
Using the Acorn C/C++ Development
Environment to write 32-bit RISC OS
software

Copyright © 2002 Castle Technology Ltd

Paul Skirrow, Octopus Systems, December 2002, version 2.00

Based on a two part article which appeared in both Archive and Acorn User, November/December 2002

1 Acorn C/C++ Development Environment

The Acorn C/C++ Development Suite from Castle Technology Ltd is a major update to Acorn C/C++ that
Acorn released in 1994. It includes new 32-bit versions of the C compiler, ARM assembler, linker and all of
the other tools that were in the original C/C++ pack. More importantly it enables software to be ported to
Castle’s new 32-bit IYONIX PC ahead of its launch.

Acorn C/C++ cost £250 in 1994 and was supplied with four printed manuals totalling nearly 1400 pages
and several floppy discs. Castle supply a single CD for £99 which contains the new software, the updated
manuals in PDF format, and some useful public domain software including StrongEd, Zap, Perl and 32-bit
IYONIX versions of Colin Granville’s PDF reader and FTPc for transferring files to or from FTP sites. All
of these are installed automatically by the supplied installer and work with RISC OS 3.10 onwards.

As if that wasn’t enough Castle is now including a new version of the ABC Compiler which was previously
available from Pineapple Software and SID, an ARM disassembler and analysis tool.

1. 32-bit Mode
When Acorn designed the ARM processor back in the mid-80’s it was widely regarded as an innovative and
elegant design. One key feature was to combine the Program Counter (PC) with the Processor Status
Register (PSR) into a single 32-bit register. This had the benefit that the PSR could be saved automatically
with the PC to achieve fast subroutine calls and quick interrupt response. The disadvantage was that ‘26-bit
mode’ limited the PC to a maximum range of 64MByte.

When the Risc PC was launched in 1994 it used the ARM6 processor which overcame this problem by
introducing a ‘32-bit mode’. However, for compatibility with existing software, most of RISC OS and all of
the RISC OS applications continued to use the old 26-bit mode and the new 32-bit mode was largely
ignored.

The latest generation of ARM processors, including the Intel XScale used in Castle’s IYONIX PC, only
operate in 32-bit mode and no longer provide the old 26-bit compatibility mode.

The new Acorn C/C++ Development Suite enables programmers to produce 32-bit compatible software
suitable for anything from a humble ARM2-based Archimedes running RISC OS 3.10 to the new XScale-
based IYONIX PC running a 32-bit version of RISC OS.

Converting Programs to 32-bit
Most RISC OS applications are written in BASIC, C or assembler. How should these programs be updated
to work on a 32-bit computer?

Anything written in BASIC should work without any problem since it is an interpreted high level language
which isn’t translated into ARM machine code. BASIC programs that include assembler code will need the
assembler sections updating as described below.

The vast majority of the commercial RISC OS applications are written in C. The good news is that C
programs can easily be converted to run in a 32-bit environment re-compiling them using the new C
compiler and linking them with new 32-bit compatible libraries on Castle’s CD. The new version will work
on existing 26-bit versions of RISC OS as well as 32-bit versions of RISC OS.

Programs that use other compiled languages or libraries will also need to be re-compiled and linked against
the new libraries. New 32-bit versions of the ABC BASIC compiler and UnixLib libraries are also available.

2

Assembler programs are more complicated as they need to be modified by hand. In particular, instructions
that manipulate the Processor Status Register (PSR) in 26-bit mode (such as MOVS PC, TEQP, LDM ^ etc)
will not work in 32-bit mode. If the code is only intended for ARM6 and later processors (ie RISC OS 3.50
onwards) then these instructions may simply be replaced by the new MSR and MRS instructions. If
compatibility with ARM2 and ARM3 computers is required than more cunning code sequences are needed
to achieve compatibility across the whole range of processors.

There is no easy way of automating the conversion process, although the ARM Club’s free ARMalyser tool
is helpful in identifying what needs converting. This may sound difficult but the changes are actually
simpler than the changes needed to make software run on the StrongARM when it was launched in 1996 and
I’ll cover this in more detail in part 2 next month.

