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ABSTRACT

On-Line Analytical Processing (OLAP) provides an inter-
active query-driven analysis of multidimensional data based
on a set of navigational operators like roll-up or slice and
dice. In most cases, the analyst is expected to use these
operations intuitively to find interesting patterns in a huge
amount of data of high dimensionality.

In this paper, we propose an approach to enhance this anal-
ysis by preparing the data set so that the analyst can explore
it in a more systematic and effective manner. More precisely
we define a measurement of the quality of the representation
of multidimensional data and we present a framework for in-
vestigating the computation of appropriate representations.
We identify the problems of computing such representations
and study them w.r.t. an OLAP restructuring operator.

1. INTRODUCTION

On-Line Analytical Processing (OLAP) [1, 3] technology
provides a platform for analyzing data according to mul-
tiple dimensions (e.g., product, location, time) and multiple
granularities (e.g., city, district, country). Data is presented
under the form of a cube. A cube can be seen as a set of
cells, and a cell represents the association of a measure with
one member in each dimension. For example, if dimensions
are products, stores and days, the measures of a particular
cell can be the sales of one product in a particular store on
a given day.

The user is provided with a set of operators for navigat-
ing through the data set to identify interesting and relevant
patterns. This navigation is a query-driven process, and a
number of proposals have investigated formal models and
languages to this end (see [6, 9] for surveys). Obviously, as
the size and the dimensionality of the data set increase, the
whole process becomes very tedious and complex. To deal
with this complexity, it has been recently pointed out [8, 7]
that the manual effort spent in analysis could be reduced by
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year 2000 sales
Africa 3 5 6 3 5
America 4 6 7 5 7
Asia 2 4 6 2 5
Europe 4 5 7 4 6
beer | milk | soda | water | wine
(a)
year 2000 sales
America 4 5 6 7 7
Europe 4 4 5 6 7
Africa 3 3 5 5 6
Asia 2 2 4 5 6
beer | water | milk | wine | soda

Figure 1: A 2-dimensional cube before and after
restructuring

anticipating the user strategy.

In typical OLAP analysis, the strategy is mostly based on
observing the measures, whereas most of the OLAP restruc-
turing operators are parameterized by members.

For example, consider the cube of Figure 1 (a). This cube
displays sales of beer, milk, soda, water and wine in differ-
ent continents during year 2000. Assume that the analyst
wants to visualize the sales having the highest values on the
one hand, and the lowest values on the other hand. The
way the cube is represented does not provide such a visu-
alization easily, because the cells are displayed according to
the lexical ordering of the members in each dimension, and
not according to the measures. On the other hand, it can
be seen that the cube of Figure 1 (b) contains the same in-
formation as that of Figure 1 (a), but displays the sales in
an appropriate way for the analyst. Indeed, the lowest val-
ues of sales are located down-left in the cube, whereas the
highest values are located top-right. It should be noticed
from the example that a clear distinction between a cube
and its representation is needed here. This is precisely what
we propose in this paper.

In our approach, the representation of a n-dimensional cube
consists of n functions, each of them being a numbering of



the members of a dimension. Given a cube C' and one of its
representations R, we assume that C is displayed according
to the ordering defined by R. For example, the numbering
defining the dimension product for the representation (a) of
Figure 1 associates beer with 1, milk with 2, soda with 3,
water with 4 and wine with 5. The numbering defining this
dimension for the representation (b) associates beer with 1,
water with 2, milk with 3, wine with 4 and soda with 5.

Representation (b) of Figure 1 can be interactively con-
structed by the user from representation (a) via some re-
structuring operators proposed in the OLAP context. These
operators allow users to change the representation of the
cube but not its logical structure: the association between
one member in each dimension and the measure is preserved.
For example, the switch operator [5, 6] allows users to ex-
change the position of 2 members on the axis corresponding
to a given dimension while preserving the cells. The order
over the columns in representation (b) of Figure 1 can be
obtained from representation (a) by 1/ switching milk and
soda, 2/ switching soda and wine and 3/ switching wine
and water.

As a contribution to automating OLAP analysis, we propose
to study how to arrange the representation of the cube ac-
cording to its measures. We believe that computing appro-
priate representations can help to identify patterns which
would otherwise remain unknown to the user. This con-
tributes also to obtain the result of typical OLAP ranking
queries like top-n.

