
(LMCS, p. 261-262) IV.1

First–Order Languages without Equality

A first–order language without equality L will

consist of

• a set F of function symbols f, g, h, · · ·

with associated arities;

• a set R of relation symbols r, r1, r2, · · ·

with associated arities;

• a set C of constant symbols c, d, e · · ·;

• a set X of variables x, y, z, · · ·.

(LMCS, p. 262) IV.2

Each relation symbol r has a positive

integer, called its arity, assigned to it.

If the number is n, we say r is n–ary.

For small n we use the same special names

that we use for function symbols:

unary, binary, ternary.

The set L = R∪ F ∪ C is called a

first–order language.

{+, ·, <,−,0,1} would be a natural choice of

first-order language when working with the

integers.

(LMCS, p. 262) IV.3

Interpretations and Structures

The obvious interpretation of a relation

symbol is as a relation on a set.

If A is a set and n is a positive integer,

then an n–ary relation r on A is a subset

of An,

that is, r consists of a collection of

n–tuples (a1, . . . , an) of elements of A.

(LMCS, p. 262) IV.4

An interpretation I of the first–order

language L on a set S is a mapping with

domain L such that

• I(c) is an element of S for each constant

symbol c in C;

• I(f) is an n–ary function on S for each

n–ary function symbol f in F;

• I(r) is an n–ary relation on S for each

n–ary relation symbol r in R.

An L-structure S is a pair (S, I), where I

is an interpretation of L on S.

(LMCS, p. 262) IV.5

Preferred notation

We prefer to write

cS (or just c) for I(c)

fS (or just f) for I(f)

rS (or just r) for I(r)

(S,F ,R, C) for (S, I)

Example

The structure (R,+, ·, <,0,1), the reals with

addition, multiplication, less than, and two

specified constants has:

F = {+, ·} R = {<} C = {0,1}.

(LMCS, p. 263) IV.6

If r ∈ R is a unary predicate symbol,

then in any L–structure S,

the relation rS is a subset of S.

We can picture this as:

S
r

(LMCS, p. 263) IV.7

If L consists of a single binary relation

symbol r,

then we call an L–structure a directed

graph.

A small finite directed graph can be

conveniently described in three different ways:

• List the ordered pairs in the relation r.

A simple example with S = {a, b, c} is

r = {(a, a), (a, b), (b, c), (c, b), (c, a)}.

(LMCS, p. 263) IV.8

• Use a table. For the same example we

have

r a b c

a 1 1 0
b 0 0 1
c 1 1 0

(An entry of 1 in the table indicates a pair is in the

relation.)

• Draw a picture. Again, using the same

example:

b

c

a

(LMCS, p. 263) IV.9

Example

An interpretation of a language on a small set

can be conveniently given by tables.

Let L = {+, <}

where + and < are binary.

The following tables give an interpretation

of L on the two–element set S = {a, b}:

+ a b

a a b

b b a

< a b

a 0 1
b 0 0

(LMCS, p. 264-265) IV.10

A clause in the predicate logic uses atomic

formulas instead of propositional variables.

• An atomic formula A is an expression

rt1 · · · tn ,

where the ti are terms, and

r is an n–ary relation symbol.

Examples of atomic formulas:

x < y (x+ y) < (x · y) rfxgy0

where r and g are binary, f is unary.

(LMCS, p. 264-265) IV.11

Literals

• A literal is either

an atomic formula A

or a negated atomic formula ¬A

Examples of literals

x < y ¬ ((x+ y) < (y · z)) ¬ rfxgxy

An atomic formula is a positive literal.

A negated atomic formula is a negative

literal.

(LMCS, p. 264-265) IV.12

Clauses

• A clause C is a finite set of literals

{L1, . . . , Ln} .

We also use the notation

L1 ∨ · · · ∨ Ln .

Examples of clauses:

{¬ (x < y), ¬ (y < z), ¬ (x < z)}

{rxx, rxg1y, ¬ rfxgyz}

(LMCS, p. 265-266) IV.13

The parsing algorithm for atomic formulas.

Example

r a binary relation symbol

f a unary function symbol

g a binary function symbol

c a constant symbol

Is rgxfyfc an atomic formula?

If so find the two subterms t1, t2 such that

rt1t2 = rgxfyfc.

i 0 1 2 3 4 5 6

si r g x f y f c

γi 0 −1 0 0 1 1 2

() ()

(LMCS, p. 267-268) IV.14

Semantics

Given a first-order structure S which tuples

of elements a1, . . . , an make a literal

L(x1, . . . , xn) true?

If ~a is such a tuple for the literal L we say

• L(~a) holds (is true) in S

• S satisfies (models) L(~a)

and write S |= L(~a).

(For clauses C we have parallel concepts.)

(LMCS, p. 267-268) IV.15

The set of tuples from S that make

L(x1, . . . , xn) true

form an n-ary relation that we call LS.

The set of tuples from S that make

C(x1, . . . , xn) true

form an n-ary relation that we call CS.

