also the engineering of interfaces that can allow safe, meaningful use of the 
control signals.  Such devices include computer point-and-click type interfaces, the 
person’s own muscles, robotic arms, or even semiautonomous robots.  In this review we 
will consider the design principles to accomplish each of these three major steps 
necessary to produce an effective NMP.  These principles are established on the basis of 
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the current state of knowledge of NMPs from the literature and from our own laboratory, 
both of which will be reviewed here. 
 

 
 
Fig. 1.  The three major components of a neuromotor prosthetic. The physical brain-machine interface 
comprises a neural implant which chronically records the activity of neurons in the brain. These recorded 
signals are sent to hardware and software which decode that neural activity into intended movement signals. 
These signals in turn drive the third part of the neuromotor prosthetic, an output device for use by the patient 
whose neural activity is being decoded. This chapter discusses the range of choices for each of these 
components. 
 
 
2.  Control Signals 
 
A BMI is necessary to detect activity that can be voluntarily modulated for use as a motor 
control signal.  It is generally accepted that electrical potentials are the most valuable 
sources of information.  Such BMIs are therefore specialized recording electrodes.  Other 
signals such as chemical, metabolic, or blood flow changes are potential sources of 
information.  While BMIs that incorporate these alternative information sources should 
not be dismissed, they are considered beyond the scope of the current review. Only 
electrical potentials are discussed below 
 A major design constraint on BMI interfaces is deciding which type of electrical 
signal is desired.  The nervous system emanates a variety of signals in different frequency 
bands, with different information content and differing ability to be brought under 
voluntary control.  Neural commands for voluntary movement are essentially issued as 
electrical signals produced by the spiking (action potentials) and synaptic input of 
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individual neurons; both can be recorded with varying degrees of fidelity and difficulty. 
The goal is to be able to detect signals that have the largest amount of information about 
movement and that change about as rapidly as movement commands themselves change. 
Clearly, recording at the source of the motor commands most readily fulfills these 
requirements, but indirect recordings of surrogate signals can provide an alternative or 
supplemental source, if one can learn to make indirect signals mimic motor commands. 
Nearly all parts of the nervous system are in some way engaged in planning or 
performing a movement (consider the visual, auditory, proprioceptive and muscle signals 
issued in relation to reaching for a ringing alarm clock), and each of these areas might be 
evaluated as a source for control signals.  Signals related more directly to limb motion are 
present in a more limited, but still diverse, set of structures, including the cerebral cortex, 
thalamus, cerebellum and spinal cord. The cerebral cortex is a particularly suitable site 
for BMIs.  By being close to the surface, it allows ready access to electrical information 
via a number of recording technologies without penetrating deep into the brain.   
 From the cortex, one can attempt to detect the spiking of neurons, which are fast 
events (~ 1 ms, modulating from zero to a few hundred Hertz) reflecting the output of 
individual cells, or field potentials which carry information that is related to synaptic 
inputs and local processing and other forms of time locked massed activity (e.g., a fiber 
volley).  As will be discussed below, the basic tradeoffs between spiking and field 
potential signals are speed, degree of control, and difficulty in recording.  Slow potentials 
are easier to record and are available non-invasively from the scalp surface, or less 
invasively without penetrating neural tissue.  However, slow potentials modulate more 
slowly than spikes and carry significantly less information about the details of intended 
movement22,76,104.  By contrast spikes are difficult to record and require invasive methods, 
but they carry considerable movement information that modulates on the time scale with 
movement. We consider here the advantages and disadvantages of field potentials and 
spikes; in the final section of the chapter, we argue that a principled combination of all 
available information channels, processed by a multiplicity of decoding algorithms, will 
result in the most effective neuromotor prosthesis. 
 
 
2.1.  Field potentials  
 
Field potentials (FPs) reflect the summed currents of a volume of tissue and are hence 
indirect measures of neural processing.  As such, FPs can be detected by large electrodes 
placed on the skin or on or in the cortex. Because they volume average, they are 
relatively insensitive to the exact placement of electrodes, which is a marked advantage; 
but for the same reason they also contain severely reduced information about underlying 
neural processing. Nevertheless, neural prostheses based on these signals have received 
considerable attention.  We will only briefly review the current use of these signals for 
neural prostheses because this has been comprehensively covered elsewhere111.   
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 The electroencephalogram (EEG) is the easiest to record reflection of brain electrical 
activity. With only a few surface electrodes and inexpensive signal processing 
equipment, surface voltages can be detected at the scalp. Consequently, the EEG and 
other surface potentials initially received the greatest attention as a possible control signal 
source for a neuromotor prosthetic device, and devices based on this type of signal have 
been implemented with some success61. However, there are three major disadvantages to 
the use of the surface EEG as control signals: 1) they are slow to engage or modulate 
(over 1 second) so that control signals derived from EEG cannot mimic natural actions, 
2) they require mental concentration to the exclusion of other activities, and 3) 
continuous control beyond 1 dimension is difficult to achieve.  
 Wolpaw et al.111,112 observe that the maximum output rates of EEG based signals 
only achieves 5–25 bit/minute, but true operation rates are typically much lower.  Despite 
these limitations, humans are able to acquire voluntary control over the amplitude or 
duration of EEG signals in certain frequency bands. Subjects require some form of 
auditory, visual, or other biofeedback during the training phase in order to develop 
control. One common technique is known as ‘alpha-suppression’ in which the 8–10 Hz 
frequency band amplitude is voluntarily suppressed.  In this biofeedback based scenario, 
EEG signals are only used to trigger events, rather than provide continuous control.  
Spurious detections can be minimized by requiring the power to be suppressed for a 
certain amount of time, or by requiring multiple threshold crossings.   
 Such control has been used for human systems.  For example, Lauer et al.64 have 
coupled a beta-suppression based EEG system to an implanted electrical stimulation 
neuromuscular hand-grasp system: C5 quadriplegic patients successfully used this EEG-
based signal to open and close their hands via implanted stimulating electrodes. 
Birbaumer et al.9 and Kaiser et al.53 implemented an EEG-biofeedback system to provide 
low-dimensional control to functionally locked-in patients (see Chap. 7.8). Muller-
Gerking et al.75 demonstrated two types of EEG activity over primary motor cortex 
during visually guided movement: a rapid burst in activity induced by the visual cue (300 
ms long event) and movement related desynchronization (or synchronization) at 
movement preparation and initiation (1.5 s event), suggesting that different signals types 
may be obtained from the EEG.  These could be exploited for different types of control.  
Note that these signals are not related to movement kinematics or dynamics (i.e., forces) 
but are reflections of desired actions. 
 
 
2.2.  Event related potentials 
 
Event-related potentials (ERPs), which occur in response to an ‘event’ such as a flash of 
light, a sound, or internally generated intent to move, can be also be used as control 
signals.  One useful evoked potential, available at the scalp surface, is the positive 
waveform occurring approximately 300–450 ms (P300) after an infrequent task-relevant 
stimulus appears or is initiated21. A visual ERP, for example, can distinguish which of 
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several LEDs or colored targets a subject was regarding7.  These systems appear to be 
able to register relatively fast changes, on the order of 50–300 ms, although sensory 
evoked ERPs require fixed gaze and attention of the participant7,21. Thus, for all the 
surface recording strategies, the range of discrete states that can be easily achieved is 
small, and signal modulation is very slow, largely precluding the use of EEG-based 
signals for complex continuous movement control.   
 
 
2.3.  Cortical surface recordings 
 
Cortical surface recordings, obtained by placing electrodes in contact with the meninges 
to approximate the cortical surface, are used to decrease signal to noise problems 
introduced by the strong filtering and signal attenuation that occurs with scalp recordings.  
In addition, areas of the brain inaccessible by external recordings are available, such as 
the mesial surface of the temporal lobe.  These signals are often termed the 
electrocorticogram (ECoG) or the intracranial EEG (iEEG), although they are sometimes 
called local field potentials (LFPs), primarily in the experimental animal literature.  This 
nomenclature creates confusion with the LFPs that may be recorded by intracortically 
placed electrodes, which are a similar signal but can be more local depending on the 
nature of the recording electrode.  In both cases the signal is a slow wave (<100 Hz), not 
containing spike activity (but see 67).  
 The greater focality of the ECoG seems to provide a more useful signal to identify 
major states related to an intended movement because it may be able to detect local 
processing that is either topographically more discrete (arm vs. leg) or has greater 
resolution of movement intent.  Consistent with this conclusion, Levine et al.66 found that 
the speed and accuracy of motor-related ERP classification is better when performed on 
ECoG rather than surface EEG signals.  
 Electrodes placed at different cortical surface locations can be used to classify task 
parameters, such as voluntary movement frequency, the internal or external nature of the 
movement cue, the imagined or attempted degree of volition, and the stage of learning 
(novel task or overlearned). In this regard, Kunieda et al.62 found that while movement-
related potentials were recorded from electrodes over primary sensorimotor cortices 
during both rapid (2 Hz) and slow (0.2 Hz) finger movements, only slow movements 
produced such potentials over the supplementary motor cortex (SMA).   
 This detail of control may be useful at the muscle level.  Marsden et al.70 examined 
the coherence between EMG of selected muscles and neural activity recorded at pairs of 
ECoG electrodes on a subdural grid. They found that 50 to 70 ms periods of coherence 
between ECoG pairs and EMG occurred in different frequency bands (ranging from 5 to 
100 Hz) occurred at different locations, and that areas of cortex several centimeters apart 
could show coherence with certain muscles despite intervening cortex not showing such 
coherence. Furthermore the intervening cortex could show coherence with the muscles 
during other tasks. Toro et al.104 further found that the amplitude and direction of hand 
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movement in humans influenced the magnitude, duration, and extent of the spatial 
distribution of ECoG power changes in the 8–12 Hz band.   
 Taken together, these findings suggest that the tens of surface electrodes used in 
subdural grids could provide enough information to be able to distinguish among a 
number of intended movement conditions.  Whether the ECoG is sufficient to extract the 
details of a hand motion, in particular a continuous hand motion, appears limited, but this 
has not been ruled out experimentally. 
 
