First–Order Languages without Equality

A first-order language without equality \mathcal{L} will consist of

- a set \mathcal{F} of **function symbols** f, g, h, \cdots with associated arities;
- a set \mathcal{R} of **relation symbols** r, r_1, r_2, \cdots with associated arities;
- a set C of **constant symbols** $c, d, e \cdots$;
- a set X of variables x, y, z, \cdots .

Each relation symbol r has a positive integer, called its **arity**, assigned to it.

If the number is n, we say r is **n**-ary.

For small n we use the same special names that we use for function symbols:

unary, binary, ternary.

The set $\mathcal{L} = \mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$ is called a **first–order language**.

 $\{+, \cdot, <, -, 0, 1\}$ would be a natural choice of first-order language when working with the integers.

Interpretations and Structures

The obvious interpretation of a relation symbol is as a **relation** on a set.

If A is a set and n is a positive integer, then an **n**-ary relation r on A is a subset of A^n ,

that is, r consists of a collection of **n-tuples** (a_1, \ldots, a_n) of elements of A.

An **interpretation** I of the first-order language \mathcal{L} on a set S is a mapping with domain \mathcal{L} such that

• I(c) is an **element of** S for each constant symbol c in C;

• I(f) is an *n*-ary function on *S* for each *n*-ary function symbol *f* in \mathcal{F} ;

• I(r) is an *n*-ary relation on *S* for each *n*-ary relation symbol *r* in \mathcal{R} .

An \mathcal{L} -structure **S** is a pair (S, I), where *I* is an interpretation of \mathcal{L} on *S*.

Preferred notation

We prefer to write

$c^{\mathbf{S}}$	(or just c)	for $I(c)$
$f^{\mathbf{S}}$	(or just f)	for $I(f)$
$r^{\mathbf{S}}$	(or just r)	for $I(r)$
	$(S, \mathcal{F}, \mathcal{R}, \mathcal{C})$	for (S, I)

Example

The structure $(R, +, \cdot, <, 0, 1)$, the reals with addition, multiplication, less than, and two specified constants has:

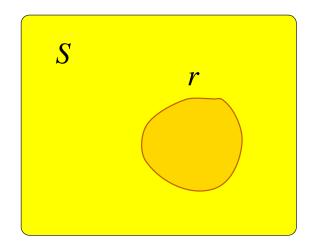
 $\mathcal{F} = \{+,\cdot\}$ $\mathcal{R} = \{<\}$ $\mathcal{C} = \{0,1\}.$

If $r \in \mathcal{R}$ is a **unary** predicate symbol,

then in any \mathcal{L} -structure S,

the relation $r^{\mathbf{S}}$ is a subset of S.

We can picture this as:



IV.7

If \mathcal{L} consists of a single **binary** relation symbol r,

then we call an \mathcal{L} -structure a **directed** graph.

A small finite directed graph can be conveniently described in three different ways:

• List the ordered pairs in the relation r.

A simple example with $S = \{a, b, c\}$ is

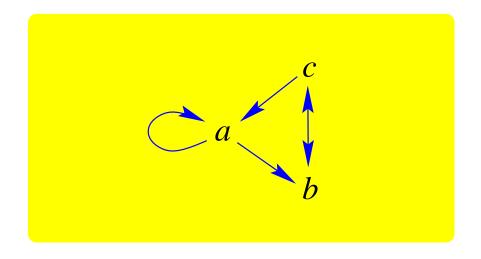
 $r = \{(a,a), (a,b), (b,c), (c,b), (c,a)\}.$

• Use a table. For the same example we have

$$\begin{array}{c|cccc} r & a & b & c \\ \hline a & 1 & 1 & 0 \\ b & 0 & 0 & 1 \\ c & 1 & 1 & 0 \\ \end{array}$$

(An entry of 1 in the table indicates a pair is in the relation.)

• **Draw a picture**. Again, using the same example:



Example

An interpretation of a language on a small set can be conveniently given by tables.

Let $\mathcal{L} = \{+, <\}$

where + and < are binary.

The following tables give an interpretation of \mathcal{L} on the two-element set $S = \{a, b\}$:

+	a	b			a	
	a		-	a	0 0	1
b	b	a		b	0	0

(LMCS, p. 264-265)

A clause in the predicate logic uses **atomic formulas** instead of propositional variables.

• An atomic formula A is an expression

 $rt_1\cdots t_n$,

where the t_i are terms, and

r is an n-ary relation symbol.

Examples of atomic formulas:

x < y $(x + y) < (x \cdot y)$ rfxgy0where r and g are binary, f is unary.

