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Abstract

We study the capacity of a wireless ad hoc network with infrastructure, where well-connected base
stations are placed in an ad hoc network to relay data traffic for wireless nodes. This network architecture
presents a tradeoff between a cellular network and an ad hoc network in that data may be forwarded in
a multi-hop fashion or through the infrastructure. It has been shown that the capacity of ad hoc network
does not scale well with the number of nodes in the system [1]. In this work, we investigate the potential
benefit of infrastructure network to improve ad hoc network capacity. Analytical expressions are obtained
for the capacity of an ad hoc networks with infrastructure. For an ad hoc network of n nodes with m base
stations, the results show that, if m grows asymptotically slower than y/n, the benefit of infrastructure
network is insignificant. However, if m grows faster than /n, the capacity increases linearly with the
number of base stations, providing an effective improvement over ad hoc networks. Therefore, in order
to achieve non-negligible capacity gain, the investment in the wired infrastructure should be sufficiently
high.
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I. INTRODUCTION

Network capacity is a key characteristic of a wireless network. It represents the long-term
achievable data transmission rate that a network can support. The capacity of a wireless network
depends on many aspects of the network: network architecture, power and bandwidth constraints,
communication paradigm, routing strategy, and radio interference model. A good understanding
of the capacities of different network architectures allows a designer to choose an architecture
appropriate for his or her specific purpose.

Several network architectures have been proposed for wireless data networks. In a wireless
cellular network or a wireless LAN, nodes communicate with each other through base stations or
access points. A node first connects to the nearest base station or access point in order to com-
municate with other nodes. In this scenario, base stations (access points) serve as communication
gateways for all the nodes in its cell (basic service area).

In situations where there is no fixed infrastructure, for example, battle fields, catastrophe control,
etc, wireless ad hoc networks become viable alternatives to wireless cellular networks or wireless
LANSs for nodes to communicate with each other. A wireless ad hoc network is a communication
network formed by a collection of nodes without the aid of any fixed infrastructure. In a wireless
ad hoc network, due to the lack of infrastructure and the limited transmission range of each node,
data needs to be routed from the source to the destination by peer nodes in a multi-hop fashion.

Recently, a hybrid of wireless ad hoc and cellular network architectures has been proposed to
improve various aspects of the performance of wireless ad hoc or cellular networks, for example,
cell coverage, system throughput, power efficiency, network connectivity and reliability [2], [3],
[4], [5], [6]. The hybrid network architecture consists of normal wireless nodes and a number
of well-connected base stations, which are regularly or randomly placed in the network. The
network is divided into cells, each containing a base station. Figure 1 depicts the scenario where
base stations are regularly placed in a hexagon pattern. The base stations neither produce data
nor consume data. They act solely as relay nodes to improve network performance and only
engage in routing and forwarding data for normal wireless nodes. In this work, we assume all
nodes and base stations are static; no node and base station can move. In a wireless ad hoc
network with infrastructure (well-connected base stations), data may be forwarded in a multi-hop
fashion using the wireless node as in a wireless ad hoc network, or through the infrastructure

as in a cellular network. Communications using multi-hop forwarding and communications using
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Fig. 1.  Wireless Ad hoc Network with Infrastructure

the infrastructure coexist in the network. Although some system aspects (throughput, routing,
reliability) have been studied for the hybrid network architecture, little is known in terms of its
network capacity. It is of great interest to find out what capacity gains can be achieved by adding
infrastructure to a wireless ad hoc network.

In [1], Gupta and Kumar show that the per-node capacity of a random ad hoc network scales
as @(\/ﬁ), where n is the number of nodes in the network. In the limit, the per-node capacity
diminishes to zero as the number of node, n, goes to infinity. However, it is not clear how much
capacity gain can be achieved by adding infrastructure to a wireless ad hoc network. Intuitively,
on one hand, data can be partly routed through the infrastructure, which helps to reduce the
number of wireless transmissions. The network can accommodate more data and, hence, a higher
capacity can be achieved. On the other hand, too much use of the infrastructure may cause hot
spots around base stations and poor spatial concurrency, leading to a reduced capacity. The goal
of this work is to study the capacity of a wireless ad hoc network with infrastructure. In particular,

we are interested in the following two questions:
« How does the capacity of a wireless ad hoc network with infrastructure scale with the number
of nodes and the number of base stations?

« What capacity gain can be achieved by adding infrastructure to a wireless ad hoc network?

In this work, we assume a wireless ad hoc network of n nodes with an infrastructure network
of m base stations. Each node and base station is capable of transmitting at a rate of 1 bits/sec
over the common wireless channel. We consider a deterministic routing scheme. A node sends

data through the infrastructure if the destination is outside of the cell where the source is located.



Otherwise, the data are forwarded in a multi-hop fashion without using infrastructure as in an
ad hoc network. Intuitively, the deterministic routing strategy improves network capacity in the
following two ways. First, allowing sessions whose end points do not fall within the same cell to
use the infrastructure reduces the number of wireless transmissions. The network can accommodate
more data and hence the capacity increases. Second, requiring sessions whose end points lie within
the same cell to communicate in an ad hoc mode utilizes the available spatial concurrency, which
further improves network capacity.

We show that if base stations are regularly placed, under the deterministic routing strategy, if
m, the number of base stations, grows slower than /n, the capacity scales as © (\/%)
In this case, compared to the capacity of a pure wireless ad hoc network without infrastructure,
the benefit of adding base stations is insignificant. However, if base stations can be added at a
rate faster than /n, the capacity scales as ©(m). The capacity increases linearly as more base
stations are added, presenting an effective improvement over the original wireless ad hoc network.
Therefore, in order to achieve a non-negligible capacity gain, the investment in the wired base
station infrastructure should be high enough: the number of base stations should grow at a rate
faster than y/n, as the number of wireless nodes increases. Similar results are also obtained for
the case where base stations are randomly deployed.