The Pace Branch
Some history is necessary to explain the background of the new C/C++ Development Suite:

RISCOS Ltd obtained a source code licence from Acorn in 1999 and took over development of RISC OS 4
and this version is what we see in modern RISC OS computers. Meanwhile Acorn (which became Element
14) and then Pace continued to develop RISC OS 4 internally for their Set Top Box products and the Bush
Internet television. These two branches developed in different ways − RISCOS Ltd added enhancements for
desktop users while Pace made other improvements and converted RISC OS and its various modules to be
32-bit compatible.

The C compiler, tools, libraries and modules that Castle are now distributing are from the Pace branch and
not from RISCOS Ltd. This is necessary to get 32-bit compatibility but it does mean that some of the extra
features that RISCOS Ltd added to the toolbox modules, for example, may not be available in Castle’s 32-
bit versions. Developers need to be aware of this and ensure that their code does not use any of the features
that are unique to the RISCOS Ltd modules.

2. Acorn C/C++
You might be wondering how the new acorn C/C++ tools differ from the ones that RISCOS Ltd and Pace
released 18 months ago. Although they are similar, the new tools have evolved considerably since that
release and offer several new features as well as fixing a lot of problems, some of which affected the
generation of 32-bit code.

The ARM assembler supports all of the new ARM processors including the Intel XScale. A -cpu assembler
option allows the target processor to be specified and the assembler will warn of any instructions which are
unavailable on the specified processor. This is useful as you might want to specify the ARM2 as the target
processor but use MSR and MRS instructions after testing for 32-bit mode. The assembler will warn when
you do this, but still allow it, thus making it easy to write code which runs on old and new processors.

Many of the other tools have been updated. The AMU make utility has been improved significantly and now
provides much of the functionality of the popular Gnu make tool including string manipulation operators. It
also allows makefiles to include other makefiles and this is especially useful for managing large projects
(indeed this feature is used to build RISC OS itself).

The C Module Header Generator (CMHG) now uses the C pre-processor. This allows C header files to be
included so that symbolic names can be used rather than hexadecimal numbers. For example:

 #include “window.h”
 #include “services.h”

 swi-chunk-base-number: Window_SWIChunkBase
 service-call-handler: Window_services Service_ModeChange

CMHG also sets the new ‘32-bit compatible’ flag which is used by RISC OS 5 to identify and reject 26-bit
modules.

3

The new C compiler generates faster code and implements many features from the new C99 standard.

C99
The original Acorn C/C++ software released in 1994 complied with the 1989 ANSI C (American National
Standards Institute) standard which is usually referred to as C90 since it was adopted by ISO (International
Standards Organisation) in 1990.

ISO have now produced a new standard for the C programming language which is commonly referred to as
C99. It adds several new features which will be widely welcomed by C programmers, while maintaining
backwards compatibility as far as possible. C99 adds some new keywords and tightens some restrictions, so
there is a small chance that old programs will generate some errors or warning in which case a convenient
-C90 flag can be used to make the compiler behave in accordance to the C90 standard.

The new Acorn C/C++ compiler does not fully comply with the C99 standard and in particular it doesn’t
implement all of the new library functions, but it does implement most of the more useful features. The
following should give a taste of a few of the improvements which are described fully in the new Acorn C/
C++ manual included on the CD:

1. 64-bit integers are implemented via the long long type. Long long literals use the LL suffix and they
can be printed using the new ll format specifier:

#include <stdlib.h>
#include <stdio.h>
unsigned long long int MSB_set = 1ULL <<63;
printf(“MSB_set is %lld in decimal\n”, MSB_set);
printf(“or %llx in hexadecimal\n”, MSB_set);

2. Statements and declarations may be interleaved, allowing declarations to be positioned to make code
more readable:

foo();int b = 5;bar();

3. Loop variables may be declared in the for statement:

for (int i=0; i<10; i++)

Variable length arrays, varying in multiple dimensions may be passed as function parameters:

void fred(int w, int h, char d[h][w])
{
 for (int y=0; y<h; y++)
 for (int x=0; x<w; x++)
 d[y][x] ^= 0x80;
}

4. The last element of a structure may be an array of unspecified size and this is referred to as a flexible
array member:

struct flex { int len; int data[]; };
struct flex *p=malloc(sizeof(struct flex)+10*sizeof(p->data[0]));
for (int i=0; i<10; i++)
 p->data[i] = i;

The object pointed to by p behaves as if it had been declared as:

struct flex{int len; int data[10]}

It is still the programmer’s responsibility to allocate the necessary memory space correctly.