We notice that even dimensions that are inherently ordered
like e.g., time, can be rearranged so as to make some pat-
terns apparent. For example, consider the cube of Figure 2
that displays monthly sales of chocolate in various regions.
In representation (a) the months are depicted in the stan-
dard ordering, whereas in representation (b) the ordering is
imposed by the measures. Representation (b) can be ex-
ploited by the analyst to discover that e.g., chocolate sales
are the highest around new year and easter.

This paper presents a framework for investigating the qual-
ity of cube representations. Obviously there may be several
ways of considering what an appropriate representation is
and how to reach it.

Concerning appropriate representations, we define a cell as
misplaced if there exists at least one other cell with lower
measure and with greater or equal numberings in all dimen-
sions. For example, the cell containing the sales of soda
in Europe is misplaced in representation (a) of Figure 1.
Indeed the cell containing the sales of water in Europe 1/
contains a lower measure and 2/ has greater numbering in
dimension product, and the same numbering in dimension
continent. We call appropriate the representations having
the least number of misplaced cells, and we study the prob-
lem of finding these representations. To this end, we show
that the switch operation proposed in the context of OLAP
[5, 6] is the basic operator that allows us to compute these
representations.

The main results of the paper are:

e First, we define a measurement for the quality of the
representation of a cube by computing the number of
its misplaced cells, and

e Second, we identify several problems related to the rep-
resentation of cubes w.r.t. this measurement:

— Test for the existence of a representation with no
misplaced cells (called a perfect representation.
Representation (b) of Figure 1 is an example of a
perfect representation). In this case, we give the
sequence of restructuring operations for reaching
such a representation, if it exists. We show that
this problem is polynomial with respect to the
size of the cube.

— If no representation having no misplaced cells ex-
ists, we outline the problems of finding represen-
tations having the least number of misplaced cells.

e Third, we propose an algorithm to test if a perfect
representation exists and if so, compute this represen-
tation.

Related work

A variant of the switch operator has been defined in [5] in the
context of 2-dimensional tabular databases. This operator
allows users to exchange two rows of a matrix regardless of
the status of the rows (members and measures are treated
uniformly). However, in [5], the authors did not consider
the problem of using this operation to restructure matrices
in a more appropriate way for the user.

In [7, 8], Sarawagi & al. propose a new set of operators for
reducing the number of roll-ups and drill-downs (changing
the granularity of the representation) needed to discover ab-
normalities or to explain drops or increases in the values of
the measures. Their work concentrates on the “vertical” as-
pect of OLAP data where the link between aggregated data
is exploited.

While our motivations are essentially the same as the au-
thors of [7, 8], our work is orthogonal to their approach in
the sense that we concentrate on the “horizontal” aspect of
OLAP data. Our goal is to reduce the number of restructur-
ing operations used during the analysis. We are interested
in the representation of the data at a given level and we do
not take granularity into account.

The paper is organized as follows. The next section intro-
duces basic definitions on the multidimensional data model,
on the notion of representation, and on the quality mea-
surement. In Section 3, we define and study the problems of
finding appropriate representations. We conclude and dis-
cuss future work in Section 4. Proofs are omitted due to
lack of space, and can be found in [2].

2. PRELIMINARIES

In this section, we give the formal definitions of the con-
cepts used in this paper. The terminology concerning OLAP
(members, measures, ...) is that of [6].

2.1 The multidimensional model



chocolate sales
east 8 5 4 6 6 1 0 2 4 5 7
north | 9 5 5 7 7 1 1 3 4 6 8
south | 7 3 2 5 4 0 0 1 2 3 5
west 6 3 3 6 5 0 0 1 2 4 7
jan | feb | mar | apr | may | jun | jul | aug | sep | oct | nov | dec
chocolate sales
north 1 1 3 4 4 5 6 7 7 8 9
east 0 1 2 3 4 5 5 6 6 7 8
west 0 0 1 2 2 3 4 5 6 7 7
south | 0 0 1 1 2 3 3 4 5 5 6
aug | jul | sep | jun | oct feb | nov | may | apr | dec | jan

Figure 2: Restructuring a 2-dimensional cube with an inherently ordered dimension

In our model, we distinguish a cube from its representation.
Intuitively, a cube is a logical multidimensional structure,
and a representation can be seen as a way of displaying the
cube to the analyst.

