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ABSTRACT

Szemer�edi's Regularity Lemma is an important tool in discrete mathematics. It says that, in some

sense, all graphs can be approximated by random-looking graphs. Therefore the lemma helps in

proving theorems for arbitrary graphs whenever the corresponding result is easy for random graphs.

Recently quite a few new results were obtained by using the Regularity Lemma, and also some new

variants and generalizations appeared. In this survey we describe some typical applications and

some generalizations.
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Preface

Szemer�edi's Regularity Lemma [121] is one of the most powerful tools of (extremal) graph
theory. It was invented as an auxiliary lemma in the proof of the famous conjecture of Erd}os
and Tur�an [56] that sequences of integers of positive upper density must always contain long

arithmetic progressions. Its basic content could be described by saying that every graph can,
in some sense, be well approximated by random graphs. Since random graphs of a given
edge density are much easier to treat than all graphs of the same edge-density, the Regularity
Lemma helps us to carry over results that are trivial for random graphs to the class of all
graphs with a given number of edges. It is particularly helpful in \fuzzy" situations, i.e.,

when the conjectured extremal graphs have no transparent structure.

This paper is partly a survey, partly an attempt to clarify some technical aspects of the
Regularity Lemma. It is not aiming at compiling all references on the subject, still we felt
that such a pseudo-survey may be useful for graph theorists. We will also provide some
proof-sketches to demonstrate how to apply the Regularity Lemma in various situations.
We also suggest reading the important paper of Alon, Duke, Le�man, R�odl, and Yuster [3]

about the algorithmic aspects of the Regularity Lemma.

Remark. Sometimes the Regularity Lemma is called Uniformity Lemma, see e.g. [64] and

[6].

Notation. In this paper we mostly consider simple graphs: graphs without loops and mul-
tiple edges.

v(G) is the number of vertices in G (order), e(G) is the number of edges in G (size). Gn

will always denote a graph with n vertices. deg(v) is the degree of vertex v and deg(v; Y )

is the number of neighbours of v in Y . �(G);�(G) and t(G) are the minimum degree,

maximum degree and average degree of G. �(G) is the chromatic number of G. N(x) is the

set of neighbours of the vertex x, and e(X;Y ) is the number of edges between X and Y .
A bipartite graph G with color-classes A and B and edges E will sometimes be written as
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G = (A;B;E); E � A�B. For disjoint X;Y , we de�ne the density

d(X;Y ) =
e(X;Y )

jXj � jY j :

The density of a bipartite graph G = (A;B;E) is the number

d(G) = d(A;B) =
jEj

jAj � jBj :

G(U) is the restriction of G to U and G � U is the restriction of G to V (G) � U . For two

disjoint subsets A;B of V (G), we write G(A;B) for the subgraph with vertex set A [ B
which has all edges of G with one endpoint in A and the other in B { when G is clearly

understood, we will just call this bipartite graph the pair (A;B). As is customary in graph

theory, we will often identify a graph with its edge-set.

For graphs G;H, H � G means H is a subgraph of G, but often we will use this in the
looser sense that G has a subgraph isomorphic to H (H is embeddable into G), that is,
there is a one-to-one map (injection) ' : V (H) ! V (G) such that fx; yg 2 E(H) implies

f'(x); '(y)g 2 E(G). kH ! Gk denotes the number of labelled copies of H in G. We say
that the graphs G1 = (V;E1) and G2 = (V;E2) pack (can be packed together) if there is a
bijection ' : V ! V such that fx; yg 2 E1 implies f'(x); '(y)g 62 E2. In other words,

G1 � G2 :=

 
V;

 
V

2

!
� E2

!
:

[n] denotes the set f1; 2; : : : ; ng. The cardinality of a set S will mostly be denoted by jSj,
but sometimes we write #S. We will be somewhat sloppy by often disregarding rounding.

1 Introduction

1.1 The structure of this survey

Below we start with some historical remarks, then we state and sketch the proof of the

Regularity Lemma. After that we introduce the basic notion of the Reduced Graph of a
graph corresponding to a partition of the vertex-set, and state a simple but fairly useful tool

(Key Lemma). Then in the body of the paper we show how it, or a stronger version of it

(Blow-up Lemma), can be used for building bounded degree subgraphs H in a large dense
graph Gn, as well as for embedding trees. This will provide simple proofs for many classical
and new theorems of extremal graph theory.

We will also touch upon some algorithmic aspects of the Regularity Lemma, its relation to

quasi-random graphs and extremal subgraphs of a random graph. We also shortly mention

a sparse version and a hypergraph version.
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1.2 Regular pairs

Regular pairs are highly uniform bipartite graphs, namely ones in which the density of any

reasonably sized subgraph is about the same as the overall density of the graph.

De�nition 1.1 (Regularity condition). Let " > 0. Given a graph G and two disjoint

vertex sets A � V , B � V , we say that the pair (A;B) is "-regular if for every X � A and

Y � B satisfying

jXj > "jAj and jY j > "jBj
we have

jd(X;Y )� d(A;B)j < ":

The following simple fact guarantees that it is su�cient to check the regularity condition for
sets of exact size jXj = b"jAjc+ 1; jY j = b"jBjc+ 1.

Fact 1.2 (Convexity of density). Given a bipartite graph with colour classes A and B,

for all integers k < jAj and ` < jBj,

d(A;B) =
1�

jAj

k

��
jBj

`

� X(d(X;Y ) : X � A; jXj = k; Y � B; jY j = `):

The next one is the most important property of regular pairs.

Fact 1.3. (Most degrees into a large set are large) Let (A;B) be an "-regular pair with

density d. Then for any Y � B; jY j > "jBj we have

#fx 2 A : deg(x; Y ) � (d � ")jY jg � "jAj:

More generally, if we �x a Y � B, and ` vertices xi 2 A, then \typically" they have at least

the expected d`jY j neighbours in common.

Fact 1.4 (Intersection Property). If Y � B and (d� ")`�1jY j > "jBj, (` � 1), then

#

�
(x1; x2; : : : ; x`) : xi 2 A;

����Y \
�

`\
i=1

N(xi)

����� � (d� ")`jY j
�
� `"jAj`:

The last two properties have corresponding upper parts (e.g. deg(x; Y ) � (d�")jY j replaced

by deg(x; Y ) � (d + ")jY j), but we usually use them the way we stated them, and in these

forms they also hold for somewhat weaker structures.

The next property says that subgraphs of a regular pair are regular.

Fact 1.5 (Slicing Lemma). Let (A;B) be an "-regular pair with density d, and, for some

� > ", let A0 � A; jA0j � �jAj; B0 � B; jB0j � �jBj. Then (A0; B0) is an "0-regular pair with

"0 = maxf"=�; 2"g, and for its density d0 we have jd0 � dj < ".
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Later we will also use a one-sided version of regularity:

De�nition 1.6 (Super-regularity). Given a graph G and two disjoint vertex sets A � V ,

B � V , we say that the pair (A;B) is ("; �)-super-regular if for every X � A and Y � B

satisfying

jXj > "jAj and jY j > "jBj
we have

e(X;Y ) > �jXjjY j;
and furthermore,

deg(a) > �jBj for all a 2 A; and deg(b) > �jAj for all b 2 B:

1.3 The Regularity Lemma

The Regularity Lemma says that every dense graph can be partitioned into a small number of
regular pairs and a few leftover edges. Since regular pairs behave as random bipartite graphs
in many ways, the Regularity Lemma provides us with an approximation of an arbitrary
dense graph with the union of a constant number of random-looking bipartite graphs.

Theorem 1.7 (Regularity Lemma, Szemer�edi 1978 [121]). For every " > 0 and m

there exist two integers M(";m) and N(";m) with the following property: for every graph G

with n � N(";m) vertices there is a partition of the vertex set into k + 1 classes

V = V0 + V1 + V2 + : : :+ Vk

such that

� m � k �M(";m),

� jV0j < "n,

� jV1j = jV2j = : : : = jVkj,

� all but at most "k2, of the pairs (Vi; Vj) are "-regular.

The classes Vi will be called groups or clusters. The role of the exceptional set V0 is purely

technical: to make possible that all other classes have exactly the same cardinality. Indeed,

having an m and choosing m0 > m; "�2 and applying the Regularity Lemma with this new

m, one can distribute the vertices of V0 evenly among the other classes so that jVij � jVjj
and "-regularity is preserved with a slightly larger ". In other words, we may assume that
V0 = ; if the conditions jVij = jVjj are relaxed to jjVij � jVjjj � 1.

The role of m is to make the classes Vi su�ciently small, so that the number of edges inside
those classes are negligible. Hence, the following is an alternative form of the Regularity

Lemma.
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Theorem 1.8. (Regularity Lemma { alternative form) For every " > 0 there exists an M(")

such that the vertex set of any n-graph G can be partitioned into k sets V1; : : : ; Vk; for some

k �M("), so that

� jVij � d"ne for every i,

� jjVij � jVjjj � 1 for all i; j,

� (Vi; Vj) is "-regular in G for all but at most "k2 pairs (i; j).

If we have a sequence (Gn) of graphs with e(Gn) = o(n2), the Regularity Lemma becomes

trivial: Gn is approximated by the empty graph. Thus the Regularity Lemma is useful only

for large, dense graphs.

De�nition 1.9 ([116]). Given an r � r symmetric matrix (pij) with 0 � pij � 1, and
positive integers n1; : : : ; nr, we de�ne a generalized random graph Rn (for n = n1 +

: : : + nr) by partitioning n vertices into classes Vi of size ni and then joining the vertices

x 2 Vi; y 2 Vj with probability pij , independently for all pairs fx; yg.

Now, Szemer�edi's Lemma asserts in a way that every graph can be approximated by gener-
alized random graphs.

1.4 A more applicable form of the Regularity Lemma

Most applications of the Regularity Lemma deal with monotone problems, when throwing
in more edges can only help. In these applications, one starts with applying the original
form of the Regularity Lemma to create a regular partition, then gets rid of all edges within
the clusters of the partition, also the edges of non-regular pairs as well as those of regular

pairs with too low densities. The leftover \pure" graph is much easier to handle and it still
contains most of the original edges. The following precise formulation of this process is a
simple consequence of the Regularity Lemma

Theorem 1.10 (Degree Form). For every " > 0 there is an M = M(") such that if

G = (V;E) is any graph and d 2 [0; 1] is any real number, then there is a partition of the

vertex-set V into k + 1 clusters V0; V1; : : : ; Vk, and there is a subgraph G0 � G with the

following properties:

� k �M ,

� jV0j � "jV j,

� all clusters Vi; i � 1; are of the same size m � d"jV je,

� degG0(v) > degG(v)� (d+ ")jV j for all v 2 V ,

� e(G0(Vi)) = 0 for all i � 1,
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� all pairs G0(Vi; Vj) (1 � i < j � k) are "-regular, each with a density either 0 or greater

than d.

Remark. In a typical application of the Degree Form, we start o� with a graph Gn and

appropriate parameters " and d, and then obtain a partition V0; V1; : : : ; Vk of V . Then we

usually drop the set V0 to get a \pure" graph G00 = G0 � V0. This pure graph G00 is much

easier to deal with, and it still contains most of the original edges:

degG00(v) > degG(v)� (d+ ")n� jV0j � degG(v)� (d + 2")n for all v 2 V (G00);

whence

e(G00) > e(G)� (d+ 3")n2=2:

1.5 The road to the Regularity Lemma

The following is a basic result in combinatorial number theory.

Theorem 1.11 (van der Waerden 1927 [125]). Let k and t be arbitrary positive inte-

gers. If we color the integers in t colors, at least one color-class will contain an arithmetic

progression of k terms.

A standard compactness argument shows that the following is an equivalent form.

Theorem 1.12 (van der Waerden - �nite version). For any integers k and t there

exists an n such that if we color the integers f1; : : : ; ng with t colors, then at least one

color-class will contain an arithmetic progression of k terms.

This is a Ramsey type theorem in that it only claims the existence of a given con�guration

in one of the color classes without getting any control over which class it is. It turns out
that the van der Waerden problem is not a true Ramsey type question but of a density type:

the only thing that matters is that at least one of the color classes contains relatively many

elements. Indeed, answering a very deep and di�cult conjecture of P. Erd}os and P. Tur�an
from 1936 [56], Endre Szemer�edi proved that positive upper density implies the existence of

an arithmetic progression of k terms.

