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Abstract

The Jolly-Seber model provides estimates of abundance, survival,
and capture rates from capture-recapture experiments. This paper

will describe recent extensions to the following cases: (a) multiple-
cohort studies where recruitment rates are compared among cohorts;
(b) age-specific breeding proportions; (c) population growth rates. Fi-

nally, new areas of research needed for this model are proposed.
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1 Introduction

It is now just over 40 years since Darroch (1959) developed models for
capture-recapture experiments on populations with either immigration or
death (but not both). Six years later both Jolly (1965) and Seber (1965)
derived both estimators and variances for the general case.

Since that time, extensive work has been done on capture-recapture mod-
els with Seber (1982), Seber (1986), Seber (1992) and Schwarz and Seber
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(1999) providing extensive reviews. Work in this field can be broadly di-
vided into three areas: closed population models; models following marked
animals over time allowing only survival (and not recruitment) estimation
– the Cormack-Jolly-Seber (CJS) models (Cormack, 1964; Jolly, 1965; Se-
ber, 1965); and fully open population models allowing for estimation of both
recruitment and survival – the Jolly-Seber (JS) model (Jolly, 1965; Seber,
1965).

Development of methods for closed populations has been extensive and
beyond the scope of this paper.

Many developments of models for the Cormack-Jolly-Seber approach have
also occurred. Lebreton et al. (1992) extended the method to multiple
groups in an ANOVA-type framework. Schwarz, Schweigert, and Arnason
(1993), and Brownie et at. (1993) introduced movement models. Burnham
(1993) and Barker (1997) showed how to combine recaptures, resightings, and
returns of dead animals. Powerful software (MARK by White and Burnham,
1999; SURGE by Pradel and Lebreton, 1991) has been developed to assist
in model fitting and selection. In all of these approaches, emphasis has been
placed on modeling survival rates. Because only marked animals are followed
over time, no estimates of abundance are available.

Surprisingly, much less work has been done on Jolly-Seber models where
abundance estimation is also possible. Part of the reason is related to ex-
perimental design issues. The experimental protocol needed to successfully
follow only marked animals over time is much less rigorous than that needed
to also model the introduction of new unmarked animals into the popula-
tion. In recent years, there have been a resurgence of interest in the JS
model focusing on more than simple abundance.

This paper will review and summarize three recent developments in the JS
model that move the emphasis away from survival and abundance estimation.
These are:

• modeling the pattern of entrance of new recruits. This required the
development of a new likelihood function.

• modeling age-specific breeding proportions. Clobert et al. (1994) used
the CJS framework for this, but a more natural framework is a modi-
fication of the JS model.

• modeling population growth, dilution or fecundity. Pradel (1996) and
Pradel et al. (1997) used the CJS framework on reversed capture-
histories, but again these quantities fall naturally out of the JS model.

Finally, I speculate on where future research work on the JS model is
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needed.

2 Notation

The notation for JS models has been relatively standardized and follows to
a great extent that of the CJS model. Sample occasions are usually denoted
by the subscript i while group membership is denoted by the subscript g.
The experiment has k sample occasions.

“Birth” refers to any mechanism by which new animals are added at
unknown times to the catchable population (by immigration, reproductive
recruitment, etc.). Similarly, “death” refers to all processes that permanently
remove animals from the catchable population (permanent emigration, death,
etc.). We do not distinguish between sources of new animals or between the
ways animals leave the population. Births at known sample times (e.g. by
deliberate addition of marked animals) are called injections and deaths at
known sample times are called losses on capture.

Statistics:

ngi total number from group g captured at sample time i.
mgi total number of marked animals from group g captured at sample time

i.
ugi total number of unmarked animals from group g captured at sample time

i.
Rgi number of animals from group g that are released after the ith sample.

Rgi need not equal ngi if losses on capture or injections of new animals
occur at sample time i.

rgi number of the Rgi animals released at sample time i that are recaptured
after time i.

zgi number of animals from group g captured before time i, not captured at
time i, and captured after time i.

Fundamental Parameters:

pgi probability of capture for animals in group g at sample time i.
φgi probability of an animal from group g surviving and remaining in the

population between sample times i and i+ 1, given it was alive and in
the population at sample time i.

