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Abstract. We examine the combinatorial significance of Ramanujan’s famous sum-
mation. In particular, we prove bijectively a partition theoretic identity which implies
the summation formula.

1. Introduction

One of the more remarkable identities in the theory of basic hypergeometric series is
Ramanujan’s product formula for the summation of the 1ψ1 bilateral series. Namely,
if |q| < 1 and | b

a
| < |z| < 1 then

∞∑
n=−∞

(a; q)n

(b; q)n

zn =
(b/a; q)∞(q; q)∞(q/az; q)∞(az; q)∞
(b; q)∞(b/az; q)∞(q/a; q)∞(z; q)∞

(1)

where

(a; q)∞ :=
∞∏

n=0

(1− aqn)

and

(a; q)n =
(a; q)∞

(aqn; q)∞
.

The 1ψ1 summation formula is a multi-parameter generalization of Jacobi’s famous
triple product identity:

∞∑
n=−∞

qn(n+1)/2zn = (q; q)∞(−z−1; q)∞(−zq; q)∞ (2)

which can be obtained from (1) by replacing z with −zq/a and letting b → 0, a →∞.
The summation of the 1ψ1 has been proven in several ways [1, 2, 3, 5, 7, 8, 9, 10],
typically by using some clever applications of other hypergeometric series identities.
Most notable perhaps is Ismail’s observation [8] that (1) is a corollary of the q - binomial
theorem. Here we shall demonstrate how the 1ψ1 summation formula is equivalent to
a combinatorial statement about certain types of partitions.
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2. Partitions

A partition π of n := σ(π) is a nonincreasing sequence of natural numbers whose
sum is n. We denote by µ(π) the number of parts in the partition π. Let pA,B(n)
denote the number of generalized Frobenius partitions of n, that is, the number of two
- rowed arrays (

a1 a2 ... am

b1 b2 ... bm

)

where
∑

ai is a partition of type A,
∑

bi is a partition of type B, and n =
∑

(ai + bi + 1).
If A denotes ”distinct nonnegative parts,” then Frobenius [6] observed that

pA,A(n) = p(n) (3)

where p(n) is the number of ordinary partitions of n. In [4], Andrews discusses how
this combinatorial identity is the essence of Jacobi’s triple product formula. It turns
out that (3) is just a specialization of a more general combinatorial identity which is
essentially the 1ψ1 summation.

Let C denote ”distinct nonnegative parts and unrestricted nonnegative overlined
parts, with n > n̄.” Let fr,s(n) be the number of generalized Frobenius partitions
counted by pC,C(n) where there are r overlined parts in the top row and s overlined
parts in the bottom row.

Now let gr,s(n) be the number of 4 - tuples of partitions (π1, π2, π3, π4) where π1

and π2 are ordinary partitions, π3 and π4 are partitions into distinct parts, σ(π1) +
σ(π2) + σ(π3) + σ(π4) = n, r = µ(π2) + µ(π3), and s = µ(π2) + µ(π4). Notice that
f0,0(n) = pA,A(n) and g0,0(n) = p(n).

Theorem 1. For all nonnegative integers n, r, s, fr,s(n) = gr,s(n)

Proof: Given a Frobenius partition

α =

(
a1 a2 ... am

b1 b2 ... bm

)

counted by fr,s(n), transform α into another two-rowed array

β =

(
c1 c2 ... cp

d1 d2 ... dp

)

as follows:

(i) Let c1, ..., cp be a1, ..., am except k is inserted if 0 ≤ k ≤ a1 but k does not occur
in row 1 of α.

(ii) Let d1, ..., dp be the −k’s from (i) written in increasing order, followed by the
non-overlined parts of row 2 of α, incremented by 1 and written in increasing
order, followed by the overlined parts from row 2 of α, incremented by 1 and
written in non-increasing order.
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For example, if

α =

(
5̄ 3 3̄ 3̄ 1̄ 0
3 3̄ 0̄ 0̄ 0̄ 0̄

)

then

β =

(
5̄ 4 3 3̄ 3̄ 2 1 1̄ 0
−4 −2 −1 4 4̄ 1̄ 1̄ 1̄ 1̄

)
.

Now map β to a 4 - tuple π = (π1, π2, π3, π4) by adding, for all i, a part of size di + ci

to 



π1 if neither ci nor di is overlined

π2 if ci and di are overlined

π3 if ci but not di is overlined

π4 if di but not ci is overlined

In our example, we obtain

π =





π1 : (2, 2)

π2 : (7, 2)

π3 : (1, 7)

π4 : (3, 2, 1)

It is easy to see that π1 and π2 are ordinary partitions and that π3 and π4 are parti-
tions into distinct parts (where π1 and π3 are written in reverse order). By construction,
r = µ(π2) + µ(π3), s = µ(π2) + µ(π4) and

∑
(ci + di) = n. In other words, the image

of α is a 4 - tuple counted by gr,s(n).
This mapping is uniquely reversible. Given π, a 4-tuple of partitions counted by

gr,s(n), first write π2 and π4 in reverse order. We use the notation πi,1 for the first
part of πi and π\πi,1 for the 4-tuple of partitions π without the first part of πi. We
shall denote the empty partition by ε. With the following algorithm we reconstruct
the two-rowed array β from π.

a ← 0
β ← ε
While π2 6= ε or π4 6= ε do

If π4 = ε or π2,1 ≤ π4,1

1. β ← β ∪
(

a
π2,1 − a

)
.