 
2.4.  Intracortical recordings 
 
The nature of signals available is again different when electrodes are placed into the 
cortex; it is at this level that electrodes can record either field potentials or spiking. Low-
pass filtering (<100 Hz) of intracortical activity yields a local field potential (LFP) signal 
thought to embody the collective synaptic input of local neuronal clusters36.  How this 
signal reflects the neural output is not established.  In visual areas the LFP appears to be a 
coarser  representation of the underlying spiking activity or perhaps cognitive variables32.  
However, this does not hold for primary motor cortex (MI) where LFPs are an unreliable 
correlate of neural activity5,22,76. Donoghue et al.22 compared LFP and extracellular multi-
unit activity recorded at particular electrodes and found that: 1) LFP suppression with 
motor action was ubiquitous across primary motor cortex even if neurons at that site 
began to fire with motion, and 2) fast LFP oscillations appear quickly upon transition 
from quiet sitting to resumption of task performance even when neurons are not briskly 
modulating. The results of combined LFP and neural discharge recordings indicate that 
LFP oscillations reflect a global process involved in motor planning and preparation, but 
in MI they do not necessarily capture the details of the motor action5,22,76. Thus in MI, the 
LFP seems to be a useful signal to identify the intention to move, but not more.  By 
contrast LFP signals recorded in the parietal cortex suggests that LFPs contain sufficient 
information to predict one of eight discrete directions with 100% accuracy, as well as 
task state, although these seem to obtain from higher frequency bands that are less 
evident in MI73,83. These studies suggest that intracortical LFP recordings may be able to 
provide discrete motor signals potentially with greater information than that available 
from the scalp or cortical surface. 
 
 
2.5.  Extracellular unit activity  
 
The firing of neurons in motor cortical areas provides the richest set of movement related 
signals. Neuron spiking carries specific aspects of the actual motor signal, and such 
neurons with motor information are broadly available in cortex. Particularly relevant to 
neuromotor prostheses, neurons rate modulate on a time scale suitable to generate 
movements as fast as they occur naturally. For voluntary arm movements in primates, 
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which have been most extensively studied, spiking correlates with force, muscle activity, 
joint angle, movement direction, and the significance of a cue25,30,51,55,103. Direction 
coding of hand motion in reaching tasks has been the most extensively studied of all 
coding. Neurons located throughout frontal and parietal cortex modulate their firing in a 
cosine tuned manner that reflects the direction of an intended reach34,93.  Across areas, 
neurons vary in the mixture of movement signals they carry; information is generally 
overlapping between areas.  Some of these carry force information; others may be 
coupled with other movements such as gaze direction4,13. 
 The firing rate of individual neurons varies on a short time scale, certainly less than 
50 ms and possibly within few milliseconds, so that it could be used as a dynamic control 
signal.  The spiking of individual neurons is a somewhat noisy representation of one or 
more underlying motor parameters, approximating an inhomogeneous Poisson process.  
Under the assumption that noise is independent, averaging has been used to show that 
pooling small numbers of neurons (<100) results in very accurate predictions of reach 
direction42. Simultaneous recordings of multple neurons show that noise is not 
independent.  Consideration of the interactions of neurons, such as their broad firing rate 
correlations, yields additional movement information71,79. Most studies have attempted to 
reconstruct a discrete parameter, such as the final direction of a movement; however, 
spiking can also be used to reconstruct continuous movements82,96,98. These studies in 
non-human primates indicate that spike processes of neurons are a rich source of signals 
to provide a real time, discrete or continuous control for a motor prosthesis for humans. 
The need to average across cells and the potential for extracting information through 
interactions, demand that multiple neurons be recorded simultaneously to use spiking for 
motor prostheses.   
 By contrast with these marked advantages of spiking, single neuron recordings 
present a formidable technical challenge to use for a prosthetic device. In order to record 
spiking, a small recording surface (a cone of 8–30 µm height that tapers from a base of  
4–20 µm to a tip of 1–2 µm) must be brought close to the cell body of a neuron47. 
Electrode tips must be placed ~100 µm or less from a cell body of <50 µm in diameter 
(median pyramidal cell diameter for cortex is ~ 20 µm 72). Optimal electrodes appear to 
have a geometry such that the recording surface tapers to a point, although successful 
recordings can be obtained by some using flat surfaces on the side of an electrode or at 
the cut end of a small diameter (~ 50 µm) wire3,100.  The tolerances of these measures are 
determined by the shape and size of the neuron as well as the type and shape of the 
recording electrode and other complex factors; for the most part they have been 
empirically derived.   
 Stable recordings are rather intolerant of even small motions of the electrode (ca. 50 
µm) which can change the signal to noise ratio and dramatically alter the shape of the 
recorded waveform, including a complete reversal of polarity40. Because neurons are 
noisy encoders or because information is spread across a population of cells, derivation of 
a control signal requires simultaneous recordings from many cells at once, an even more 
daunting technical challenge which will be discussed in the next section.  Further, use of 
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neuron spiking requires that signals be digitized at much higher rates (ca. 40 
kHz/channel) than LFP or EEG signals (<2 Khz/Channel) which are inherently lower 
frequency signals.  Finally, extraction of signals that are based on identified single 
neurons requires computationally intensive processing to sort spike waveforms from 
background noise.  Together these results suggest that each type of signal has a potential 
value for prosthetic devices, although spiking is the both the richest source of information 
and the most difficult to obtain. 
 
3.  Recording Devices 
 
3.1.  Surface and subdural recording 
 
The type of recording devices and their availability and safety constrain the solutions that 
can be applied to the creation of NMPs.  Surface EEG confers the major advantage of 
being non-invasive, and easy to record and process with reliable, commercially available 
products.  With only a few surface electrodes and inexpensive signal processing 
equipment, surface voltages can be recorded and sent into computers to be transformed 
into a control signal. Electrocorticograms use the same technology as EEG, but the 
electrodes are embedded in a thin plastic pad which is placed directly over cortex, 
beneath the dura mater.  Commercially produced, these FDA approved subdural grids are 
currently widely used in humans to locate seizure foci that cannot be found with less 
invasive methods. These grids remain percutaneous for a few weeks but it is not clear 
whether they could remain safely to chronically record a motor signal.  In addition, the 
output leads are currently percutaneous which tether the patient to a large recording 
system. Most subdural grids consist of 20 to 128 electrodes and cover between 5 to 40 
cm2 of cortex, so that relatively few cover a particular topographic motor area, such as 
the arm area of MI.  Placement of electrodes with high precision is not practical, but it is 
also not a major concern, because of the number of recorded sites and the summed, 
volume conducted nature of the signal.   
 
