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Modal Analysis of Constrained Multibody Systems
Undergoing Constant Accelerated Motions

~
Dong Hwan Choi, Hong Hee Yoo*

School of Mechanical Engineering, Hanyang University, Seoul 133- 791, Korea

The modal characteristics of constrained multibody systems undergoing constant accelerated
motions are investigated in this paper. Relative coordinates are employed to derive the equations
of motion, which are generally nonlinear in terms of the coordinates. The dynamic equilibrium
position of a constrained multibody system needs to be obtained from the nonlinear equations
of motion, which are then linearized at the dynamic equilibrium position. The mass and the
stiffness matrices for the modal analysis can be obtained from the linearized equations of
motion. To verify the effectiveness and the accuracy of the proposed method, two numerical
examples are solved and the results obtained by using the proposed method are compared with
those obtained by analytical and other numerical methods. The proposed method is found to be
accurate as well as effective in predicting the modal characteristics of constrained multibody
systems undergoing constant accelerated motions.
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of constrained multibody systems can be per-
l. Introduction formed. If a constrained multibody system has

a static equilibrium position, its modal charac-
Mechanical systems can be modeled as con- teristics, which are often important for system

strained multibody systems that consist of rigid design, can be also obtained. Equations of motion
and flexible bodies, joints, springs, dampers, are linearized at the static equilibrium position
forces and so on. In general, the equations of and the mass and the stiffness matrices for the
motion governing constrained multibody systems modal analysis can be obtained. Sohoni and
consist of nonlinear differential and algebraic Whitesell (1986) introduced a linearization me-
equations. To obtain the response of a con- thod based on a generalized coordinate parti-
strained multibody system, several computation- tioning method in which dependent coordinates
al methods (Sheth et al., 1972; Orlandea et al., are eliminated. Lynch and Vanderploeg (1995)
1977; Paul, 1977; Haug et al., 1982) ha,":.e been proposed another linearization method employ-
introduced since early 1960's. Several commercial ing QR decomposition by which a constrained
programs for multibody system analysis (for in- set of equations can be converted to an uncon-
stance, ADAMS, DADS, and RecurDyn) are av- strained set of equations. By using these methods,
ailable nowadays. By using these programs, kine- the modal characteristics of a constrained multi-
matic, dynamic, and static equilibrium analyses body system in state of rest could be obtained.

There exists a state of dynamic equilibrium
.Corresponding Author, which resembles static equilibrium. In the state of
E-mail: hhyoo@hanyang.ac.kr dynamic equilibrium, a part of the generalized
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Scho~1 of Mechanical' Engi~eering, Hanyang Uni- coordinates have constant values even though the
versity, Seoul 133-791, Korea. (Manuscript Received system varies with time. Therefore, in the state
August 20, 2003; Revised April 27, 2004) of motion, one may choose a set of generalized
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coordinates which become constant. This state design.
which is determined by the set of generalized The purpose of this paper is to propose a
coordinates will be hereinafter called a dynamic numerical method to calculate the modal char-
equilibrium state. The dynamic equilibrium state acteristics of constrained multi body systems un-
of the system can be easily calculated if a proper dergoing constant accelerated motions. Relative

generalized coordinate is chosen. Therefore it is coordinates are employed to describe a con-
important to choose a proper set of generalized strained multi body system and a velocity trans-
coordinates if one has the purpose to find the formation matrix is employed to derive the equa-

dynamic equilibrium state effectively. Relative tions of motion. If the system has closed kine-
angles and displacements between bodies are the matic loops, constraint forces arising from the
best candidates for the purpose. Such coordinates closed loops can be eliminated by using the ve-
are often called relative coordinates. Bae and locity transformation matrix. A formulation to