Ng total number of animals in group g that enter the system and survive
until the next sample time. Ng = Bg0 +Bg1 + . . .+Bg,k−1.

βgi fraction of the total net births that enter the system between sample
times i and i+ 1. These are the entry probabilities. βgi = Bgi/Ng.
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Functions of parameters:

Bgi number of animals of group g that enter after sample time i and survive
to sample time i+ 1. The Bgi are referred to as the net births. Bg0 is
defined as the number of animals alive just prior to the first sample time.

λgi population growth rate for group g between sample times i and i+ 1.
fgi the fecundity rate for group g between sample times i and i+ 1.
γgi the seniority probability or the probability that an animal present just

before time i was already present just after time i− 1. γgi =
N+

g,i−1
φg,i−1

N−

gi

ψgi probability that an animal enters the population, is still alive, and is not
seen before time i. ψg1 = βg0, ψg,i+1 = ψgi(1− pgi)φgi + βgi.

Ngi population size for group g at time i. Ng1 = Bg0, Ng,i+1 = (Ngi − ngi +
Rgi)φgi +Bgi.

Ugi number of unmarked animals in group g in the population at time i.
Ug1 = Ng1; Ug,i+1 = Ugi(1− pgi)φgi +Bgi.

3 Modeling the pattern of recruitment

Lebreton et al. (1992) developed methods to compare survival and catcha-
bility among groups of animals, e.g. to compare the survival rates of males
and females across time?

In the JS model, rather than comparing raw abundance among groups,
the relative increase or pattern of increase may be more interesting, e.g. to
see whether the pattern of recruitment is the same for males and females?

The impediment to a parallel theory of Lebreton et al. (1992) for JS
models was the lack of a suitable parameterization and likelihood function.
Starting with Darroch (1959), it has been well known that the full likeli-
hood for a JS capture-recapture experiment can be partitioned into three
components, L = L1 × L2 × L3 = P (first capture)× P (releases|captures)×
P (recaptures|captures). The latter two components can be modeled by prod-
ucts of conditionally independent binomial distributions as shown by Brownie
et al. (1985) and Burnham (1991), and are now the standard representation.
There is no such accepted standard for L1. Indeed, the most convenient form
depends upon what is to be estimated.

Darroch (1959) derived the likelihood function for L1 in the case of im-
migration or death (but not both). He treated the Bgi as fixed constants and
noted that L1 involved (k − 1) dimensional sums of probabilities making its
maximization intractable.

Jolly (1965) and Seber (1965) assumed that Ugi are fixed parameters.
Then, by defining Bgi = Ug,i+1 − φgi(Ugi − ugi), L1 can be written as a
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product of binomials:

L1 =
G∏

g=1

k∏

i=1

(
Ugi

ugi

)
(pgi)

ugi (1− pgi)
Ugi−ugi

with the maximum likelihood estimators of Ugi being Ûgi = ugi/p̂gi.

There are several problems with this approach. First, ‘births’ do not ex-
plicitly enter in the likelihood, which makes it difficult to impose constraints
upon theBgi such as being zero at certain times, or being equal among groups
at a particular time, or being a function of covariates. And the likelihood
models the raw counts; translating these to a pattern of recruitment was not
feasible making modeling along the lines of Lebreton et al. (1992) extremely
difficult. There are also some technical difficulties as outlined by Schwarz
and Arnason (1996).

This was the commonly accepted formulation until the mid-90’s. Cor-
mack (1989) and Burnham (1991) derived alternate representations, but
these were not entirely satisfactory.

Over 30 years after Jolly (1965) and Seber (1965), Schwarz and Arnason
(1996) built upon the work of Crosbie and Manly (1985) to develop a for-
mulation that resolved a number of issues. They treated Bg0, . . . , Bg,k−1 as
random variables conditional upon Ng (the total number of unique animals
in the experiment in group g), and let βg0, . . . , βg,k−1 be the fraction of the
population that entered between sampling occasions i and i+1 and survived
to the next sampling occasion. Then Bg0, . . . , Bg,k−1 follow a multinomial
distribution, leading to

L1 =
G∏

g=1

(
Ng

ug·

)( k∑

i=1

ψgipgi

)ug· (
1 −

k∑

i=1

ψgipgi

)Ng−ug·

×
(

ug·

ug1, ug2, . . . , ugk

) k∏

i=1




ψgipgi

k∑
i=1

ψgipgi




ugi

Here {ψgi} is a function of the relative birth rates {βgi}. The likelihood
can now be expressed as a product of multinomial and binomial distributions
in much the same way as was done for the CJS model.