Definition 2.1 An n-dimensional cube, or simply a cube,
is a tuple (C,doma, ..., domy,,domm,, m¢c) where

e (' is the name of the cube,

e domi,... ,dom, are n finite sets of symbols for the
members associated with dimension 1,... ,n, respec-
tively,

e let dompes be a finite totally ordered set of measures.
Let 1 be a constant not in dommes used to represent
null values. Then dom,, = dommes U {L}, and L
cannot be compared to the elements of dommes,

e mc is a mapping from domi X ... X dom,, to dom,

Definition 2.2 A representation Rc = {repi,...,repn}
of a cube (C,dom1, ...,domy,domm,mc) is a set of n
bijective mappings repi,... ,rep, such that for every i =
1,...,n, rep; is a mapping from dom; to the initial segment
of N{1,...,|dom;|}. The set of all different representations
of a cube (C,domi, ... ,domy,dom.,,mc) is denoted by
Sre -

Given a representation R of a cube C|, forevery i =1,... ,n
and for every m € doms, rep;(m) is called the position of m
on dimension i in R.

Note that the notion of representation we propose does not
associate a dimension with a particular axis (e.g., for 2-
dimensions the vertical axis or the horizontal axis) for dis-
playing the members. Only the relative position of the mem-
bers in one dimension is relevant. On each dimension i, the

values of dom,; are ordered according to their representation
rep;. In other words, placing value m of dom; at the j*
position means that rep;(m) = j.

The cardinality of Sg,, (i.e., the number of different rep-
resentations of C) is the product of the number of differ-
ent rep mappings for each dimension. Therefore, we have
[Sre| = Micp,... n)(|doma]!).

Example 2.1 Consider the 2-dimensional cube
<07{a7b}7{x7y}7{1727374}7mc>, where mC(CL:x) =
1,mec(a,y) = 2,mc(b,xz) = 3, mc(b,y) = 4. The number
of different representations of this cube is 2! x 2! = 4.
These representations, called R, Rz, R3 and R4 respec-
tively, are displayed below. The representation R; is
the set {repi,repz} where rep; and rep, are defined by
repi(a) = 2, rep1 (b) = 1, repa(z) = 1, repa(y) = 2.

As a convention throughout the paper, in this 2-dimensional
example and the other examples, the horizontal axis is ori-
ented from left to right and the vertical axis is oriented from
bottom to top.

Rl R2 R5 R4
all]|2 b|3|4 b(4]3 al|l2|1
b|3|4 a|lj]2 a|2]1 b|4]3

y Xy y X y X

We note that all of these representations are different rep-
resentations of the same cube C. Indeed, in C, we have for
instance mc(a,y) = 2, which holds in Ri, Rz, Rs and Rj4.
The representations differ only in the ordering according to
which the rows and the columns are displayed. On the other
hand, the table below is not a representation of C' since for
instance, the measure associated with (a,y) is not 2.




A cell is the association of a member in each dimension with
a measure.

Definition 2.3 A cell c of a cube
(C,dom, ... ,domy,domm, mc), is a tuple
(m1,... ,mn,m) where Vi € [1,...,n],m; € dom;,m €
domy, and mg(ma,... ,my) =m.

A cell c of a cube C' is an element of the graph of the function
mec. Therefore we feel allowed to consider a cube C as the
set of its cells, and we write ¢ € C to mean that c is a cell
of C. A cell containing L is called an empty cell.

Let (C,dom1,...,domy,domm,mc) be a cube, Rc =
{rep1, ...,rep,} a representation of C and ¢ =
(ma,... ,mn,m) a cell of C. The position of ¢ in C accord-

ing to Rc is the tuple (z1,...
every i € [1,...,n].

, Zn) where rep;(m;) = x;, for

Note that the position of a cell in a representation is only
based on the functions rep;. This means that the position
is invariant w.r.t. a rotation of the cube.

Example 2.2 Consider representation R; of Example 2.1.
For this representation, the position of the cell ¢; = {a,z, 1)
is the tuple (2,1), and the position of the cell ca = (b,y,4)
is the tuple (1,2). O

2.2 Cell arrangement

We can now define the ordering over cell positions.