4

5. snprintf prints a formatted string to a buffer like sprintf but take an extra parameter which
specifies the size of the buffer:

char buffer[20];
len = snprintf(buffer, sizeof buffer, “Result is %s”, s);
if (len >= sizeof buffer) printf(“Buffer too small\n”);

These are just a few examples − there are plenty of other improvements.

New Modules
New 32-bit versions of the shared C library, floating point emulator and other modules for distribution are
supplied by Castle in a !System directory on the CD. The new shared C library is needed for any
programs built to run in 32-mode (this is the compiler default) and any programs that use 64-bit integers or
any of the other new C99 features or C99 library functions. If none of these are being used then there is no
need to distribute the new C library with your application (as a general rule the new modules should only be
distributed and installed if they are really needed).

ABC BASIC Compiler
The ABC BASIC Compiler has been updated to run in a 32-bit environment and it generates 32-bit code
suitable for running RISC OS 3.10 to RISC OS 5. A comprehensive release note covers its use, but the full
manual isn’t included at present as the original electronic copy of the manual has been lost.

ABC compiles BBC BASIC programs into ARM machine code which runs significantly faster than
interpreted BASIC and it is often smaller too. With today’s fast computers execution speed is less important
than it was, but compiling BASIC programs also provides a convenient way of packaging them up to deter
casual observation of the program code.

The ABC compiler is more rigorous than BASIC and places some extra requirements on the programmer.
This isn’t too much of a problem for properly written programs using good programming style and structure
but may catch out the unwary. There are a few other restrictions too − EVAL to evaluate an expression is not
supported, although its most common use to evaluate hexadecimal string is available using an extended
form of VAL, for example:

PRINT VAL("&"+hex$)
Whole array operations are not supported, so you need to write loops to copy or initialise arrays rather than
using a single assignment. In-line assembler (for ARM architecture version 3) is supported and it is
assembled at run-time.

The compiler also provides some new features which are not available in interpreted BASIC. Constants
may be declared to enable the compiler to generate more efficient code and to ensure that the value is not
erroneously changed at run-time.

Documentation
The original Acorn C/C++ pack included four manuals: Acorn C/C++, Desktop Tools, Acorn Assembler and
User Interface Toolbox. The first three have been updated significantly with details of the new features, but
the toolbox manual hasn’t been updated for the first release.

The CD also includes the RISC OS 3 Programmer’s Reference Manual, volumes 1-5a which describes RISC
OS 3.60, but not later versions.

All of the manuals are provided in Adobe PDF (Portable Document Format) and may be read using the
latest version of Colin Granville’s public domain PDF reader which is included on the CD. This works
extremely well especially as it has been enhanced specifically for this project. In particular, PDF version
1.01.1.08.15 renders thin lines correctly and it even has the option to highlight cross-references in blue. This
is a very welcome feature as you can easily see the cross-reference links and click on them to jump to the
relevant section. Even Adobe’s own Acrobat reader cannot highlight cross-references in this way (unless the
author has changed the style in the document, but then it cannot be turned off for printing). Clicking with
adjust causes a new PDF window to open allowing you to view several pages simultaneously.

5

The manuals can be printed single-sided or double-sided using !PDF but it is unlikely that many ink-jet
users will print them in their entirety due to the cost. Castle may publish printed manuals in the future (at
extra cost) if there is enough demand.

3. Conclusion
The Acorn C/C++ Development Suite is available now at the special launch price of £99* inc VAT from
Castle. It enables software writers to produce 32-bit applications and it has already been used by several
major developers to produce 32-bit versions of their software which run on the prototype IYONIX PCs.

Next month I’ll explore some of the technical issues for programmers, particularly assembly language
programmers.

* The full RRP is £199 inc VAT − the special £99 introductory price expires on 31st December 2002. More
details and on-line ordering form are on http://www.castle.uk.co/castle/software.htm

6

2 Developing software for 32-bit versions
of RISC OS

1. Introduction
Last month I gave an overview of the new Acorn C/C++ Development Environment CD which is now
available from Castle Technology Ltd. It is a major upgrade to Acorn’s original C/C++ pack with 32-bit
versions of the compiler and other tools and many new features, including support for many C99 features.