The new formulation leads to all the usual estimators of Jolly (1965)
and Seber (1965). Because the parameters describing the ‘birth’ process are
directly available in the likelihood, it is relatively easy to selectively constrain
subsets to be zero, to be equal over time, to be equal among groups, or to
be functions of covariates. All the machinery developed for model selection
(likelihood ratio tests and AIC) for the CJS models can be used directly. The
computer package POPAN (Arnason, Schwarz, and Boyer, 1998) implements
all of these modifications to the JS models.
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Parameterizing in terms of the proportions of new animals that enter
between sampling occasions is also advantageous. First, it would be quite
unusual when conducting an experiment on two groups of animals whose
absolute population sizes could be quite different to expect that the abso-
lute recruitment would be equal for the two groups. However, the pattern
of recruitment may be equal. Schwarz and Arnason (1996) presented such
an example of salmon returning to spawn where sampling occurred weekly.
Returning salmon can be classified into two groups: adults that returned at
age 3; and jacks which are precocious males returning at age 2. A question
of interest is whether the two types of males return in the same pattern. Ex-
tending the notation of Lebreton et al. (1992), Schwarz and Arnason (1996)
used AIC to select the model {pg, φt, βg∗t} as the most suitable and the esti-
mates are shown in Table 1. This shows that adults and jacks had unequal
catchability, had similar survival patterns over time, but more importantly,
the pattern of returns for the two groups was different with jacks tending to
return earlier than adults.

Second, estimates of {βgi} are relatively free of the biases caused by het-
erogeneity in catchability. Carothers (1973) showed that the asymptotic
relative bias of N̂gi is a function of the γgi, the coefficient of variation in

the capture-probabilities, because E [N̂gi] ≈ Ngi/(1 + γ2
gi) but that survival

estimates are essentially unaffected by heterogeneity. If the coefficient of
variation in catchability is relatively constant over time, then both

B̂gi ≈ N̂g,i+1 − N̂giφ̂gi

and N̂g =
k−1∑
i=0

B̂gi have the same relative bias, but β̂gi =
B̂gi

N̂g
will be relatively

free of bias. This has been confirmed by the author using methods similar
to Carothers (1973) and in simulation studies. Hence, it may not be neces-
sary to use methods such as Pledger and Efford (1998) to try to correct for
heterogeneity in these cases.

Because the {β̂gi} are relatively free of bias caused by heterogeneity in
catchability, it implies that estimators based on these should also be rela-
tively unaffected. For example, Manske and Schwarz (2000) developed an
estimator for stream residence of fish from JS experiments that is insensitive
to heterogeneity in catchability.

4 Age-specific breeding proportions

Clobert et al. (1994) used the CJS model to estimate age-specific breeding
probabilities from studies of successive cohorts of animals marked as young.
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The difficulty in fitting a standard CJS model to these data is that the
marked animals in a cohort after breeding has commenced but before all
animals have become breeders, consist of two subgroups – those who are
non-breeders, which cannot be observed and those who are breeders, which
can be recaptured. This heterogeneity in the capture probabilities violates a
key assumption of the CJS model that all animals alive have the same prob-
ability of recapture at a sampling occasion. Clobert et al. (1994) introduced
a number of parameters representing the overall, average, probability of cap-
ture during the progression to full breeding status, and it was the changes in
these values that allowed them to estimate the breeding probabilities.

Because it is changes in the average probabilities of capture that lead to
estimates of the breeding proportions, it is difficult to numerically constrain
these to be positive, or to test for equality of these parameters among groups,
or to model them as functions of covariates.