Theorem 1.13 (Szemer�edi 1975 [120]). For every integer k > 2 and " > 0 there exists

a threshold n0 = n0(k; ") such that if, for some n � n0, A � f1; : : : ; ng and jAj > "n, then

A must contain an arithmetic progression of k terms.

Remark. For k = 3 this is a theorem of K.F. Roth [101] that dates back to 1954, and it

was already an important breakthrough when Szemer�edi succeeded in proving the theorem in

1969 for k = 4 [118]. One of the interesting questions in this �eld is the speed of convergence
to 0 of rk(n)=n, where rk(n) is the maximum size of a subset of [n] not containing an

arithmetic progression of length k. Szemer�edi's proof used van der Waerden's theorem and
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therefore gave no reasonable bound on the convergence rate of r4(n)=n. Roth found an

analytical proof a little later [102, 103] not using van der Waerden's theorem and thus

providing some weak estimates on the convergence rate of r4(n)=n [102], which - probably -

imply that

r4(n) = O

 
n

log` n

!

for some su�ciently large `, where log` n denotes the `-times iterated logarithm.

Szemer�edi's theorem was also proved by F�urstenberg [67] in 1977 using ergodic theoretical

methods. It was not quite clear �rst if the F�urstenberg proof was really di�erent from that

of Szemer�edi, but subsequent generalizations due to F�urstenberg and Katznelson [69] and

later by Bergelson and Leibman [10] convinced the mathematical community that Ergodic

Theory is a natural tool to attack combinatorial questions. The scope of this survey does

not allow us to explain these generalizations. We refer the reader to the book of R.L.

Graham, B. Rothschild and J. Spencer, Ramsey Theory [71], which describes the Hales-
Jewett theorem and how these theorems are related, and its chapter \Beyond Combinatorics"
gives an introduction into related �elds of topology and ergodic theory. Another good source
is the paper of F�urstenberg in this very volume [68].

1.6 A historical detour: the Original Szemer�edi Lemma

To prove his theorem rk(n) = o(n), Szemer�edi used a weaker version of his lemma [120],
which was formulated only for bipartite graphs.

Theorem 1.14 (The Old Szemer�edi Lemma). For every "1; "2; �; %; � > 0 there exist

n0;m0; N;M; such that for every bipartite graph (A;B;E) with jAj = n � N , jBj = m �M

there exist sets Vi � A (i < n0) and Vij � B (i < n0, j < m0) for which

(a) jA� [i<n0Vij < %n, and jB � S
j<m0

Vij j < �m, for every i < n0, and

(b) for every i < n0; j < m0 and for every T � Vi; S � Vij , if jT j > "1jVij and jSj > "2jVijj,
then

d(T; S) > d(Vi; Vij)� �

and

jN(u) \ Vij < (d(Vi; Vij) + �)jVij for each u 2 Vij:

The Old Szemer�edi Lemma is weaker than the new version not because it refers to bipartite

graphs but because for each Vi of the partition we have to choose its own partition Vij of the

set V (Gn)� Vi. Still there are many cases where the Old Szemer�edi Lemma is as applicable

as the new one; see [119, 108].

In this paper we consider almost exclusively graph theoretical applications. However, the
lemma was invented to solve number-theoretical problems, and it is still used for this purpose

also. For a recent number theoretical application see the paper of Balog and Szemer�edi [9].

There are also many applications in combinatorial geometry. We refer the reader to a
forthcoming book of Pach and Agarwal [96], and to the paper of Erd}os, Makai and Pach

[50].
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1.7 Proof of the Regularity Lemma

We only sketch the proof and emphasize its main features.

First a measure called index is de�ned for every partition of V (G) measuring in a way how

regular the pairs are in the partition. Let P be a partition of V into V0; V1; : : : ; Vk and let

ind(P ) =
1

k2

kX
i=1

kX
j=i+1

d2(Vi; Vj):

Obviously,

ind(P ) � 1

2
:

Now the basic idea is that if a partition violates the regularity conditions of the Regularity

Lemma then one can re�ne this partition so that the index will grow signi�cantly.

Lemma 1.15. Let G = (V;E) be a graph with n vertices. Let P be a partition of V into

k + 1 classes V0; V1; : : : ; Vk (where k � k0) so that jV0j < "n and the Vi's have the same size

for 1 � i � k. If for a given " > 0 more than "k2 classes are "-irregular 1, then there exists

a re�nement Q of P 2 into 1 + k4k classes such that

ind(Q) � ind(P ) +
"5

20
(1)

and the size of the exceptional class V0 increases by at most n=4k.

Iterating this re�nement in t steps and using (1) we get for the t-th new partition Pt:

1

2
� ind(Pt) � ind(P ) +

t"5

20

implying

t � 10

"5
:

Hence in at most 10"�5 improvement steps we arrive at a partition which satis�es the con-

ditions of the lemma. This means that the number of classes (disregarding the exceptional

class V0) will be \t-times iterated exponentiation": De�ne f(0) = m, f(t+1) = 1+f(t)�4f(t).
Then the number of classes will be at most f(10="5).

The proof of Lemma 1.15 uses the following defect form of the Cauchy-Schwarz inequality.

Lemma 1.16 (Improved Cauchy-Schwarz inequality). If for the integers 0 < m < n,

mX
k=1

Xk =
m

n

nX
k=1

Xk + �;

then
nX

k=1

X2
k �

1

n

 
nX

k=1

Xk

!2

+
�2n

m(n�m)
:

1i.e., not "-regular
2More precisely, Q is a re�nement if we disregard the exceptional class V0
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The following simple property of density is also used.

Fact 1.17 (Continuity of density).

jd(X;Y )� d(A;B)j � (1 � jXj=jAj) + (1 � jY j=jBj) for all X � A; Y � B:

One remark should be made here. As we have seen, the proof of the Regularity Lemma

involved 10"�5-times iterated exponentiation. Hence the estimates in many applications of

Regularity Lemma seem to be too weak. But in the original application, namely in the

proof of rk(n) = o(n), this is not the weakest point: Szemer�edi applied the van der Waerden

Theorem where the estimates are much-much weaker. For a much weaker but quantitatively

more e�cient statement, see Lemma 7.5.

1.8 Are there exceptional pairs ?

The Regularity Lemma does not assert that all pairs of clusters are regular. In fact, it allows
"k2 pairs to be irregular. For a long time it was not known if there must be irregular pairs at

all. It turned out that there must be at least ck irregular pairs. Alon, Duke, Le�man, R�odl
and Yuster [3] write: \In [121] the author raises the question if the assertion of the lemma
holds when we do not allow any irregular pairs in the de�nition of a regular partition. This,
however, is not true, as observed by several researchers, including L. Lov�asz, P. Seymour,
T. Trotter and ourselves. A simple example showing that irregular pairs are necessary is a

bipartite graph with vertex classes A = fa1; : : : ; ang and B = fb1; : : : ; bng in which aibj is
an edge i� i � j." 3

1.9 The Regularity Lemma with many colors

Some generalizations use an extension of the Regularity Lemma for many colors. This asserts
that if the edges are r-colored, then we may partition the vertex-set into a bounded number
of classes so that almost all pairs of classes are "-regular in each color simultaneously. If the

edges of a graph are r-colored, we will write d� for the edge-density in the �-th color.

Theorem 1.18 (Many-Color Regularity Lemma). For any " > 0 and integers r; �

there exists an M such that if the edges of a graph Gn are r-colored then the vertex set

V (Gn) can be partitioned into sets V0; V1; : : : ; Vk { for some � � k �M { so that jV0j < "n,

jVij = m (the same) for every i � 1, and all but at most "k2 pairs (Vi; Vj) satisfy the following
regularity condition: for every X � Vi and Y � Vj of size jXj; jY j > "m we have

jd�(X;Y )� d�(Vi; Vj)j < " (� = 1; : : : ; r):

Proof. Use the original proof, but modify the de�nition of index by summing the indices

for each color: for a partition P of V into V0; V1; : : : ; Vk, let

ind(P ) =
1

k2

X
�

kX
i=1

kX
j=i+1

d2�(Vi; Vj):

3This important graph is called the half-graph.
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2 How to apply the Regularity Lemma

2.1 Building up small subgraphs

It is well-known that a random graph Gn with �xed edge-density p > 0 contains any �xed

graph H almost surely (as n ! 1). In some sense this is trivial: we can build up this H

vertex by vertex. If we have already �xed ` vertices of H then it is easy to �nd an appropriate

(` + 1)-th vertex with the desired connections. The Regularity Lemma achieves the same

e�ect. To formulate this we introduce the notion of Reduced Graph.

2.2 The Reduced Graph

Given an arbitrary graph G = (V;E), a partition P of the vertex-set V into V1; : : : ; Vk, and
two parameters "; d, we de�ne the Reduced Graph (or Cluster graph) R as follows: its
vertices are the clusters V1; : : : ; Vk and Vi is joined to Vj if (Vi; Vj) is "-regular with density

more than d. Most applications of the Regularity Lemma use Reduced Graphs, and they
depend upon the fact that many properties of R are inherited by G. Typically, we start with
\purifying the graph" as described after Theorem 1.10, that is, we pass from the graph G

to G00 (or G0) of the Degree Form, and study the Reduced Graph of that latter graph. The
most important property of Reduced Graphs is mentioned in the following section.

2.3 A useful lemma

Many of the proofs using the Regularity Lemma struggle through similar technical details.
These details are often variants of an essential feature of the Regularity Lemma: If G has a
reduced graph R and if the parameter " is small enough, then every small subgraph H of R
is also a subgraph of G. In the �rst applications of the Regularity Lemma the graph H was

�xed, but the greedy algorithm outlined in the section \Building up small subgraphs" works
smoothly even when the order of H is proportional with that of G as long as H has bounded

degrees. (Another standard class of applications { embedding trees into dense graphs { will

be discussed later.)

The above mentioned greedy embedding method for bounded degree graphs is so frequently

used that, just to avoid repetitions of technical details, it is worth while spelling it out in a
quotable form.

For a graph R and positive integer t, let R(t) be the graph obtained from R by replacing
each vertex x 2 V (R) by a set Vx of t independent vertices, and joining u 2 Vx to v 2 Vy i�

(x; y) is an edge of R. In other words, we replace the edges of R by copies of the complete
bipartite graph Ktt.

Theorem 2.1 (Key Lemma). Given d > " > 0, a graph R, and a positive integer m,

let us construct a graph G by replacing every vertex of R by m vertices, and replacing the

edges of R with "-regular pairs of density at least d. Let H be a subgraph of R(t) with h
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vertices and maximum degree � > 0, and let � = d� " and "0 = ��=(2 + �). If " � "0 and

t� 1 � "0m, then H � G. In fact,

kH ! Gk > ("0m)h:

Remark. Note that v(R) didn't play any role here.

Remark. Often we use this for R itself (that is, for t = 1): If " � ��(R)=(2 + �(R)) then

R � G, in fact, kR! Gk � ("m)v(R).

Remark. Using the Slicing Lemma (and changing the value of "0), it is easy to replace the

condition H � R("0m) with the assumptions

(*) every component of H is smaller than "0m,

(**) H � R((1 � "0)m).

One can strengthen this tremendously by proving the same for all bounded degree subgraphs
H of the full R(m). This provides a very powerful tool (Blow-up Lemma), and it is described
in Section 6.

Proof of the Key Lemma. We prove the following more general estimate.

If t� 1 � (�� ��")m then kH ! Gk >
h
(�� ��")m� (t� 1)

ih
:

We embed the vertices v1; : : : ; vh of H into G by picking them one-by-one. For each vj not
picked yet we keep track of an ever shrinking set Cij that vj is con�ned to, and we only make
a �nal choice for the location of vj at time j. At time 0, C0j is the full m-set vj is a priori

restricted to in the natural way. Hence jC0jj = m for all j. The algorithm at time i � 1

consists of two steps.

Step 1 - Picking vi. We pick a vertex vi 2 Ci�1;i such that

degG(vi; Ci�1;j) > �jCi�1;jj for all j > i such that fvi; vjg 2 E(H): (1)

Step 2. - Updating the Cj's. We set, for each j > i,

Cij =

(
Ci�1;j \N(vi) if fvi; vjg 2 E(H)
Ci�1;j otherwise.

For i < j, let dij = #f` 2 [i] : fv`; vjg 2 E(H)g.

Fact. If dij > 0 then jCijj > �dijm. (If dij = 0 then jCijj = m.)