In establishing the capacity of a wireless ad hoc network with infrastructure, we also derive the
capacity of an inhomogeneous wireless ad hoc network, where not every node has data to send,
and not every node can be a receiver. This is a generalization of the results of Gupta and Kumar
for a homogeneous wireless network, where every node has data to send to a randomly chosen
location, and every node is potentially a receiver. The capacity of an inhomogeneous wireless ad
hoc network is of great interest in its own right, since it is present in many application scenarios.
For example, in some sensor network applications, only those sensors that sense interesting events
will have data to send, and data sinks are usually chosen from a set of designated nodes in the
network.

The rest of the paper is organized as follows. In Section Il, we review previous results on the
capacity of wireless ad hoc networks. In Section 11, we describe the network model and define
the capacity of the network model. In Section 1V, we present the capacity of an inhomogeneous
wireless ad hoc network. In Section V, we derive expressions for network capacity under the
deterministic routing strategy. The proofs of theorems are presented in Section . In Section VI,

we present the conclusions.



I1. RELATED WORK

Recently, there has been a flurry of studies on the capacity of wireless ad hoc networks. In [1],
Gupta and Kumar study the throughput capacity of a two-dimensional random wireless network,

where fixed nodes are randomly placed in the network and each node sends data to a randomly

1

chosen destination. The throughput capacity per node scales as ©( 1 ), where n is the number
gn

of nodes in the network. In the limit, the per-node throughput vanishes as the number of node n
goes to infinity. The capacity of a three-dimensional wireless ad hoc network has been obtained
by the same authors [7]. In this case, per-node throughput scales as © m . Although
three-dimensional wireless networks have higher capacity than two-dimensional networks, the
throughput obtained by each node still tends to zero as the number of nodes in the network
increases.

In [8], Grossglauser and Tse show that the capacity of wireless ad hoc networks can be
significantly improved by exploiting node mobility. Using a one-hop relaying mechanism, the
proposed scheme achieves an aggregate throughput capacity of O(n), or a per-node throughput
capacity of O(1). However, this capacity improvement is achieved at the cost of unbounded packet
delay and unbounded buffer requirement at each node. To address the concern of unbounded delay,
the authors of [9] propose a routing algorithm which exploits the patterns in the mobility of nodes
to provide guarantees on the packet delay. They show that packet delay is small and bounded,
while the throughput achieved by the algorithm is only a poly-logarithmic factor from the optimal.

The capacity of wireless ad hoc networks exhibits different behaviors for different communi-
cation paradigms. In [10], Gastpar and Vetterli study the scenario where there is only one active
source and destination pair, while the other (n—2) nodes serve as relays. The authors approach the
problem from an information theoretical perspective and allow arbitrary network coding. In this
case, the throughput capacity between the source and destination is shown to scale as O(logn),
which grows logarithmically with the number of relaying nodes. In [11], the authors study a
many-to-one communication paradigm where a total of n nodes send data to a single central
receiver. Under a transmission and interference model similar to that of Gupta and Kumar [1], the
authors show that the network capacity is ©(1), with a per sender capacity of ©(1/n). In [12],
Li et al. examine the effect of IEEE 802.11 on network capacity. They also derive the criteria for
traffic patterns that makes the capacity scale with the network size.

The benefit of using directional antennas to improve wireless network capacity has been



investigated in [13] and [14]. The main finding of [13] is that one can only achieve a factor of
© (log2 n) increase in capacity by allowing arbitrarily complex signal processing at transmitters
and receivers. In [14], the authors derive the capacity gain in terms of the beam-widths of
transmitting and receiving antennas.

In a recent work [15], the authors study the capacity of a network architecture similar to ours.
Under the assumption that the number of wireless nodes per base station is bounded above by a
constant and wireless nodes are asymptotically connected without infrastructure, the authors show
that the per-node throughput capacity scales as © (1/logn). They also show that even when a less
stringent requirement is imposed on topology connectivity, a per-node capacity arbitrarily close
to ©(1) can not be achieved. However, [15] only considers a special case where the number of
base stations is on the same order as the number of normal wireless nodes. This implies that the
investment in the infrastructure has to increase linearly as the number of nodes increases, which
may not be practical in scenarios where the number of nodes is large and infrastructure resources
are limited. In our work, we consider the general case and treat the number of base stations as
a parameter. We find that the number of base stations plays a critical role in determining the
network capacity. Depending on the relative number of base stations compared to the number of
nodes, the network capacity exhibits different behaviors. We will compare and comment on the
results of both work later in this paper.

I1l. NETWORK MODEL

In this section, we first describe the network architecture, interference model, data transmission
modes, and routing strategies in a wireless ad hoc network with infrastructure. We then formally
define the capacity of the network model.

A. Network Architecture

As in [1], we scale space and assume that a population of n nodes is randomly, independently
and uniformly, located within a unit area disk in the plane. We further assume that the nodes are
homogeneous, employing the same transmission range or power. Every node is a data source.
The destination for each node is independently chosen as the node nearest to a randomly located
point within the unit area disk. In addition to the n wireless nodes in the network, a network of
m base stations is placed in the network. We consider two base station deployment strategies.
In the first strategy, base stations are regularly placed in the unit area disk, dividing the area



into a hexagon tessellation. Each hexagon is called a cell, as in cellular networks. In the second
strategy, base stations are randomly deployed in the network. These base stations are assumed to
be connected together by an infinite bandwidth wired network. Hence, there are no bandwidth
constraints among base stations. Moreover, the base stations neither produce data nor consume
data. They act solely as relay nodes to improve network performance and only engage in routing
and forwarding data for normal wireless nodes. All the nodes and base stations are assumed to

be static; there is no mobility involved in this work.