 
3.2.  Intracortical recording 
 
Recording intracortical signals, either spiking or LFP, requires the insertion of electrodes 
into the cortex. The invasiveness of this insertion procedure raises the threshold for use 
because of potential risk of mechanical damage to the brain during implantation or 
postoperative problems, such as infection.  However, it should be noted that devices such 
as surface EEG grids, ventricular shunts, deep brain stimulators, and drug pumps are 
routinely surgically placed in the nervous system.  Small intracortical devices should 
present less risk of damage than these devices; and infection risk is roughly the same for 
any intraoperative procedure done in a modern facility.  For devices, skin infections are 
the more common source of problem10,84, rather than within the CNS itself.  Thus 
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intracortical implants do not demand skills that are wholly unfamiliar to surgeons or 
present undue risks for debilitating neurological problems.   
 Intracortical devices can provide two types of signals:  LFP and neuron spiking 
activity. Both high (spikes) and low (LFP) frequency activity may be recorded 
simultaneously on the same electrode, if impedances and tip designs are appropriate. 
LFPs may be recorded with larger tipped (hence, typically lower impedance) electrodes; 
spiking of individual neurons requires smaller tips to obtain useful signal to noise ratios.  
Multiport electrodes3, microwire bundles74, cone electrodes56, and electrode arrays 
comprise the main intracortical recording tools available to collect multiple single 
neurons.   
 Multiport electrodes made with recording patches arranged along a silicon shank are 
useful for LFP recordings but have been less widely used for single neuron recording 
devices3,40. Multiport electrodes have been designed as single probes and as multiprobe 
arrays with the intention for use as a chronically implantable device for humans.  They 
have the marked advantage of being very flexible in design because they utilize 
semiconductor manufacturing process, but being thin they can be difficult to insert and 
stabilize in the cortex for long term implantation. These electrodes have been developed 
and distributed for a number of years by the Michigan group.  
 Microwire bundles, comprised of a group of ~ 50 µm insulted metal wires are 
successful at recording neurons and can be implanted for long periods of time.  However, 
these devices are fabricated by hand and their recording characteristics are difficult to 
control.  The wires are typically cut off by hand upon insertion making tip properties 
highly variable and they can cause tissue compression during insertion because they have 
a blunt surface.  Typically wires are fixed with respect to the skull so they can cause 
considerable damage due to relative motion between the skull and brain, which is on the 
order of 2 mm in humans.  Further, the reliability of wires to provide signals in which 
single neurons can be recovered is now more of an art form than a science.  Nevertheless, 
both Nicolelis110 and Schwartz et al.92 have been highly successful in obtaining chronic 
cortical recordings in non-human primates with custom fabricated wire bundles.   
 Cone electrodes, created by Philip Kennedy, consist of a glass pipette filled with a 
trophic factor to induce in growth of neurites56.  The cones are inserted into the cortex 
where neural processes grow in to establish contact with recording wires. It is not known 
which cells types respond to the damage of the insertion or the presence of the growth 
factor, so the source of signals obtained are not known.  The wires are attached to an 
implantable signal processing and telemetry system which is simple and reliable, though 
presently limited in the number of channels transmitted.  Unlike any other device up to 
this time, this technology has been successfully implanted in human motor cortex, where 
recordings have been obtained and sustained for years.  Humans have used these signals 
to control devices; this achievement provides an important demonstration that neural 
signals can be usefully employed once they are detected57,58. 
 Microelectrode arrays form another class of intracortical recording devices (Fig. 2). 
Arrays are fundamentally a lattice arrangement of a group of microelectrodes, each one 
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typically designed along the lines of a standard recording microelectrode.  Sharpened 
metal rods insulated except at the tip have been the mainstay of electrophysiology for half 
a century because they produce high quality signals, which motivates their use for 
prosthetic devices.  The “Utah” array, designed by Richard Normann and colleagues 
consists of 100 such microelectrodes52,72, but they are fabricated from silicon.  Metal 
arrays are being developed by others; these include the system developed by deCharms et 
al.20 and the MIT/Brown array14,31.  
 

 
 
Fig.  2. Two examples of multi-electrode array technology. The left-hand column shows the Utah array 
developed by Dick Normann at the University of Utah and subsequently commercialized by Bionic 
Technologies (now part of Cyberkinetics, Inc). The upper left photo shows the array and the percutaneous 
connector. The right-hand column shows a metal array developed in a collaboration between Brown University 
and MIT. 
 
 Silicon electrodes have been used successfully to record single neurons for years in 
non-human primates.  They have significant advantages over other technologies in that 
they can be fabricated under precise control in a variety of patterns, shapes and 
configurations.  In addition, arrays are allowed to float on the cortical surface, so that 
relative motion of the skull and electrode tethering through the connection cable is less of 
a concern.  Observations from our laboratory based on data from twenty eight arrays 
indicate that useful signals can be derived from ~ 30–40% of the active electrodes. 
 All these invasive devices raise the concern of long term biocompatibility and 
stability. Useful neural signals can be obtained with cone, wire, and array electrodes, and 
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early histological evaluation suggests that tissue reaction is acceptable; indicating that 
suitable long term interfaces can be achieved. In support of the long term acceptance of 
devices in the brain, electrodes implanted in the ventrolateral thalamic and subthalamic 
nuclei of humans to treat the motor impairment symptoms associated with Parkinson’s 
disease and essential tremor have functioned for several years84.  
 
 
3.3.  Physical constraints of an NMP interface 
 
All recording devices have packaging size, bandwidth, and power consumption issues 
that must be considered in their design.  These are significant when considering 
implanted devices because they must survive in a hostile environment for long times.  
The implanted hardware can be viewed as having three separate parts: (1) recording 
electrodes; (2) signal conditioning, typically with pre-amplification and filtering to 
extract the desired signals (e.g., spike, LFP); and (3) a processor to transform signals into 
a useful control signal. In addition, there must exist a means to transmit the signal 
between recording, conditioning and processing devices.  
 The first component can be considered a passive one, while the others are active 
because they have circuits with power demands.  Currently, for implantable systems 
being developed in primates43,56,60,72,89 the active components (2, 3) are outside the 
subjects’ body and signals are passively conveyed to signal processing devices, although 
Kennedy’s system conditions four channels and transmits them. In the future, 
miniaturized signal conditioning and processing systems and telemetry will be necessary. 
Low-power, high channel telemetry systems for dozens to hundreds of channels are now 
at or beyond the edge of current technology.   
 The materials of the implanted device as well as the circuitry and wiring must be 
biocompatible.  This is a two direction challenge. The package must be made of materials 
that will prevent its degradation from biological reactions and the materials must not 
damage to surrounding tissue either mechanically or though tissue reaction (e.g., 
inflammation or gliosis).  These are formidable problems that cannot be considered as a 
stationary process. As the tissue reacts to the implant, the environment may change; thus 
materials suitable for short term implantation may not be adequate over the long 
term3,38,71,89,106. FDA approved biocompatible epoxies and thermoplastic polymers such 
as parylene remain the most likely materials to coat and encapsulate the implanted neural 
interfaces because they have the longest history of testing. Other significant issues relate 
to the nature of cabling from electrodes to other connectors or processing devices, high 
density percutaneous connectors, and telemetry devices.  These will only be considered 
briefly here because they are discussed in greater detail elsewhere45. 
 EEG and LFPs have signal power in the 1–200 Hz range, so that amplifiers and A/D 
design is well within the bandwidth and signal processing power that is currently 
available.  Small packaging is perhaps not yet satisfactory if ~ 100 channels are desired.  
A signal of 20 kHz aggregate rate (200 x 100 channels) is easily processed by modern 
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circuitry, especially if this is done on a standard PC board without miniaturization. By 
contrast, the demand for large numbers of single neurons is substantial by present 
standards.  Individual action potentials last ~ 1 ms. Effective transmission of the 
extracellular potential waveforms should have a sampling rate 40 kHz or higher. Neural 
data from 100 electrodes at a sampling rate of only 10 kHz with a resolution of 10 bits, 
requires a baud rate of 2 gigabits/s.  This is not easily achievable by current technology, 
especially if it is designed to be small enough for subcutaneous implantation.  Another 
concern is that beyond a radio frequency of 300 MHz, signal energy (as locally dissipated 
heat) may damage tissue. 
 Such implanted NMPs must also have sufficient power to continuously amplify and 
stream high bandwidth data from multiple parallel channels and yet not produce 
excessive heat that would alter or damage tissue. Amplification of the 10 to 300 µV 
neurally generated signals is discussed in Section II of this book.  It is not clear that 
battery technology is sufficient to power completely self contained multiple single neuron 
NMPs, while a surface system with external (percutaneous) connections is possible to 
fabricate using available technology. Implantable neuromuscular stimulators41,69 employ 
inductive techniques to transcutaneously power implanted electronics; a similar strategy 
might be used to power recording processors. 
 
 
4.  Decoding Algorithms: Principles 
 
The decoding methods for use in neuromotor prostheses are the culmination of many 
years of basic research on the motor system. Whereas recovering movement dynamics 
and kinematics from neural activity alone comprises a feat of basic science, their use as a 
control signal marks a shift to applied neuroprosthetics. In this section we review 
mathematical algorithms that have been tested in prototypes of intracortical neuromotor 
prostheses. We define ‘open-loop’ to signify recovery of movement information that 
takes place without the subject being aware in any way of this recovered information. 
Such open-loop processing usually occurs offline as recorded experimental data is 
analyzed, but may also happen in real time as the experiment progresses and the 
investigator observes ongoing predictions, though the subject remains unaware of them. 
‘Closed-loop’ refers to the situation wherein the subject is provided access to recovered 
movement information, and is required to use this prediction signal in a behaviorally 
useful manner. This access may be afforded visually (neurally derived cursor 
trajectories), mechanically (as in stimulation of muscles via implanted electrodes), or any 
number of output devices.  We will consider several features that are unique to the 
closed-loop context of online control, including those specific to use in paralyzed human 
patients.  
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4.1.  Two learning machines 
 
In seeking a control signal we are confronted with two general approaches: do we have 
the computer learn the relationship between neural signals and some external parameter 
(‘computer learns subject’) or do we have the subject learn how to drive his own cortical 
activity that is arbitrarily assigned to an external signal (‘subject learns computer’)? 
These two coupled learning systems could fail to converge (which would be tantamount 
to ‘chasing the noise’, Mumford, 2001, personal communication), thus preventing the 
genesis of a useful control signal. In theory, a perfect mathematical prediction of a 
subject’s intended movement would require no effort or learning to use, whereas a 
randomly varying weighting of a subject’s neural activity would be impossible to learn.  
 In practice, an optimal system will most likely occupy a ground in between 
completely accurate decoding and fully mastered biofeedback control; both learning 
systems will be engaged. The question for the neuroprosthetic designer becomes: how 
can I best have the computer ‘learn the subject’ so that it provides a control signal that the 
subject can most easily and rapidly improve her control? How can we transform a neural 
signal, either spiking or field potential, into a regime wherein a subject can efficiently 
master voluntary control? 
 Most systems based on EEG biofeedback fall into the ‘subject learns computer’ 
category; subjects are required to learn to control their own neural signals in the form that 
the computer presents them. While these systems do perform signal processing on the 
EEG signal, they do not attempt to link into specific motor commands a priori to 
biofeedback training.  The reason for this is self-evident — they are based on signals that 
are not the natural movement signal, but are rather a surrogate for it. 
 The laboratories using spiking signals have focused on the ‘computer learns subject’ 
category; by having the subject play a calibration game, the computer is provided with 
enough neural and kinematic data to construct a mathematical model. The model is then 
implemented in realtime to decode future neural activity into the kinematic prediction. 
This prediction can then be used to substitute for actual hand movement in driving an 
output device, such as a computer cursor. Accurate models will be easy to control; from 
the subject’s point of view it will be no different than the original motion (or imagined 
motion) they performed during calibration. Inaccuracies in the decoding will require 
more effort on the part of the subject to compensate.  Of course, one challenge for a fully 
paralyzed individual is that the natural movement will not be possible.  Trial and error 
calibration will be required. 
 