Haug (1987) introduced a multi body formula- seek the dynamic equilibrium state of a con-
tion by employing relative coordinates. However, strained multibody system undergoing constant
they did not provide a method either to find accelerated motions is first presented. Then lin-
the dynamic equilibrium state or to calculate the earization procedures for open and closed loop
modal characteristics ora constrained multi body systems are presented. To verify the effectiveness

system. and the accuracy of the proposed method, nu-
Constrained multi body systems undergoing merical examples are solved and the results are

constant accelerated motions exhibit distinct mo- compared with those obtained by other methods.
dal characteristics. As their accelerations vary,
their natural frequencies usu~lly vary, too. The 2. Equations of Motion

varying modal characteristics need to be predict-
ed accurately for a proper system design. How- In 3 dimensional space, a free rigid body's
ever, to the best of the authors' knowledge, the configuration can be determined by six coor-

varying modal characteristics cannot be calculat- dinates. Three scalar variables are employed to
ed directly by using any existing multi body an- determine the position of a point (for instance,

alysis programs (though some of them have the the center of mass) fixed in the rigid body and
capability to calculate the modal characteristics three successive rotation angles (often named as
of constrained multibody systems in states of Euler angles) are employed to determine the ori-

rest). Actually, even dynamic equilibrium states entation of the body. The coordinate set of the
cannot be calculated efficiently by using any i-th body of a multi body system is denoted as Xi.

existing commercial codes. To obtain a dynamic If a multi body system consists of n rigid bodies,
equilibrium state of a constrained multibody sys- its total coordinate set (named and denoted as a
tern (by using existing commercial codes), a tran- Cartesian coordinate set x) consists of n coordi-
sient dynamic analysis should be performe4-c with nate sets as follows:
a prescribed motion, which increases smoothly
and reaches constant acceleration. Then the mo- x= [xl xl... Xh] T (1)

dal characteristics can be obtained by analyzing I . h ..
hh .

11 . h ..By emp oymg t e CartesIan coordinate set, t et e OSCI atory motIon around t e dynamIc equI- ..'.
l.b . If h h d f equatIons of motIon of a constrained multIbody
I num state. t e system as one egree 0 b d . ed (N.

k h 1988)..system can e env I raves, as
freedom, one may count the number of osculatIon

fi II.0 ows:to find the natural frequency. However, If the

system has more than one degree of freedom, the Mx+ a>IA= Q (2)
oscillatory motion has to be analyzed by using a
Fourier transformation method. This procedure where M is a mass matrix, Q is a generalized
is time consuming and obviously not proper for force matrix, and A is a Lagrange multiplier
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matrix. The matrix tJ> represents algebraic con- be denoted as qp) to prescribe a constant acc-
straint equations that originate from kinematic eleration for a constrained multibody system. The
joints and tJ>x is the Jacobian matrix which is rest of q will be denoted as qR. Then, Eq. (5) can
the partial derivative of the constraint equations be rewritten as follows:
with respect to the Cartesian coordinate set. .- B . +B . (6)x- pqp RqR

A closed loop multi body system can be trans-
formed into a open loop multibody system by Now, by differentiating Eq. (6), the following
cutting joints as shown in Fig. I. The number of equations can be obtained.

cut joints is same as the number of closed loops. x=Bpqp+ BRqR+ BpiIp+ BRiIR (7)
The constraint equations that originate from the

t .. t d t d HoC d th t f th Now substituting Eq. (7) into Eq. (4) and pre
cu Jom s are eno e as 'V an e res 0 e

t . t t. d t d Hor S th -multiplying the results by BI, one obtains thecons ram equa tons are eno e as 'V. 0, e
1 ... f h following equation.

tota constramt equations consists 0 t e two sets

of equations as follows: BI[M (Bpqp+ BRqR+ BpiIp+ BRiIR)
( 8 )+ tJ>xCT ),.c+ tJ>xrT ),.R] =BI Q

tJ>= [tJ>CT tJ>rT] T (3)
Note that BI tJ>xrT is the null matrix since is the

Now Eq. (2) can be rewritten as follows: null space BI of tJ>xrT. Now the following rela-

tion can be used to further simplify the above
MX+tJ>CT)"C+tJ>rTtlr=Q (4) .x x equation.

where),. C and),. r represent the Lagrange multi- Ho -~ k- Ho ~- Ho
( )'Vq - a a -'Vx a -'VxBR 9pliers for tJ>c and tJ>r, respectively. R X qR iIR

The equations of motion can be transformed where the dot cancellation law (Rosenberg,
into a reduced form by employing relative coor- 1977) is employed. By using Eq. (9), Eq. (8) can
dinates. For the purpose, the following relation is be rewritten as follows:
often employed.