Thus, for all i < j, jCijj > ��m � "m, and hence, when choosing the exact location of vi,
all but at most �"m vertices of Ci�1;i satisfy (1). Consequently, we have at least

jCi�1;ij ��"m� (t� 1) > (�� ��")m� (t� 1)
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free choices for vi, proving the claim.

Remark. We did not use the full strength of "-regularity for the pairs (A;B) of m-sets

replacing the edges of H, only the following one-sided property:

X � A; jXj > "jAj; Y � B; jY j > "jBj imply e(X;Y ) > �jXjjY j:

Now most applications start with applying the Regularity Lemma for a graph G and �nding

the corresponding Reduced Graph R. Then usually a classical extremal graph theorem (like

the K�onig-Hall theorem, Dirac's theorem, Tur�an's theorem or the Hajnal-Szemer�edi theorem)

is applied to the graph R. Then an argument similar to the Key Lemma (or its strengthened

version, the Blow-up Lemma) is used to lift the theorem back to the graph G.

2.4 Some classical extremal graph theorems

This is only a brief overview of the standard results from extremal graph theory most often
used in applications of the Regularity Lemma. For a detailed description of the �eld we refer
the reader to [11, 115, 65].

The �eld of extremal graph theory started with the historical paper of P�al Tur�an in 1941, in
which he determined the minimal number of edges that guarantees the existence of a p-clique

in a graph. The following form is somewhat weaker than the original theorem of Tur�an, but
it is perhaps the most usable form.

Theorem 2.2 (Tur�an 1941 [124]). If Gn is a graph with n vertices and

e(G) >

 
1 � 1

p� 1

!
n2

2
;

then Kp � Gn.

In general, given a family L of excluded graphs, one would like to determine the maximum

number of edges a graph Gn can have without containing any subgraph L 2 L. This
maximum is denoted by ex(n;L) and the graphs attaining the maximum are called extremal

graphs. (We will use the notation ex(n;L) for hypergraphs, too.) These problems are often
called Tur�an type problems, and are mostly considered for simple graphs or hypergraphs,

but there are also many results for multigraphs and digraphs of bounded edge- or arc-
multiplicity (see e.g. [18, 19, 20, 21, 112]).

Using this notation, the above form of Tur�an's theorem says that

ex(n;Kp) �
 

1 � 1

p � 1

!
n2

2
:

The following theorem of Erd}os and Stone determines ex(n;Kp(t; : : : ; t)) asymptotically.
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Theorem 2.3 (Erd}os-Stone 1946 [55] { Weak Form). For any integers p � 2 and

t � 1,

ex(n;Kp(t; : : : ; t)) =

 
1� 1

p � 1

! 
n

2

!
+ o(n2):

(For strengthened versions, see [28, 29].) This is, however, much more than just another

Tur�an type extremal result. As Erd}os and Simonovits pointed out in [52], it implies the

general asymptotic description of ex(n;L).

Theorem 2.4. If L is �nite and min
L2L

�(L) = p > 1, then

ex(n;L) =

 
1 � 1

p � 1

! 
n

2

!
+ o(n2):

So this theorem plays a crucial role in extremal graph theory. (For structural generalizations

for arbitrary L see [36, 37, 113].) Its basic message is that the critical parameter determining
whether a graph L is a subgraph of all graphs Gn with a given edge density, is the chromatic
number of L. Contrast this with the well-known fact that the corresponding parameter for
random Gn is the average degree of L (more precisely, the maximum of the average degrees
of all subgraphs of L).

The following is a generalization of the Erd}os-Stone theorem for hypergraphs, where L(t) is
the hypergraph obtained from L as described for graphs in the paragraph preceding the Key
Lemma.

Theorem 2.5 (Erd}os [38], Brown-Simonovits [21]). For r-uniform hypergraphs

ex(n;L(t)) = ex(n;L) + o(nr):

Another classical theorem often applied in proofs employing the Regularity Lemma is Dirac's
theorem.

Theorem 2.6 (Dirac 1952 [32]). If an n-graph G has minimum degree at least n=2 then

G is Hamiltonian.

Just as Tur�an's theorem or Dirac's theorem are the standard tools in simple applications
of the Regularity Lemma, the following deep theorem of Hajnal and Szemer�edi is the key

element in sophisticated applications.

Theorem 2.7 (Hajnal-Szemer�edi 1969 [73], { Complementary Form). If �(Gn) �
(1� 1=r)n then Gn contains bn=rc vertex-disjoint copies of Kr.
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2.5 Two short proofs

While the Erd}os-Stone theorem has numerous classical proofs, just for demonstrating the

standard Regularity Lemma argument let us show how the Erd}os-Stone theorem follows

quite easily from Tur�an's theorem and the Regularity Lemma.

Let � > 0, and let Gn have more than (1� 1
p�1

+�)
�
n

2

�
edges, where n is large enough. Apply

the Degree Form of the Regularity Lemma (Theorem 1.10) with d = �=2 and " = (�=6)pt.

Let G00 = G0 � V0, and let R be the Reduced Graph of G00 with parameters "; k; d. It is easy

to see that
e(R)

k2=2
� e(G00)

n2=2
> 1� 1

p � 1
:

Thus, by Tur�an's theorem, R contains a p-clique. Hence the Key Lemma guarantees that

Gn contains Kp(t; : : : ; t) provided n is large in terms of t.

It is easy to see that we, in fact, proved the following stronger statement. (See also Frankl-
Pach [63], and [116].)

Theorem 2.8 (Number of copies of H). Let H be a graph with h vertices and chromatic

number p. Let � > 0 be given and write " = (�=6)h. If n is large enough and a graph Gn has

e(Gn) >

 
1� 1

p � 1
+ �

!
n2

2

then

kH ! Gnk >
 

"n

M(")

!h

:

It is interesting to contrast this with the following peculiar fact observed by F�uredi. If a

graph has few copies of a sample graph (e.g. few triangles), then they can all be covered by
a few edges:

Theorem 2.9 (Covering copies of H). For every � > 0 and sample graph H there is a

 = (�;H) > 0 such that if Gn is a graph with at most nv(H) copies of H, then by deleting

at most �n2 edges one can make Gn H-free.

Proof. Write h = v(H) and " = (�=3)h, and select  = ("=M("))h. Assume (without loss
of generality) that n is large enough, and apply the Degree Form of the Regularity Lemma
with d = � and, as before, let G00 be G0 � V0. We claim that the graph G00 is H-free. Let

R be the Reduced Graph of G00. If G00 contained a copy of H, then R itself would have to

contain either H or at least a graph H 0 such that H � H 0(h). But then, by the Key Lemma,

we would have

kH ! Gnk > ("m)h > ("n=k)h � ("n=M("))h = nh;

a contradiction.

The above mentioned theorems can be proved directly without the Regularity Lemma, e.g.

using sieve-type formulas, see [91, 92, 53, 21].
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3 Early applications

Among the �rst graph theoretical applications, the Ramsey-Tur�an theorem for K4 and the

(6; 3)-theorem of Ruzsa and Szemer�edi were proved using the Old Szemer�edi Lemma.

3.1 The (6; 3)-problem

The (6; 3)-problem is a special hypergraph extremal problem: Brown, Erd}os and S�os asked

for the determination of the maximum number of hyperedges an r-uniform hypergraph can

have without containing ` hyperedges the union of which is at most k. One of the simplest

cases they could not settle was this (6; 3)-problem.

Theorem 3.1 (The (6; 3)-theorem, Ruzsa-Szemer�edi 1976 [108]). If Hn is a 3-uniform

hypergraph on n vertices not containing 6 points with 3 or more triangles, then e(Hn) = o(n2).

It is easy to see that this theorem is equivalent to the following. (A matching M in G is
induced if the only edges of G connecting vertices of M are those of M , i.e. \no cross edges".)

Theorem 3.2 (Induced matchings). If Gn is the union of n induced matchings, then

e(Gn) = o(n2).

(The condition can be reformulated by saying that the edges of Gn are T -colored so that
every path P4 � Gn is 4-colored. Determine the maximum of e(Gn). Such problems were

investigated among others by Burr, Erd}os, Graham and S�os in [23], Burr, Erd}os, Frankl,
Graham and S�os in [22], and the analogous problems for C5 were solved by Erd}os and
Simonovits in [51].)

It is interesting to note the following relation of the induced matching theorem (or the (6; 3)-
theorem) to r3(n) - the length of the longest sequence of integers up to n not containing a
three-term arithmetic progression:

If f(k; n) is the maximum number of edges an n-graph can contain if it is the union of k

induced matchings, then r3(n) � f(n; 5n)=n. Indeed, let R = r3(n), and let a1; : : : ; aR (� n)
be a maximum length sequence without a three-term arithmetic progression. De�ne the

bipartite graph G5n = (A;B;E) as follows. A = [2n]; B = [3n], and

E � A�B; E = f(x+ ai; x+ 2ai) : x 2 [n]; i 2 [R]g:

Then G5n has exactlyRn edges, and it is the union of the n matchings Mx = f(x+ai; x+2ai) :
i 2 [R]g. It remains to note the simple fact that the matchings Mx are induced in G5n.

Thus, the estimate

f(k; n) < 2"n2 + k"n for all large enough n

proven below gives perhaps the simplest proof so far for Roth's theorem r3(n) = o(n). (Frankl

and R�odl think that perhaps the general rk(n) = o(n) theorem also has a similar proof, where,
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for some extremal hypergraph problem EXT-PR(k) we have an upper bound o(n`) and a

lower bound cn`�1rk(n). They claim that this program works for proving r4(n) = o(n):)

Proof. We prove the following statement. Let " > 0 be arbitrary and n � 2M(")="2. If Gn

is the union of k induced matchings, then e(Gn) < 2"n2 + k"n.

Indeed, let us apply the Degree Form of the Regularity Lemma with parameter d = 2", and

let G00 = G0 � V0. We claim that any induced matching in G00 has at most "n edges.

Let IM be an induced matching in G00, and write U = V (IM) for the vertex set of IM ,

and Ui = U \ Vi. De�ne I = fi : jUij > "jVijg, and set L = [i2IUi and S = U n L. Clearly

jSj � "n. Hence, if we had jU j > 2"n, then we would have jLj > jU j=2, and thus there

would exist two vertices u; v 2 L adjacent in IM . Let u 2 Vi and v 2 Vj . We would thus

have an edge between Vi and Vj in the reduced graph R of G00, and hence a density more

than 2" between them. The sets Ui and Uj, being of size larger than "m each, would have a
density more than " between them. This means more than "jUijjUjj � minfjUij; jUjjg edges;

a contradiction with IM being induced.

(Since the function M(") grows increadibly fast, this would only give an upper bound
r3(n) = O(n= log� n), much weaker than Roth's r3(n) = O(n= log log n), let alone the
often conjectured r3(n) = O(n= log n). The best known upper bound is due to Heath-
Brown [78] and to Szemer�edi [122] improving Heath-Brown's result, according to which
r3(n) � O(n= log1=4�" n).)

3.2 Applications in Ramsey-Tur�an theory

Theorem 3.3 (Ramsey-Tur�an for K4, Szemer�edi 1972 [119]). If Gn contains no K4

and only contains o(n) independent vertices, then e(Gn) < 1
8
n2 + o(n2).

Proof. (Sketch) The proof is based on the following three simple statements (stated infor-
mally �rst) which we will not prove.

[1] If �(G) < t(G) then K3 � G (This is trivial.)

[2] If Gn is an "-regular pair with d(Gn) > 1=2 and � = o(n), then K4 � Gn.
[3] If Gn is an "-regular triangle with � = o(n), then K4 � Gn.

The precise forms of [2] and [3] are as follows. A;B;C denote disjoint sets.

[2] Let G = (A [B;E); jAj = jBj = m, and assume that

(i) G(A;B) is "-regular with density at least � + ", with some � > 1=2; " > 0,
(ii) �(G) � (2� � 1)m.

Then K4 � G.

[3] Let G = (A [B [ C;E); jAj = jBj = jCj = m, and assume that

(i) G(A;B) is "-regular with density at least �+", with some � � " > 0, and the same holds

for the pairs (A;C); (B;C),
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(ii) �(G) � �2m.

Then K4 � G.

Now the proof of Theorem 3.3 goes as follows. Let

e(Gn) > (1=8 + 4")n2; �(Gn) � "2

M(")
n � 1; and n �M(")=":

Claim. K4 � Gn.