2. π ← π\π2,1

else

1. β ← β ∪
(

a
π4,1 − a

)
.

2. π4 ← π\π4,1

3. a ← a + 1

While π1 6= ε or π3 6= ε
If π1 = ε or π1,1 < π3,1

1. β ← β ∪
(

a
π3,1 − a

)
.

2. π3 ← π\π3,1

else

1. β ← β ∪
(

a
π1,1 − a

)
.

3. π1 ← π\π1,1

3. a ← a + 1

It is straightforward to recover the Frobenius partition α from β.
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3. The summation formula

We first make the substitutions z → −zqa−1, b → −bq, and a → −a−1 to obtain the
equivalent form

(−aq; q)∞(−bq; q)∞
(q; q)∞(abq; q)∞

∞∑
n=−∞

(−a−1; q)n(zqa)n

(−bq; q)n

=
(−zq; q)∞(−z−1; q)∞
(bz−1; q)∞(azq; q)∞

(4)

where |b| < |z| < | 1
aq
| and |q| < 1. Notice that the coefficient of z0 on the left hand

side of (4) is ∑
n,r,s≥0

gr,s(n)arbsqn (5)

while the coefficient of z0 on the right hand side is
∑

n,r,s≥0

fr,s(n)arbsqn (6)

so that the truth of (4) implies Theorem 1. In fact, it is also true that Theorem 1
implies the 1ψ1 summation formula.

Proof of 1ψ1: If φ(z) denotes the right hand side of (4), then

φ(zq) =
(−zq2; q)∞(−z−1q−1; q)∞
(bz−1q−1; q)∞(azq2; q)∞

(7)

=
(1 + z−1q−1)(1− azq)(−zq; q)∞(−z−1; q)∞
(1 + zq)(1 + bz−1q−1)(bz−1; q)∞(azq; q)∞

(8)

=
(1− azq)

(zq − b)
φ(z) (9)

Since φ(z) is an analytic function of z in the annulus |b| < |z| < | 1
aq
|, it has a Laurent

series

φ(z) =
∞∑

n=−∞
An(a, b, q)zn

First we assume that |ab| < 1 so that for all z with | b
q
| < |z| < | 1

aq
|, applying (9) to

this series yields
∞∑

n=−∞
An(a, b, q)zn+1qn+1 −

∞∑
n=−∞

An(a, b, q)bznqn

=
∞∑

n=−∞
An(a, b, q)zn −

∞∑
n=−∞

An(a, b, q)aqzn+1
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so that
∞∑

n=−∞
An−1(a, b, q)(aq + qn)zn =

∞∑
n=−∞

An(a, b, q)(1 + bqn)zn

and hence for all integers n we have that

An(a, b, q) = aq

(
1 + a−1qn−1

1 + bqn

)
An−1

If n > 0, then this implies that

An =
anqn(−a−1; q)n

(−bq; q)n

A0

and if n < 0, say n = −m, then we have

A−m =
a−mq−m(−bq−m+1; q)m

(−a−1q−m; q)m

A0

=
a−mq−m(−a−1; q)−m

(−bq; q)−m

A0

Therefore

φ(z) =
∞∑

n=−∞

(−a−1; q)n(zqa)n

(−bq; q)n

A0

But it follows from Theorem 1 and equations (4)-(6) that

A0 =
(−aq; q)∞(−bq; q)∞

(q; q)∞(abq; q)∞

By analytic continuation we can easily extend to |b| < |z| < | 1
aq
|. ¤

4. Concluding Remarks

It should be mentioned that for any integer n, it is indeed possible to bijectively
prove the equality between coefficients of zn on both sides of (4). The arguments are
just more complicated variations on Theorem 1, which is the essential identity. We
also wish to emphasize that a more careful consideration of the bijection presented in
Theorem 1 yields an elegant proof of the q−analogue of a summation of Gauss,

∞∑
n=0

(a; q)n(b; q)n(c/ab)n

(q; q)n(c; q)n

=
(c/a; q)∞(c/b; q)∞
(c; q)∞(c/ab; q)∞

.

In fact, Frobenius partitions can be employed to give straightforward combinatorial
proofs of several identities in the theory of basic hypergeometric series. This shall be
demonstrated in a forthcoming paper.
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