However, the age-specific breeding proportions can be estimated directly
by fitting a JS model using the new parameterization defined in the previous
section. Prior parameterizations of the JS model made this difficult because
the total recruitment between sampling occasions was modeled, and it was
impossible to constrain these to be non-negative or to simultaneously model
several cohorts with common recapture, survival, or recruitment parameters.
The new parameterization avoids many of the model fitting complications of
Clobert et al. (1994) and lends itself to direct model selection and testing.
Furthermore, the Schwarz and Arnason (1996) formulation also naturally
leads to multiple-cohort settings. Refer to Clobert et al. (1994) and Schwarz
and Arnason (2000) for the assumptions made in addition to those commonly
made in CJS models.

In this new method, the mark applied at age 0 is used only to age the
animals at subsequent recaptures; the first recapture is treated as an initial
mark, and second and subsequent recaptures treated as recaptures after the
initial mark. In this way, the population of animals who are breeders is
treated as an open population in the JS framework. Animals that commence
breeding are treated as new entrants into the population. By parameteriz-
ing births in the JS model by the proportion of the total entrants over the
course of the study, these now correspond directly to the age-specific breeding
proportions of interest.

Figure 1 illustrates the parameters as they would apply in a study with
2 cohorts of animals marked as young (for simplicity at age 0). Animals
start to breed at age 1. Full breeding takes place by age 6. Recaptures take
place one year apart over a span of 7 years. Observations on breeders start
in calendar year 1, the first year when the first cohort starts to breed.

The most general model shown in Figure 1 is not very useful as each
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cohort has its own set of parameters, and there is confounding of parameters
at the start and end of the study (Schwarz et al., 1993). This implies that
the age-specific probabilities are not estimable unless further assumptions are
made. For example, the study could be extended at least one further occasion
after the last age of breeding to ensure that bg,T−i = 0 for all cohorts.

Resolving the confounding at the start of the study can be done by as-
suming that certain parameters are equal across cohorts or by modeling the
capture probabilities as functions of covariates. For example, one may be
willing to assume that p1i = p2i = · · · = pGi. Or, the {pgi} could be modeled
as functions of covariates, as was done in Clobert et al. 1994, or possibly it
may be tenable to consider models where pgi = pg· for all i.

Alternatively, it is sometimes possible to have a separate cohort of known
breeders that were marked prior to the start of the first recaptures of the new
breeders. In this case, this additional cohort could be used to estimate the
pgi (under the assumption of independence of recapture probabilities among
cohorts).

Once the confounding problem has been resolved, the JS model can be
fitted using the methods outlined in Schwarz and Arnason (1996) using the
computer package POPAN (Arnason, Schwarz, and Boyer 1998).

Reduced models can also be investigated using likelihood ratio tests or
AIC in the usual fashion. An interesting set of models is where the age-
specific breeding proportions are stationary over time so that b1i = b2i =
· · · = bGi.

Schwarz and Arnason (2000), and Schwarz and Stobo (2000) present ex-
amples of the application of this model to black-headed gulls (Clobert et al.,
1994) and to grey seals.

The results of the model fitting procedures applied to the gull data are
shown in Table 2. Here all breeding proportion estimates are non-negative
(unlike in Clobert et al. 1994), and it is relatively easy to fit and test if a
model with equal breeding proportions over cohorts is tenable.

The average age of first breeding is found directly and its standard error
can be estimated from a Taylor-series expansion. By making further assump-
tions about the survival rate of non-breeders, it was also possible to estimate
the juvenile survival rate. However, unless the cohorts were tagged as young,
this would generally not be possible.

The JS method has a number of advantages over that used by Clobert et
al. (1994):
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• Estimates of age-specific breeding proportions are a fundamental pa-
rameter of the model and are easily estimated using the methodology
of Schwarz and Arnason (1996).

• It is easy to constrain the estimates to be within the admissible range
of 0-1 and to model them as functions of covariates.

• It is straight forward to examine models where the breeding proportions
are equal among cohorts.

• The confounding among the breeding proportions, capture probabili-
ties, and survival rates at the beginning and end of the study are now
readily apparent and the modeler is aware of the need to estimate some
of the confounded parameters to ‘free up’ the estimates of the breeding
proportions.