Apply the Degree Form with parameters d = 2". Let G00 = G0 � V0 be the usual pure graph

with Reduced Graph R. We have e(G00) > (1=8 + ")n2.

Also note that

�(Gn) < "2
 

n

M(")
� 1

!
� "2

�
n

k
� 1

�
< "2m:

We will use the fact that we did not kill any edges in regular pairs of density greater than
� + " = 2" (we can't a�ord decreasing � even within these pairs!), and the edges inside
clusters will be put back later on.

Case I. If more than k2=4 edges in R are present, then, by Tur�an's theorem, R has a triangle.
We can use [3] (with � = ") to show that K4 � G00.

Case II. X
1�i<j�k

d(Vi; Vj) = e(G00)=m2 � e(G00)k2=n2 > (1=8 + ")k2:

Hence, if at most k2=4 of these densities are non-zero, then their average is greater than
d = 1=2 + 4". Thus, at least one of them has a density greater than d. Let H be the graph
consisting of this regular pair with the edges inside the two clusters put back. To show that
K4 � G00 we can apply [2] to H with � = d� " = 1=2 + 3", since

�(H) � �(Gn) < "m < 6"m = (2� � 1)m:

Remark. Most people believed that in Theorem 3.3 the upper bound n2=8 can be improved

to o(n2). To their surprise, in 1976 Bollob�as and Erd}os [15] came up with an ingenious
geometric construction that showed that the constant 1=8 in the theorem is best possible.

That is, they show the existence of a graph sequence (Hn) for which

K4 6� Hn; �(Gn) = o(n) and e(Hn) >
n2

8
� o(n2):

Remark. A typical feature of the application of the regularity lemma can be seen above,

namely that we do not distinguish between o(n) and o(m), since the number k of clusters is

bounded and m � n=k.

Remark. The problem of determining max e(Gn) under the condition

Kp 6� Gn and �(Gn) = o(n)
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is much easier for odd p than for even p. A theorem of Erd}os and S�os describing the

odd case was a starting point of the so-called Theory of Ramsey-Tur�an problems.

The next important contribution was just the above-mentioned theorem of Szemer�edi (and

then the counterpart due to Bollob�as and Erd}os). Finally the paper of Erd}os, Hajnal, S�os

and Szemer�edi [49] completely solved the problem for all even p by generalizing the above

Szemer�edi and Bollob�as-Erd}os theorems. It again used the Regularity Lemma. There are

many related Ramsey-Tur�an theorems; we refer the reader to [47] and [48]. The very �rst

Ramsey-Tur�an type problem can be found in the paper [117] of Vera S�os.

3.3 Other early applications

There are many applications where the Regularity Lemma is only as good as the old version.

Perhaps one of the �rst applications where the new version was used is the paper of Bollob�as,
Erd}os, Simonovits and Szemer�edi [16], where various theorems on extremal graph problems
with large forbidden graphs were discussed, and in two cases the new Regularity Lemma
was used. One of these applications was an Erd}os-Stone type application that we skip here.
To state the other one we need a de�nition. Just as we de�ned the \blown-up" graph
H(t), we de�ne H(t1; t2; : : : ; tr) similarly by replacing the i-th vertex of H by ti independent

vertices, and replacing an edge (vi; vj) of H by the complete bipartite graph Kti;tj .

Theorem 3.4. Let t be an arbitrary natural number and c an arbitrary positive real number.

Then there exists an n0 such that if n � n0, and Gn is a graph of order n then either Gn can

be turned into a bipartite graph by deleting cn2 edges or C2k+1(t) � Gn for some k satisfying

2k + 1 < 1=c.

Remark. In the above theorem it is not too important if we use C2k+1 or C2k+1(t): most

applications of Szemer�edi Lemma are such that whenever we can ensure the occurence of
a small subgraph L then we can also ensure the occurence of the blown-up graph L(t).
Similarly, in most applications of the Regularity Lemma it does not make any di�erence if
we exclude L � Gn or if we replace this condition by the weaker one that Gn contains at

most o(nv(L)) copies of L.

Remark. Theorem 3.4 has two proofs in [16]: one with and one without the Regularity
Lemma. In many cases, the application of the Regularity Lemma makes things transparent

but the same results can be achieved without it equally easily. One would like to know
when one can replace the Regularity Lemma with \more elementary" tools and when the

application of the Regularity Lemma is unavoidable. The basic experience is that when in
the conjectured extremal graphs for a problem the densities in the Szemer�edi partition are

all near to 0 or 1, then the Szemer�edi lemma can probably be eliminated. On the other
hand, if these densities are strictly bounded away from 0 and 1 then the application of the

Szemer�edi lemma is typically unavoidable.
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3.4 Generalized random graphs

We already mentioned that in a sense the Regularity Lemma says that all graphs can be

approximated by generalized random graphs. The following observation was used in the

paper of Simonovits and S�os [116] to characterize quasi-random graphs.

Theorem 3.5. Let � > 0 be arbitrary, and let V0; V1; : : : ; Vk be a Szemer�edi partition of an

arbitrary graph Gn with " = �2 and each cluster size less than �n. Let Qn be the random graph

obtained by replacing the edges joining the classes Vi and Vj (for all i 6= j) by independently

chosen random edges of probability pi;j := d(Vi; Vj), and let H be any graph with ` vertices.

If n � n0, then

kH ! Qnk � C`�n
` � kH ! Gnk � kH ! Qnk+ C`�n

`:

almost surely, where C` is a constant depending only on `.

3.5 Building small induced subgraphs

While the reduced graph R of G certainly reects many aspects of G, when discussing induced

subgraphs the de�nition should be changed in a natural way. Given a partition V1; : : : ; Vk
of the vertex-set V of G and positive parameters "; d, we de�ne the induced reduced graph
as the graph whose vertices are the clusters V1; : : : ; Vk and Vi and Vj are adjacent if the pair
(Vi; Vj) is "-regular in G with density between d and 1 � d. Then the following analogue of
the Key Lemma (stated in a less quantitative manner) holds.

Theorem 3.6. If the induced reduced graph of G contains an induced subgraph H, then so

does G, provided that " is small enough in terms of H. G even contains an induced copy of

H(r) provided that " is small enough in terms of H and r.

Below we will describe an application of the regularity lemma to ensure the existence of
small induced subgraphs of a graph, not by assuming that the graph has many edges but by

putting some condition on the graph which makes its structure randomlike, fuzzy.

De�nition 3.7. A graph G = (V;E) has the property (; �; �) if for every subset S � V

with jSj > jV j the induced graph G(S) satis�es

(� � �)

 
jSj
2

!
� e(G(S)) � (� + �)

 
jSj
2

!
:

Theorem 3.8 (R�odl 1986 [105]). For every positive integer k and every � > 0 and � > 0

such that � < � < 1 � � there exists a  and a positive integer n0 such that every graph Gn

with n � n0 vertices satisfying the property (; �; �) contains all graphs with k vertices as

induced subgraphs.
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R�odl also points out that \this theorem yields an easy proof (see [94]) of the following

generalization of a Ramsey theorem �rst proved in [31, 46] and [104]:

Theorem 3.9. For every graph L there exists a graph H such that for any 2-coloring of

the edges of H, H must contain an induced monochromatic L.

The next theorem of R�odl answers a question of Erd}os [11, 39].

Theorem 3.10. For every positive integer k and positive � and  there exists a � > 0 and a

positive integer n0 such that every graph Gn with at least n0 vertices having property (; �; �)

contains all graphs with k vertices as induced subgraphs.

(Erd}os asked if the above theorem holds for 1
2
; �; 1

2
and Kk.)

The reader later may notice the analogy and the connection between this theorem and some

results of Chung, Graham and Wilson on quasi-random graphs (see Section 10).

3.6 Diameter-critical graphs

Consider all graphs Gn of diameter 2. The minimum number of edges in such graphs is
attained by the star K(1; n � 1). There are many results on graphs of diameter 2. An
interesting subclass is the class of 2-diameter-critical graphs. These are minimal graphs of

diameter 2: deleting any edge we get a graph of diameter > 2. C5 is one of the simplest
2-diameter-critical graphs. If H is a 2-diameter-critical graph, then H(a1; : : : ; ak) is also
2-diameter-critical. So Tn;2, and more generally of K(a; b), are 2-diameter-critical. Indepen-
dently, Murty and Simon (see in [24]) formulated the following conjecture:

Conjecture 3.11. If Gn is a minimal graph of diameter 2, then e(G) � bn2=4c. Equality

holds if and only if Gn is the complete bipartite graph Kbn=2c;dn=2e.

F�uredi used the Regularity Lemma to prove this.

Theorem 3.12 (F�uredi 1992 [66]). Conjecture 3.11 is true for n � n0.

Here is an interesting point: F�uredi did not need the whole strength of the Regularity

Lemma, only a consequence of it, the (6; 3)-theorem.

4 Building large subgraphs

Most of the proofs presented here and in the subsequent sections will be simpli�ed by the
application of the Key Lemma. While this is something of an anachronism the original proof

ideas are not lost, they are just basically summarized in the Key Lemma.
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4.1 Packing with small graphs

Theorem 4.1 (Alon-Yuster 1992 [6]). For any � > 0 and H there is an n0 such that

n � n0; �(Gn) >

 
1 � 1

�(H)
+ �

!
n

imply that there are (1 � �)n=jV (H)j vertex-disjoint copies of H in Gn.

In other words, Gn can be almost completely covered by copies of H.

Proof. Let r = �(H), and apply the Degree Form with d = �=2 and a very small " to

get the usual pure graph G00 with reduced graph R. Then apply the Hajnal and Szemer�edi

theorem (Theorem 2.7) for the graph R. Thus R is covered by \"-regular r-cliques".

Let h = v(H) and notice that Kr(h) contains the union of r vertex-disjoint copies of H.
(That is, we could assume that H has the same number of vertices in each of the r color
classes.) The Key Lemma (and the remark after that) implies that an "-regular r-clique
with density greater than d on each edge can be covered almost perfectly by vertex-disjoint

copies of Kr(h) (and hence those of H), since the union of vertex-disjoint copies of Kr(h)
has bounded degree.

Recently, Alon and Yuster [7] improved on their own result by showing that the tiling of Gn

with copies of H is perfect (provided, of course, that v(H) divides n). For their beautiful
conjecture (that even � = 0 works) see Section 6.

4.2 Large subgraphs with bounded degrees

The following theorem is implicit in Chv�atal-R�odl-Szemer�edi-Trotter 1983 [27] (according to

Alon, Duke, Le�man, R�odl and Yuster [3]).

Theorem 4.2. For any �; � > 0 there is a c > 0 such that if e(Gn) > �n2, then Gn

contains as subgraphs all bipartite graphs H with jV (H)j � cn and �(H) � �.

Proof. It is enough to pick one single "-regular pair (with a su�ciently small ") from a

regular partition of the host graph Gn, and then apply the Key Lemma.

The next theorem is central in Ramsey theory. It says that the Ramsey number of a bounded
degree graph is linear in the order of the graph.

Theorem 4.3 (Chv�atal-R�odl-Szemer�edi-Trotter 1983 [27]). For any � > 0 there is

a c > 0 such that if G is any n-graph, and H is any graph with jV (H)j � cn and �(H) � �,

then either H � G or H � G.

Proof. Let r = �(H), and let us start again with a regular partition of Gn (with a small ").

Throw away all edges in non-regular pairs and form the Reduced Graph R of the leftover.
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Color an edge of R BLUE if the density in Gn between the corresponding clusters is at least

1/2, otherwise color it RED. The application of the following trivial observation will lead to

either a BLUE r-clique or to a RED r-clique in R.

Fact. For every r there is an " > 0 and an n0 such that if we two-color the edges of a graph

with n � n0 vertices and at least (1�")
�
n

2

�
edges, then it contains a monochromatic r-clique.

An application of the Key Lemma completes the proof of Theorem 4.3.

5 Embedding trees

So far all embedding questions we discussed dealt with embedding bounded degree graphs

H into dense graphs Gn. General Ramsey theory tells us that this cannot be relaxed sub-
stantially without putting strong restrictions on the structure of the graph H. (Even for
bipartite H, the largest complete bipartite graph K`` that a dense graph Gn can be expected
to have is for ` = O(log n).) A frequently used structural restriction on H is that it is a tree

(or a forest). Under this strong restriction even very large graphs H can be embedded into
dense graphs Gn.