 
4.2.  Discrete and continuous signals 
 
There are two classes of signals which may be reconstructed from neural activity: 
discrete cardinal states, and continuous ordinal variables. Discrete states may comprise 
distinct movement categories (such as one of eight possible intended directions of arm 
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movement, or the contraction state of a muscle) or states that modify the parameters of 
the decoding algorithm itself. Discrete states of the latter class include patient awareness 
levels, or commands that route the timing or destination of movement signals. 
Continuous signals embody absolute characterization of a movement parameter, such as 
the three dimensional position of the hand in Cartesian space, and have the ability to vary 
smoothly in time and space. While discrete motor outputs can be concatenated to emulate 
continuous control, and while continuous signals could be discretized into separate states, 
extracting each class requires different calibration and decoding steps. 
 Surface EEG, subdural ECoG, and LFP signals have been used in discrete classifier 
strategies, the most simple being discrimination between two neural activity states to 
create a single Boolean switch9,61,66. Investigators have relied on elaborate uses of this 
single switch (such as hierarchies of menus, see Kyberd and Chappell 26,63) to control 
assistive devices, but here we concentrate on extracting a richer array of discrete intended 
movements. The functional utility of discrete commands will increase considerably when 
sensibly combined with continuous movement signals. 
 Whether an algorithm will yield a discrete or continuous signal depends upon the 
manner in which the kinematic variables are originally represented, both in terms of the 
behavioral task and the data structure. Discrete tasks usually comprise simple movements 
(such as a ballistic reach), and the action states must be labeled (such as ’reach in 
direction of 45 degrees’. The fine kinematic details within an action state are thus 
ignored. To build continuous models, however, calibration tasks often require more 
complex or wide-ranging movements, and all kinematic details must be captured.  The 
exact strategy to build a particular encoding model will depend on assumptions made 
about the encoding process itself.  Thus, a Gaussian position model could be built from a 
few samples (to determine mean and variance), if the Gaussian properties are very 
reliable and stable.  Data to date are not sufficient to make such assumptions 
unequivocally82. 
 In the generation of discrete signals, laboratories have employed variations on the 
center-out task developed by Georgopoulos et al.34.  In this task, the subject moves the 
cursor from a center “hold” target to one of several peripherally positioned targets. The 
task enables investigators to determine the directional tuning properties of recorded 
neurons. The standard procedure is to average the firing rate immediately after the “go 
cue” or immediately preceding the start of movement, across all trials in a given 
direction. The resulting direction-conditional firing rates comprise an empirical 
distribution representing the neuron’s directional tuning properties.  It is also possible to 
integrate information about the magnitude of the movement to derive profiles based on 
velocity, position, acceleration and force. 
 Unlike discrete decoders, in which all possible predicted outputs must be sampled at 
least once for model calibration, continuous decoders do not attempt to sample every 
possible instance of a kinematic variable, but rather explore the space sufficiently that the 
model can capture the essential mapping to extrapolate reconstructed kinematics, 
including instances that were never previously visited. Efficient sampling of this 
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kinematic space is of greater importance in the neuroprosthetic context than in basic 
science, where lengthy data sets may be carefully analyzed offline after the experiment.  
 For paralyzed patients, lengthy or complex calibration routines will be unfeasible, 
especially if they must be repeated. Efficient sampling has been attempted by observing 
naturalistic behaviors or by carefully controlling the statistics of the stimuli. Wessberg et 
al.110 employed the former by monitoring the three dimensional hand position of a 
monkey freely retrieving food from spatially arranged trays. Such self-paced untrained 
movements rely on the intrinsic variability of repeated movements to supply the decoding 
model with sufficient sampling. Paninski et al.81 envisioned the problem as one of 
supplying the motor system with white noise, in the form of a randomly moving target for 
the subject to track, to build a transfer function. Not only does such a strategy ensure a 
wide range of kinematic features are exercised, it allows detailed control of the statistics 
of this sampling that can be used later to improve the encoding and decoding models. 
Taylor et al.102 employed an elaborate iterative procedure whereby neurons acquired 
tuning properties over several weeks to facilitate better control. Serruya et al.98 used data 
acquired while the subject acquired randomly positioned, uniformly distributed stationary 
targets. 
 
 
4.3.  Mapped variables 
 
In constructing algorithms that are to extract movement control signals from neural 
activity, investigators must choose what features of the neural and kinematic data they 
seek to model. Neural activity can be divided not only into different frequency ranges, 
but further parsed into data structures thought to indicate distinct features of underlying 
computation. Local field potentials are thought to reflect local input into the recorded 
area, and many investigators have converted such signals from the temporal to the 
frequency domain. Pesaran et al.83 employs multi-tapered spectrograms to isolate features 
robust to nonstationarities in the signal, whereas Marsden et al.70 convert surface 
potentials to the frequency domain in order to measure coherence between recording 
sites. Isolated action potentials can also be considered in terms of their timing relative to 
LFP oscillations, or relative to other spikes22. Taylor et al.102 and Vargas et al.108 have 
used the fine temporal structure of spike trains (such as the presence of synchronous 
spikes within narrow windows) as input into population vector or spike metric 
algorithms, respectively.  
 Numerous groups have been able to extract a wide range of movement parameters 
from multi-neuron recordings30,103. In addition to position, velocity and acceleration, 
investigators have been able to predict from neural activity joint torques87, generated 
force95, task stage in a sequence15, and contraction state of multiple muscles 
independently8,35. As investigators explore new output devices as end effectors in 
neuromotor prostheses, other classes of kinematic variables may be introduced relevant to 
those particular devices, such as robotic arm servo positions. 
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4.4.  Control and meta-control 
 
Decoding algorithms can generate two levels of command signals.  We can define control 
signals as those which actively control some feature of the movement of an output 
device, for example the three dimensional endpoint of a robotic arm. Meta-control signals 
are those which modify the way in which control signals are implemented, such as their 
timing or destination. Signals in the latter category include those which instruct the 
neuromotor prosthesis to initiate a control cascade at a particular time, or select a 
particular effector out of several choices. Meta-control signals provide patients the 
ability, for example, to decide whether neural activity will drive the wheelchair or 
functional electrical stimulation, or both. Certain physiological phenomena lend 
themselves to being used as meta-control signals; the pre-movement depression in the 
intracortical local field potential22 offers itself as an ideal ‘go-cue’ to trigger initiation of 
previously or concurrently generated movement commands.  Incorporation of multiple 
signals will likely be useful for both standard and meta-control. 
 