The CD also includes updated Acorn C/C++, Acorn Assembler, and Tools manuals and the full RISC OS 3
Programmer’s Reference Manual (volumes 1-5 and 5a) and RISC OS 3 Style Guide in PDF format. These
manuals all include indexes and make good use of the cross-reference facilities available in PDF.

The latest versions of Zap, StrongEd, Perl, FTPc and PDF are also included − although freely available on
the Internet it is useful to have these essential utilities provided on the CD, if only to raise awareness of
them.

This month I’ll summarise the architectural differences of the latest ARM processors, such as the Intel
XScale*, and explain why and how to update existing software to run in a 32-bit environment. In particular,
I’ll explain the changes to expect in some RISC OS API (Application Programmer Interfaces) and discuss
changes that must be made to assembler programs to make them suitable for all ARM processors.

* Strictly the term XScale® defines the microarchitecture used and not the processor. I have used the term
‘Intel XScale’ to mean Intel ARM-based processors, such as the the Intel 80321 I/O Processor, which
implement the Intel XScale microarchitecture.

Compatibility
Since last month’s article several people have contacted me expressing concern that developers must now
choose whether to develop software for 32-bit environments or whether to stick with the existing 26-bit
market which currently has more users. Fortunately, this is not the case.

Let’s be absolutely clear − software that is produced for a 32-bit version of RISC OS will still work with a
26-bit version of RISC OS. The same version will work on the whole range of RISC OS computers from an
ARM2 based Archimedes running RISC OS 3.10 to an IYONIX PC using an Intel XScale and RISC OS 5.
Developers do not need to choose which machines to develop software for − they can develop for the whole
range using Castle’s latest 32-bit tools. Distributors will not need to stock 26-bit and 32-bit versions −
updated software will work on the whole range of machines.

When we talk about converting software to 32-bit, we are not producing 32-bit only versions − we are
producing software that will run in a 26-bit or 32-bit environment. We are making it 32-bit ready, not
removing 26-bit compatibility. Indeed, many developers are now shipping 32-bit ready applications and you
may even be using them on your current computer. There is no intrinsic benefit in using 32-bit versions
though, until you start using a modern ARM chip such as the Intel XScale processor when 32-bit versions
are essential.

For the assembler programmer, writing code that works on 26-bit and 32-bit processors can require a little
thought, as explained below. Fortunately, C and BASIC users have it easy as Castle’s tools do most of the
hard work for you.

7

Updates
Early versions of the CD didn’t include ABC or the Programmer’s Reference Manuals as Castle were keen
to make the 32-bit tools available to software developers as early as possible and well in advance of their
new 32-bit IYONIX PC being launched. Everybody who bought an early CD should have received an
update by now with updated software, ABC and the manuals included.

Future updates and release notes will appear on Castle’s C/C++ support web site at:
http://www.iyonix.com/c-support.html

What is 32-bit?
What do we mean when we talk about 32-bit processors? Isn’t the ARM already 32-bit? Well, yes, it is. The
ARM architecture has always used a 32-bit word length, a 32-bit data bus and 32-bit registers. Indeed, the
early Archimedes was promoted as being a 32-bit computer to replace Acorn’s earlier computers based on
the 8-bit 6502 microprocessor.

However, while the data bus has always been 32-bit, the address bus and the Program Counter (PC) on the
ARM2 and ARM3 processors were only 26-bits wide, thus limiting the maximum amount of addressable
memory to 64MBytes. This meant that less address pins were needed on the chip and it also gave the
original ARM designers a cunning way of improving performance, as explained in ‘26-bit Mode’ below.

The ARM6 introduced ARM architecture version 3, providing a full 32-bit address bus and 32-bit program
counter, but it also provided a 26-bit compatibility mode which was used by RISC OS and by all RISC OS
applications. This limited the amount of memory that could be used for executable code, and this results in
the maximum application slot size of 28MBytes in RISC OS 3 and RISC OS 4.

The modern ARM processors such as the ARM9, ARM10 and Intel XScale families use ARM architecture
version 4T or 5TE which remove the 26-bit backwards compatibility mode in favour of the new 16-bit
‘Thumb’ architecture extension. As a result RISC OS will need to run in 32-bit mode on these processors
and RISC OS applications need to be 26/32-bit neutral so that they behave the same in 26-bit and 32-bit
modes.

Table 1 shows a list of RISC OS computers with the ARM processor used, the architecture that that
processor uses and the processor modes available.