The two extremal cases are when H is a large star, and when H is a long path. Both cases
are precisely and easily handled by classical extremal graph theory (Tur�an theory or Ramsey
theory). The use of the Regularity Lemma makes it possible, in a sense, to reduce the case
of general trees H to these two special cases by splitting the tree into \long" and \wide"

pieces. After an application of the Regularity Lemma one applies, as always, a classical graph
theorem, which in most cases is the K�onig-Hall matching theorem, or the more sophisticated
Tutte's theorem (more precisely, the Gallai-Edmonds decomposition).

5.1 The Erd}os-S�os conjecture for trees

Conjecture 5.1 (Erd}os-S�os 1963 [54]). Every graph on n vertices and more than

(k � 1)n=2 edges contains, as subgraphs, all trees with k edges.

In other words, if the number of edges in a graph G forces the existence of a k-star, then it

also guarantees the existence of any other subtree with k edges. The theorem is known for
k-paths (Erd}os-Gallai 1959 [44]).

Remark. The assertion is trivial if we put up with loosing a factor of 2: If G has average
degree at least 2k > 0, then it has a subgraph G0 with �(G0) > k, but then the greedy

algorithm guarantees that G0 contains all k-trees.

Here we formulate the following result of Ajtai, Koml�os and Szemer�edi.

Theorem 5.2 (Erd}os-S�os conjecture - approximate form 1991 [2]). For every " >

0 there is a threshold k0 such that the following statement holds for all k � k0: Every graph

with average degree more than (1 + ")k contains, as subgraphs, all trees with k edges.



{ 23 {

It is important to note that the authors' 1991 manuscript contains only the \dense case",

that is, when n � Ck. The \sparse case" needs a modi�ed form of the Regularity Lemma

that is not as compact and as generally applicable as the original Regularity Lemma.

5.2 The Loebl conjecture

In their paper about graph discrepancies P. Erd}os, Z. F�uredi, M. Loebl and V. S�os [43]

reduced some questions to the following conjecture of Loebl:

Conjecture 5.3 (Martin Loebl). If G is a graph on n vertices, and at least n=2 vertices

have degrees at least n=2, then G contains, as subgraphs, all trees with at most n=2 edges.

In fact, the following approximation result proved by Ajtai, Koml�os and Szemer�edi was

enough for [43].

Theorem 5.4 (Loebl conjecture - approximate form, [1]). For every " > 0 there is

a threshold n0 such that for all n � n0, if Gn has at least (1 + ")n=2 vertices of degre at least

(1 + ")n=2, then Gn contains, as subgraphs, all trees with at most n=2 edges.

Note that Conjecture 5.3 has a strong similarity to the celebrated Erd}os-S�os conjecture,

though it is probably much easier. The main tool used for the proof of this approximate
form was again the Regularity Lemma. J. Koml�os and V. S�os generalized Loebl's conjecture
for trees of any size. It says that any graph G contains all trees whose number of edges do
not exceed the medium degree of G.

Conjecture 5.5. If G is a graph on n vertices, and at least n=2 vertices have degrees greater

than or equal to k, then G contains, as subgraphs, all trees with k edges.

In other words, the condition in the Erd}os-S�os conjecture that the average degree be greater
than k � 1, would be replaced here with a similar condition on the median degree.

The following example shows that the conjecture - if true - is close to best possible.

Let n = k + 1 and partition the vertex-set into parts V1; V2, where jV1j = bk�1
2
c. Make all

edges within V1 and also between V1 and V2. While all vertices in V1 have degree k, the

graph does not contain a path of length k. Use disjoint copies of this graph to get

lim inf
n!1

1

n
fk(n) � bk � 1

2
c = (k + 1);

where fk(n) is the maximum number of vertices of degree k or more an n-graph can have
without having all trees of size k as subgraphs. This general conjecture is probably not much

easier than the Erd}os-S�os conjecture.

Koml�os and Szemer�edi announced that they can prove an approximate version of Conjec-

ture 5.5. It needs an auxiliary lemma they already developed for attacking the Erd}os-S�os

conjecture, and again a sparse form of the Regularity Lemma.
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5.3 A Bollob�as conjecture on spanning trees

De�nition 5.6. Given a set of graphs G1; G2; : : : ; G`, we say that G1; G2; : : : ; G` can be

packed into G if we can �nd embeddings 'i of Gi into G such that the edge-sets 'i(E(Gi))

are pairwise disjoint. If G = Kn, the complete graph on n vertices, then we simply say that

there is a packing of G1; G2; : : : ; G`.

The notion of packing plays an important role in the investigation of computational com-

plexity of graph properties among other things. Thus it is not surprising that in recent

research literature there is considerable interest in packing-type results and problems (see

e.g. [11, 14, 73, 109]).

Bollob�as [11] conjectured that trees of bounded degrees can be embedded into graphs of

degree roughly n=2. It was recently proved by J. Koml�os, G. N. S�ark�ozy and E. Szemer�edi.

Theorem 5.7 (Koml�os-S�ark�ozy-Szemer�edi 1993 [84]). For every " > 0 and � there

is a threshold n0 such that the following statement holds for all n � n0: If T is a tree of

order n and maximum degree �, and Gn has minimum degree at least (1 + ")n=2, then T is

a subgraph of Gn.

The theorem is actually true even for trees of maximum degree cn= log n with a small enough
c > 0, and this is sharp. We remark that S�ark�ozy gave an NC4 algorithm that actually
exhibits such a tree-embedding. His algorithm also �nds Hamiltonian cycles in so-called
�-P�osa graphs: n-graphs in which the degree sequence d1 � d2 � : : : � dn satis�es the

following P�osa type condition:

dk � min

�
k + �n;

n

2

�
for 1 � k � n:

Note that the critical point in the Bollob�as conjecture is that the tree is a spanning tree.

For somewhat smaller trees everything is much simpler. The following is an easy exercise in
the use of the Regularity Lemma: For each " > 0 there is an � > 0 and a threshold n0 such

that if �(Gn) � n=2, where n � n0("), then Gn contains as subgraphs all trees of order at

most (1 � ")n with maximum degree at most �n.

The Bollob�as conjecture was proved using the Regularity Lemma and the following interest-
ing lemma about disjoint connections.

Lemma 5.8 (Koml�os-S�ark�ozy-Szemer�edi 1993 [84]). Let G contain 4n vertices: V =
V1 + V2 + V3 + V4 with each jVij = n. Assume that, for i = 1; 2; 3, the edges between Vi and

Vi+1 form an "-regular pair of density at least d > 0. If " � "0(d) and n � n0(d), and if '

is any bijection from V1 to V4, then there is a collection of n pairwise vertex-disjoint paths

of order 4 connecting v with '(v) for all v 2 V1.

This last lemma combined with the Key Lemma were the germs of the general tool formulated

below as Blow-up Lemma.
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6 Bounded degree spanning subgraphs

This is probably the most interesting class of embedding problems. Here the proofs (when

they exist) are too complicated to quote here, but they follow a general pattern. When

embedding H to G (they have the same order now!), we �rst prepare H by chopping it into

(a constant number of) small pieces, then prepare the host graph G by �nding a regular

partition of G, throw away the usual atypical edges, and de�ne the reduced graph R. Then

typically we apply to R the matching theorem (for bipartite H) or the Hajnal-Szemer�edi

theorem (for r-partite H). At this point, we make an assignment between the small pieces

of H and the \regular r-cliques" of the partitioned R. There are two completely di�erent

problems left. Make the connections between the r-cliques, and embed a piece of H into

an r-clique. The �rst one is sometimes easy, sometimes very hard, but there is no general

recipe to apply here. The second part, however, can typically be handled by referring to the

so-called Blow-up Lemma { a new general purpose embedding tool discussed below.

6.1 The Bollob�as-Eldridge conjecture

The next conjecture is perhaps the most beautiful one in the �eld of packing.

Conjecture 6.1 (Bollob�as-Eldridge 1978 [13, 14]). If (�(Gn)+1)(�(G0

n)+1) � n+1
then Gn and G0

n can be packed.

Note that the celebrated Hajnal-Szemer�edi theorem is a special instance of this conjecture,
namely when G0

n is a union of cliques (it was stated in an earlier section in a complementary
form).

The particular case when G0

n has maximum degree 2 was separately conjectured by Sauer

and Spencer in 1978 [109] (disjoint union of cycles) and was recently solved for large n by
Noga Alon and Eldar Fischer [4]. (Note that the hardship again comes from the fact that
the graph H to be embedded is spanning. Embedding into a Gn with �(Gn) � (2=3)n unions

of cycles with total order (1� ")n is a routine exercise in the use of the Regularity Lemma.)

The Erd}os-Stone theorem, as well as the Alon-Yuster theorem (see below) suggest that
the critical parameter should be �(G0

n) rather than �(G0

n). Thus the following conjecture

would be natural. Let " > 0 be given, let G1 and G2 be two n-graphs, and let G1 have

bounded degrees. If �(G1)�(G2) � (1 � ")n; then G1 and G2 can be packed. Or using
the complementary form (embedding rather than packing) with H = G1 and G = G2: If

�(G) �
�
1 � 1

�(H)
+ "

�
n, then H � G. Unfortunately, this is false even for �(H) = 2 as the

following example shows: Let H be a random bipartite graph and G be the union of two
equal size cliques sharing only "n vertices. Since H is an expander but G is not, we cannot

have H � G. The narrow communication bottleneck between the two cliques of G suggests

a technical condition that may help: small bandwidth w(H).
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Conjecture 6.2 (Bollob�as-Koml�os 1994). For each ";� > 0 and r there is an � > 0

and an n0 such that if v(H) = v(G) = n � n0, �(H) � r, �(H) � �, w(H) � �n, and

�(G) �
�

1 � 1

r
+ "

�
n;

then H is a subgraph of G.

6.2 The P�osa-Seymour conjecture

Paul Seymour conjectured in 1973 that any graph G of order n and minimum degree at least
k

k+1
n contains the k-th power of a Hamiltonian cycle. For k = 1, this is just Dirac's theorem.

For k = 2, the conjecture was made by P�osa in 1962. Note that the validity of the general

conjecture would imply the notoriously hard Hajnal-Szemer�edi theorem.

The following approximate version was recently proved.

Theorem 6.3 (P�osa-Seymour conjecture - approximate form, 1994 [85] ). For any

" > 0 and positive integer k there is an n0 such that if G has order n � n0 and minimum

degree at least
�
1 � 1

k+1
+ "

�
n, then G contains the k-th power of a Hamilton cycle.

The authors of the last theorem announced that they can also prove the precise P�osa conjec-
ture. For partial results, see the papers of Jacobson (unpublished), Faudree, Gould, Jacobson
and Schelp [61], H�aggkvist (unpublished), Fan and H�aggkvist [57], Fan and Kierstead [58],
Faudree, Gould and Jacobson [60], and Fan and Kierstead [59]. Fan and Kierstead also
announced a proof of the P�osa conjecture if the Hamilton cycle is replaced by Hamilton

path. (Noga Alon observed that this already implies the Alon-Fischer result mentioned in
the previous subsection, for the square of a Hamilton path contains all unions of cycles.)
We do not detail the exact statements in these papers, since none of the papers employ the
Regularity Lemma.

6.3 The Alon-Yuster conjecture

The beautiful conjecture of Alon and Yuster 1992 [6] generalizes the celebrated Hajnal-
Szemer�edi theorem from covering with cliques to covering with copies of an arbitrary (�xed)
graph H. A solution has been announced recently:

Theorem 6.4 (Koml�os-S�ark�ozy-Szemer�edi 1995 [87]). For every graph H there is a

constant K such that

�(Gn) �
 

1 � 1

�(H)

!
n

implies that there is a union of vertex-disjoint copies of H covering all but at most K vertices

of Gn.
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A simple example in [6] shows that K = 0 cannot always be achieved even when v(H) divides

v(G). Erd}os and Faudree conjectured that for H = K2;2 a perfect covering is possible, that

is, if n is divisible by 4, and Gn has minimum degree n=2, then Gn can be perfectly tiled by

4-cycles. [87] also contains a proof of that for large enough n.