 
4.5.  Human calibration 
 
Beyond implementing algorithms that can reliably and accurately provide useful control 
signals, neuromotor prosthetics must address features unique to human use. Hambrecht39 
noted that to be accepted by patients and clinicians, neuroprosthetic devices must satisfy 
the following criteria: 1) the benefit of using the device must outweigh the cost, in which 
the benefit is measured in terms of functional gain, and the costs are mental, emotional, 
physical (including cosmesis), and financial; 2) use of the remaining CNS must be 
maximized while learning required to use the device is minimized; and, 3) the neural 
prosthetic must be simple to use and not require significant mental concentration. 
Tedious repetitive operations ought be automated, especially for patients who are frail or 
those who want to achieve multiple forms of control. These needs can be addressed by a 
principled choice of neural and kinematics parameters, supervision of how decoding 
algorithms outputs are used, and automation of certain tasks. In terms of the balance of 
two learning machines, it is worth noting that highly accurate decoders provide the most 
natural control; they should be as natural and easy as moving one’s limbs is for mobile 
individuals.  
 Most of the decoding algorithms rely on a calibration session during which a set of 
both neural and kinematic data are accumulated in order to build the parameters of the 
predictive model. Paralyzed humans will be unable to provide such kinematics, hence 
proxy variables must be developed. The most obvious choice will be to relate neural 
activity to the visual stimuli that instruct attempted movement. Auditory cues could also 
be implemented to instruct patients to attempt certain movements. Imaging studies by 
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Humphrey et al.48 and Shoham et al. 99 show that paralyzed patients can activate motor 
cortices many years after injury. Most importantly, Kennedy et al.57,58 has established 
proof of concept with locked-in patients who have achieved control, however limited, of 
a computer cursor with neural activity directly recorded from motor cortex. These 
preliminary findings imply that the neural activity in the brains of paralyzed individuals 
should be capable of generating a useful control signal. 
 Findings of two recent studies demonstrate that hand motions used to build decoding 
algorithms are not required to implement them. Taylor et al.102 have shown that neural 
control of a computer cursor is possible despite absence of original hand movement by 
restraining the arms of macaque subjects during an online neural control task. Serruya et 
al.98 found that a macaque subject ceased moving a manipulandum without instruction. 
These findings reinforce the view that sufficient information can be obtained without 
gross movement. In both these cases, however, it is impossible to rule out that some 
instance of clandestine movement provided the source of control. More important is that 
the goal of neuromotor prosthetics is not to forcibly dissociate cortical activity from 
external movement in healthy macaques, but to assess whether accurate, reliable control 
signals can be derived directly from cortical activity, and these two studies are evidence 
that this is the case.  
 In patients who do retain some movement in some muscles, but are paralyzed in 
others, the issue of dissociation may take on clinical significance in that control of the 
neuromotor prosthesis should not compromise already intact movement. In this case, the 
functional anatomy of neocortex should be considered; arrays should be implanted either 
in regions sufficiently distant from motor cortex retaining functional axonal output to the 
periphery, or in brain regions whose activation does not always require gross movement, 
such as premotor and supplementary motor areas, as well as other frontal or parietal 
regions. 
 The choice of recording device location relates to another issue of neuromotor 
prosthetic control humans: the conscious percept associated with achieving certain 
patterns of neural activity. Control signals based on neural activity recorded in parietal 
areas — which contain many neurons that encode movement in retinal coordinates — 
may lead to the confound of prosthetic control being distorted or superceded by eye 
movements. As non-invasive eye tracker systems to control cursors already exist as an 
alternative for eye-position based control, and as patients may not want motor effectors to 
move everywhere their eyes are directed, such a confound could be prohibitive in using 
certain cortical areas as the origin of the control signal. In a given brain region, the 
precise location of the recording device and the types of neurons recorded may also affect 
control. Kennedy et al.57 2000 demonstrated that locked-in patients could indeed activate 
neurons which grew into a neurotrophic cone electrode; however, initial attempts at 
control were described by patients as effortful to the point of exhaustion. While the 
reasons for this effort are unknown, it is possible that the small number of neurons and 
their origin as part of systems related to effort played in a role in this effect. Investigators 
may want to implant multiple recording devices in multiple regions to ensure recording 
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from a sufficient number of sites whose neural activity is based on easy-to-activate 
conscious percepts. In the meantime, initial development of NMPs must rely on existing 
knowledge about functional neuroanatomy. 
 
 
4.6.  Error measures 
 
Various measures can be used to assess prediction accuracy for reconstructed trajectories.  
Correlation coefficient, fraction of total squared error (r2), and Euclidean distance 
between actual and predicted movement have been used81,82,110. While such mathematical 
measures are useful for initial evaluation of an algorithm in extraction of control signals, 
more significant for prosthetic applications are functional error measures based on the 
device’s use by paralyzed people. Consider that a large mean squared error could occur in 
a trial in which a neurally controlled computer cursor nevertheless reaches its goal as 
quickly as if the hand were controlling it.  Extensive processing to reduce trajectory error 
below some threshold might be both time consuming for the user and potentially even 
beyond the capability of the system. Kilgore et al.59 evaluated the utility of functional 
electrical stimulation systems by considering the level of functional independence 
achieved with device use. Serruya et al.98 used a functional measure of time between 
target appearance and acquisition when controlled by either the hand or neural activity.  
Ultimately for patients, the measure that achieves the patient’s qualitative view of success 
that will matter most. 
 
 
5.  Decoding Algorithms: Examples 
 
For decoding that depends on spike activity, stability issues dictate that decoding doesn’t 
depend on particular cells with exceptional tuning.  The broadly overlapping 
representation of features by single neurons within a representational zone (i.e., the MI 
arm area) help with this problem. For illustrative purposes and critical evaluation, several 
examples of decoding algorithms that have been used to extract kinematic information 
from small neural populations area are now presented. 
 
 
5.1.  Population vector 
 
Georgopoulos et al.34 found that neurons recorded from in primary motor cortex could be 
described as having preferred directions, namely directions of movement outward from a 
central position that drove their firing most effectively. Furthermore, the change in 
activity from preferred to non-preferred directions could be stated as a cosine tuning 
function: |B| |M| cos θ, where M is the unit vector in the movement direction, B 
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comprises the regression coefficients for each dimension of that vector (up to three), and 
θ is defined as the angle between the preferred and actual directions of movement. 
 While any given neuron provides incomplete information about the actual velocity of 
movement, when the population of vectors generated from these cosine tuned functions 
are summed, accurate predictions of actual movement are possible34. Cosine tuning can 
be considered an encoding assumption. 
 In an extension of this method, Taylor et al.102 derived three dimensional tuning 
functions for simultaneously recorded neurons in monkey primary motor cortex and 
subsequently used velocity predictions based on firing rate to drive the position of a 
spherical cursor. Monkeys were successfully trained to use these prediction-based cursors 
as a substitute for actual hand motion102. Schwartz et al.93 described an elaboration of 
their model in which a neuron was assigned to one of three different cosine tuning 
functions per neuron depending on its firing rate range. Velocity-based models raise the 
concern of accumulating a position error upon integration; such drift errors affect 
accuracy and may require a method to automatically reset the cursor to an initial position 
should it move out of the workspace.  
 Schwartz et al.93 note that if cells are truly cosine tuned, and preferred directions are 
uniformly distributed, then the population vector is equivalent to a maximum likelihood 
estimation under uniform variance conditions. These assumptions can be questioned on 
the basis of recent findings of other tunings2 and non-uniform distributions37. In the case 
that such criteria are not met, a variety of procedures to weight the contribution of a given 
neuron to the population vector based on both its firing rate and its fit to a cosine function 
can be implemented to improve velocity prediction so that this approach can still provide 
a viable control signal option93.   
 
 
5.2.  Principle component analysis 
 
Principle components, based on the uncorrelated eigenvalues of the covariance matrix, 
can be considered as parameters which extract recurring patterns of covariance of 
ensemble neural activity. Principle component analysis (PCA) differentially weights each 
neuron’s contribution to population average according to its correlation with other 
neurons and has been used by both Wessberg et al.110 as a pre-processing step and Isaacs 
et al.49 as the central decoder in online neuroprosthetic decoding algorithms. The ability 
to parameterize the high dimensional space spanned by the complex spatiotemporal 
patterns of neural activity is both the strength and weakness of techniques such as PCA. 
While essential features of neural activity can be captured, loss of fine temporal or spatial 
structure may preclude generation of a detailed motor control signal.  
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5.3.  Maximum likelihood estimation: discrete control 
 
Bayes’ rule provides a means to calculate the a posteriori conditional probability 
distributions of particular states.  For example, by examining the firing rates in neurons in 
a defined time period around a cue to initiate movement, we can choose the maximum 
likelihood estimation of which way the monkey went. To build a model of this process, 
the probability of going a certain direction within the context of the experiment [P(dir)], 
the probability of a given cell firing a certain number of spikes after the go cue [P(ri

n)], 
and the conditional probability of firing at a certain rate given the monkey is moving in a 
direction [P(ri

n|dir)] are calculated. Using 15 cells, it was possible to guess the direction 
correctly over 60% of the time (five times chance) in an eight direction task. If the prior 
probabilities of P(dir) and P(ri

n) are not used, then the Bayesian formula reduces to a 
simple non-normalized maximum likelihood calculation.  Maynard et al.71 was able to 
correctly predict direction (out of eight) in 90% of tested trials using the firing rates of 16 
cells in a 600 ms window centered on movement onset. Hatsopoulos et al.42 used 8 
neurons and found 100% correct classification of two directions, using a 200 ms window 
placed immediately before movement onset. In both cases different permutations of cells 
were used and the results averaged. In an early demonstration of device control, Serruya 
et al.6,97 implemented a Bayesian decoder to drive a robotic arm to one of eight possible 
directions. 
 