To summarise: the ARM2 and ARM3 only provide a 26-bit mode. The ARM6, ARM7 and StrongARM
provide 26-bit and 32-bit modes but RISC OS 3 and RISC OS 4 only use 26-bit mode. The ARM9, ARM10
and XScale processors only provide a 32-bit mode. All existing programs C and assembler programs will
need to be updated so that they will work in both 26-bit and 32-bit modes. Most BASIC programs will
unchanged.

Computer Processor Architecture Modes
A300/A400 ARM2 2 26-bit only

A5000/A4 ARM3 2 26-bit only

A3000/A4000 ARM250 2 26-bit only

Risc PC ARM610/710 3 26-bit and 32-bit

A7000 ARM7500 3 26-bit and 32-bit

A7000+ ARM7500FE 3 26-bit and 32-bit

Strong ARM Risc PC StrongARM110 4 26-bit and 32-bit

IYONIX PC XScale 5TE 32-bit only

Table 1 ARM processor architecture version used in RISC OS computers

32-bit OS for the Risc PC?
Some people have asked if they will be able to upgrade their Risc PC to run a 32-bit version of RISC OS.
While it would be technically possible to produce a version of RISC OS for the Risc PC that used 32-bit

8

mode it is unlikely to happen for several reasons. Firstly, it would be an enormous undertaking and the effort
is much better expended on developing new XScale based computers. Secondly it would require users to
upgrade all of their software to 32-bit mode. More importantly, there would be little point. Programs running
in 32-bit mode will run no faster on a Risc PC than they would in 26-bit mode. Nor is a 32-bit version of
RISC OS needed to run new applications, because, as I’ve explained, they will work in 26-bit or 32-bit
mode.

The real benefits of using 32-bit mode are that it enables us to use fast, modern processors such as the Intel
XScale, and this results in an enormous performance increase. In fact no new ARM processor has been
designed with 26-bit support since the Strong ARM in 1995, so we need 32-bit support if we are to use a
processor that is less than 7 years old.

2. The Technical Bits
This section covers the technical details which are particularly relevant for assembly language programmers
− skip to the conclusion if this isn’t relevant for you.

26-bit Mode
When the ARM is working in 26-bit mode the Program Counter (PC) with the Program Status Register
(PSR) are both held in register R15. This is possible because the PC only needs 24-bits leaving 8 bits free
for the PSR (although the PC is notionally 26-bits wide, it always holds a word address, ie an address that is
a multiple of 4, so the bottom two bits are always 0).

The original ARM designers at Acorn made use of this to fit the PSR flags alongside the PC in register R15
using the bits that the PC wasn’t using for the PSR, as shown in fig. 1. The flags are used to represent
negative, zero, carry, overflow conditions and interrupt disable, FIQ (Fast Interrupt reQuest) disable and
processor mode bits (M0 and M1).

N Z C V I F Program counter (PC) - 26 bit M1 M0

31 30 29 28 27 26 25 2 1 0

R15

Fig. 1 ARM 26-bit mode combines the PC and PSR in R15

This approach wasn’t just to use the register space efficiently − the big benefit is that all process status held
in the PSR is preserved in R14 automatically when an exception occurs, such as an interrupt or SWI. This
means that the condition flags, the interrupt status and processor mode are all saved without needing any
extra instructions or registers.

For example, when calling a subroutine with the BL (Branch with Link) instruction it saves the whole of
R15 (ie the PC and the PSR) in R14, the Link Register. When the subroutine exits it can use a MOVS
PC,LR instruction to restore the PC and PSR in R15 with the saved value in R14.

32-bit Mode
When working in 32-bit mode R15 holds the 32-bit PC while the PSR is a register in its own right, called
the CPSR or Current Program Status Register, as shown in fig. 2.

Program counter (PC) - 32 bit
31 0

R15

CPSR
31 30 29 28 2 1 05 4 37 6

N Z C V M1 M0M3 M2M4FI

Fig. 2 ARM 32-bit mode provides one 32-bit register for the PC and one for the CPSR

Note that some of the extra bits in the CPSR are used to provide up to 32 processor modes in total, although
not all of these are currently defined. Table 2 shows a full list of processor modes together with the ARM
architectures that support each one.