The proof goes along the following lines. Let r = �(H) and apply �rst the Regularity Lemma

and then the Hajnal-Szemer�edi theorem for the reduced graph R to obtain a covering of most

of the vertices with super-regular r-cliques with equal color classes. Then the leftover "n

vertices are distributed among these regular r-cliques as evenly as possible. This may not

be possible completely evenly; the color classes may di�er with "0n. At this point, the Alon-

Yuster conjecture easily follows from the Blow-up Lemma in the (moderately interesting)

case when the color classes of H are not all equal. For H with equal color classes, the

somewhat uneven distribution of the vertices among the r clusters in a regular r-clique may

be a problem. But one can show that either there is a partition of Gn into regular r-cliques

with perfectly equal clusters and a constant number of leftover vertices (and thus the Blow-
up Lemma implies the Alon-Yuster conjecture), or Gn has a very special structure in that it
contains an r-partite subgraph G0 with equal color classes and at least (1� ")n vertices and
with minimum degree �(G0) > (1� 1=r � ")n. It is not hard to see that such special graphs
also satisfy the Alon-Yuster conjecture (even with K = 0).

6.4 The Blow-up Lemma

Several recent results exist about embedding spanning graphs into dense graphs. Some of
the proofs use the following new powerful tool. It basically says that regular pairs behave as
complete bipartite graphs from the point of view of embedding bounded degree subgraphs.

Note that for embedding spanning subgraphs, one needs all degrees of the host graph large.
That's why using regular pairs is not su�cient any more, we need super-regular pairs. The
Blow-up Lemma plays the same role in embedding spanning graphs H into G as the Key
Lemma played in embedding smaller graphs H (up to v(H) < (1 � ")v(G)).

The proof of the Blow-up Lemma starts with a probabilistic greedy algorithm, and then uses
a K�onig-Hall argument to �nish the embedding. The proof of correctness is quite involved,

and we will not present it here.

Theorem 6.5 (Blow-up Lemma { Koml�os-S�ark�ozy-Szemer�edi 1994 [86]). Given a

graph R of order r and positive parameters �;�, there exists an " > 0 such that the following

holds. Let n1; n2; : : : ; nr be arbitrary positive integers and let us replace the vertices of R

with pairwise disjoint sets V1; V2; : : : ; Vr of sizes n1; n2; : : : ; nr (blowing up). We construct

two graphs on the same vertex-set V = [Vi. The �rst graph R is obtained by replacing each

edge fvi; vjg of R with the complete bipartite graph between the corresponding vertex-sets Vi
and Vj . A sparser graph G is constructed by replacing each edge fvi; vjg with an ("; �)-super-
regular pair between Vi and Vj. If a graph H with �(H) � � is embeddable into R then it

is already embeddable into G.
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In the case when H is a tree the condition that H has bounded degrees can be relaxed to

�(H) < c
q
n= log n. In fact, the following even stronger statement follows easily from the

methods used in [84].

Theorem 6.6. There is an absolute constant c0 and for every � > 0 there is an " > 0

such that the following holds for all positive integers m;n. Let G = (U; V;E) be an ("; �)-

super-regular pair with color class sizes jU j = m and jV j = n, and let T be a subtree of the

complete bipartite graph Km;n satisfying

deg(u) < c0n= log n for all u 2 U; and deg(v) < c0m= logm for all v 2 V:

Then T is embeddable into G.

7 Weakening the Regularity Lemma

In a number of applications of the Regularity Lemma (especially the ones about bipartite
graphs like Theorem 4.2) only one regular pair is used. Since the Regularity Lemma only

guarantees that every n-graph Gn with cn2 edges contains a regular pair of order at least
c0n where c0 = 1=tower(1=c) (the tower function of 1=c) (and about the same density as
that of Gn), in these situations a direct method is preferable that may not provide a full
regular partition, but proves the existence of a regular pair with a much larger order. Such
a method is the graph-functional method of Koml�os 1991. In the next few subsections,

we describe some applications of the functional method (a kind of moment method), and
we will mention other variants of the regularity lemma later. While all these methods are
weaker than the original Regularity Lemma of Szemer�edi, they have the advantage of more
manageable constants, and thus, more importantly, they can be applied to sparser graphs
(e.g. n-graphs with n1:9 edges).

7.1 The method of graph-functionals

Moment methods are standard tools in graph theory. The following special moments, called
graph-functionals, were introduced by Koml�os in 1991. They have the form

 (G) =  1(d(G)) 2(v(G));

where d(G) = e(G)=
�
v(G)
2

�
is the density of G, and  1 and  2 are monotone increasing positive

functions. For technical reasons, we also assume that  1(x)=x is monotone increasing and
 2(x)=x is monotone decreasing. We often normalize these forms into one of the standard

forms:  (G) = '(d(G))v(G) with an increasing ', or  (G) = t(G)'(v(G)) with a decreasing

', where t(G) is the average degree of G. The idea is that if the edge distribution in G is
not uniform, then we may wish to replace G by a denser, but not much smaller subgraph

H. The factor  2(v(G)) guarantees that we do not choose too small H (e.g. an edge); it

is a delicate balance that has to be set separately for every problem. The use of a graph

functional is as follows:



{ 29 {

� Given a graph G, select a subgraph H with maximal  :  (H) = maxG0�G  (G0).

� Note that the order ofH cannot be too small:  1(d(G)) 2(v(G)) �  1(d(H)) 2(v(H)) �
 1(1) 2(v(H)) gives a lower bound on v(H).

� Prove that every  -maximal graph has certain desirable properties.

The desirable properties will be similar to expanding properties, and are natural relaxations

of regularity.

Given a class C of graphs, we say that H 2 C is  -maximal within the class C if

 (H) = max
S�H;S2C

 (S):

When the class C is understood we often omit any reference to it and simply say H is

 -maximal. It is worth noting that under the above conditions on the functions  1;  2, a
 -maximal graph H is automatically t-maximal, too:

t(H) = max
S�H;S2C

t(S):

We start with two trivial lemmas.

Lemma 7.1. Let  (G) = v(G)'(d(G)), where '(x) is monotone increasing on x 2 [0; 1].
Then every graph G 2 C contains a  -maximal subgraph H 2 C satisfying

 (H) �  (G); d(H) � d(G); v(H) �  (G)='(1):

Indeed, let
 (H) = max

G0�G;G02C
 (G0):

The lemma follows from the inequalities

 (G) = v(G)'(d(G)) � v(H)'(d(H)) � v(H)'(1):

Lemma 7.2. Let  (G) = t(G)'(v(G)), where '(x) is monotone decreasing and '(x) � 1

for x � 1. Then every graph G 2 C contains a  -maximal (as well as t-maximal) subgraph

H 2 C satisfying

 (H) �  (G); t(H) � t(G)='(1); v(H) >  (G)='(1):

Indeed, let

 (H) = max
G0�G;G02C

 (G0):

The lemma follows from the inequalities

t(G) � t(G)'(v(G)) � t(H)'(v(H)) � t(H)'(1) < v(H)'(1):

The t-maximality is trivial.

In the following few subsections we describe a couple of applications of this method.
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7.2 Regular subgraphs

In 1992, at a workshop in Bielefeld, Erd}os, Loebl and S�os started investigating a new area

of Combinatorial Discrepancy Theory called Graph Discrepancies. Later F�uredi and Ruzsa

also joined these investigations (see [43]). The following related problem was asked by Vera

S�os. Given a graph Gn with e(Gn) > cn2, how large a regular subgraph can be found in Gn ?

The problem itself has many variants and a long history. Mostly people wanted to know how

many edges are required to ensure a 3-regular, or more generally, a k-regular subgraph in a

Gn. Denote the family of k-regular graphs by Lk�reg. Erd}os and Sauer [40] conjectured that

ex(n;Lk�reg) = O(n):

Alon, Friedland and Kalai [5] proved that every graph with maximum degree 5 and average

degree bigger than 4 contains a 3-regular subgraph (and established some similar results for

other degrees of regularity). Using this result Pyber proved [99] that

ex(n;Lk�reg) � 32k2n log n:

Then Pyber, R�odl and Szemer�edi proved [100]

ex(n;Lk�reg) � cn log log n for some c > 0:

About dense graphs they note that an application of the Regularity Lemma and the matching
theorem trivially show that for every c > 0 there is an f(c) > 0 such that e(Gn) > cn2

implies that Gn contains a regular subgraph with f(c)n2 edges. The example of the complete
bipartite graph Kcn;(1�c)n shows that f(c) > c2 cannot be hoped for. The Regularity Lemma
argument only gives something like f(c) > 1=tower(1=c). Erd}os asked if a polynomial lower
bound for f(c) can be found. In [88], Koml�os and S�os provide such a bound by a simple
application of the functional method (with  (G) = v(G)dr(G)). In fact, they show the
almost optimal f(c) < c2= log�(2=c). To get the �rst polynomial bound f(c) < c4:82, let

r0 = log 2=(2 log 2 � log 3) = 2:41, and for r > r0 let us write

cr = 2� 3

2
21=r > 0:

Then the following simple procedure gives the bound f(d) � crd
2r for any r > r0: Let Bn be

be the class of all bipartite graphs with n vertices in each color classes, and let B = [nBn.

For G 2 Bm let us write n(G) = m. Fix an r > r0, and for a graph B 2 B de�ne
 (B) = n(B)dr(B), where d(B) = e(B)=n2(B) (bipartite density). We say that H 2 B is

 -maximal if

 (H) = max
H0�H

H02B

 (H 0):

Now to �nd a large regular subgraph from a dense graph Gn:

1. Select a bipartite subgraph B 2 B of Gn that contains at least half the edges of Gn.

2. Select a subgraph H 2 B of B that is  -maximal among all subgraphs of B within the

class B.

3. Apply the following two fairly simple lemmas (the �rst one is just Lemma 7.1).
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Lemma 7.3. Let r > r0. If B 2 B then G has a  -maximal subgraph (within the class B)
with d(H) � d(B) and n(H) � dr(B)n(B).

Lemma 7.4. If H 2 B is  -maximal (within B) then H contains crd(H)n(H) pairwise

edge-disjoint complete one-factors.

To get the tighter bound mentioned above, one needs some randomized versions of the

method, and select a large matching of regular pairs. Note that this method provides fairly

large regular subgraphs even for sparser n-graphs, e.g. with n-graphs with only n1:9 edges.

7.3 Finding a larger regular pair

As mentioned above, often one single regular pair (or a large matching of regular pairs) is
enough to select. The following theorem provides a regular pair having an order polynomial
in the density and exponential in 1=". (A repeated application gives a larger matching of
such pairs. The decomposition described is Subsection 7.7 can also be used to provide a
decent size regular pair, but not as large as the one guaranteed by the next theorem.)

Theorem 7.5 (Koml�os 1991 [83]). Let " � "0 and r = (3=") log(1="). Then every

G 2 B contains an ("; �)-super-regular subgraph H 2 B with

� � d(G)=2 and n(H) � dr(G)n(G):

Corollary 7.6. Let " � "0 and r = (3=") log(1="). If Gn is any n-graph with cn2 edges,

then Gn contains an ("; �)-super-regular subgraph H 2 B with

� � c and n(H) � (2c)rbn=2c:

The proof is again using the simple graph-functional  (G) = v(G)dr(G) but now with the

large r de�ned in the theorem. We simply choose a  -maximal subgraph �rst, and then

apply the following fairly easy lemma.

Lemma 7.7. Let H 2 B be  r-maximal with r de�ned above. Then H is ("; �)-super-regular
with � � d(H)=2.

7.4 Topological cliques in dense graphs

Here is another application where choosing one regular pair is su�cient, although that does

not give the best result.

The topological clique number tcl(G) of a graph G is the largest integer r such that

G has a subgraph isomorphic to a subdivision of Kr, the complete graph on r vertices. A

standard exercise in graph theory courses is the following simple theorem.
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Theorem 7.8 (Erd}os-Fajtlowicz [41]). For most n-graphs Gn,

c1
p
n < tcl(Gn) < c2

p
n:

(Bollob�as and Catlin [12] improved this to tcl(Gn) �
p

2n for most Gn.) The proof of the

lower bound consists of picking k vertices v1; : : : ; vk arbitrarily, and connecting them with

(disjoint) paths of length at most 2 as follows. For each non-adjacent pair vi; vj, select

a vertex from among their common neighbours, this way connecting them with a path of

length 2. Since in most n-graphs these common neighbourhoods are of size about n=4, we

can select an unused vertex every time, provided
�
k

2

�
+ k is less than about n=4 (or at least

k2=4 < n=4). The upper bound is equally simple.

The truth is, however, that the existence of a topological clique of size c
p
n in a random

n-graph is simply due to the fact that most graphs are dense, and all dense n-graphs Gn

have tcl(Gn) > c
p
n.