M*qR+tJ>~:),.c=Q* (10)
.t=BiI (5) hwere

where iI is the time derivative of relative coor- M*=BIMBR (11)
dinates q and the transpose of B is the null T T ..

Q*=B
Q-B (MB" +MB .+MB .

) ( 12 )space of tJ>!x. This relation is often called the R R pqp pqp RqR

velocity transformation (Kim and Vanderploeg, The acceleration constraint equations, the second
1986). One may choose some of q (which will time derivatives of the constraint equations tJ>c=o,

can be written as follows:

(j),: cut tJ>~RqR=""c (13)
~ where

.,..c= -( tJ>~R iIR) qRiIR -2 tJ>~Rt iIR -tJ>ft (14)

~fkl Equations (10) and (13) are used to perform a

dynamic analysis of a constrained multibody sys-
(j):1 tern undergoing a constant accelerated motions.

3. Linearization and Modal

no Equation
Fig. 1 Schematic representation of a closed loop

system In order to find the modal characteristics of a
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constrained multibody system undergoing con- Note that RT is the null space of q,g;. Equation

stant acceleration motions, the dynamic equili- (20) can be linearized at the dynamic equilibrium

brium state of the system has to be found first. At state q; and the following modal equations can

the dynamic equilibrium state, qR and qR be- be obtained to investigate the modal charac-

come zero. Substituting these relations into the teristics of the system.

equ~tions of.motion (10), one obtains the fol- M*8v+C*8v+k*8v=;:0 (21)

loWIng equation.

BT [ MB ..+MB ._ Q] +q,CT~C=O ( 15) where M*, C* and k* are the linearized mass,
R pqp pqp q." d . d .ff . f h d 1ampmg an stl ness matrices 0 t e mo a equa-

Since qp are chosen for translational motion, the tions and they can be calculated at the dynamic

sub-matrix Bp should be constant matrix. There- equilibrium state q; as

fore the time derivative of Bp becomes zero. So, A * -T *
( )h " ll . lb .. b . d M-RMR 22t e 10 OWIng a ge ralc equations are 0 tame to

find the equilibrium state. C*=RTM* R--k (RTQ*) (23)

BI[MBpqp- Q] + q,g; ;.c=O (16)

The above equations along with the constraint K* =-Iv ( -RT Q*) (24)

equations (q,c=O) have to be solved to find the
dynamic equilibrium state. Since these equations The simple finite difference method is employed

are nonlinear, the well-known Newton-Raphson to obtain them in the present study. For instance,

procedure can be used to solve them. By solving the following equation represents the simple finite

the equations, qR and ;.C can be obtained. The difference method to calculate K* :

values of qR which are obtained from the equili- * h(v*+8v) -h(v*)
brium equations will be used later to obtain the k = 8v (25)

modal equations.

To obtain the modal equations, Eq. (10) has to where h denotes -RTQ* in Eq. (20) and v*

be transformed into a minimum set of equations represents the independent coordinate value in

of motion. For the purpose, qR should be parti- the dynamic equilibrium position q;. Note that

tioned as follows: Eq. (21) is a homogeneous equation. Non-homo-

= [ uT T] T ( 17 ) geneous terms are not needed to analyze the free

qR V . b . dlh ..VI ration mo a c aractenstlcs.
where u and V represent dependent and inde-

pendent coordinate sets, respectively. Several me- 4. Numerical

thods (Wehage and Haug, 1982; Nikravesh and Results and Discussion

Srinivasan, 1985) of selecting independent coor-

dinate sets are known. Now, qR can be express- 1 DOF (degree of freedom) swing pendulum

ed as a function of the independent velocity Vector system attached to a moving base which under-

V as follows: goes a constant accelerated motion is shown in

qR=Rv (18) Fig. 2. This example has an open kinematic loop.

The uniform bar, which has mass m= 10 kg and
where R is defined as follows: ...

length L= 1 m, IS connected by a revolute JOInt.