Definition 2.4 Let (C,domu, ... ,domy,domm,,mc) be a
cube and Rc = {repi,... ,repn} a representation of C. Let
c={mi,...,mp,m)and ¢ = (ml,... ,m),m') be two cells
of C'. We define the relation <r, as a partial ordering over
cells by ¢ =g ¢ <= Vi€ [1,...,n],repi(m;) < rep;(mj).

Example 2.3 Consider the cube of Example 2.1. This cube
has cells ¢1 = (a,z,1), c2 = (a,y,2),c3 = (b,,3), and ¢4 =
(b,y,4). Considering the representation R, we have c3 <r,
c1,c3 <R, €2 ,C3 <R, C4,C1 =R; C2 ,C4 <R, C2. Note that
c1 cannot be compared with ¢4 w.r.t. <g,. O

Now, we define what we call a misplaced cells.

Definition 2.5 Let (C,domi,...,domy,domm, mc) be
a cube and Rc a representation of C. A cell ¢ =
(ma,... ,mn,m) of C is misplaced w.r.t. Rc if m #1, and

e Jc1 = (mi,... ,m,m') € C such that ¢ <g, c1 and

m >m/, or

e Jeo = (mY,...,m;,,m") € C such that c2 <g, ¢ and

m” > m.

For a cube C, a representation Rc of C' and a cell c € C, we
define the function fr.(c) = 1 if ¢ is misplaced w.r.t. Rc,
0 otherwise.

Then, the measurement we propose is simply the total num-
ber of misplaced cells in a cube.

Definition 2.6 Given a cube C' and a representation R¢
of C, we define Mg (C) by Mro(C) = X, cc fre(ci)-
Mg (C) is the total number of misplaced cells in C' w.r.t.
the representation Rc.

With this measurement, we can characterize the represen-
tations of a cube.

Definition 2.7 Let (C,doma,... ,dom,, dom.,mc) be a
cube and let Sr. be the set of all representations of C.

e A representation Rc of C' is a Perfect Representation
(PR) if Mg, (C)=0.

e A representation Rc of C'is an Optimal Representation
(OR) if ﬂR/C S SRC,MR/C(C) < Mg, (C).

Obviously for a given cube, a PR may not exist, and there
exists at least one OR. Moreover, if a PR exists it may not
be unique.

Example 2.4 Consider the representations R and Rs of the
cube C'in Example 2.1. The number of misplaced cells in R
is Mg, (C) = 4, whereas Rz is a PR of C (i.e., Mg, (C) = 0).
Now if we consider the table below as a representation of a
cube, there exists no PR of this cube. This is so because
the lowest and highest measures are on the same row. Since
this must hold in every representation of the cube although
this cannot hold in any PR, this cube has no PR.

3. THE PROBLEMS

In this section we study the problems of using the measure-
ment of Definition 2.6 to find appropriate representations
of cubes. We first define the operation used to change the
representation of a cube.



3.1 Arranging the cube

The switch operation [5, 6] is an OLAP operation that con-
sists in interchanging the positions of two members of a di-
mension of a cube. In our framework, the switch operation
is the basic operation to go from one representation of a
cube to another.

Definition 3.1 Let (C,doma, ... ,dom,,domm,,mc) be a
cube and Sr, the set of all representations of C. A switch on
dimension j of members p and ¢, denoted by switch(j, p, q),
is a function from Sgr, to Sgr. such that, for every Rc =

{rep1,...,repn} in Sg,, switch(j,p,q)(Rc) = Ry where
Re = {repl,... ,rep,} is defined by:
e for every i = 1,... ,n, if i # j, then rep; = rep},

e rep;(p) = repj(q) and rep;(p) = repj(q)

e for every m in dom; different than p and g, rep;(m) =
rep;(m).

Notice that according to the first point of Definition 3.1, ap-
plying a switch operation on two members in one dimension
leaves unchanged the positions of the members in the other
dimensions.

Example 3.1 Consider the cube of Example 2.1 and its
representations R; and Rs. Ra is the result of the oper-
ation switch(1,a,b) applied to Ri. In other words, Ry =
switch(1,a,b)(R1). O

Definition 3.2 A finite composition of switches is called an
arrangement.