 
5.4.  Linear filters 
 
Linear filters may be constructed by building a response matrix containing the firing rate 
history of each neuron for the last t seconds, and regressing this matrix onto the columns 
of kinematic absolute positions using a psuedoinverse technique. Linear filters comprise a 
closed-form solution of the least-squares formulation:  
 

u = R•f = R(RTR)-1RTk 
 
where R is the response matrix, f is the linear filter, k comprises the kinematic values 
(absolute position), and u is the reconstruction. The response matrix may be built in the 
format outlined by Warland et al. 109.   
 This method has been adapted for to be used for reconstructing movement by 
Paninski et al.81,82 (Fig. 3). Filters can be generated to estimate kinematic values based on 
neural activity preceding or subsequent to the time instance being evaluated. Serruya et 
al.96,98 restricted analysis to ‘causal’ (predictive) filters such that, for a given kinematic 
point at time t, the 30th bin (for each neuron) contained the rate at time t with the previous 
bins containing the firing rates earlier in time. Unlike the maximum likelihood model 
(which assumes a Gaussian probability distribution), or the population vector algorithm 
(which assumes a cosine tuned relationship between firing rate and movement direction), 
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the linear filter model makes no assumptions about underlying distributions of the neural 
representation of a kinematic variable; it simply solves for the least-squared-error linear 
solution. While the construction of confidence intervals, computing mutual information, 
and other theories built around linear regression assume Gaussian noise, the least mean 
squares equation doesn’t depend on normality anywhere (Paninski, personal 
communication, 2001).  This lack of constraint should take advantage of the full richness 
of the neural tuning functions available without the assumptions of potentially inaccurate 
parametric models (see also ref. 90). 
 

 
 
Fig. 3. Linear filter reconstruction of intended movement. This is an example of reconstructing 4.5 seconds of 
continuous movement using a linear filter model which takes the activity of 24 neurons recorded in motor 
cortex as input. The black dotted line represents the actual trajectory taken by the macaque’s hand, while the red 
line shows the reconstruction. In this particular example, the reconstruction took place offline after the 
experiment. From 81. 
 
 Serruya et al. 96,98 showed that the Paninski et al. 81 approach provides a quick and 
accurate neural control signal in monkeys. Neural control signals derived from linear 
filters based only on a few minutes of initial calibration were sufficient to allow accurate 
neural control of a computer cursor.  That is, the decoded neural signal substituted for 
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hand motion in a task that required movement of the cursor from one target to another 
randomly appearing target.  This decoding functioned immediately upon filter 
application, without any additional training; that is, this signal decoded accurately enough 
that it was a reasonable substitute for the hand motions originally used to perform the 
pointing task. The pronounced, immediate success of the linear-regression method 
compared with other approaches may be due to the lack of strong assumptions about 
neuronal firing, to the robustness of the linear-regression method, or to the type or 
number of cells used for decoding.   
 
 
5.5.  Adaptive neural networks 
 
There exist a wide range of neural network algorithms which may be used to reconstruct 
movement from neural activity. Schwartz et al.93 describes the use of a self-organizing 
feature map (SOFM) which consists of a single layer of nodes, each initialized with 
random vector n weights, where n is the dimensionality of the input. The SOFM is tuned 
by comparing an input vector to a weight vector for each node. Different learning rules 
may be employed to build associations into the neural network, including a winner takes 
all strategy, by which the weight vector closest to the input gets modified slightly closer 
to the input over a training session. Schwartz et al.93 found that this method could 
construct arm trajectories from neural data, and that the SOFM included the benefit that 
its representation of parameter space is topology preserving. The disadvantage of using 
this class of neural networks lies in the fact that resulting clusters must be manually 
labeled.  
 Wessberg et al.110 tested a more complex adaptive neural network to reconstruct 
trajectory in real time, but in an open-looped context, meaning that the subject (an owl 
monkey) was unaware of the prediction output. The ANN included a single hidden layer 
which was updated by a gradient descent backpropagation function offline before real 
time use. Wessberg et al.110 reported that such ANNs yielded slightly better performance 
than linear filter techniques in the open-loop context.  However, Gao et al.33 found that 
neural network based algorithms in fact performed worse than linear filters. Given the 
wide range of possible neural network architectures and updating learning rules, certain 
ANNs may yet prove to be useful in an online closed-loop context, but it will be 
worthwhile to understand the nature of the variability in the results.   
 ANNs have the distinct disadvantage over the previously described methods in that 
the means they by which they solve the decoding problem are not readily apparent. 
Unlike the algorithms discussed previously, the resulting weights present within a neural 
network do not lend themselves to intuitions about how neurons may be representing 
kinematic variables in a time-varying manner. Linear filter coefficients, for example, 
reveal not only which neurons are most strongly involved in a representation, but identify 
the optimal delay between firing rate modulation and kinematic estimation (Black MJ, 
Bienenstock E, Gao Y, personal communication).  
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5.6.  Feedback-driven models 
 
Fetz and Baker 28 and Schmidt et al.91 1978 found that macaques could be operantly 
conditioned to rapidly change the firing rate of one or more cortical neurons by visual 
cues.  Such biofeedback-driven control schemes could be usurped to control a prosthetic 
device. Biofeedback, based on data from non-invasive systems, can be powerfully 
incorporated into neural prosthetic devices.  Feedback may be in the form of external 
signals, such as visual or auditory cues, or via internally injected signals, such as 
electrical stimulation to substitute for lost sensory channels.  Recent studies suggest that 
meaningful percepts can be generated through electrical stimulation88,101 as discussed 
below.   
 Feedback-driven methods clearly fall more in the domain of ‘subject learns 
computer.’ Taylor et al.102 attempted to combine a feedback-driven calibration stage with 
decoding models based on assumptions of cosine tuning. They concluded that feedback 
enabled macaques to directionally-tune otherwise poorly tuned firing patterns, increase 
the dynamic range of these patterns, and evenly distribute preferred directions. In 
addition to the increased time and effort required to master feedback-driven control 
schemes, the open-ended nature of algorithms focused on ‘subject learns computer’ may 
make standardized, automated calibration routines difficult to implement. However, the 
principled use of feedback-driven features in combination with other decoding algorithms 
may prove a valuable addition to a supervisor algorithm organizing the control structure 
of a neuromotor prosthesis.  
 
 
5.7.  Number of cells 
 
In extracting kinematic control information from neural ensembles, the number of 
neurons recorded becomes an issue of great concern. Nicolelis 77 predicted that hundreds 
to thousands of neurons would be necessary to provide sufficient information for 
neuromotor prosthetic use. Two recent studies by Serruya et al.98 and Taylor et al.102 
prove that this is not the case. Both studies found that using less than 20 neurons, 
macaque subjects could achieve accurate control of a computer cursor in two or three 
dimensions. Such findings are significant in that they show a rich control signal can be 
provided from a small number of neurons; however they do not preclude the possibility 
that even more detailed and robust signals could be generated from a higher number of 
neurons. 
 Fellows et al.27,82 performed a neuron-dropping analysis to assess linear filter 
prediction performance relative to number of neurons used. Their basic conclusion was 
that prediction accuracy depended less on total number of neurons than on the particular 
features of individual neurons, i.e., some sets of neurons were more informative than 
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others. Obviously a recording system that can access a wider range of neurons will have a 
better chance of picking up more informative neurons; however such benefits must be 
weighed against the additional costs incurred by implanting larger or more complex 
devices into the brain. 
 
 
5.8.  Summary of decoding algorithms 
 
The studies discussed here indicate that useful motor control signals can be extracted 
from the nervous system. The richness of this signal, even from a limited number of 
recorded neurons or sites, has been demonstrated in non-human primates. The ability of 
such a wide range of algorithms to extract kinematic information directly from neural 
activity may imply an intrinsically linear or redundant encoding within cortex, but in any 
case paves the way for further studies in humans. The limiting factors of generating 
useful control signals may thus stem less from the power of available mathematical 
techniques, and more from the bioengineering and neurosurgical aspects of the design 
and implantation of the recording device. 
 
 
6.  Output Devices 
 
Once an accurate and reliable control signal can be generated from neural activity, NMP 
designers must next consider what type of motor effector is most suitable for paralyzed 
individuals. In this section we will discuss the output devices which have received the 
most attention for use in NMPs, and then review the role of semi-autonomous circuits 
within the output devices and the use of sensory feedback.  
 Output devices promise to restore functional independence to paralyzed patients by 
enabling them to navigate in powered wheelchairs, maneuver robotic limbs, activate 
electrical stimulation of intact muscles, and engage in a variety of computer programs, 
including those related to word processing, e-mail, internet browsing, video games and 
creative self-expression. 
 In determining which output device to couple to the neurally-based control signal, 
the desired function must be considered in practical terms. Arm motion is easier to 
emulate or use in either robotic limbs or electrically stimulated muscles. While progress 
is being made on electrical stimulation of trunk and leg muscles to restore standing and 
walking105, direct neural control over a wheelchair is a more immediate and practical 
application of a neural signal to restore independence to a paralyzed individual. 
 There are two types of movement which neuromotor prosthetics must restore to 
severely paralyzed patients: those related to communication, and those related to gross 
physical movement of the body, limbs, or objects to interact with. Clinicians quantify 
functional independence by an itemizing scheme known as activities of daily living (ADL 
59,65). ADL include such abilities as dressing oneself, feeding oneself, and moving around 
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the room. By restoring control over a variety of output devices, NMPs must allow 
patients to achieve such activities independently. 
 