R- [ q,~-lq,~ ] ( The moving base is connected to the ground by
-I 19) a translational joint. Friction force between the

..T. moving base and ground is not considered in this
Pre-multIplYIng Eq. (10) by R results m a 1 . If h . b . d .

hana yslS. t e movIng ase IS ma e to move Wit
minimum set of equations of motion as follows: 1 . h 1 .

1 e bconstant acce eratlon, t e re atlve ang e e-
RTM* Rv+ RTM* Rv- RTQ*=O (20) tween the vertical axis and the pendulum remains
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constant. Therefore the relative angle 0 is chosen h* 1 L . 0+ 1 L 0 0 (29)A =--m asm -mg cos =
as the generalized coordinate. The analytical 2 2

equation of motion is derived as follows: . ( ) ( ) ( )Companng Eq. 26 to Eqs. 28 and 29, one
1.- mL 2 jj +1.- mL a cog 0 +1.- mgL sin () =0 (26) can find that two linearized equations are identi-

3 2 2 cal. Thus, the two numerical results for the equi-

where a is the constant acceleration value. At librium position and natural frequency should be
dynamic equilibrium state, jj becomes zero. identical, too. Figure 3 shows the variation of 0
Therefore, the following equilibrium equations versus the acceleration of the moving base. The
are obtained. variation of the natural frequency versus the ac-

celeration of the moving base is shown in Fig. 4.
1.- mLa cos 0+1.- mgL sin 0=0 (27) Figure 5 shows a closed loop mechanism which
2 2

This equilibrium equation is the same as the 46

equation which is obtained by using the proposed 4.5
method. The detailed derivation procedure for the -Proposedlttethod
proposed method is given in Appendix A. Using '(h' 44 --'-'Analyticsolulion

the proposed method, the linearized mass and 143
stiffness matrices are calculated as follows : ~

c~ 4.2

M*=+ mL2 (28) ~ 41
~~
~ 40
Z

39

3.8
4 5 6 7 8 9 10

AIXeIeration (m'S2)

Fig. 4 Natural frequency variation versus accelera-

! 1- tion
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Fig. 2 Swing pendulum attached to a moving base Y
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Fig.3 Variation of the dynamic equilibrium posi- Fig.5 A closed loop system undergoing constant

tion acceleration
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has two closed kinematic loops. Body 1 of the sys- (Ct=30Nsec/m) should be imposed to obtain
tern is the moving base which is driven toward the equilibrium position. Note that time integra-
-Y direction by a constant acceleration (Yl = tion is required to obtain the results. However,

-10.0 m/s2); body 2 and body 3 are pendulums
which have a sphere mass at each end; and body
4 is the collar. The moving base is connected to
the ground by a translational joint. The moving
base and the pendulums are connected by revolute
joints; the moving base and the collar are con-
nected by a translational joint and a spring; and
the collar and the pendulums are connected by
distance joints having fixed distance of 0.1092 m. REV : Revolute joint

..TRAN : Translational jointThe stIffness and the free length of the spring are DIST D. t .. t.: IS anceJom
1000N/m and 0.15 m, respectively.

Table I shows the inertia properties of the Fig. 6 Tree structure of the system

constituting bodies and Table 2 shows the coor-
dinates of some points (shown in Fig. 5) that 0250
determine the configuration of the system. Figure
6 shows the topology of the system. Since this 0Z25 .~",..wI{(),1493)

h 1 1 " .-ADAMSsystem as two c osed oops, two distance Jomts 0200
should be cut. E

~0175
From the equilibrium analysis, Fig. 7 shows ~

the relative distance d between body 1 and body ~ 0150
.",

4. At dynamic equilibrium state, two results are ~ (1125
almost identical. To simulate this analysis using a i

.Q: 0100
commercIal program, however, the body 1 should
be accelerated smoothly and a practical damping 0,(175

0050
0 8 10 12

Table 1 Inertia properties of the constituting bodies Time (sec)

M M t f . rt. [k 2] Fig. 7 Dynamic equilibrium position of the systemass omen 0 me la g.m
Body

[kg] IX'X' Iyy Iz'z'
6Body 1 200.0 25.0 50.0 25.0

Body 2 1.0 0.1 0.1 0.1

Body 3 1.0 0.1 0.1 0'.1' ~'"
Body 4 1.0 0.15 0.125 IrI5 I

iTable 2 Initial position of points shown in Fig. 5 'l
.t:

Point Initial Position (m] ~
if.