9

Available in
M4-M0 Mode Architectures Description
00000 User_26 v2, v3 User mode, 26-bit
00001 FIQ_26 v2, v3 FIQ mode, 26-bit
00010 IRQ_26 v2, v3 IRQ mode, 26-bit
00011 SVC_26 v2, v3 Supervisor mode, 26-bit
10000 User_32 v3, v4, v5 User mode 32-bit
10001 FIQ_32 v3, v4, v5 FIQ mode, 32-bit
10010 IRQ_32 v3, v4, v5 IRQ mode, 32-bit
10011 SVC_32 v3, v4, v5 Supervisor mode, 32-bit
10111 Abort_32 v3, v4, v5 Abort mode, 32-bit
11011 Undef_32 v3, v4, v5 Undefined instruction mode, 32-bit
11111 System_32 v4, v5 System mode

Table 2 Processor modes in different ARM Architectures

Later ARM architectures provide even more bits in the CPSR, such as a Thumb mode flag and DSP
overflow flag. The remaining bits are reserved for future expansion. It is important that programmers take
care to write code such that these bits in the PSR are never modified, otherwise their code may not run on
future ARM processors.

The CPSR is no longer saved in the same register as the PC when an exception occurs. Instead, each
exception mode provides a Saved Program Status Register or SPSR, that is used to preserve the value of the
CPSR when the exception occurs. For example, when an interrupt occurs the CPSR is saved in SPSR_irq.

Fig. 3 shows the register set on the ARM3, while fig. 4 shows the register set in later architectures (but note
that not all of the modes are available in all of the architectures as shown in table 2).

User mode SVC mode IRQ mode FIQ mode

R0

R1

R2

R3

R4

R5

R6

R7

R8 R8_fiq

R9 R9_fiq

R10 R10_fiq

R11 R11_fiq

R12 R12_fiq

R13 R13_svc R13_irq R13_fiq

R14 R14_svc R14_irq R14_fiq

R15 (PC/PSR)

Fig. 3 Register set in ARM Architecture 2

10

SVC and
SVC26
mode

IRQ and
IRQ26
mode

ABT mode UND mode FIQ and
FIQ26
mode

User and
User26
mode

System

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R13_svc

R14_svc

R13_irq

R14_irq

R13_abt

R14_abt

R13_und

R14_und

R15 (PC)

CPSR

SPSR_svc SPSR_irq SPSR_abt SPSR_und SPSR_fiq

R13

R14

Fig. 4 Registers in ARM Architecture 3, 4 and 5

Two new instructions are provided in ARM architecture version 3 to access the CPSR and SPSR:

MRS Rd, PSR
MSR PSR_fields,Rd

MSR also has an immediate form:

MSR PSR_fields,#immediate

The MSR instruction moves to the Current PSR or specified SPSR from register Rd (where Rd is R0-R14),
while MRS moves to Rd from the specified immediate constant to the Current PSR or SPSR. The fields
suffix can be used to specify which fields in the CPSR are being updated: c for control fields, x for
extension fields, s for status fields and f for flags. When updating the mode flags for example, the c suffix
can be used to indicate that no other fields should be changed.

MRS and MSR instructions are available in ARM architecture version 3 and later and hence are available on
the Risc PC, A7000 and above.

These instructions can also be used to access the Saved PSR when running in an exception mode. For
example, when a SWI is executed from user mode the CPSR is saved in SPSR_svc. The SWI handler
running in supervisor mode can access the saved value using the MSR instruction:

 MRS R0, SPSR_svc

MRS and MSR behave as NOP instructions in ARM architecture 2.

Writing 26-bit/32-bit Neutral Code
In order to write code that will behave the same in 26-bit and 32-bit modes certain code sequences must be
avoided:

11

1. Avoid instructions that include the PSR in the PC when in a 26-bit mode, as they will behave differently
in a 32-bit mode. For example, do not use:

ADD a1, a1, PC
Instead use:

ADD a1, PC, a1
This behaves the same in 26-bit and 32-bit modes (ignoring the PSR in both cases).

2. LR must contain the PSR flags on entry to all functions if the code is running in a 26-bit mode, so the
following is illegal:

ADR LR, return ; No PSR flags!
MOV PC, Rw

return

The follow is legal:

MOV LR, PC
MOV PC, R2

return

3. You must not use MOVS to return from a function in 32-bit mode:
MOVS PC, ...

This will not restore flags in the same way − in 32-bit exception mode it restores the CPSR from the SPSR
for the current mode (this is unlikely to be useful though as the SPSR is subject to alteration by an interrupt
routine unless IRQs have been disabled). MOVS may be used safely after ensuring that the code is running
in 26-bit mode (an alternative mechanism should then be used if 32-bit mode is detected).