B. Interference Model

All the nodes and base stations share a common wireless channel. We assume a time-division
multiplexing (TDMA) scheme for the data transmission over the wireless channel. Time is divided
into fixed duration slots. In each time slot, certain nodes are scheduled to send data. A node cannot
transmit and receive data simultaneously, and a node can only receive data from one other node
at the same time.

All of the nodes, including the base stations, employ the same wireless transmission range,
denoted by r. For the interference model, we adopt the Protocol Model introduced in [1]. The
definition of the Protocol Model is given as follows.

A transmission from node X;; is successfully received by node X if the following two conditions

are satisfied:

1) Node X; is within the transmission range of node X, i.e.,
|X.L — X]| S r

where | X; — X;| represents the distance between node X; and node X in the plane.
2) For every other node X that is simultaneously transmitting over the same channel,

X — X[ > (1+A)1X; — X

This condition guarantees a guard zone around the receiving node to prevent a neighboring
node from transmitting on the same channel at the same time. The radius of the guard zone
is (1+ A) times the distance between the sender and receiver. The parameter A defines the
size of the guard zone and we require that A > 0.



C. Transmission modes and Routing Strategies

In a wireless ad hoc network with infrastructure, there are two transmission modes: ad hoc mode
and infrastructure mode. In ad hoc mode, data are forwarded from a source to the destination in
a multi-hop fashion without using the infrastructure. In infrastructure mode, data are forwarded
through the infrastructure. More specifically, data are first transmitted from the source to the
nearest base station over the wireless channel. The base station then forwards the data through
the wired infrastructure to the base station nearest to the destination, which finally transmits the
data to the destination over wireless channel. Note that in the infrastructure mode, wireless com-
munications are used for transmissions between base stations and end nodes, while transmissions
between base stations are carried by the infrastructure.

We consider a deterministic routing strategy. If the destination node is located in the same cell
as the source node, data are forwarded in ad hoc mode. Otherwise, if the destination node is
not located in the same cell as the source node, data are forwarded in infrastructure mode. We
provide the intuition behind the routing strategy: if the destination node is close, we would like
to take advantage of the spatial concurrency by using ad hoc mode without bottlenecking the
base stations; however, if the destination is far away, we would like to take advantage of the free
bandwidth in the infrastructure to alleviate the multi-hop burden of the long route.

We assume each node can transmit W bits/sec over the common wireless channel. We divide
the wireless channel so that ad hoc mode transmissions and infrastructure mode transmissions
go through different sub-channels. We further divide the sub-channel for infrastructure mode
transmissions into uplink and downlink portions, according to the direction of the transmissions
relative to the base station. Since intra-cell traffic, uplink traffic and downlink traffic use different
sub-channels, there is no interference between the three types of traffics. The bandwidth assigned
to intra-cell, uplink, and downlink sub-channels are Wy, W5, and W3, respectively, and we let
W, = Wj. The transmission rates should sum to W, i.e., Y3, W, = W.

D. Definition of Capacity

To make the formulas more concise, we present the aggregate capacity of the whole network
instead of the per-node capacity. Note that the per-node capacity is simply 1/n of the aggregate
capacity of the whole network. Throughout this paper, sometimes we use capacity to refer to the
aggregate capacity for the sake of conciseness. But we always use per-node capacity when we
refer to the capacity per node to avoid ambiguity.



In this work, we adopt the asymptotic notations introduced in [16]. The formal definitions
of feasible aggregate throughput and aggregate capacity of a wireless ad hoc network with

infrastructure are presented as follows.

Definition 1: Feasible Aggregate Throughput. For a wireless ad hoc network of n nodes with an
infrastructure network of m base stations, an aggregate throughput of 7'(n, m) bits/sec is feasible
if, by transmitting data in the ad hoc or infrastructure mode, there is a spatial and temporal
scheduling scheme that yields an aggregate network throughput of 7'(n, m) bits/sec on average.
Here the aggregate throughput is the sum of the individual throughputs from each source node
to its chosen destination.

Definition 2: Aggregate Capacity of a Wireless Ad hoc Network with Infrastructure. The ag-
gregate capacity of a wireless ad hoc network with infrastructure is ©(f(n, m)) bits/sec if there
are deterministic constants ¢ > 0, and ¢’ < +oo such that

7111_)11010 Prob(T(n,m) = cf(n,m) is feasible) = 1

nlggo inf Prob(T(n,m) = ¢/ f(n, m) is feasible) < 1

IV. INHOMOGENEOUS WIRELESS AD HOC NETWORKS

In the original work of Gupta and Kumar [1], the authors considered a homogeneous ad hoc
network, where every node has data to send to a randomly chosen location, and every node is
potentially a receiver. In this section, we consider an inhomogeneous ad hoc network, where not
every node has data to send, and not every node can be a receiver. Such inhomogeneous networks
are present in many application scenarios. For example, in some sensor network applications,
only those sensors that sense interesting events will have data to send, and data sinks are usually
chosen from some designated nodes in the network. Note that in [11], the authors studied a
specific inhomogeneous network, namely, the many-to-one scenario, where all sensors send data
to a single receiver. Our study of the capacity of the inhomogeneous network is motivated in
order to derive capacity results for networks with infrastructure in Section V, however, we feel
that the scenario is of interest in its own right and present it here.

We assume £ nodes are independently and uniformly located within a unit-area disk, as in [1].
However, among the & nodes, there are s active source nodes and d destination nodes, where
1 < s,d < k. Note that a node can be both a source node and a destination node, and there
are not necessarily equal numbers of data sources and destinations. The source and destination
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nodes are randomly located within the network. The s source nodes form a source node set S,
and the d destination nodes form a destination node set D. For each source node i € S, the
corresponding destination node is randomly chosen from destination set D. There are s active
sessions in the network. Denote the aggregate throughput capacity of an ad hoc network under this
inhomogeneous communication paradigm as 7, (k, s, d). The corresponding per-session throughput
capacity is A\, (k, s,d) = T,(k, s,d)/s.