Pradel (1996), Pradel et al. (1997), and Pradel and Lebreton (1999) used
a different method based on a CJS model applied to the histories read back-
wards, to estimate the age-specific breeding proportions. These are computed
based on the seniority probabilities as:

βi,P radel = (1− γi+1)γi+2 . . . γT

and are also shown in Table 2. Schwarz and Arnason (2000) showed that
Pradel’s age specific breeding proportions are conditional upon animals sur-
viving until the age at which all animals have become breeders. For long
lived animals, his estimates of the age-specific breeding proportions should
be very similar to the JS estimates. However, for short lived animals, his
method will tend to overestimate the proportion in the older age classes, and
underestimate the proportion in the younger age classes. This will lead to a
positive bias in the estimate of the average age of initiation of breeding as
seen in Table 2. Note that this approach, like ours, conditions upon the set
of animals ever seen as breeders and also ‘ignores’ the marking occasion at
age 0, which is used only to age the animals when recaptured.

As the age-specific breeding estimates are based on the proportion of new
entrants, they should also be free of the biases induced by heterogeneity in
capture probabilities.

5 Population Growth

The JS model was originally developed to estimate raw abundances. How-
ever, in many cases, this is of secondary importance and trend in abundance
(population growth or decline) is of more ecological interest.
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Nichols et al. (1986), Pradel (1996) and Pradel et al. (1997) used the CJS
model to capture-histories read ‘backwards’ to estimate seniority probabili-
ties (and subsequent fecundity) and population growth. However, as mod-
eling histories in a forward direction leads only to estimates of catchability
and survival, modeling histories in a backwards fashion leads to estimates of
catchability and seniority. Consequently, it seems sensible to use a JS model
to estimate all quantities simultaneously.

In the short term, population growth can be expressed in terms of the JS
parameters (dropping the subscript g for convenience and ignoring losses on
captures and injections) as:

λi =
N−

i+1

N+
i

=
N+

i φi +Bi

N+
i

= φi+
Bi

N+
i

= φi+
βi

(β0φ1φ2 · · · φi−1 + β1φ2φ3 · · · φi−1 + · · ·+ βi−1)
.

Similarly, Pradel’s (1996) seniority probability can be expressed as:

γi+1 =
N+

i φi

N−

i+1

=
N−

i+1 −Bi

N−

i+1

= 1−
Bi

N−

i+1

= 1−
βi

(β0φ1φ2 · · ·φi + β1φ2φ3 · · ·φi + · · · + βi)
,

which is simply the inverse of Jolly’s (1965) dilution rate parameter. Fecun-
dity can be expressed as:

fi =
Bi

N+
i

= λi−φi = φi(
1

γi+1

−1) =
βi

(β0φ1φ2 · · ·φi−1 + β1φ2φ3 · · ·φi−1 + · · · + βi−1)
,

which is the net births in the interval per member initially alive at the start
of the interval.

Note that Pradel (1996, Section 6) defined fecundity as

fi,P radel =
1

γi

− 1 =
Bi

N+
i φi

=
fi

φi

which is the net births in the interval per member alive at the end of the
interval.

As in the full JS model, some confounding of parameters may occur. For
example, as in Pradel (1996), only λi for i = 2, . . . , k−2 can be estimated as
β0 and β1 are confounded with p1, and βk−1 is confounded with pk. However,
from Table 2 of Schwarz et al. (1993), the confounding structure is such that
even though λ1 cannot be estimated, λ2, λ3, . . . can estimated.

In all three cases, the estimates are obtained by simple substitution and
the variances of the estimators can be obtained by a Taylor-series expansion.
These estimate are presented for the capsid data of Jolly (1965) used by
Pradel (1996) in Table 3a.
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There are several advantages to considering estimates as function of the
fundamental parameters rather than as intrinsic parameters in a new likeli-
hood as done in Pradel (1996).

First, it clearly shows that these parameters are dependent both upon
survival rates and new entrants. In Pradel (1996) formulation, both λ and
φ appear as separate parameters in the likelihood which ‘overlap’ in their
effects. The JS framework completely separates the effects of recruitment
and survival which avoids numerical difficulties in model fitting. In addition,
some care must be taken with the Pradel formulation in specifying models
that are biologically appropriate. For example, it can be questioned whether
it is sensible to fit models whose survival rates are different among groups, but
the population growth rate are equal (which include a survival component).
However, such compensatory mortality and reproduction models might be
appropriate in certain cases. Two examples are: (1) where the two popula-
tions are ‘sinks’ with growth limited by external factors (e.g. total available
habitat) and new entrants arriving from outside; and (2) where low survival
is coupled with high reproductive output and high survival is coupled with
low reproductive output (r-K tradeoffs).