(LMCS, p. 268) IV.16

Example

Let S be given by the tables:

f a b

a a a

b a b

r a b

a 0 1
b 0 0

Let L1 = rfxyfxx, L2 = ¬ rfxyx, C =

{L1, L2}.

A combined table for L1, L2,C is

L1 L2 C

x y fxy fxx rfxyfxx rfxyx ¬ rfxyx {rfxyfxx, ¬ rfxyx}

a a a a 0 0 1 1

a b a a 0 0 1 1

b a a b 1 1 0 1

b b b b 0 0 1 1

(LMCS, p. 269) IV.17

Satisfiability

S |= L(x1, . . . , xn)

if for every ~a from S we have L(~a) holds

in S.

S |= C(x1, . . . , xn)

if for every choice of ~a from S we have

C(~a) holds in S.

For S a set of clauses, we say

S |= S

provided S satisfies every clause C in S.

(LMCS, p. 269) IV.18

We say Sat(S), or S is satisfiable, if there

is a structure S such that S |= S.

If this is not the case, we say ¬Sat(S),

meaning S is not satisfiable.

Predicate clause logic, like propositional

clause logic, revolves around the study of

not satisfiable

.

(LMCS, p. 269) IV.19

Example

Given two unary relation symbols r1, r2,

{¬ r1x, ¬ r2x}

is satisfied by a structure S iff

for a ∈ S either ¬ r1a or ¬ r2a holds,

and this is the case iff the sets r1 and r2

are disjoint, that is, r1 ∩ r2 = Ø.

We can picture this situation as follows:

S
1
r 2

r

(LMCS, p. 270) IV.20

Example

Given two unary relation symbols r1, r2,

{¬ r1x, r2x}

is satisfied by a structure S iff

the set r1 is a subset of r2.

We can picture this situation as follows:

S

1r
r2

(LMCS, p. 270) IV.21

Example

Let S be a directed graph, with L = {r}.

• S will satisfy the clause {rxx}

iff the binary relation r is reflexive.

• S will satisfy the clause {¬ rxx}

iff the binary relation r is irreflexive.

• S will satisfy the clause {¬ rxy, ryx}

iff the binary relation r is symmetric.

(LMCS, p. 270) IV.22

• S will satisfy the clause

{¬ rxy, ¬ ryz, rxz} iff the binary relation r

is transitive

• A graph is an irreflexive, symmetric

directed graph.

Graphs are drawn without using directed

edges, for example

c

b

e d

a

(LMCS, p. 277) IV.23

The Herbrand Universe

Given a first-order language L = R∪ F ∪ C,

the ground terms are terms that have no

variables in them.

The Herbrand Universe TC for L is the set

of ground terms for the language L.

Example

Suppose our language has a binary function

symbol f and two constants 0,1. Then the

following ground terms will be in the

Herbrand universe:

0, 1, f00, f01, f10, f11, f0f00, etc.

(LMCS, p. 278) IV.24

Now we create the algebra TC on the

Herbrand universe TC as follows:

I(c) = c

I(f)(t1, . . . , tn) = ft1 · · · tn

The Herbrand universe provides an analog of

the two–element algebra in the propositional

calculus.

It provides a place to check for satisfiability.

(LMCS, p. 278) IV.25

We say that a set of clauses S is satisfiable

over the Herbrand universe if

it is possible to interpret the relation symbols

on the Herbrand universe in such a way that

S becomes true in this structure.

The basic theorem says that a set of clauses

S is not satisfiable (in any structure) iff

some finite set G of ground instances of S

is not satisfiable over the Herbrand universe.

(LMCS, p. 281) IV.26

To check that

a finite set of ground clauses G is
satisfiable over the Herbrand universe

it suffices to check that

G is propositionally satisfiable

written p-satisfiable for short.

To check that G is p-satisfiable means:

consider all atomic formulas in G
to be propositional variables

and then check to see if the propositional

clauses are satisfiable.

(LMCS, p. 281) IV.27

Example

Consider the set of four ground clauses:

{ra}

{¬ ra, rfa}

{¬ rfa, rffa}

{¬ rffa}

List the atomic

formulas in these

clauses with simple

propositional variable

names:

atomic formula renamed

raa P

rfa Q

rffa R

The set of four ground clauses becomes

{P} {¬P, Q} {¬Q, R} {¬R}

(LMCS, p. 282) IV.28

Continuing with this example, we can now

show that the set of three clauses

{ra}

{¬ rx, rfx}

{¬ rffx}

is not satisfiable as one has a set of ground

instances

{ra}

{¬ ra, rfa}

{¬ rfa, rffa}

{¬ rffa}

that is easily seen not to be p-satisfiable by

the translation into

{P} {¬P, Q} {¬Q, R} {¬R}

(LMCS p. 284) IV.29

Substitution

Given a substitution σ =

x1 ← t1
...

xn ← tn

and a

literal L(x1, . . . , xn),

we write σL, or L(t1, . . . , tn), for the result of

applying the substitution σ to L.

Given a clause

C = C(x1, . . . , xn) = {L1, · · · , Lk},

we write σC, or C(t1, . . . tn), for the clause

{σL1, . . . , σLk}.