Theorem 1: For a random ad hoc network of k£ nodes, among which there are s unique data

sources and d unique data sinks, the aggregate throughput capacity of the network is

log k

T,(k,s,d) = © |min | min(s, d)W, 4/ b WC) (1)
Due to the page limit, the proof of the above theorem is presente

in a detailed technical report
version of this paper [17]. From Equation (1), we observe that the capacity exhibits different
behaviors according to the relative number of source and destination nodes to the total number
of wireless nodes. In the following, we discuss the capacity behaviors for two different regimes
of number of active sources and destinations. We will see that the capacity for the two regimes
are limited by different factors, thus exhibiting different behaviors. For convenience, we assume
there are equal numbers of source and destination nodes, i.e., s = d.

o« 5= O( k ) The network capacity is ©(sW), and the per session capacity is ©(W). In

log k

this case, the spatial concurrency of the network is not fully utilized, which means there are
regions in the network where no transmission is taking place. In the proof, we see that there
exists a spatial scheduling policy such that each source node gets one slot to transmit data
in every constant number of slots. Hence each source node can send data at a constant rate.
The network capacity is limited by the number of source and destination nodes.

. s = w(\/ik;) The network capacity is © (\/%W) and the per session capacity is

@( %W) In this case, the spatial concurrency is fully utilized, and there can be no
more simultaneous transmissions in the network. The capacity is limited by the maximum

amount of traffic that can be supported by the network, ./ %W, as derived in [1].

V. CAPACITY OF WIRELESS AD HOC NETWORKS WITH INFRASTRUCTURE

In this section, we first investigate the effect of interference between wireless transmissions to
the network capacity. We then derive the capacity of a wireless ad hoc network with infrastructure
under the deterministic routing strategy. We also study how much capacity gain can be achieved
by adding infrastructure to a wireless ad hoc network.
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2+A)r

Fig. 2. Interfering neighbors of a cell H

A. Effect of Interference

Since the intra-cell, uplink and downlink traffics are transmitted in three different sub-channels,
there is no interference between the three types of traffic. However, within a sub-channel, inter-
ference exists between the same type of traffic in neighboring cells. Fortunately, the effect of
this interference is minimal. We will prove that there exists a spatial transmission schedule which
yields efficient frequency reuse. More specifically, the cells can be spatially divided into a constant
number of different groups. Transmissions in the cells of the same group do not interfere with
each other. If the groups are scheduled to transmit in a round robin fashion, each cell will be able
to periodically transmit without interfering with each other. The degradation of network capacity
due to the interference between the same types of traffic is thus bounded by a constant factor.
We now present the formal statements and proofs.

We adopt the notion of interfering neighbors introduced in [1], and compute the number of
cells that can be affected by a transmission in one cell. Two cells are defined to be interfering
neighbors if there is a point in one cell within a distance (2 + A)r of some point in the other
cell, where r is the transmission range of the nodes. By the definition of the Protocol Interference
Model, if two cells are not interfering neighbors, transmissions in one cell do not interfere with
transmissions in the other cell.

Lemma 1. Each cell has no more than c interfering neighbors, where ¢ is a constant that only
depends on A.

Proof. We denote the length of each side of a cell (hexagon) as / and assume that [ = c;r.
Therefore, each cell is contained by a disk of radius ¢ and contains a disk of radius @clr.
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By the definition of interfering neighbors, if a cell H' is an interfering neighbor of a cell H,
one point in H' must be within a distance of (2+ A)r of a point in H. Figure 2 depicts the
scenario where H' is the farthest interfering cell of H. For the Protocol Interference Model, all
the interfering neighbors of H must be contained by a disk D of radius 3cir + (2 + A)r. The
number of interfering neighbors of a cell is the number of cells contained in disk D.

Since each cell contains a disk of radius @clr, the area of each cell is larger than the area of
the contained disk, 7 (?clr)2. The number of cells contained in disk D is upper bounded by

2
Therefore, the number of interfering neighbors of a cell is upper bounded by c.

e=m((Ber+2+2))" (ﬁ) -5 ey

O
Lemma 2: In the Protocol Model, there is a spatial scheduling policy that provides each cell
one slot to transmit data in every (c + 1) slots.
Proof. We construct the following graph. Each cell is represented by a vertex and edges are added
between interfering neighbors. It is a well known fact in graph theory that a graph of degree no
more than ¢ can have its vertices colored by using no more than (c+ 1) colors, while no two
adjacent vertices have the same color. Therefore, the cells in the network can be colored with no
more than (¢ + 1) colors, while no two interfering neighbors have the same color. We allow cells
of the same color to transmit in the same time slot. These transmissions are from non-interfering
cells, and thus, do not interfere with each other. Therefore, there exist scheduling schemes where
each cell receives a slot for transmission every (¢ + 1) slots. The degradation of network capacity
due to the interference between the same type of traffic is bounded by a constant factor. O
In the next two subsections, we derive the aggregate capacity of a wireless ad hoc network
with regularly-placed base stations. The network capacity exhibits different capacities, depending
on the asymptotic behavior of m as a function of n.

B. Capacity when m = o(/n)
Theorem 2: The aggregate capacity of a wireless ad hoc network consisting of n nodes with

an infrastructure network consisting of m regularly-placed base stations is

T(n,m)z@( n W1> 2)

log -5

under the deterministic routing strategy and channel allocation scheme when m = o(y/n).
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The proof is provided in Appendix Il. From the derivation, we observe that the capacity
contributed by ad hoc mode transmissions dominates as the number of wireless nodes, n, goes
to infinity. The capacity contribution of infrastructure mode transmissions is negligible compared
to that of ad hoc mode transmissions.