Example 3.2 Consider the representations of Example 2.1.
We have switch(1,a,b)(R1) = Rz, switch(2,z,y)(R2) =
Rs. Thus switch(2,z,y)(switch(1,a,b)(R1)) = Rs. There-
fore, R3 = arr(R1) where arr is the arrangement defined by
switch(2, z,y) o switch(1,a,b). O

As for the switch operation, it is obvious that applying an
arrangement involving only one dimension leaves the posi-
tion of the members of the other dimensions unchanged.

The following proposition shows that all representations of
a cube can be obtained through arrangements.

PROPOSITION 3.1. Let (C,doma,... ,dom.,,domm, mc)
be a cube and let Sr, be the set of all representations of
C. Given any two representations Ry and Rz of Sr, there
exists an arrangement arr such that arr(R1) = Ra.

3.2 The Perfect Representation problem

We are interested in the following problem that we call the
Perfect Representation (PR) problem: For a given cube and
a given representation of this cube, test whether there exists
at least one PR, and if so, compute one PR. If more than
one PR exist, then compute the number of PRs and list all
the arrangements leading to these PRs. In this paper, we
study the first part of the problem, namely the test of the
existence of a PR of a given cube and its computation if it
exists.

To deal with this problem, we consider separately three
cases. We first consider the simple case of cubes contain-
ing no null values, and having no duplicates in their rows.
This gives rise to a basic algorithm for solving the PR prob-
lem. Then we consider cubes containing no null values, but
where rows may contain duplicates. Finally, we consider
cubes containing null values, but where rows do not contain
duplicates.

We now introduce formally the notion of row for the sake
of readability. Intuitively, a row is a set of cells where all
coordinates but one are fixed.

Definition 3.3 Let (C,doma,...,domy,domm, mc) be
a cube. A row r in dimension k is the set
of cells of C {(m1,...,mr-1,J,Mks1,... ,Mn,m) |
j € domy}. This row is identified by the tuple
(ma,...,mp—1,Mk41,...,Myn), where m; € dom; for every
tin [1,...,k—1,k+1,... n].

As for cells and cubes, we feel allowed to denote by r € C
the fact that every cell belonging to r also belongs to C.

Given a representation R = {repi,...,Tepk,... ,T€pn}
of a cube, a row r in dimension k, and a cell ¢ =

(ma,...,mpg,... ,mpn,m) of r, the position of ¢ in r is simply
repr(ms).
Definition 3.4 Let (C,domu,... ,domy,domm,mc) be a

cube, let Rc be a representation of C. A row r is sorted
in Re if Ve = (m1,... ,mp,m), ¢ = (my,... m,,m') €r
with m #1 and m’ #1, ¢ <g, ¢ = m < m/. Otherwise
the row r is unsorted.

Given a representation R and a row r in dimension k, sort-
ing 7 is simply changing repr. Note that in a sorted row,
empty cells can appear anywhere. Based on usual algo-
rithms for sorting one-dimensional arrays, we have the fol-
lowing lemma.

LEMMA 3.2. For a giwen cube C, a given representation
Rc of C and a given row r there is an arrangement that
sorts the row.

If r is a row and R is a representation, sorting a row means
applying an arrangement to R so that r is sorted in the



resulting representation. Obviously, sorting a row in dimen-
sion k implies assigning a position to the members of domy,.

Example 3.3 Consider Example 2.1. The row (y) is the set
{{a,y,2), (b,y,4)}. Moreover, this row is sorted in R,. O

The following theorem, of which the proof is an immediate
consequence of Definition 2.5, is the basic result on which
rely all proofs of the subsequent propositions and corollaries.

THEOREM 3.3. A representation of a cube is a PR if and
only if every row in every dimension is sorted.

Now, we proceed to study the PR problem in the following
three cases:

e Case 1: each row of the cube contains no duplicates
and no null values,

e Case 2: each row of the cube can contain duplicates
but no null values,

e Case 3: each row of the cube can contain null values
but no duplicates.

The last case (each row can contain both duplicates and null
values) is still an open issue.

Case 1: No duplicates and no null values in each row

We first consider the case where every row in every dimen-
sion contains no duplicates and no null values. In this case,
we show that the existence of a PR can be efficiently tested
by sorting only one row in each dimension. Moreover, when
a PR actually exists, it is unique and our method computes
it. Our method is based on the following two propositions
and corollary.