Second, all estimates are automatically constrained to be consistent with
each other. For example, λ̂i can never fall below the estimated survival rate,
γ̂i ≤ 1, and f̂i must be positive. Pradel (1996, Table 3b) has estimates that
violate these constraints but our results in Table 3a are consistent.

Third, Pradel also found that the maximum likelihood differed depend-
ing upon which parameterization was adopted leading to different estimates.
This cannot happen in the JS framework where a single unique maximum
likelihood is always found (Schwarz and Arnason, 1996).

The major difficulty in using the JS approach is fitting models where the
derived parameters are equal across time or groups. Because these are non-
linear functions of the fundamental parameters, techniques such as the design
matrices used by MARK will not work. However, as shown by Schwarz and
Arnason (1996), arbitrary linear or non-linear constraints can be imposed
using the methods of Lagrange multipliers. An example of these constraints
is shown in Table 3b. [Note that this reduced model is clearly not tenable
and is only used to illustrate that such models can be fit.]

As noted in Section 3, heterogeneity in catchability can cause substantial
bias in estimates of raw abundance or recruitment. Using a similar argument
as in Section 3, the estimates of population growth, seniority, and fecundity
should be relatively unaffected by heterogeneity. This has been confirmed by
the author using the methods of Carothers (1973) and by simulations.

The long-term viability of a population is often investigated through the
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use of Leslie matrices, where age-specific fecundity and survival rates deter-
mine the dominant eigenvalue of the population transition matrix. The JS
approach provides a much more direct method - particularly if it is limited
to the adult population. Note that ‘fecundity’ in the JS approach is not
the same as ‘fecundity’ in the Leslie-matrix approach. In the JS approach,
‘fecundity’ is the net number of new adults produced per old adult. Hence
this fecundity is a composite of the Leslie-matrix fecundities for the younger
age classes plus the pre-adult survival. Furthermore, unless the population
is in a steady-state age-distribution, there can be large changes in the JS ‘fe-
cundity’ even if ‘real’ fecundity has not changed. As Pradel’s {γ} are simple
functions of the JS fecundity, they must also be interpreted carefully; hence
models with a constant γ over time or among groups will only be reasonable
in populations at an equilibrium age distribution. A referee noted that in
fact the test of the hypothesis of a constant population growth rate could be
used to test if the population has achieved a stable age distribution.

6 Future directions

The JS model has been the “orphaned child” of the triad of capture-recapture
methods. This may have been driven by the old formulation of the likelihood
which concentrated upon raw abundance estimates. However, as shown in
the above sections, the JS model has a wider application than simply raw
abundance estimation - it is important to think of any additions to a popu-
lation as amenable to treatment in a JS framework.

Another drawback has been the lack of easy to use, comprehensive com-
puter programs. However, POPAN (Arnason, Schwarz, and Boyer 1998) now
includes all the features described above and work is underway to incorporate
a version into the package MARK.

There are several areas of research that should be pursued.

The likelihood can easily be broken into three components. The compo-
nents dealing with recaptures involved only the survival and capture rates
while the recruitment component involved the recruitment, capture, and sur-
vival rates. Nevertheless, Schwarz and Arnason (1996) showed that in the
full model (with no restrictions over time or groups), all of the information
on the survival and capture rates is contained in the former component. I
suspect that the majority of information on survival and capture remains in
this component even under restricted models. Consequently, there should
be little loss of efficiency in always using the former to estimate survival
and catchability (i.e. do a CJS analysis), and then performing a conditional
maximum likelihood analysis on the first component to estimate the recruit-
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ment components. This would provide a relatively easy way to augment the
MARK software package. A more systematic investigation is needed to verify
this conjecture.

Second, if population growth is really the focus of the investigation, an
alternate parameterization replacing the βi’s by a term related to fecundity
may be more appropriate. This would follow along the lines of Cormack’s
(1985, 1989) log-linear approach, but should be free of the problems in de-
termining the estimated standard errors.