In this scenario, if the number of base stations is increased & times from m to km, the capacity
of the network becomes
T(n,km) =© ( lognLW> ~0 ( 10;" W (1 + 13;?5;)) =T(n,m) (1 + 13:;;)

k2m? m?2

In the above derivation, we used the fact that log .” > 1 since n/m? > 1. Therefore, a

linear increase of the number of base stations only provides a logarithmic increase in the network
capacity.

Now we investigate the benefit of infrastructure network to improve the capacity of a wireless
ad hoc network. To quantify this benefit, we define the capacity gain factor as follows.

Definition 3: Capacity gain factor g(n, m). The capacity gain factor of an infrastructure net-
work consisting of m base stations is the ratio of the capacity of a wireless ad hoc network
with infrastructure to the capacity of the wireless ad hoc network without infrastructure, i.e.,
g(n,m) = T(n,m)/T,(n), where T,(n) represents the aggregate capacity of a wireless ad hoc
network of n nodes.

From [1], we know

T,(n) = © ( lo’;nw) (3)

where W is the common transmission rate of the nodes over the wireless channel. The capacity

o= (i) = (=) @

logn

We now derive the capacity gain when the number of base stations scales as a polynomial of

gain factor is

the number of nodes. Assuming m = n® where 0 < « < 1/2, from Equation (4), we have

g(n,m) = © (ﬁ) (5)

The gain factor is an increasing function of «, as shown in Fig. 3. If the number of base stations
grows faster, the capacity gain is larger. Therefore, if m is bounded by two polynomials of 7,
n* and n®?, where a; < aw, the capacity gain is bounded by two constants:

Co

\/1 - 20[1

Co

\/1 — 20[2

< g(n,m) <

(6)



14

Capacity gain factor

0 0.1 0.2 0.3 0.4 0.5

Exponent (a)

Fig. 3. Capacity gain factor as a function of «
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Fig. 4. Capacity gain factor as a function of number of base stations

where ¢, represents the constant factor in (4).

Figure 4 illustrates the benefit of placing more base stations to network capacity when the
number of nodes in the network is fixed. We assume that there are 1,000,000 nodes and the
number of base stations varies from 1 to 100. According to Equation (3), increasing the number
of base stations from m to km provides less than a log k-fold increase in the network capacity.
The capacity of the ad hoc network does not change since n is fixed. As a result, the capacity
gain factor only increases logarithmically with the number of base stations.
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C. Capacity when m = Q(y/n)

In the previous case where m = o(y/n), we have used the capacity result [1, Main Result 3]
to obtain the per cell capacity contributed by ad hoc mode transmissions. However, this result is
an asymptotic scaling law. It requires the number of nodes using ad hoc mode transmission to
approach infinity. In this case, the number of nodes using ad hoc mode transmissions in a cell
(n/m?) is upper bounded by a constant. Hence, we cannot use [1, Main Result 3] to obtain the
capacity contributed by ad hoc mode (7,) as in the previous case. Instead, using Theorem 1, we
can obtain the following theorem.

Theorem 3: The aggregate capacity of a wireless ad hoc network consisting of n nodes with

an infrastructure network consisting of m regularly-placed base stations is
T(n,m) = ©(mWs) (7)

under the deterministic routing strategy and channel allocation scheme when m = Q(y/n).

The proof of the theorem is presented in Appendix Ill. As the number of nodes, n, goes
to infinity, the capacity contributed by infrastructure mode transmission dominates, while the
contribution of ad hoc mode transmissions is negligible.

In this scenario, the capacity gain factor is

g(n,m) = © (m log ”) ®)

n

Again, we are interested in the scaling behavior of capacity gain when m scales as a polynomial
of n. Assume m = n® where 1/2 < « < 1, a simple derivation yields

g(n,m) = %ml_i\/logm 9)

If « = 1/2, i.e., m = ©(y/n), we have g(n,m) = © (\/W). The capacity gain grows
nearly logarithmically with the number of base stations. If & > 1/2, 1 — i > 0, the capacity
gain grows polynomially with the number of base stations. In an extreme case where o = 1, we
have m = ©(n), and g = © (W) The per node throughput capacity is

A(n,m) =0(1)

This suggests that if the number of base stations grows asymptotically at the same speed as
the number of nodes, each node achieves constant throughput capacity. The reason is that in this
case, each base station serves a constant number of nodes. Therefore, each node can connect to



16

the wired network using a constant share of the bandwidth, resulting in a ©(1) per node capacity
or a ©(n) aggregate capacity.

Summarizing the above two subsections, the benefit of infrastructure network to improve
network capacity depends on the relative number of base stations () to the number of wireless
nodes (n). If m grows slower than /n, the capacity scales as © (\/%) A linear increase of
number of base stations only leads to a logarithmic increase of network capacity; the benefit of
adding base stations is insignificant. However, if base stations can be added at a rate faster than
\/n, the capacity scales as ©(m), which increases linearly with the number of base stations. In
this case, the infrastructure network provides an effective improvement in the network capacity.

D. Effect of Random Deployment of Base Stations

All the above capacity results are obtained under the assumption that base stations are regularly
deployed in a wireless ad hoc network. Now we study the capacity for the scenario where base
stations are randomly and uniformly placed in a network, and compare the capacity to the case
where base stations are regularly placed.

Theorem 4: For a wireless ad hoc network of n nodes with an infrastructure network of m
randomly located base stations, if m = o(y/n), the aggregate network capacity is T'(n,m) =
© 170W1>, if m = Q(y/n), the aggregate network capacity is T'(n,m) = © ( Wz)

log 08, ™
The proof of the theorem is provided in Appendix IV. As we can observe from the results

logm

for regularly-placed and randomly-placed base stations, when the deployment of base stations
changes from regularly-placed to randomly-placed, the network capacity only suffers from a
logrithmic degradation: when m = o(4/n), the capacity decreases by a factor of loglogm from
) ( log W1> to © < g "l'fn W1>; when m = Q(y/n), the network capacity decreases by a

factor of logm from ©(mW,) to © ( WQ)
In this case, the logrithmic degradation is due to the irregularity of the base station locations.

logm

A cell now needs to be logm times larger than the regularly-placed case to ensure that there is
a base station located inside.