Theorem 7.9. (Koml�os-Szemer�edi 1994 [89; 90]) For each c > 0 there is a c0 > 0 such

that tcl(Gn) > c0
p
n for all graphs Gn with e(Gn) > cn2.

The proof of the existence of such a c0 is fairly simple: We de�ne some kind of expanders
with the property that any two disjoint vertex sets of size cn are connected and all degrees
are large. Then we show that these expanders have large topological subgraphs by using a
greedy algorithm, and the simple fact that these expanders have a diameter at most 4. It

remains to show that dense graphs have large expanders. This can be done naturally by
using the Regularity Lemma to select a regular pair (and throw away a few vertices to get
all degrees large). This was the way the following more general result was proved.

Theorem 7.10. (Alon-Duke-Le�man-R�odl-Yuster 1993 [3]) For each c > 0 there is a c0 > 0
such that e(Gn) > cn2 and e(H) < c0n imply that H is a topological subgraph of Gn.

The use of the Regularity Lemma is not really necessary here, since only the existence of

one single regular pair in any dense graph is used. This existence can be shown without
referring to the Regularity Lemma just by using direct computation, and this way one may

get more reasonable constants (see Theorem 7.5). Hence the dependence of c0 on c will not

be something useless like c0 � 1=tower(1=c) (the tower function grows real fast), but \only"
c0 � e�1=c. This seems to be quite an improvement. However, the true c0 is proportional top
c, and thus another approach seems to be necessary. Ironically, returning to the Regularity

Lemma is the solution. The proof of Theorem 7.9 uses the Regularity Lemma and gives a

constant about 2
p
c, which is within a factor 2 of the truth. Also, that proof implies that

in the Alon-Duke-Le�man-R�odl-Yuster theorem the condition e(H) < c0n can be relaxed to

v(H) < c0n and e(H) < (2�")cn (here c0 is, however, the ridiculously small c0 obtained from

the Regularity Lemma.)
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7.5 Topological cliques in sparse graphs

The following question has obvious implications for simulating large complete network con-

nections in sparse networks preferably using short paths. Let f(t) be the largest integer such

that every graph with average degree at least t has a topological clique with f(t) vertices:

f(t) = min ftcl(G) : t(G) � tg;

where t(G) is the average degree of the graph G. Determine, or estimate, the function f(t).

Mader [93], and independently Erd}os and Hajnal [45], conjectured that

c1
p
t < f(t) < c2

p
t ;

that is, random dense graphs are the worst case. Mader's conjecture was �rst fully proved by

Bollob�as and Thomason [17] in 1994, followed in a few months by another proof of Koml�os

and Szemer�edi [90]. The Bollob�as-Thomason proof is direct, using sophisticated connectivity
theory along the lines of some very recent results of Robertson and Seymour. They get

the constant c1 = 1=
p

512 (recently improved by them to c1 = 1=
p

44). The Koml�os-
Szemer�edi proof �ts more into this survey article, for they make a general reduction �rst
from sparse graphs to dense graphs using expander graphs (see next subsection), and then use
the Regularity Lemma to handle dense graphs (as mentioned in the previous subsection).
This way, they get a better constant (but the proof, as most proof using the Regularity
Lemma, only works for large t): c1 =

p
2, which is within a factor 2 of the truth, since a

simple example of  Luczak shows that the upper bound f(t) � c2
p
t holds with c2 = 8=3.

This reduction to dense graphs will probably lead to the determination of the best c1, too.

7.6 Expander graphs

Regular pairs are random-looking graphs in which the number of edges between any two
(large) sets is about what it is expected to be. A much weaker notion is expansion. The
bipartite graph G = (A;B;E) is a weak "-expander if, for any X � A; jXj > "jAj ; Y �
B; jY j > "jBj, there is at least one edge between X and Y . This is the same to say that

X � A; jXj > "jAj imply that jN(X)j � (1 � ")jBj. This notion, and especially stronger

versions of expansion (in which even smaller sets X have relatively large neighbourhoods)

proved to be very useful in Computer Theory. While use of expanders is certainly preferable
to the use of the Regularity Lemma, expanders often don't have enough power to replace

the Regularity Lemma in proofs.

An example of using expander graphs for reducing a sparse graph problem to a dense graph

problem was mentioned in the previous subsection. The reduction uses the following propo-
sition proved (though not explicitly stated) in [90]. Every graph of average degree t contains

a dense topological subgraph with average degree ct. More precisely, there is an absolute

constant c0 > 0 such that every graph with average degree t contains a topological subgraph
with at most t+ 2 vertices and at least c0t

2 edges.

Let us state the self-contained theorem that is the main tool for the proof of this propo-

sition. Throughout this subsection "(:) denotes functions " : [1;1) ! [0; 1] such that
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R
1

1 ("(u)=u)du <1, and, for given "(:), we write

"0 = max

(
sup
u
"(u);

Z
1

1

"(u)du

u

)
:

De�nition 7.11. Given a function " and a threshold x0, a graph G = (V;E) is an "-

expander if
j@Xj
jXj � "(jXj) (2)

for all subsets X � V; x0 � jXj � jV j=2.

Theorem 7.12 (Expander subgraphs { Koml�os-Szemer�edi 1993 [89, 90]). Let

"(x) be monotone decreasing and x"(x) be monotone increasing for x � x0; (3)

and assume that "0 � 1=4. Then every graph G has a subgraph H = (V;E) with

t(H) � t(G)=(1 + 4"0) and �(H) � t(H)=2 (4)

which is an "-expander.

Example: the papers [89, 90] used "(x) = 1=(log2(x=t(G))).

The proof of Theorem 7.12 is fairly simple but it is using a complicated graph functional:
We select a subgraph H of G that is  -maximal with respect to the graph-functional

 (G) = t(G)(1 + '(v(G)));

where the function '(x) is de�ned by

'(x) = 4
Z

1

x

"(u)du

u
(x � 1):

Then we apply the following simple lemma.

Lemma 7.13. Let "(x) # and x"(x) " for x � x0, let

'(x) = c

Z
1

x

"(u)du

u
(x � 1)

with 4 � c � 1="0, and de�ne

 (G) = t(G)(1 + '(v(G))): (5)

Then every  -maximal graph is an "-expander.



{ 35 {

7.7 Covering transversals in multipartite graphs

De�nition 7.14 (r-transversals, "-regular cylinders). Let G = (V;E) be a k-partite

graph with classes V1; : : : ; Vk. A subset of W1 � : : :Wk of V1 � : : : Vk where Wi � Vi is a

cylinder. A cylinder is "-regular if in G all the pairs (Wi;Wj) are "-regular.

The following theorem is from the paper of Alon, Duke, Le�man, R�odl and Yuster [3].

Theorem 7.15. (Lemma 5.1 in [3]) For every " > 0 there exists aK such that if G(A1; A2; : : : ; Ar),

jA1j = : : : = jArj, is an r-partite graph, then, for some k � K, one can partition the Carte-

sian product �Ai as �Ai =
S
j<k�Ai;j so that all but "nr r-transversals are covered by

"-regular pairs. Furthermore, K < 4(r
2
)="5.

As it is remarked in [3], a similar lemma was proved by Eaton and R�odl [35].

8 Strengthening the Regularity Lemma

8.1 Sparse-graph versions of the Regularity Lemma

It would be very important to �nd extensions of the Regularity Lemma for sparse graphs,
e.g., for graphs where we assume only that

e(Gn) > cn2��;

for some positive constants c and �. However, we do not really know much about this.
There is a new and promising development though. Y. Kohayakawa [79] and V. R�odl [106]

independently proved a version of the Regularity Lemma in 1993 which can be regarded as
a Regularity Lemma for sparse graphs. (R�odl's result seems to be unpublished but in [75] it
is remarked that V. R�odl has also found this lemma.) As Kohayakawa puts it: \Our result

deals with subgraphs of pseudo-random graphs." He (with co-authors) has also found some
interesting applications of this theorem in Ramsey theory and in Anti-Ramsey theory, (see
e.g. [74, 75, 76, 77, 80, 81, 82]).

To formulate the Kohayakawa{R�odl Regularity Lemma we need the following de�nitions.

De�nition 8.1. A graph G = Gn is (P0; �)-uniform for a partition P0 of V (Gn) if for some

p 2 [0; 1] we have

jeG(U; V )� pjU jjV jj � �pjU jjV j;
whenever jU j; jV j > �n and either P0 is trivial, U; V are disjoint, or U; V belong to di�erent

parts of P0.

De�nition 8.2. A partition Q = (C0; C1; : : : ; Ck) of V (Gn) is ("; k)-equitable if jC0j < "n

and jC1j = : : : = jCkj.
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Notation.

dH;G(U; V ) =

�
eH(U; V )=eG(U; V ) if eG(U; V ) > 0

0 otherwise.

De�nition 8.3. We call a pair (U; V ) (";H;G)-regular if for all U 0 � U and W 0 � W with

jU 0j � "jU j and jW 0j � "jW j, we have

jdH;G(U;W )� dH;G(U 0;W 0)j � ":

Theorem 8.4 (Kohayakawa 1993 [79]). Let " and k0; ` > 1 be �xed. Then there are

constants � > 0 and K0 > k0 with the following properties. For any (P0; �)-uniform graph

G = Gn; where P0 = (Vi)
`
i is a partition of V = V (G), if H � G is a spanning subgraph

of G, then there exists an (";H;G)-regular, ("; k)-equitable partition of V re�ning P0, with

k � k0 � K0.

8.2 A hypergraph version of the Regularity Lemma

Of course, after having the powerful Szemer�edi Lemma one would like to know if it can be
generalized (a) to sparse graphs, (b) to hypergraphs.

One can easily formulate fake hypergraph regularity lemmas by mindlessly generalizing the
original Regularity Lemma. The real question is if one can �nd a powerful hypergraph lemma
which can be used to prove theorems which do not follow from an application of the ordinary

Regularity Lemma.

The �rst such result was announced by Frankl and R�odl [64]. The authors write:

"... We hope that this will prove to be nearly as useful as Szemer�edi's theorem.
So far we have found two applications, proof of a conjecture of Erd}os concerning
Tur�an type problems [42, 62] and giving an alternative condition for quasiran-
domness [25]. Proofs of these applications will be the subject of a subsequent

paper."

One problem with the hypergraph version is that one feels that there must be more than
one possible generalizations. When regarding 3-graphs, one can think of partitioning the
vertices or the pairs of vertices. And when one has various forms, sometimes it is di�cult to

tell their relation.

Later we will discuss the problem of quasi-random hypergraphs. This led Fan Chung to her

formulation of the hypergraph{regularity lemma stated below. Since the paper of Frankl and

R�odl is somewhat concise and not too easy to read, we restrict ourselves below to formulating
Fan Chung's [25] hypergraph regularity lemma.

This version has 2 parameters: k and r < k. The r-tuples are partitioned into t classes
forming t r-uniform hypergraphs S1; : : : ; St and then a k-uniform hypergraph Hn is �xed

and some densities d(A1; : : : ; A(kr)
) are de�ned as follows. A1; : : : ; A(kr)

is a
�
k

r

�
-subset of

fS1; : : : ; Stg. We count those k-tuples Ej 2 V (Hn) for which each r-tuple of Ej belongs to
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di�erent Ai. Let their number be eH(A1; : : : ; A(kr)
). The very same quantity for the complete

k-graph K(k)
n is denoted by e(A1; : : : ; A(kr)

). Let

dH(A1; : : : ; A(kr)
) =

eH(A1; : : : ; A(kr)
)

e(A1; : : : ; A(kr)
)
:

We say that (A1; : : : ; A(kr)
) is (k; r)� "-regular if for any choice Xi � Ai with

e(X1; : : : ;X(kr)
)

eK(A1; : : : ; A(kr)
)
> ";

we have

jdH(X1; : : : ;X(kr)
)� dH(A1; : : : ; A(kr)

)j < ":

For general k, there are k � 1 di�erent versions of the Regularity Lemma. Namely, for each
1 � r � k the following holds:

Theorem 8.5. Suppose 1 � r � k. For every " > 0, there exists a K(") > 0 such that

for every k-graph G,
�
V

r

�
can be partitioned into sets S1; : : : ; St for some k < K(") so that

all but at most "nk k-tuples are contained in E(Si1; : : : ; Si(kr)
) for some i1; : : : ; i(kr)

where

1 � i1 < i2 < : : : < i(kr)
� t and fSi1 ; : : : ; Si(kr)

g is (k; ")-regular.