01 [0;0, 0.2, 0.0] ",11\ \~ ~
O2 I [ -0.16, 0.2, o.or

Os '[0.16,0.2,0.0]' ",;" 0
.':0 ' 7 8 8 10

0, [0.0, 0.1256, 0.0] ..;I
Aa:elerati<Jn (ml5 )

P [ -0.08, 0.2, 0.0] I F. 8 N I " ' . I' .;:.; Ig. atura lrequency vanatlon versus acce era-
Q [0.08, 0.2, Q.O) tion
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using the proposed method, the dynamic equilib- Formulation for Constrained Mechanical System
rium position could be obtained without time Dynamics: Part II. Closed Loop Sys- terns,"
integration. The variation of the natural frequen- Mechanics of Structures and Machines, Vol. 15,
cy versus the acceleration which is obtained by No.4, pp. 481- 506.
using the proposed method is also shown in FunctionBay Inc., 2002, RecurDyn User's
Fig. 8. Manual Ver. 4.

Haug, E. J., Wehage, R. A. and Barman, N. C.,

5. Conclusions 1982, "Dynamic Analysis and Design of Con-
strained Mechanical Systems," ASME Journal of

In this paper, a computational algorithm is Mechanical Design, Vol. 104, pp.778-784.
proposed to find the modal characteristics of Kim, S. S. and Vanderploeg, M. J., 1986, "A
multibody systems undergoing constant accelerat- General and Efficient Method for Dynamic An-
ed motions. Such multibody systems are often alysis of Mechanical Systems Using Velocity
found in engineering examples like launching Transformations," ASME Journal of Mechanisms,
rockets and missiles. The equations of motion are Transmissions and A utomation in Design, Vol.
derived by employing relative coordinates and 108, pp. 176-182.
linearized at the dynamic equilibrium position. LMSCADSI Inc., 2002, DADS User's Manual.
The mass and the stiffness matrices for the modal Lynch, A. G. and Vanderploeg, M. J., 1995,
analysis can be obtained from the linearized equa- "A Symbolic Formulation for Linearization of
tions. To verify the effectiveness and the accuracy Multibody Equation of Motion," ASME Journal
of the proposed method, two numerical examples of Mechanical Design, Vol. 117, pp.441-445.
are solved. The results obtained by using the pro- MSC. Software Corporation, 2003, ADAMS
posed method are compared to those obtained User's Guide.
by analytical methods. It is proved that the pro- Nikravesh, P. E., 1988, Computer-Aided An-
posed method provides accurate modal charac- alysis of Mechanical Systems, Prentice Hall,
teristics of multibody systems undergoing con- International Inc.
stant accelerated motions. The proposed method Nikravesh, P. E. and Srinivasan, M., 1985,
can be easily implemented into any existing multi- "Generalized Coordinate Partitioning in Static

body analysis programs. Since the method does Equilibrium Analysis of Large-Scale Mechanical
not necessitate numerical integration, it is superi- Systems," International Journal for Numerical
or to any existing methods that employ numerical Methods in Engineering, Vol. 21, pp.451-464.

integration. Orlandea, N., Chace, M. A., and Calahan, D.
A., 1977, "A Sparsity-Oriented Approach to The
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Appendix A 0 0 0

Derivation of Equation 0 0 0
0 0 0

The equilibrium equation of the open loop I

system undergoing constant accelerated motion is Now substituting Eq. (a2) into Eq. (al), one can
as follows: obtain the following equation.

Bl(MBpqp-Q) =0 (al) +mLacasO++mgLsinO=O (a3)

where qp is given as a constant value a and Bp, This result is identical to Eq. (27) which is
BR' and Q are given as obtained by analytical method.
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