Third, standard Leslie-matrix models require age-specific fecundity and
survival rates. The JS model can be easily modified to be age rather than
time varying (Pollock 1981), but it treats all recruitment in the same fash-
ion. It should be possible to modify the JS age model to estimate both age
specific survival and age-specific fecundity if actual births could be identified
or partitioned by cohort of origin. This would allow the parameters of a
Leslie-matrix to be identified directly.

Fourth, as noted in Schwarz and Arnason (1996), the age-structured JS
model could be reformulated along the lines of Schwarz and Arnason (1996).
This may provide a method of distinguishing immigration from true births
in much the same way as done in robust design (Nichols and Pollock, 1990;
Pollock et al. 1993).

Finally, the robust design (Pollock 1982) is a hybrid design that combines
features of both open and closed populations. It also allows the experimenter
to investigate temporary emigration (Schwarz and Stobo, 1997; Kendall et
al., 1997) in addition to survival and abundance. Additional work is needed
to investigate if the recent revision to the JS model can be incorporated in
the robust design, e.g. can the age-specific breeding proportions model be
augmented by information on temporary absences from the breeding colony
to estimate both the age-specific breeding proportions and the overall preg-
nancy success rate.
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Table 1: Estimates from model {pg, φt, βg∗t} for salmon returning to spawn

Week p̂i se(p̂i) φ̂i se(φ̂i) β̂i se(β̂i) B̂i se(B̂i|Bi)
Adult Estimates

0 0.422 0.038 253.3 29.0
1.5 0.323 0.031 0.472 0.052 0.000 0.000 0.0 0.0
3 0.323 0.031 0.927 0.116 0.343 0.048 206.1 29.3
4 0.323 0.031 0.785 0.094 0.070 0.051 42.2 29.5
5 0.323 0.031 0.748 0.078 0.000 0.000 0.0 0.0
6 0.323 0.031 0.623 0.096 0.055 0.027 33.0 15.3
7 0.323 0.031 0.308 0.081 0.110 0.024 66.1 13.1

8.5 0.323 0.031 0.614 0.136 0.000 0.000 0.0 0.0
10 0.323 0.031

Jack Estimates

0 0.681 0.064 388.9 70.3
1.5 0.158 0.025 0.472 0.052 0.000 0.000 0.0 0.0
3 0.158 0.025 0.927 0.116 0.231 0.077 132.1 44.8
4 0.158 0.025 0.785 0.094 0.052 0.074 29.6 41.7
5 0.158 0.025 0.748 0.078 0.000 0.000 0.0 0.0
6 0.158 0.025 0.623 0.096 0.000 0.000 0.0 0.0
7 0.158 0.025 0.308 0.081 0.036 0.023 20.6 12.7

8.5 0.158 0.025 0.614 0.136 0.000 0.000 0.0 0.0
10 0.158 0.025
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Table 2: Estimates of age-specific breeding proportions from fitting two mod-
els with capture-probabilities a linear function of the number of visits (given
in Table 4 of Clobert et al., 1994), breeding restricted to ages 2-5, and survival
is constant over time and among cohorts.

Each cohort allowed its own Common breeding Common breeding
breeding proportions proportions for proportions using

Cohort 1 Cohort 2 Cohort 3 all cohorts Pradel’s γ
Age Est sec Est sec Est sec Est se Est se

2 .240 .169 .000 - .401 .181 .299 .124 .214 .113
3 .339 .219 .553 .249 .214 .201 .356 .173 .316 .165
4 .000 - .293 .314 .000 - .001 .161 .001 .177
5 .422 .179 .155 .269 .385 .151 .344 .120 .470 .162

Average 3.604 .426 3.602 .413 3.370 .393 3.390 .296 3.727 .378

φ̂a .808 .064 .808 .064 .808 .064 .806 .064 .806 .064

φ̂b
0 .076 .024 .109 .035 .094 .027 .091 .024

log-likelihood -185.1 -187.2
a Survival probability for breeders
b Survival probability from the time of marking at age 0 to the first age of
breeding.
c Standard errors are not available when estimates of age-specific breeding
proportions fall on the boundary of the parameter space - refer to Schwarz
and Arnason (1996) for details.