Very recently J. Pach found a weakening of the hypergraph regularity lemma along the line
described as ("; �)-regular pairs, which he needed to prove a so called Tverberg-type results
in geometry, [95].

9 Algorithmic questions

The Regularity Lemma is used in two di�erent ways in computer science. Firstly, it is used
to prove the existence of some special subcon�gurations in given graphs of positive edge-
density. Thus by turning the lemma from an existence-theorem into an algorithm one can

transform many of the earlier existence results into relatively e�cient algorithms. The �rst

step in this direction was made by Alon, Duke, Le�man, R�odl and Yuster [3].

In the second type of use, one takes advantage of the fact that the regularity lemma provides

a random-like substructure of any dense graph. We know that many algorithms fail on ran-
domlike objects. So one can use the Regularity Lemma to prove lower bounds in complexity

theory, see e.g. Maass and Tur�an [72]. One of these randomlike objects is the expander

graph, an important structure in Theoretical Computer Science.
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9.1 Two applications in computer science

A. Hajnal, W. Maass and G. Tur�an applied the Regularity Lemma to estimate the commu-

nicational complexity of certain graph properties [72]. We quote their abstract:

\Abstract: We prove #(n log n) bounds for the deterministic 2-way communication com-

plexity of the graph properties CONNECTIVITY, s; t-CONNECTIVITY and BIPARTITE-

NESS. ... The bounds imply improved lower bounds for the VLSI complexity of these

decision problems and sharp bounds for a generalized decision tree model which is related

to the notion of evasiveness."

Another place where the Regularity Lemma is used in estimating communicational complex-

ity is an (electronic) paper of Pudl�ak and Sgall [98]. In fact, they only use the (6,3)-problem,

i.e., the Ruzsa-Szemer�edi theorem.

9.2 An algorithmic version of the Regularity Lemma

The Regularity Lemma being so widely applicable, it is natural to ask if for a given graph Gn

and given " > 0 and m one can �nd an "-regular partition of G in time polynomial in n. The
answer due to Alon, Duke, Lefmann R�odl and Yuster [3] is surprising, at least at �rst: Given
a graph G, we can �nd regular partitions in polynomially many steps, however, if we describe

this partition to someone else, he cannot verify in polynomial time that our partition is really
"-regular: he has better produce his own regular partition. This is formulated below:

Theorem 9.1. The following decision problem is co-NP complete: Given a graph Gn with

a partition V0; V1; : : : ; Vk and an " > 0. Decide if this partition is "-regular in the sense

guaranteed by the Regularity Lemma.

Let Mat(n) denote the time needed for the multiplication of two (0; 1) matrices of size n.

Theorem 9.2 (Constructive Regularity Lemma). For every " > 0 and every positive

integer t > 0 there exists an integer Q = Q("; t) such that every graph with n > Q vertices

has an "-regular partition into k + 1 classes for some k < Q and such a partition can be

found in O(Mat(n)) sequential time. The algorithm can be made parallel on an EREW with

polynomially many parallel processors, and it will have O(log n) parallel running time.

9.3 Counting subgraphs

R. Duke, H. Lefmann and V. R�odl applied a version of the Szemer�edi Lemma to count

various subgraphs of a graph Gn relatively fast [33]. If we wish to count the subgraphs of
Gn isomorphic to some given L then no really good algorithm is known. Therefore it is

reasonable to try to �nd an approximation algorithm. The authors in [33] do not count the

graphs individually, rather they �x a list of all the t = 2(k2) labelled subgraphs L1; : : : ; Lt and

this de�nes a vector �k(G) whose i-th component is the number of \order-isomorphic" copies
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of Li in the labelled Gn, where \order-isomorphic" means that the embedding ' : L ! Gn

preserves the order of the labels as well. The aim is to approximate this vector �k(Gn).

Clearly, if k is relatively small compared to n then it does not matter if we try to count

labelled or unlabelled copies. The main result of [33] is (logarithm is of the base 2):

Theorem 9.3 ([33]). Let c be a constant, 0 � c � 1, and n an integer with log log n �p
c log n. There is an algorithm which, given a labeled graph on n vertices and an ordering

of its vertices and given a list of all labeled graphs on an ordered set of k vertices, 3 � k �p
c log n, yields a 2k(k")1=2-approximation to �k(G) in O(2(k2)n2cMat(n)) sequential time,

where

" =

 
216k2 log log n

c log n

!1=21

and Mat(n) is the time required to multiply two n � n matrices with 0,1 entries, over the

integers.

10 Regularity and randomness

10.1 Extremal subgraphs of random graphs

Answering a question of P. Erd}os, L. Babai, M. Simonovits and J. Spencer [8] described the
Tur�an type extremal graphs for random graphs:

Given an excluded graph L and a probability p, take a random graph Rn of edge-
probability p (where the edges are chosen independently) and consider all its subgraphs
Fn not containing L. Find the maximum of e(Fn).

Below we formulate three theorems. Theorem 10.1 deals with the simplest case, namely,
when p = 1=2 and K3 is excluded. Theorem 10.3 generalizes Theorem 10.1 for arbitrary
3-chromatic graphs with "critical edges", (see the de�nition below). Theorem 10.4 describes

the asymptotically extremal structure in the general case, i.e., when an arbitrary 3-chromatic

L is �xed, and though L � Fn is not excluded, the graph Fn contains only a small number of
copies of L. ([8] also contains a theorem providing a more precise description of the general
situation in terms of the structure L.) We will use the expression \almost surely" in the

sense \with probability 1� o(1) as n!1". In this part a p-random graph means a random

graph of edge-probability p where the edges are chosen independently.

Theorem 10.1. Let p = 1=2. If Rn is a p-random graph and Fn is a K3-free subgraph

of Rn containing the maximum possible number of edges, and Bn is a bipartite subgraphs of

Rn having maximum possible number of edges, then e(Bn) = e(Fn). Moreover, Fn is almost

surely bipartite.

De�nition 10.2 (Critical edges). Given a k-chromatic graph L, an edge e is critical if

L� e is k � 1-chromatic.
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Many theorems valid for complete graphs were generalized to arbitrary L having critical

edges (see e.g. [114]). Theorem 10.1 also generalizes to every 3-chromatic L containing a

critical edge e, and for every probability p > 0.

Theorem 10.3. Let L be a �xed 3-chromatic graph with a critical edge e (i.e., �(L�e) = 2).

There exists a function f(p) such that if p 2 (0; 1) is given and Rn 2 G(p), and if Bn is a

bipartite subgraph of Rn of maximum size and Fn is an L-free subgraph of maximum size,

then

e(Bn) � e(Fn) � e(Bn) + f(p)

almost surely, and almost surely we can delete f(p) edges of Fn so that the resulting graph

is already bipartite. Furthermore, there exists a p0 < 1=2 such that if p � p0, then Fn is

bipartite: e(Fn) = e(Bn).

Theorem 10.3 immediately implies Theorem 10.1. One could of course ask how large f(p)
is as p ! 0. We do not know the precise answer, only that Theorem 10.3 holds with

f(p) = O(p�3 log p).

In Theorem 10.3 we are not concerned with the exact value of p0. Our main point is that
the observed phenomenon is valid not just for p = 1=2, but for smaller values of p as well.
We do not even know if e(Fn)� e(Bn) !1 as p! 0:

If �(L) = 3 but we do not assume that L has a critical edge, then we get similar results,
having slightly more complicated forms. To formulate them we should introduce the notion

of the "decomposition family" of L [113]. To keep the paper short we skip these more
technical details and formulate a weaker version.

Theorem 10.4. Let L be a given 3-chromatic graph. Let p 2 (0; 1) be �xed and let Rn be

a p-random graph. If Bn is a bipartite subgraph of Rn of maximum size and Fn is an L-free

subgraph of maximum size, then almost surely

e(Bn) � e(Fn) � e(Bn) + o(n2)

and we can delete o(n2) edges of Fn so that the resulting graph is already bipartite.

The above results also generalize to r-chromatic graphs L.

10.2 Random Berge-graphs

One of the deepest questions in graphs theory seems to be the Strong Perfect Graph Con-

jecture. This asserts that G is a perfect graph i� neither G nor its complementary graph
G contains any odd cycles of length at least 5 as induced subgraphs. A surprising result of
Pr�omel and Steger [97] asserts that statistically this conjecture is true. Let us call odd cycles

on k � 5 vertices and their complementary graphs Berge graphs. Let Berge(n) denote the

class of all labelled graphs not containing Berge graphs as induced subgraphs.
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Theorem 10.5 ([97]). Almost all Berge graphs are perfect.

De�nition 10.6 (Generalized split graphs). A graph G on the vertex set V is a Gen-

eralized Split Graph if V can be partitioned into V1 and V2 so that

- either G[V1] is the union of pairwise disjoint cliques and V2 and V2 induced a clique in G

- or the above condition holds for the complementary graph G.

Let S denote the family of generalized split graphs and F5 denote the class of graphs not

containing an induced C5. Pr�omel and Steger show that

(a) all the generalized split graphs are perfect, and therefore

S(n) � Perf(n) � F5(n):

(b) Almost all graphs in F5(n) are split graphs.

This implies
S(n) � Berge(n) � Perf(n) � F5(n);

and that all these families have asymptotically the same cardinality. The proof uses the
Regularity Lemma.

10.3 Quasi-randomness and the Regularity Lemma

Quasi-random structures have been investigated by several authors, among others, by Thoma-
son [123], Chung, Graham, Wilson, [26]. For graphs, Simonovits and S�os [116] have shown
that quasi-randomness can also be characterized by using the Regularity Lemma. Fan Chung
[25] generalized their results to hypergraphs.

Let N�

G(L) and NG(L) denote the number of induced and not necessarily induced copies of

L in G, respectively. Let S(x; y) = V (Gn)� (N(x)�N(y)), the set of vertices joined to both
x and y in the same way, let N(x; y) = N(x)\N(y): the set of common neighbours of x and
y. We start with the Chung-Graham-Wilson theorem in which various properties are listed
all of which are almost surely true for random graphs and which are very natural properties

of random graphs. The theorem asserts that even if we do not assume that a sequence (Gn)

is a random graph sequence, the properties listed below are equivalent.

Theorem 10.7 (Chung-Graham-Wilson [26]). For any graph sequence (Gn) the fol-

lowing properties are equivalent:

P1(�): for �xed �, for all graphs H�

N�

G(H�) = (1 + o(1))n�2�(�
2
):

P2(t): Let Ct denote the cycle of length t. Let t � 4 be even.

e(Gn) � 1

4
n2 + o(n2) and NG(Ct) �

�
n

2

�t
+ o(nt):
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P3: e(Gn) � 1
4
n2 + o(n2); �1(Gn) = 1

2
n + o(n) and �2(Gn) = o(n), where �i(G)

is the i-th eigenvalue of the (adjacency matrix of the) graph G (listed in decreasing order of

modulus).

P4: For each subset X � V ,

e(X) =
1

4
jXj2 + o(n2):

P5: For each subset X � V; jXj = bn
2
c we have e(X) =

�
1
16
n2 + o(n2)

�
.

P6:
P

x;y2V

���jS(x; y)j � n
2

��� = o(n3).

P7:
P

x;y2V

���jN(x; y)j � n
4

��� = o(n3).

Obviously, P1(�) says that the graph Gn contains each subgraph with the same frequency as
a random graph. In P2(t) we restrict ourselves to not necessarily induced even cycles. The

di�erence between the role of the odd and even cycles is explained in [26]. The eigenvalue
property is also very natural, knowing the connection between the structural properties of
graphs and their eigenvalues. The other properties are self-explanatory.

Simonovits and S�os formulated a graph property which also proved to be a quasi-random
property.

PS : For every " > 0 and � there exist two integers, k("; �) and n0("; �) such that for
n � n0, Gn has a Szemer�edi-partition with parameters " and � and k classes U1; : : : ; Uk,

with � � k � k("; �), so that

(Ui; Uj) is "� regular; and

����d(Ui; Uj)�
1

2

���� < "

holds for all but at most "k2 pairs (i; j), 1 � i; j � k.

It is easy to see that if (Gn) is a random graph sequence of probability 1=2, then PS holds for

(Gn), almost surely. Simonovits and S�os [116] proved that PS is a quasi-random property,
i.e. PS () Pi for 1 � i � 7. In fact, they proved some stronger results, but we skip the
details.

F.R.K. Chung generalized these results to hypergraphs [25].
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