(LMCS, p. 264-265)

Literals

• A literal is either

an atomic formula A or a negated atomic formula $\neg A$

Examples of literals

$$x < y \qquad \neg \left((x + y) < (y \cdot z) \right) \qquad \neg r f x g x y$$

An atomic formula is a **positive** literal.

A negated atomic formula is a **negative** literal.

Clauses

• A clause C is a finite set of literals

 $\{\mathsf{L}_1,\ldots,\mathsf{L}_n\}$.

We also use the notation

 $L_1 \vee \cdots \vee L_n$.

Examples of clauses:

 $\{\neg (x < y), \neg (y < z), \neg (x < z)\}$ $\{rxx, rxg1y, \neg rfxgyz\}$

(LMCS, p. 265-266)

IV.13

The parsing algorithm for atomic formulas.

Example

- r a binary relation symbol
- f a unary function symbol
- g a binary function symbol
- c a constant symbol
- Is rgxfyfc an atomic formula?

If so find the two subterms t_1, t_2 such that $rt_1t_2 = rgxfyfc$.

i	0	1	2	3	4	5	6
s_i	r	g	x	f	y	f	С
γ_i	0	$g \\ -1$	0	0	1	1	2
		()	()

(LMCS, p. 267-268)

IV.14

Semantics

Given a first-order structure **S** which tuples of elements a_1, \ldots, a_n make a literal $L(x_1, \ldots, x_n)$ true?

If \vec{a} is such a tuple for the literal L we say

- $L(\vec{a})$ holds (is true) in S
- S satisfies (models) $L(\vec{a})$

and write $S \models L(\vec{a})$.

(For clauses C we have parallel concepts.)

(LMCS, p. 267-268)

IV.15

The set of tuples from S that make $L(x_1, \ldots, x_n)$ true

form an **n-ary relation** that we call L^{S} .

The set of tuples from **S** that make $C(x_1, \ldots, x_n)$ true

form an **n-ary relation** that we call C^{S} .

IV.16

Example

Let \mathbf{S} be given by the tables:

f	a	b			a		
a	$\begin{vmatrix} a \\ a \end{vmatrix}$	a	-	a	0 0	1	
b	a	b		b	0	0	
	1						

Let $L_1 = rfxyfxx$, $L_2 = \neg rfxyx$, $C = \{L_1, L_2\}$.

A combined table for L_1, L_2, C is

				L_1		L_2	С
x	y	fxy	fxx	rfxyfxx	rfxyx	$\neg rfxyx$	$\{rfxyfxx, \neg rfxyx\}$
a	a	a	a	0	0	1	1
a	b	a	a	0	0	1	1
b	a	a	b	1	1	0	1
b	b	b	b	0	0	1	1

IV.17

Satisfiability

$$\mathbf{S} \models \mathsf{L}(x_1,\ldots,x_n)$$

if for **every** \vec{a} from *S* we have $L(\vec{a})$ holds in **S**.

$$\mathbf{S} \models \mathsf{C}(x_1,\ldots,x_n)$$

if for **every** choice of \vec{a} from *S* we have $C(\vec{a})$ holds in **S**.

For \mathcal{S} a set of clauses, we say

$$\mathbf{S} \models \mathcal{S}$$

provided ${\bf S}$ satisfies every clause C in ${\cal S}.$

•

IV.18

We say Sat(S), or S is satisfiable, if there is a structure S such that $S \models S$.

If this is not the case, we say $\neg Sat(S)$, meaning S is **not satisfiable**.

Predicate clause logic, like propositional clause logic, revolves around the study of

not satisfiable

Example

Given two **unary** relation symbols r_1 , r_2 ,

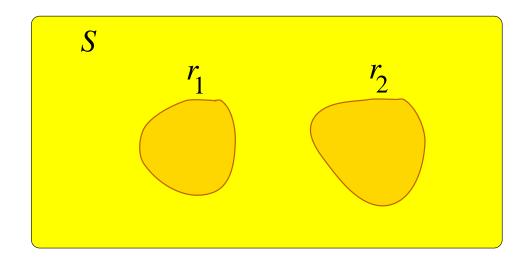
 $\{\neg r_1 x, \neg r_2 x\}$

is satisfied by a structure $\, {\bf S} \,$ iff

for $a \in S$ either $\neg r_1 a$ or $\neg r_2 a$ holds,

and this is the case iff the sets r_1 and r_2 are **disjoint**, that is, $r_1 \cap r_2 = \emptyset$.