 
6.1.  Assistive devices 
 
Before considering how NMP may achieve these goals, a review of current assistive 
devices reveals what has already been achieved with available technology and serves to 
motivate thinking about what NMPs may strive to achieve beyond available technology.  
 Severely paralyzed patients are often able to voluntarily move a very small subset of 
muscles, such as those of the tongue, a single finger, or to move or blink the eyes. A wide 
range of assistive devices has been developed to take advantage of the discrete, Boolean 
signals such movements afford. The most basic communication is for a visitor to ask yes 
or no questions, in which the patient communicates ‘yes’ or ‘no’ with one or two eye 
blinks, respectively. To spell out a word, visitors may slowly say each letter of the 
alphabet and the patient will blink when the desired letter is named; or a transparent 
board with the letters of the alphabet written on it is held before the patient, and the 
visitor can note the direction of the patient’s gaze to discover the intended letter.  
 Some of these functions have been automated by computer programs, such as 
EZKeys (Words+, Inc) which automatically highlights various letters or word choices; 
patients select a letter by briefly closing a discrete switch (through intact movement, such 
as by the tongue, a finger, or eyebrow) when that letter is lit up. A computerized version 
of the alphabet board is the scanning board: a matrix of letters and numbers are displayed, 
and each row sequentially selected. After a row is selected, each column is then cycled 
through until the desired item is found. Another system uses an infrared eye-tracker in 
which eye position controls the cursor. Note that these systems coopt available systems 
and therefore limit their use in other ‘natural’ activities. 
 Patients with greater mobility can use more switches to achieve more choices, more 
quickly. Certain quadriplegics retain movement control in the head and neck and hence 
can use multi-directional joysticks driven by chin position, or use respiratory control with 
sip-and-puff devices.  
 Once input to a computer can be obtained, a wide range of other functions can be 
achieved through automated or predictive computer programs. In addition to spelling out 
words to communicate with, disabled users can use one or more switches to control 
wheelchair movement or turn off and on appliances linked the computer through 
radiofrequency links (X-10). Finally, in addition to providing simple communication and 
the ability control wheelchairs and external appliances, computers can be used in and of 
themselves for such activities as email, internet use, video games for entertainment, 
programming, or creative expression. NMPs must enable users to achieve all the abilities 
provided for by existing devices, and do so in a manner that is faster, more reliable, and 
ultimately with many more degrees of freedom than a few Boolean switches. 
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6.2.  Computer cursors 
 
Preliminary research on closed-loop neural control has focused on moving a computer 
cursor around a screen or a virtual space58,98,102. The first application of cursor control 
will be communication: Kennedy et al.58 have shown that a paralyzed patient can achieve 
half-dimensional control over a computer cursor in order to select icons that 
communicate information to clinicians and family members. More detailed control will 
allow for such selection to occur more rapidly and provide a greater number of choices.  
 Cursor control strategies already tested in existing assistive devices provide useful 
tests of possible NMP designs. Rao et al.86 found that given the choice between a 
position-control and an isometric-force control joystick, patients with cerebral palsy 
preferred the position based joystick despite its increased instability relative to the force 
joystick.  Evans et al.24 found that disabled users preferred a head-operated infrared 
pointer that had the characteristics of a joystick (a discrete, relative pointing device) to 
those of a mouse (a continuous, absolute pointing device). The ability to toggle between 
discrete and continuous decoders may be crucial for users attempting to master voluntary 
control over particular effectors. 
 
 
6.3.  Robotic assistants 
 
Robotic assistants include computerized wheelchairs, robotic assistants, and robotic arms. 
Powered wheelchairs may be considered robotic when they are able to engage in 
repetitive or automatic tasks. While sip-and-puff, joystick, and eye-position based 
controllers can afford considerable mobility to paralyzed wheelchair users, numerous 
rehabilitation engineering groups are developing more sophisticated wheelchair 
circuitry1,29,113. These systems are termed semi-autonomous because they require some 
high order human control (such as instructions to move forward, backward, or turn), yet 
automate low-level tasks such as obstacle avoidance through the use of sensors and reflex 
circuits. Initial NMP robotic wheelchairs will simply replace the physical input devices 
(the mechanical or sip-and-puff switches) with decoded neural activity. NMPs, however, 
could achieve much more sophisticated control as more details of intended movement are 
conveyed to semi-autonomous robots. 
 In addition to wheelchairs, investigators have considered using neural activity to 
control robotic limbs. Robotic arms may be mounted on a wheelchair12,18,23,85, stationed at 
a desk107, or integrated into a prosthetic limb an amputee can wear11 (see also see links to 
robotic prosthetic limb sites in reference section). Both discrete and continuous control 
derived from neural activity has been used on robotic arms in experiments using healthy 
macaque subjects17,44,97,110. Robotic arms may be especially useful for patients in whom 
functional electrical stimulation is impossible, such as those with ALS or muscular 
dystrophy.  
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 In addition to wheelchairs and robotic arms, both of which are in close physical 
contact or proximity to the patient, robotic assistants can be controlled at a distance 
(telerobots) and may afford a greater range of independence. Semiautonomous telerobots 
could retrieve objects or perform other tasks for patients for whom wheelchair use is 
impractical. As with robotic wheelchairs and robotic arms, NMPs would replace 
mechanical switches with signals based on decoded neural activity (M. Black and H. 
Christensen, S. Suner and P. Pook, personal communications).  
 Semi-autonomous systems are appealing end effectors for NMPs because they 
combine the high order control signals directly from a human user with the low level 
automated navigational and task automation system of the robot. As with all assistive 
devices, it will be important to keep the user interface simple enough to be quickly 
learned and mastered. 
 
 
6.4.  Functional electrical stimulation 
 
For patients in whom the neuromuscular system, despite being cut off from the brain, 
remains essentially intact, NMPs coupled to Functional electrical stimulation (FES) exist 
as a strategy to reconnect the brain to the muscles to restore independent movement. 
Implanted upper-arm and upper-leg neuroprostheses based on FES have already been 
tested for several years in patients59,105. These systems operate by stimulating motor 
nerves as they enter muscles, causing the latter to contract. By controlling the electrical 
parameters and temporal order of muscle stimulation, these implanted neuroprostheses 
have restored basic movements (such as various hand closure grips) to provide patients 
with increased autonomy.  
 Quadriplegic patients with spinal cord transection at the level of the fifth cervical 
vertebra retain shoulder movement, but lose the ability to open and close the hand: by 
stimulating intrinsic and extrinsic hand muscles, FES-based neuroprostheses have 
allowed such patients to manipulate objects. These systems are particularly useful 
because they capitalize on the intact muscles; by enabling patients to pick up and hold a 
pencil, for example, the FES permits them to use shoulder musculature to ‘play’ the arm 
such they can sign their names and achieve other complex movement. 
 Currently, FES systems rely on mechanical or automated control signals. Upper-
extremity neuroprostheses developed by the FES laboratories in Cleveland are driven by 
an externally worn joystick on the contralateral shoulder41,59. Joystick angle is translated 
by the stimulator circuitry into a command to open or close the implanted hand. Lower-
extremity implants can be controlled by hitting one or more externally worn buttons that 
initiate specific stimulation sequences to enable patients to stand or engage walking 
pattern generators. Lauer et al.64 has successfully bypassed mechanical switches with one 
based on EEG biofeedback. In this study, patients were able to suppress beta-band 
activity recorded by scalp electrodes overlying sensorimotor cortices such that 
suppression of specified durations triggered opening or closure of the stimulated hand. 
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Lauer et al. reported that while patients appreciated the restoration of movement by 
‘thought alone,’ they found the EEG monitoring apparatus unwieldy and the conscious 
energy and attention required to master beta-suppression excessive compared to that 
needed to use the mechanical joystick.  
 As FES-developers increase the number of muscles that can be stimulated (including 
collections of muscles that might be controlled by stimulating key areas of the spinal 
cord), and therefore the number of degrees of freedom, generating an appropriate control 
signal gains considerable importance. Cursor control achieved by preliminary studies  
could be used in the context of robotic arms and FES controllers58,98,102. The idea would 
be that a two or three dimensional position would be fed into circuitry that would solve 
the inverse kinematics and engage robot servos or FES patterns to move the hand to the 
desired endpoint. As information is extracted about motions beyond hand position, such 
as simultaneous movement in multiple digits8 or the wrist46,54, NMPs might be able to 
restore considerably more elaborate control than simply end-point position. 
 
 
6.5.  Appliances and vehicles 
 
Activities of daily living could also be restored by NMPs by direct neural control over 
appliances (telephones, microwave ovens, televisions) and vehicles. Such control will 
undoubtedly be through computer interfaces that can rapidly and accurately transform 
neural activity into the appropriately structured control signal. As with the other assistive 
devices discussed, direct neural control would first seek to mimic the control already 
achieved by existing systems (such as mechanical use of a universal remote controller to 
turn off and on X-10 linked appliances) and then move on to faster, more wide-ranging 
control. 
 