In a recent work [15], the authors study the capacity of a wireless ad hoc network with
randomly-deployed base stations, the same network model as being considered in this subsection.
With the assumption that the number of base stations is on the same order as the number of
wireless nodes (m = ©(n)), they show that the per-node capacity scales as © ( ) a factor of
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logn from the optimal value ©(1). Note that the m = ©(n) case considered in [15] is a special
case of m = Q(y/n), and the results they obtained are consistent with ours. If we let m = ©(n),
according to Theorem 4, the per-node capacity is © (@) the same as in [15]. Nevertheless,
the authors of [15] prove the capacity is optimal among all possible routing strategies, while our

results are for the deterministic routing strategy defined earlier.

V1. CONCLUSIONS

In this paper, we study the capacity of a wireless ad hoc network with infrastructure. Such a
network architecture consists of a wireless ad hoc network and an infrastructure network of well-
connected base stations. The goal of this work is to obtain the capacity of wireless ad hoc networks
with infrastructure and investigate the benefit of infrastructure to improve network capacity.

We consider a wireless ad hoc network of n nodes with an infrastructure network of m base
stations. For the deterministic routing strategy and regular placement of base stations, if m grows

slower than /n, the capacity scales as © ( LL) In this case, a linear increase of number

lo

of base stations only leads to a logarithmic incfegze of network capacity; the benefit of adding
base stations is insignificant. However, if base stations can be added at a rate faster than /n,
the capacity scales as ©(m), which increases linearly with the number of base stations. The
infrastructure network provides an effective improvement in the network capacity. Similar results
are obtained for the case where base stations are randomly deployed.

Intuitively, the deterministic routing strategy improves network capacity in the following two
ways. First, by using infrastructure network for sessions where destination nodes are not within the
same cell as source nodes, the number of wireless transmissions is greatly reduced. The network
can accommodate more data transmissions and hence the capacity is increases. Second, by using
ad hoc mode for sessions where destinations are within the same cell as sources, the available
spatial concurrency is utilized, which further increases the network capacity. Although we have
shown that the deterministic routing strategy leads to an improved network capacity, it is still not
clear if it is optimal among all possible routing strategies from the network capacity perspective.

In addition to the deterministic routing strategy, we also considered a probabilistic routing
strategy in [18], where a node probabilistically chooses whether or not to use infrastructure to
send data. Similar results are obtained for network capacity under the probabilistic routing strategy.
We show that if m grows slower than \/% the capacity has the same asymptotic behavior as
a pure ad hoc network. In this case, the probabilistic routing strategy yields a smaller capacity
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than the deterministic routing strategy. There is no benefit in using the infrastructure. However,
if m grows at a rate faster than \/% the capacity scales as ©(m), which is the same as under
the deterministic routing strategy. In this case, the infrastructure network provides an effective
improvement in capacity over a pure ad hoc network.

Therefore, for both routing strategies, in order to achieve a non-negligible capacity gain, the
investment in the wired base station infrastructure should be high enough: base stations should be
added at a rate faster than /n for the deterministic routing strategy and \/% for the probabilistic
routing strategy.

APPENDIX |

PROOF OF THEOREM 1

Without loss of generality, we assume s > d, i.e., min(s,d) = d. The case where s < d can
be established in a similar way. Also, in the following proof, we assume the source node set and
destination node set are two disjoint sets. In the general case where there is overlap between the
source set and destination set, the capacity is decreased at most by a factor of two, which can
be achieved as follows. For each node that is both a source and destination, we let it alternate
between the source and destination roles, each lasting one time slot.

We divide the possible values of d into two different ranges and prove the theorem for each of
the two scenarios: (i) d = O ( @) and (ii) d = w ( @)

Scenario (i): d = O( k )

logk

In this scenario, we need to prove T,(k, s, d) = © (dWW). Since the maximum transmission rate
of a node over the common wireless channel is W bits/sec and a node can only receive data from
one sender at the same time, the aggregate capacity of the network is upper bounded by dW'.

Now we present a constructive lower bound on the aggregate capacity. We first derive the
capacity of the case where only d out of s source nodes are active sending data, 7, (k, d, d). We
then prove T,(k, s,d) > T,(k,d,d) for d < s. Thus the lower bound for T,(k,d, d) is necessarily
a lower bound for T,(k, s,d). The derivation of T, (k, d, d) is very similar to [1, Section 4]. For
completeness, we present the key steps of the constructive proof and highlight the differences in
our case. As in [1], the capacity result is first derived for a sphere S? case, which can then be
proved to hold for a planar disk. Steps 1 through 5 are essentially the same as in [1].

Step 1: Sphere S?% contains k& randomly located nodes. We partition the sphere into a Voronoi
tessellation (Vj) such that each Voronoi cell contains a disk of radius p(k), and each cell is
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contained by a disk of radius 2p(k), where

100log k
OOOgO

p(k) := radius of a disk of area n S?

Step 2: Choose a transmission range (k) = 8p(k), so every node in a cell is within a distance
r(k) from every node in its own or adjacent cell.

Step 3: Every cell in V; has no more than a constant number (c3) of interfering neighbors.
Therefore, there is a spatial scheduling policy such that each cell gets one slot to transmit data
in every constant number (1 + ¢3) of time slots.

Step 4: Denote L; as the straight line segment connecting S; and D;, where S; is the location of
source 7 and D; is the location of the corresponding destination. The random sequence of straight
line segments {L;}¢_, form an i.i.d. sequence. Thus allows us to apply the law of large numbers
later.