We can picture this situation as follows:



(LMCS, p. 270)

Example

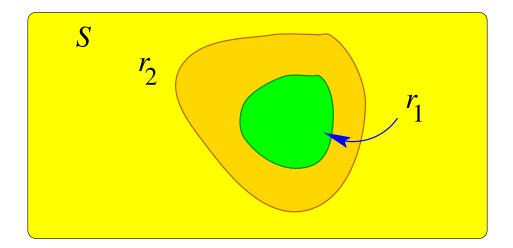
Given two **unary** relation symbols r_1 , r_2 ,

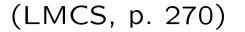
 $\{\neg r_1 x, r_2 x\}$

is satisfied by a structure $\, {\bf S} \,$ iff

the set r_1 is a **subset of** r_2 .

We can picture this situation as follows:





Example

Let S be a directed graph, with $\mathcal{L} = \{r\}$.

• S will satisfy the clause $| \{rxx\}$

iff the binary relation r is **reflexive**.

• S will satisfy the clause $| \{\neg rxx\}$

iff the binary relation r is **irreflexive**.

• S will satisfy the clause $| \{\neg rxy, ryx\}$

iff the binary relation r is symmetric.

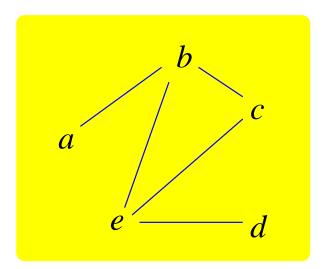
(LMCS, p. 270)

IV.22



• A graph is an irreflexive, symmetric directed graph.

Graphs are drawn without using directed edges, for example



(LMCS, p. 277)

IV.23

The Herbrand Universe

Given a first-order language $\mathcal{L} = \mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$, the **ground terms** are terms that have no variables in them.

The **Herbrand Universe** $T_{\mathcal{C}}$ for \mathcal{L} is the set of ground terms for the language \mathcal{L} .

Example

Suppose our language has a binary function symbol f and two constants 0, 1. Then the following ground terms will be in the Herbrand universe:

0, 1, f00, f01, f10, f11, f0f00, etc.

(LMCS, p. 278)

IV.24

Now we create **the algebra** $T_{\mathcal{C}}$ on the Herbrand universe $T_{\mathbf{C}}$ as follows:

$$I(c) = c$$

$$I(f)(t_1,\ldots,t_n) = ft_1\cdots t_n$$

The Herbrand universe provides an analog of the two-element algebra in the propositional calculus.

It provides a place to check for satisfiability.

(LMCS, p. 278)

We say that a set of clauses S is **satisfiable over the Herbrand universe** if

it is possible to interpret the relation symbols on the Herbrand universe in such a way that \mathcal{S} becomes true in this structure.

The basic theorem says that a set of clauses \mathcal{S} is not satisfiable (in any structure) iff

some finite set \mathcal{G} of ground instances of \mathcal{S} is not satisfiable over the Herbrand universe.

(LMCS, p. 281)

To check that

a finite set of ground clauses $\,\mathcal{G}\,$ is satisfiable over the Herbrand universe

it suffices to check that

 \mathcal{G} is propositionally satisfiable

written *p*-**satisfiable** for short.

To check that \mathcal{G} is *p*-satisfiable means:

consider all atomic formulas in \mathcal{G} to be propositional variables

and then check to see if the propositional clauses are satisfiable.

(LMCS, p. 281)

Example

Consider the set of four **ground clauses**:

$$\{ra\} \\ \{\neg ra, rfa\} \\ \{\neg rfa, rffa\} \\ \{\neg rffa\} \}$$

List the atomic formulas in these clauses with simple propositional variable names:

atomic formula	renamed
raa	P
rfa	Q
rffa	R

The set of four ground clauses becomes

 $\{P\} \quad \{\neg P, Q\} \quad \{\neg Q, R\} \quad \{\neg R\}$

(LMCS, p. 282)

Continuing with this example, we can now show that the set of three clauses

```
 \{ra\} \\ \{\neg rx, rfx\} \\ \{\neg rffx\}
```

is not satisfiable as one has a set of ground instances

$$\{ra\} \\ \{\neg ra, rfa\} \\ \{\neg rfa, rffa\} \\ \{\neg rffa\}$$

that is easily seen not to be p-satisfiable by the translation into

$$\{P\} \quad \{\neg P, Q\} \quad \{\neg Q, R\} \quad \{\neg R\}$$

Substitution

Given a substitution $\sigma = \begin{pmatrix} x_1 \leftarrow t_1 \\ \vdots \\ x_n \leftarrow t_n \end{pmatrix}$ and a literal $L(x_1, \ldots, x_n)$,

we write σL , or $L(t_1, \ldots, t_n)$, for the result of applying the substitution σ to L.

Given a clause

 $C = C(x_1, \dots, x_n) = \{L_1, \dots, L_k\},$ we write σC , or $C(t_1, \dots, t_n)$, for the clause $\{\sigma L_1, \dots, \sigma L_k\}.$