PROPOSITION 3.4. Let C' be a cube such that each row
contains no duplicates and no null values. There exists at
most one PR of C'.

PRrROPOSITION 3.5. Let C' be a cube such that each row
contains no duplicates and no null values. If there exists a
representation such that for one dimension, a row r is sorted
and another row v’ is unsorted, then there exists no PR.

COROLLARY 3.6. Let C be a cube such that each row con-
tains no duplicates and no null values, and for which a PR
exists. Let R be a representation of C. If in R one row is
sorted in each dimension, then R is a PR.

At this point, a simple algorithm can be given to solve the
PR problem for a cube where each row contains no dupli-
cates and no null values.

Algorithm 3.1
Input: A representation of a cube C

Output: The PR of C or the indication “no PR”

for each dimension k£ of C do

choose a row r in dimension k
sort
for every other row 7’ in dimension k do

check if v’ is sorted
if ¥’ is unsorted then

exit with output “no PR”

This algorithm is polynomial in the number of cells of the
cube, since it only sorts one-dimensional arrays (one row in
each dimension) or tests if one-dimensional arrays are sorted.

Case 2: Dealing with duplicates

If we allow duplicates, but no null values, to appear in a
row, sorting a row in each dimension is necessary but no
more sufficient for computing a PR. For instance, consider
the cube of which representations R; and Re are depicted
below. Sorting row (a) may lead to representation R; which
is not perfect, since row (b) is unsorted. On the other hand,
sorting row (b) leaves row (a) unchanged and gives a PR.

Ry Ry
b|4]3 b|3]4
a|lj1l all]|1
Xy y X
Definition 3.5 Let C = (doma,...,dom,,domm, mc)
be a cube, R = {repi,...,repn} be a representa-
tion of C, and r = {(mi,...,Mk—1,Mk+1,...,Mn) be

a row of dimension k. A sequence of duplicates in
r is an interval I = [i1,42] of N such that for all
i,7 € I, mc(ma,... ,mk_l,replzl(i),mkH, cee,My) =
mgc(mai,. .. 7mk7177”€p]:1(j),mk+17 ...,my). Given a row
r, a sequence of duplicates I in r is maximal if there is no
sequence of duplicates J in r such that I C J.

Given a representation of a cube, a row r in dimension k,
and an interval I of N, the contiguous part of r w.r.t. I is
defined by r; = {c € r | ¢ = (m1,... ,mp,... ,mpn, m) and
repr(my) € I}.

PROPOSITION 3.7. Let C be a cube and R a representa-
tion of C. Let r be a sorted row in R containing p mazximal
sequences of duplicates I, ... ,I,. If there exists a Tow r’ in
the same dimension that is still unsorted after having sorted
every contiguous part of v’ w.r.t. I1,... , I,, then there exists
no PR.



Example 3.4 Consider a cube of which representations R1
and Ry are depicted below. Suppose we sort row (b) first,
so as to obtain representation Ri. The next step is to sort
row (a) without affecting row (b). The only possibility is to
switch members z and y. Once done, we obtain representa-
tion R where row (a) is still unsorted. Therefore there is
no PR of this cube.

R Ra
a|4]|3]|1 a|3|4]|1
b|1|1]2 b|l1]1

X y =z y X z

At this point we can give an algorithm that outputs a PR of
a cube where the rows contain duplicates but no null values,
if any. Otherwise, the algorithm indicates that no PR exists.

Algorithm 3.2
Input: A representation of an n-dimensional cube C

Output: A PR of C or the indication “no PR"

Variable: Two sets D and D’ of sequences of duplicates

for each dimension k£ of C do

let D = {I} with I =[1,n]

find the row 7 in dimension k having the lowest number
of duplicates

repeat until every row is marked

sort rr for every I € D
check if r is sorted
if  is unsorted then
exit with output “no PR”
else
for each I in D do

D'=0
compute Iy, ... , I, the sequences of dupli-
cates in r
D'=D'u{l,nI|I;,NnI#0,I€D,j=
1,...,p}

D=D

mark r

find the unmarked row r having the lowest num-
ber of duplicates

It is easy to see that this algorithm is polynomial in the
number of cells of the cube.