The routing strategy is the same as in [1]. The route of a packet approximates the straight line
segment between the source and destination pair. More specifically, a packet is forwarded in a
multi-hop fashion, and in each hop, a packet is forwarded from one cell to another in the order
in which the cells intersect the line from source to destination.

Step 5: It can be proved that, with probability 1, each cell in Vj, contains at least one node as
k — oo. Therefore, the above routing strategy is feasible, since each cell contains at least a node
to relay traffic with a transmission range enough to reach all nodes in any adjacent cells.

Step 6: This step differs from [1, Section 4.8, 4.9].

Lemma 4.9 in [1] hold without modification. For every line L; and cell V' € V4,
log k

k
Unlike in [1], there are only d lines in {L;}¢_, in this case, where d = O (\/%) Thus, the

mean number of lines passing through a cell in bounded by a constant.

Prob(Line L; intersects V) < ¢4

E[Number of lines in {L;}¢_, intersecting a cell V] < ¢s

Therefore, the actual traffic served by each cell is bounded by a constant. There is a 6(k) — 0
such that

Prob (Sup (traffic needing to be carried by cell V') < ¢;A(k, d, d)) >1-94(k)
Ve

where \(k, d, d) is the per-node capacity.
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Step 7: From step 3, the rate at which each cell can transmit is % From step 6, the rate at

which each cell needs to transmit is less than csA(k, d, d). This rate is achievable if it is less than
the available rate.
w
1+ C3
Therefore, the aggregate capacity is lower bounded by

esA(k, d, d) <

T(k,d,d) = d\(k,d,d) = ©(dW)

Step 8: We now need to prove T,(k,s,d) > T,(k,d,d) for s > d. For an ad hoc network of %
nodes, if a capacity of 7, (k, d, d) can be achieved when there are d source nodes and d destination
nodes, at least the same capacity can be achieved if there are s > d source nodes and d destination
nodes. The reason is as follows. At each time slot, we randomly choose d sources from the source
set (containing s source nodes) for transmission. The other sources are refrained from sending
data. This policy necessarily achieves capacity T,(k, d,d). Therefore, T,(k, s,d) is greater than
or equal to 7,(k, d, d), and hence, lower bounded by ©(dWV).
We have proved T,(k, s, d) is upper and lower bounded by dWW. Therefore,

To(k,s,d) = © (dW) = © (min(s,d)W)

Scenario (ii): d = w (\/@)

In this scenario, we need to prove T,(k,s,d) = © ( logk )

For the upper bound, using similar arguments as in step 8 above, we have T,(k,k, k) >
To(k,s, k) > T,(k,s,d). If a network can support an aggregate capacity of 7,(k, s, d) when there
are s source nodes and d destination nodes, at least the same capacity can be supported by the
network when there are k source nodes and £ destination nodes. This is true if the additional
(k — s) source nodes and (k — d) destination nodes do not send and receive data traffic. From
[1], T,(k, k, k) is upper bounded by O (\/%) therefore, so is T,(k, s, d).

To obtain the lower bound for T,(k, s, d), we first derive a lower bound for T, (%, d, d), which
provides a lower bound for T, (k, s, d). The steps are similar to those in case (i). Here we highlight
the differences.

Steps 1 through 5 are the same as above.
Step 6: Since there is a total number of d lines in {L;}%,, where d = w (@) the mean
number of lines passing through a cell in bounded by

L . . log k
E[Number of lines in {L;}¢_, intersecting a cell V] < cgd °8
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Therefore, there is a (k) — 0 such that

. . . log k
Prob (sup (traffic needing to be carried by cell V) < ¢g\(k,d, d)d Oi ) >1—0(k)
Vevy

where \(k, d, d) is the per-node capacity in this case.
Step 7: The rate at which each cell can transmit is 1JVrVC3- From step 6, the rate at which each
cell needs to transmit is less than csA(k, d, d)dy /8% This rate is achievable if it is less than the

available rate.

log k < w

coA(k,d, d)dy| == <
3

Therefore, the aggregate capacity is

kW
T(k,d,d) = d\(k,d,d) </

Step 8: This is the same as in case (i).

Therefore, we have proved that 7, (k, s, d) is upper and lower bounded by © ( lolgck )

Summarizing (i) and (ii), the capacity is given by

T(k,s,d) = © lmin <min(s, )W, \/%Wﬂ

APPENDIX |1

PROOF OF THEOREM 2

To derive the aggregate network capacity, we first compute the per-cell capacity contributed by
ad hoc mode transmissions (7,) and by infrastructure mode transmissions (77;), respectively. The
aggregate capacity of the network can be computed based on the per-cell capacity and Lemma 2.

Consider an arbitrary cell A, let Y; be a random variable that represents whether node i (1 <
1 < n) and its destination are both located in cell ~. The random variables are defined as follows:

1 both node 7 and its destination are in cell A
Y, = _ (10)
0 otherwise

In a wireless ad hoc network with an infrastructure network of m base stations, there are m
cells. Nodes and the corresponding destinations are randomly and independently and placed in
the unit area disk. The probability that a node i is located in cell & is 1/m; the probability that
the destination of node 7 is located in cell & is also 1/m. Therefore, E[Y;] = 1/m?.
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We then introduce a random variable N, = >, Y;, representing the number of source and
destination pairs communicating using ad hoc mode within cell 4. Since {Y;}, is an i.i.d.
sequence of random variables with E[Y;] = 1/m?. By the Law of Large Numbers, with probability
1,

N, 1 1
=YY - asn— oo (11)
m

oo
Given m = o(y/n), we have lim,_,,, n/m? — oo, and thus lim,_,,, N, — oo. According to
[1], for a random ad hoc network of N, nodes and a common transmission rate of W7, the per
node capacity is ©(——-21—), as N,, goes to infinity. Therefore, the capacity of cell & contributed