4. Do not attempt to restore flags in an LDM instruction in 32-bit mode:

LDM {...,PC}^

This will not work in 32-bit mode, but may be used after testing the mode.

5. Function calls made with BL will not save the PSR. It is often easiest to change function calls to not
require flag preservation. If flag preservation is required and the code is only intended for an ARM6 or later
the CPSR can be saved and restored explicitly using MRS and MSR.

If ARM2/ARM3 compatibility is required then check the current processor mode and choose whether to use
TEQP or MSR.

6. Be aware that SWIs are no longer required to preserve flags.

7. Avoid instructions like CMP PC, #&80000000 to set the V flag − this will not work if the program
counter is above &80000000.

8. To test whether you are in a 26-bit mode;

TEQ R0, R0 ; Set Z flag
TEQ PC, PC ; Z set if in 32-bit mode

This works because the second operand to TEQ includes the flags in 26-bit mode, but not in 32-bit mode,
whereas the first operand never includes the flags. We are therefore comparing PC with PC+PSR if in 26-bit
mode, but comparing PC with PC in 32-bit mode. This will set Z in 32-bit mode but not in 26-bit mode
since we know at least one bit (the Z flag) is set in the PSR. Note that the first instruction can be omitted if a
flag is known to be set (eg the V flag) or if not in user mode (since one of the mode flag bits will be set).

9. Modules and AIF files must have the new ‘32-bit compatible’ flag set in order to work on 32-bit systems.

12

10. Use macros to manipulate the PSR wherever possible to minimise the complexity of entry and exit
sequences in subroutines.

Example
The code shown in listing 1 demonstrates how to call a SWI from within an interrupt routine. It manipulates
the PSR to switch to supervisor mode, calls the SWI, then restores the original mode.

TEQ PC, PC ; Test for 32-bit mode
MRSEQ R8, CPSR ; 32-bit case: Use MRS to access CPSR
MOVNE R8, PC ; 26-bit case: Use MOV in 26-bit mode
ORR R9, R8, #3 ; Set mode bits for SVC26 or SVC32
MSREQ CPSR_c, R9 ; 32-bit case: set CPSR from R9
TEQNEP R9, #0 ; 32-bit case: set PSR from R9
NOP ; Avoids problems on ARM2
STR R14, [R13, #-4]! ; Save R14 (faster than STMFD

; on some CPUs)
SWI XOS_AddCallBack ; Call the SWI
LDR R14, [R13], #4 ; Restore R14
TEQ PC, PC ; Test for 32-bit mode
MSREQ CPSR_c, R8 ; 32-bit case: Restore the CPSR
TEQNEP R8, #0 ; 26-bit case: Restore the CPSR
NOP ; Avoids problem on ARM2

Listing 1: Calling a SWI from an IRQ routine (all CPUs)

The complexity of this example occurs because of the need to support pre-ARM 6 processors that don’t
have the MRS and MSR instruction (ie RISC OS 3.1 machines). If RISC OS 3.1 support is not required, it
reduces to the code shown in listing 2. This code uses MRS and MRS instructions without testing the mode
as they are available on ARM6 and ARM7 processors even when running in 26-bit mode.

Beware that the StrongARM processor has a bug: conditional MSR instructions which update the c field of
the CPSR flags cause the following instruction to be executed twice. The above example is safe as the
following instruction is idempotent (i.e. it may be executed multiple times without affecting its behaviour).

 MRS R8, CPSR
ORR R9, R8, #3 ; IRQ26->SVC26, IRQ32->SVC32
MSR CPSR_c, R9
STR R14, [R13, #-4]! ; Push R14
SWI XOS_AddCallBack
LDR R14, [R13], #4 ; Pop R14
MSR CPSR_c, R8

Listing 2: Calling a SWI from an IRQ routine (ARM600 and later)

Note since this complexity only occurs in interrupt routines which are generally quite small it is quite
feasible to write two interrupt routines, one for 26-bit mode and one for 32-bit mode, and simply install the
relevant one at run-time.