 
6.6.  Sensory feedback 
 
Sensory feedback from output devices could enhance NMP use by providing users with 
information both from the effector being used (e.g., artificial propioception of a robotic 
arm) and about objects being manipulated (e.g., the heat of a cup being grasped via FES). 
Just as motor commands can be divided into control and meta-control, so too can sensory 
information be divided into content (continuous tactile sense of a surface being grasped) 
and meta-content (higher level instructions such as a warning light if wheelchair control 
is reaching a mechanical tolerance level, or a robotic arm battery is running low). 
 While visual feedback has been shown to enable considerable control, as it does in 
ordinary movement50, non-visual modalities may further enhance neuroprosthetic device 
control in various contexts. Kilgore et al.59 discuss how patients benefit from an electrode 
which provides sensory feedback in proportion to the grasping state of the stimulated 
hand. While patients with certain types of paralysis may retain their original sensory 



 Design Principles of a Neuromotor Prosthetic Device 1187 

feedback (locked-in syndrome, muscular dystrophy), patients with other types (spinal 
cord transection) do not and may thus benefit from direct stimulation of sensory cortex to 
restore tactile sense. Romo and Salinas 88 report that finely graded sensory discrimination 
is possible from direct cortical stimulation in monkeys. These studies imply that cortical 
feedback techniques are feasible. Sensory feedback may include information not only 
about touch and proprioception, but also temperature, pain (or damage to NMP effectors), 
linear and angular acceleration. Scinicariello et al.94 were able to correct for postural 
disturbances in standing volunteers by galvanic stimulation to the mastoid bone (posterior 
to the ear) which induces vestibular sensation. Such ‘balance prostheses’ may be 
particularly useful in NMPs aimed at restoring upright walking with FES. 
 Information from sensors on motor effectors need not all be sent to the user; semi-
autonomous circuitry can use force and position feedback to engage obstacle avoidance 
or other automated responses without requiring the user’s involvement. Whether to 
provide such sensory feedback directly back to the patients’ brain will be an issue for 
future empirical investigation. For a more comprehensive review of the use of sensory 
feedback in the context of neuroprosthetic control see 59,80,101. 
 
 
7.  Integrated Control 
 
Given the plethora of decoding algorithms and output devices, NMPs require some way 
of integrating control into a unified scheme with an intuitive user interface.  In this 
section we consider several features which NMPs ought to incorporate: a supervisor 
algorithm, adaptive processing of neural activity input and decoded command output, 
automated routines, predictive algorithms based on use statistics, and an overall 
integration framework. 
 As we do not yet understand the limits of control signals that could be generated by 
using particular combinations of neural activity classes and decoding algorithms, a 
pragmatic approach would be to compute multiple predictions of intended movement 
simultaneously and use the subset that provided the control the user found most 
beneficial. The decision of which decoded outputs are most useful will be a combination 
of automated accuracy measures and user feedback. During calibration sessions, 
supervisor algorithms can compare predicted output with instructed trajectories and 
automatically select the decoding algorithm which minimizes the error between the two. 
During daily use, the supervisor can use a variety of strategies: one might be an ongoing 
comparison between simultaneously generated decoded outputs and an averaging of the 
three signals with cross-correlation coefficients higher than some preset threshold; 
another strategy might be to track number of near-misses with obstacles (such as might 
occur in wheelchair navigation), and cycling to the next decoder after this number 
exceeds a certain threshold. In the user-feedback context, one or more decoded outputs 
can be used as meta-control signals, namely selector switches to demultiplex the most 
favored output to be used to control one or more output devices.  
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 Adaptive processing of neural input includes assessment of the quality of a neural 
signal at each conditioning and processing stage before it is used to build decoding 
algorithms. Using channels in which few or no action potentials are recorded, for 
example, may disrupt maximum likelihood estimation and linear filter models from 
functioning. If a neuron fires very infrequently or erratically during the calibration 
session, an maximum likelihood estimation based decoder may excessively weight its 
contribution when a spike does occur later. Channels with no spikes whatsoever will lead 
to singular matrices preventing correlation matrix inversion in linear filter generation.  
Signal processing schemas to remove these channels will be needed.  It is important to 
remember that decoding algorithms are not evaluated on mathematical errors based on 
extensive offline data (‘how well does the algorithm capture the actual movement that 
occurred in a healthy animal?’), but rather upon functional error measures (‘how well 
does the algorithm allow the paralyzed user to achieve output device control?’). 
 Just as erratic or non-firing single units can affect decoder performance, slow 
potentials can reflect global processes which can be examined to modify the way in 
which the decoders operate. EEG traces, for example, are thought to be good descriptors 
of global attention and arousal levels, wherein fast desynchronized rhythms indicate 
awake engagement, and slow synchronized rhythms indicate increasingly drowsy and 
asleep states. Moore (personal communication, 1999) incorporated these awareness states 
as input to ‘smart device drivers,’ namely, the principled use of arousal measures to scale 
the neural-to-kinematic mapping.  Moore found that at the beginning of a neural-control 
session, the cursor moved with such great speed and amplitude that the user was unable 
to visually track it, and towards the end of a session, the patient became fatigued and 
could barely move the cursor. By scaling cursor mapping to arousal state, ‘smart device 
drivers’ could in theory achieve considerably more uniform control and hence improved 
efficacy of an NMP. 
 Automated routines, discussed earlier as part of semi-autonomous control circuitry 
for robotic devices and FES, improve user independence by taking care of low-level, 
downstream control issues. Automated features emulate the low-level processing that 
occurs naturally in the reflexes, central pattern generators, and even motor plant 
properties of the intact central nervous and peripheral neuromuscular systems. Many of 
these routines will be conserved from the output device control strategies that have 
already been developed. Designers of myoelectric prosthetic arms, for example, found 
that users found it easier to have hand-closure as an involuntary default state, and hand-
opening being the state requiring voluntary myoelectric activation. Kilgore et al.59 noted 
that users found particular grip settings most useful, and rarely used certain intermediates, 
suggesting that ability to limit choices (voluntarily decrease the degrees of freedom) may 
be useful in certain output device control contexts. 
 NMPs should capitalize on algorithms which make predictions of intended 
instructions based on previously learned user behavior. Assistive communication aids 
already use word prediction in automated alphabet scanning programs such as EZKeys. 
The predictions can be based on the statistics of the language being used (for example, 
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the program can guess the letter ‘e’ after ‘th’ are already selected), or on those particular 
to the user (such as recognizing the start of an often used proper noun, e.g., guessing 
‘Fido’ given ‘fi’ or ‘Dr. Pirandello’ given ‘drp’)19,26.  
 Techniques used in visual pattern recognition can also be used: M. Black (personal 
communication, 1999) proposed that repeated neural or kinematic data related to 
movement gestures could be recognized, much like personal organizers take advantage of 
letters written in an instructed ’graffiti’ mode (trademark, Palm, Inc) . King (personal 
communication, 1999) proposed looking for certain temporal sequences that could be 
termed neural gestures that represent particular movements. Vargas et al.108 outlined a 
more comprehensive strategy by which the fine temporal structure of spike trains could 
be used to encode a variety of intended movement instructions. Another feature of output 
device control that NMPs can improve function on is hysteresis; myoelectric controllers 
engage different prosthetic hand grasps depending on the immediately preceding 
instructions and states of the prosthesis16,63,68. 
 The meta-control motor commands and the meta-content sensory feedback must be 
integrated to allow the appropriate control commands to be routed to the correct output 
devices at the right time and in the proper order. Just as automated wheelchair routines 
and FES sequences can be modeled as finite state machines, so too can the NMP control 
hierarchy. Reach and grasp movements of an prosthesis or an electrically stimulated limb 
could be controlled by distinct classifiers. The ballistic reach to a target area might be 
controlled by a discrete decoder, whereas control could switch to a continuous decoder 
output once in the target region to move an object or position the hand, and finally a 
switch to another discrete decoder would close the hand around an object. The decision 
of when to switch between output signal sources will be based on both meta-control 
commands derived from neural activity, and feedback based on sensors and automated 
sequences. 
 Finally, all these ongoing processes of neural activity filtering, decoding, output 
accuracy comparison, automated and user-feedback, and multiple device control must be 
assembled into a unified framework that is intuitive to set up and use for patients, 
clinicians, and assistants (such as family members, friends, teachers, and therapists). Not 
only do NMP designers wish to pragmatically take advantage of whatever movement 
instruction information may be available through recording multiple classes and channels 
of neural activity, and from the use of decoding algorithms and multiple processing steps, 
they also strive to build a system which can be scalable and modular as certain inputs and 
outputs are removed or added, and to allow increasingly adept users to maximize control 
by allowing them access to more of the inner workings of the integrated NMP. 
 Nisbet78 noted that attempts to group control of the numerous assistive devices used 
by paralyzed patients into one software program did not succeed because they ultimately 
compromised use of constituent devices. He discovered some principles of assistive 
device arrangement that we consider here in the context of NMP design: 
 Appropriate controls: Integrated systems must allow the user to choose the most 

appropriate and effective decoding algorithm control output for each target device.  



1190 M. Serruya and J. Donoghue  

 Overall control characteristics: Signals generated by neural activity are subject to 
processing, filtering and transformation en route to the target device. The control 
characteristics of the overall interface can be matched to the target device, and to the 
user’s physical, cognitive and perceptual abilities. 

 Distinct output devices: Different skills and controls are needed for each target 
device (e.g., a power wheelchair vs. a communication aid); integrated systems must 
therefore be designed to take account of these differences to avoid compromising 
safety and efficacy. 

 Considering all the design principles discussed in this chapter, we are forced to 
recognize that the design of an overall integrated control system will be a complex task 
akin to designing a computer operating system. The power to engage this daunting task 
will rely on the continued trust and cooperation between investigators and the paralyzed 
individuals who seek to become more independent by using neuromotor prostheses. 
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