\/Nh IOg Nh
by ad hoc transmissions is T, (N;) = ©(,/+2%-W,). Denote

log Ny,

T.(N . T,(N
¢y = lim inf (N:) ,and cg = lim sup %

n—o0 Np n—00
log Ny, Wy \ log Ny, Wi

Nt
By (11), we have lim,,_,o, ———~— = 1. Therefore,

n/m?2
log(n/m?)
Np
T.(N, T (N, V1o
li_>m inf % = li_>m inf a}s ) 1 i/{N:‘ =cr
n—oo n/m n—od _1iVp n/m
Toa(n/m?) V1 e 11 \/log<n/m2>
Np,
T, (N, T.(N, Vio
lim sup _ L) = lim sup (N2) 8N — ¢
n—00 n/m? n—oo Np, W n/m?
Tog(n/m?) V1 e V1 \ s

The term limy, o0 T (Ny)/

fore, the per-cell capacity contributed by the ad hoc mode communications is

T, =0 ( m?_ W1> (12)
log

m2

7103% ’/”;2)W1 is upper and lower bounded by two constants. There-

Now we calculate the capacity contributed by infrastructure mode communication. Since the
same packet has to go through an uplink and a downlink when transmitted in infrastructure mode,
it should be only counted once in the capacity. Recall that the bandwidths assigned to carry uplink
and downlink traffic are W5 and W3, and we have Wy = W,

Since all the infrastructure mode traffic has to go through the base station and the base station
can only receive data at the rate of W, bits/sec at any time. 7; is upper bounded by W5. For the

lower bound, if each node in the infrastructure mode employs a transmission range of [ (the side
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length of each cell), there is a schedule for each node to transmit to the base station in a round

robin fashion, yielding a capacity of WW,. Therefore,
T; = ©(Ws). (13)

Since there is no interference between the ad hoc mode and the infrastructure mode, the capacity
of a cell is just T, + T;.

Moreover, in Lemma 2, we proved that there is a scheduling policy such that each cell gets a
slot to transmit in every constant number (c + 1) of time slots. Therefore, the aggregate capacity
of the network is
n

log =

In the last step, we used the fact that lim,,_,., m/ /ﬁ = 0, which indicates that the
capacity contributed by ad hoc mode transmissions dominates as n goes to infinity. The capacity

T(n,m)=®(mTa+mTi)=®< W1+mW2>:@< n Wl)

log =

contribution of infrastructure mode transmissions is negligible compared to that of ad hoc mode

transmissions.

APPENDIX |1

PROOF OF THEOREM 3

The value of n/m? does not change the capacity contributed by the infrastructure mode. We
have T; = © (W3).

When m = Q(/n), the number of nodes communicating in ad hoc mode, n/m?, is upper
bounded by a constant, we cannot use [1, Main Result3] to derive T,, since it requires that the
number of nodes using ad hoc mode transmissions approaches infinity. Instead, we can obtain 7,
using Theorem 1.

Consider a cell A in a wireless ad hoc network of n nodes with m base stations, by the Law of
Large Numbers, with probability 1, the number of nodes in cell 4 approaches n/m as n — oo.
From Equation (11), we know that with probability 1, the number of source and destination nodes
communicating using the ad hoc mode within cell ~ approaches n/m? as n — oo. Using the
notations in Theorem 1, we have k = n/m, and s = d = n/m?. Since m = Q(y/n), we have
s=d=0 (\/%) Therefore, using Theorem 1, we obtain

=0 Zm)
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Hence, the aggregate capacity of the network is
T(n,m) = © (mT, + mT}) = @(%W1 +mWy) = O(mWWy)

In the derivation, we used the fact m = (n/m), which indicates that as n goes to infinity, the
capacity contributed by infrastructure mode transmission dominates, while the contribution of ad
hoc mode transmissions is negligible.

APPENDIX IV
PROOF OF THEOREM 4

We divide the space into regular “virtual” cells of area 16 logm/m. There are a total number
of m/161logm such cells. We first prove that with high probability, each virtual cell contains at
least one base station; and the number of empty cells, i.e., cells that do not have a base station,
iS zero.

Consider an arbitrary virtual cell 7, let X;(1 <4 < m) be a random variable indicating whether
base station : is located inside cell j.

i — 1 Dbase station i is located inside cell j
' 0 otherwise

We define random variable Y; = 7, X7 to represent the total number of base stations that are
located in cell j. Since the base stations are randomly and uniformly distributed in the network,
the probability that any given base station is located inside cell j is 16 logm/m, and the expected
number of base stations located in the cell is

uj = E[Y;] = 16logm
Using a standard Chernoff bound argument, V¢ € (0, 1],
Prob(Y; > (1= 0)u;) > 1 — exp(—p;6°/2)
Let §; = 1/2, we have
Prob(Y; > %logm) >1—1/m? (14)

Therefore, each virtual cell contains at least one base station with high probabilty. Now let N
denote the number of empty cells, N = =, 1{Y; = 0}, where 1{Y} = 0} is the indicator function.
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Based on (14), we have
1
Prob(Y; < 1) < Prob(Y; < §log m) < 1/m?
Hence,

Prob(N > 0) < Y Prob(Y; < 1) <m/(16logm)Prob(Y; < 1) < 1/(16mlogm)
J

or equivalently,
Prob(N =0)=1— Prob(N >0) >1—1/(16mlogm)

Therefore, the number of empty cells equals to zero with high probability.

We adopt the following routing strategy similar to what we have used for the regular network
scenario: if the destination node is located in the same virtual cell as the source node, data are
forwarded in ad hoc mode. Otherwise, if the destination node is not located in the same cell as
the source node, data are forwarded in infrastructure mode.

Now we have a virtual regular network of » nodes and m/ logm cells. Using the same technique

as in the proofs of Theorem 2 and Theorem 3, we can obtain the results in Theorem 4.
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