SID and ARMalyser
The C/C++ CD contains SID, a powerful disassembler capable of generating objasm format listings with
warnings to flag suspicious code sequences that could cause problems in 32-bit mode.

The ARM club have also developed a useful tool called ARMalyser which is available from their web site:
http://www.armclub.org.uk/free

Memory Map
The memory map will change in RISC OS 5 to allow application slots larger than 28MBytes. As a result the
RMA, screen memory, system heap, supervisor stack, ‘Cursor/System/Sound’ area and the ROM will all be
moved to a high memory address (typically above &F0000000). This will have several consequences for C
and BASIC programmers, as well as assembly language programmers. Things to watch out for:

13

1. Clearing bits &FC000003 bits from pointers.
2. Doing signed comparison of addresses.
3. Code which uses negative values to indicate a pointer is invalid.
4. Using high-order bits of pointers as flags.

The last two point affects some of RISC OS APIs, as explained below.

RISC OS APIs
Many RISC OS APIs (Application Program Interfaces), particularly in the WIMP, are documented as
accepting a negative number or a number less than or equal to 0 to represent an invalid pointer. If a negative
number is used it must be -1 now as other negative numbers will be interpreted as valid pointers (in
particular, watch out for &80000000 being used). 0 may still be used where it is allowed in the current API
definition.

Note that it is possible to test for 0 or -1 with the single instruction TEQ Rn,Rn,ASR#31 which will set
the Z flag if Rn contains 0 or -1.

Some APIs are defined to accept flags in the top bits of a register which also holds an address. This restricts
the addressing range to 64MBytes and a new API is needed in RISC OS5.

For example, in RISC OS 3 and RISC OS 4, OS_ReadLine interprets R0 as a 26-bit address, with 6 flag
bits, 4 currently unused. In RISC OS 5 OS_ReadLine now interprets R0 as a 32-bit address, and acts as
though the flags are all clear. This reflects the most common usage, and allows applications not wanting to
use the flags to remain unaltered.

A new SWI, OS_ReadLine32, takes its flags in R4. Bits 31 and 30 correspond to the original flags. Bits 29-8
are reserved and must be zero. Bits 7-0 are used as the echo byte (if bit 30 is set). As before, R4 is preserved
by the call.

Other SWIs which will change include OS_SubstituteArgs, OS_HeapSort and OS_File as they all currently
expect 26-bit pointers.

Full details of the API changes will appear soon on Castle’s 32-bit web site at http://www.iyonix.com/32bit

Dynamic Areas
Since applications will now be able to claim large amounts of memory for their application slot there is no
need for them to use dynamic areas, except where data needs to be shared between multiple applications.

Excessive use of dynamic areas by applications is now discouraged and it is likely that you will be able to
get more memory in your application slot than you will in a dynamic area.

3. Conclusion
This article should serve as a useful introduction to the issues of writing assembly code that is 26-bit/32-bit
neutral, but serious developers should refer to the C/C++ documentation and the documentation on Castle’s
32-bit web site at: http://www.iyonix.com/32bit.

If writing a lot of assembler code it is recommended that you obtain the latest ARM Architecture Reference
Manual (commonly referred to as the ARM ARM). It is available as a printed book from bookshops (around
£32) or free of charge on CD from ARM. See http://www.iyonix.com/32bit for details.

The Acorn C/C++ Development Suite is available now at the special launch price of £99* inc VAT from
Castle. It enables software writers to produce 32-bit applications before the IYONIX PC is launched and a
list of ‘32-bit ready’ applications will appear on the www.iyonix.com web site soon. Watch out for the new
‘IYONIX OK’ badge which will be used to advertise IYONIX PC compatible software.

Most BASIC programs will work on the IYONIX PC with little, if any, modification. Most C programs just
need re-compiling, but beware of the API changes mentioned above. Assembler programs need to be
updated by hand and will require the most effort. In all cases, the resulting application will be suitable for

14

26-bit and 32-bit versions of RISC OS.

The real benefits of using 32-bit will be seen when running familiar applications on the IYONIX PC − the
speed difference is certainly impressive and makes the conversion work very worthwhile...

* The full RRP is £199 inc VAT − the special £99 introductory price expires on 31st December 2002. More
details and on-line ordering form are on http://www.castle.uk.co/castle/software.htm

Intel and XScale are trademarks of Intel Corp.
ARM and Thumb are trademarks of ARM Ltd.

15