Table 3: (a) Population growth and seniority estimates for Jolly’s (1965)
capsid data for an unconstrained model.

i p̂i se φ̂i se N̂i se γ̂i se λ̂i se
1 1.00 - 0.65 0.108 n.e. - n.e -
2 0.28 0.085 1.00 0.000 513.9 150.7 n.e - 1.50 0.47
3 0.22 0.033 0.87 0.095 768.3 103.2 0.67 0.206 1.26 0.25
4 0.22 0.034 0.56 0.063 962.9 142.8 0.69 0.116 0.99 0.20
5 0.23 0.033 0.84 0.075 945.3 124.9 0.57 0.090 0.94 0.16
6 0.24 0.029 0.79 0.071 882.1 97.9 0.89 0.122 0.91 0.13
7 0.31 0.033 0.65 0.057 802.5 76.0 0.87 0.089 0.81 0.09
8 0.27 0.025 0.99 0.096 643.0 47.9 0.80 0.064 0.99 0.10
9 0.27 0.031 0.69 0.081 633.6 62.3 1.00 - 0.76 0.11
10 0.27 0.034 0.88 0.121 478.4 53.1 0.91 0.065 1.06 0.18
11 0.24 0.036 0.77 0.129 506.4 67.0 0.83 0.071 0.92 0.18
12 0.26 0.043 n.e. - 462.8 70.8 0.84 0.078 n.e. -
13 1.00 - n.e. - 0.95 0.080

log − likelihood = −3117.1
n.e. = not estimable
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Table 3: (b) Population growth and seniority estimates for Jolly’s (1965)
capsid data under a constant population growth and capture probability
model.
i p̂i se φ̂i se N̂i se γ̂i se λ̂i se
1 0.25 0.010 0.57 0.067 659.7 37.3 0.998 0.007
2 0.25 0.010 0.90 0.080 658.3 34.2 0.57 0.067 0.998 0.007
3 0.25 0.010 0.71 0.067 653.8 31.5 0.90 0.081 0.998 0.007
4 0.25 0.010 0.54 0.053 647.3 29.2 0.71 0.068 0.998 0.007
5 0.25 0.010 0.81 0.065 638.9 27.4 0.54 0.054 0.998 0.007
6 0.25 0.010 0.81 0.062 631.5 26.4 0.81 0.065 0.998 0.007
7 0.25 0.010 0.69 0.048 628.1 26.1 0.81 0.062 0.998 0.007
8 0.25 0.010 1.00 0.007 619.7 26.4 0.69 0.048 0.998 0.007
9 0.25 0.010 0.78 0.050 617.4 27.5 1.00 - 0.998 0.007
10 0.25 0.010 0.88 0.062 613.0 29.1 0.79 0.050 0.998 0.007
11 0.25 0.010 0.86 0.056 610.6 31.2 0.89 0.062 0.998 0.007
12 0.25 0.010 1.00 0.007 606.3 33.6 0.86 0.056 0.998 0.007
13 0.25 0.010 604.9 36.4 1.00 -

log − likelihood = −3236.4

Figure 1: Relationship of parameters to sampling occasions in estimating
age-specific breeding proportions

Year
Cohort 1 2 3 4 5 6 7

b10−→
b11−→

b12−→
b13−→

b14−→
b15−→

0
−→

φ11−→
φ12−→

φ13−→
φ14−→

φ15−→
φ16−→

1 p11 p12 p13 p14 p15 p16 p17

b20−→
b21−→

b22−→
b23−→

b24−→
b25−→

φ22−→
φ23−→

φ24−→
φ25−→

φ26−→
2 p22 p23 p24 p25 p26 p27

This is a two cohort study. Animals in cohort 1 start to breed at age 1;
those from cohort 2 also start to breed at age 1 which is in calendar year 2.
Animals are fully recruited to breeding status by age 6. The parameters bgi

measure the age-specific breeding proportion for cohort g at age i + 1. The
parameters pgi are the year specific capture probabilities for cohort g in year
i. The parameters φgi are the probability of survival from year i to year i+1
for animals in cohort g. The −→ indicates that the parameter refers to the
interval between capture occasions.
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