Case 3: Dealing with null values

In what follows, we assume that the rows of a cube can con-
tain null values but no duplicates. We recall from Definition
2.5 that changing the position of a null value in a row does
not affect the fact that the row is sorted or not. Thus, a
row containing null values can be sorted in different ways,
which results in more flexibility when looking for PRs. For
instance, consider the cube of which representations R; and
R are depicted below. Sorting row (a) may lead to repre-
sentation R1 which is not perfect, since row (b) is unsorted.
On the other hand, sorting row (b) does not affect the fact
that row (a) is still sorted, and gives a PR.

Ry R»
bl4] 3 b| 34
a|1l]|_L a| L |1
y Xy

This flexibility for sorting rows imposes that many combina-
tions have to be explored when looking for PRs. For exam-
ple, suppose we must arrange the following representation.

L1412
a|l]2]3]L
vV W X Yy z

Suppose we have sorted row (a) and we must sort row (b).
As | can be placed anywhere, the following two possibilities
are valid.

bl1]2|L]4]|L
a|ljL]2|3]|L
y W X z

b1 |L]2]4]L
a|l]2]|L|3]L
vV W Yy X z

Looking for a PR means that each of these possibilities has
to be checked when sorting the rows. Therefore, we con-
jecture that computing a PR is non-polynomial. However,
based on Proposition 3.5, a polynomial algorithm can be
given to indicate the non-existence of a PR of a given cube.
To this end, we define sequences of null values analogously
as sequences of duplicates.

Definition 3.6 Let C = (doma,...,dom,,domm,mc)
be a cube, R = {repi,...,rep,} be a representation
of C, and r = (mi,... ,Mkr_1,Mk+1,... ,Mn) be a row
in dimension k. A sequence of null values in 7 is an
interval I = [i1,i2] of N such that for every i € I,
mg(ma,... ,mk,hrep;l(i),mkﬂ,... ,mp) =L1.

Once a row is sorted, we can assume without loss of gener-
ality that this row contains at most one sequence of null



values. Given a row r and an interval I = [i,p] of N,
where p = |domy|, we call r,_; the contiguous part of r
defined by rp—r = {c € r | ¢ = (M1, ... , Mg, ... , My, M)
and repi(my) € [1,1]}.

Algorithm 3.3
Input: A representation of a cube C

Output: The indication “no PR" if there exists no PR of C'

for each dimension k£ of C do

let p be the number of cells of all rows in dimension &
choose a row 7 in dimension k

sort  so that I = [i, p] is the only sequence of null values
inr

for every other row 7’ in dimension k do

check if 7,_; is sorted
if 7,_; is unsorted then

exit with output “no PR”

4. CONCLUSION

In this paper we have introduced an approach to enhance
the query-driven analysis of multidimensional data, based
on representations of cubes according to their measures. We
have introduced a measurement to compute the quality of
the representation, and we have proposed an algorithm to
find the representation of a cube containing no null values,
for which this measurement is optimal, if it exists.

Our current and future work encompasses the following open
issues:

e Study the PR problem in the case of null values. We
conjecture that computing a PR in the case of null val-
ues is not polynomial, and therefore heuristics should
be given to deal with the problem efficiently.

e Computing all the PRs of a cube. As stated in Section
2, if a PR of a cube exists, it may not be unique. We
conjecture that outputing every PR of a cube is not
polynomial, but that computing the total number of
PRs is polynomial.

e Implementation of the approach discussed in the pa-
per. The algorithms given Section 3 are naive algo-
rithms, that should be reworked in order to propose
an efficient implementation.

e Study of other problems in this framework. As stated
in Section 2, a PR may not exist. Thus we can define
two other problems that we shall study in the future:

— The OR problem (cf. Definition 2.7): for a given
cube and a given representation of this cube, find

all ORs, and list all arrangements leading to these
ORs.

5.
(1

2]

(4]

[5]

(6]

(9]

— The t-OR problem: given a cube C' and a thresh-
old t, find a representation Rc of C' such that
Mg, (C) < tifit exists. If there exists at least one
such representation, list all arrangements leading
to these representations.

e Use of other OLAP operations to solve the problems.
In this paper we restrict ourselves to the switch opera-
tion to compute appropriate representations. It would
be interesting to study how the other OLAP opera-
tions [4, 5, 6] behave w.r.t. the problems introduced
above. For example in the presence of hierarchies, can
we use the roll-up operator to reach a PR?
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