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Abstract

We present a novel approach to motion synthesis. We
show that by splitting sequences into segments we can cre-
ate new sequences with a similar look and feel to the origi-
nal. Copying segments of the original data generates a se-
quence which maintains detailed characteristics. By mod-
elling each segment using an autoregressive process we
can introduce new segments and therefore unseen motions.
These statistical models allow a potentially infinite number
of new segments to be generated. We show that this sys-
tem can model complicated nonstationary sequences which
a single ARP is unable to do.

1 Introduction

In this paper we present a novel approach to motion syn-
thesis. Our method is based on recent texture synthesis
and video texture research. We use a copying based ap-
proach where the sequence is divided into temporal seg-
ments and the output is generated from these segments. In-
dividually this method works well but does not provide any
new unseen information. Using a statistical model called an
autoregressive process (ARP), we generate models of the
segments to create new motions of similar look and feel.
This gives us a robust method for generating new sequences
where the worst case is a completely copied output. The dif-
ficulty in manually animating characters is replicating the
idiosyncrasies of natural movement. A slight stumble or
change in stride length can add much more life to a charac-
ter than a perfect walk. An example of which is the angle of
a cranes wing in flight. The wing sweeps down slowly and
rises quickly with slightly different phase and amplitude
each time. These idiosyncrasies add a more realistic feel to
an animation and adding random noise to a sine wave does
not produce this effect. Motion capture systems have been
around for several years and many thousands of motions
have been accumulated. Successful methods of analysing
the data and recreating motion are hugely beneficial saving

both time and money. Motion synthesis provides an effi-
cient and cost effective tool for the film and games industry.
Thousands of background characters can be synthesised us-
ing a single extracted motion.

2 Related Work

This section outlines the selected previous research in
the area of synthesis. Synthesis here is defined as gen-
erating new copies of a dataset which follow the original
pattern. Synthesis is used in many areas of research and
is often referred to as modelling. One the targets of our
present research is to generate new video footage, which
is longer than the original input data. A previous method
used to model video textures is an autoregressive processes.
An autoregressive process (ARP) is a parametric modelling
technique. The main principle is that every point in a se-
quence is a linear combination of n previous values. The
number of “lagged” values, known as the order, effects the
fit of the model and also increases the required amount of
training data, see “System Identification” [11] for details on
calculating an ARP. ARP’s have been used in tracking and
for synthesising video textures (a temporal texture). Initial
attempts at modelling video textures by Schödl et al. [13]
used method of reorganising the frames of the video tex-
ture such that a new clip could be generated which was
potentially infinitely long. Unfortunately, if the sequence
does not contain frames which are close in pixel values and
preferably temporally far apart then the sequences quickly
reach a dead end or get stuck in a loop. Campbell et al. [5]
and Reissell [12] used various forms of ARP to model and
recreate video textures. In particular it was shown by Camp-
bell et al. [5] that if a data set has a Gaussian distribution it is
likely that an ARP will produce a good model. Although we
are looking at motion other synthesis techniques are equally
relevent. Texture synthesis involves slightly different issues
to motion synthesis but many of the techniques can be trans-
fered. The main theme of the most successful techniques
is sampling i.e. the selection and reordering of values or
blocks from the original data. Multi-scale sampling was



first proposed by Heeger [7] and then later by DeBonet [2].
The concept is that a pyramid hierarchy of the texture is
created with low to high resolution copies of the original.
Sampling can then be done following the hierarchical struc-
ture from low to high resolutions. Efros and Lueng [6] pre-
sented work in which they modelled the texture as a Markov
chain i.e. each pixel is associated to the surrounding pix-
els. Wei and Levoy [15] and Hertzmann et al. [8] integrated
DeBonet’s [2] multiscale paradigm and Efros and Lueng’s
Markov chain, to produce a superior texture synthesis pro-
cess. Other sampling techniques have been presetned more
recently which copy blocks of texture rather than individual
pixels [10, 17]. The main aims of recent work into motion
synthesis of motion capture data can be split into two cat-
egories. The first is to combine motion signals to produce
longer sequences of motion [1, 9]. This process involves a
user inputting the desired effect and then a search to attempt
to fit a motion to these constraints. The second grouping are
those papers which attempt to generate new motions from a
single motion sequence. The applications include extending
clips or generating a new copy of the original [3, 4, 16].

3 Problem Analysis

The current techniques for synthesis tasks include many
difficulties when applied to motion synthesis. The high di-
mensionality of motion signatures is one of the major causes
as well as non-Gaussian distributions and nonstationary sig-
nals. We present a new combined technique which inte-
grates two known techniques to produce a hybrid system.
Firstly an analysis of current techniques substantiates the
choices made when designing our hybrid system. When
modelling with an ARP the original dataset must have a
Gaussian distribution. Figure 1 shows a non-Gaussian se-
quence which is the first mode of the eigen decomposition
of a video sequence of a flickering candle flame. A version
generated using an ARP is included which has a Gaussian
distribution as will always be the case over large samples.
In Figure 1 it can be seen that the nonstationarity of the se-
quence is lost in the ARP simulation. In the original data
the sequence maintains a level around two thousand five
hundred then dips at irregular time intervals. This is lost
in the ARP generated version with the sequence peaking at
a variety of values. However, it has been shown [5, 12] that
when given correctly distributed data an ARP provides an
excellent method of producing new unseen data. A multi-
scale approach provides an excellent model of the low level
structures within the input sequence. By modelling from
low resolution to high, it maintains the low level structures
and therefore nonstationarities are well modelled. Unfor-
tunately, we have found that the technique does not extend
well to high dimension data. We produced a pyramid for
each dimension of the data and the cost function for each
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Figure 1. Unnormalised first mode and his-
togram of the original candle flame sequence
(First row), an ARP generated version (Sec-
ond row), a multi-scale sampled version
(Third row), a tiled version (Fourth row).

new point is calculated over all dimensions and n previous
values. When trying to find the best next point over a large
number of dimensions unless the dimensions have a very
constrained relationship, the match found is unlikely to be
a good fit every time. This introduces a large amount of
high frequency noise in the generated sequence. Copying
tiles or segments from the original sequence maintains high
resolution features. Copying segments guarantees that most
adjacent values will be appropriate to the original. Each
segment is chosen from only the previous segment, which
causes certain global structures to be lost. This is shown in
the bottom plot in Figure 1. The sequence includes more
of the dipped segments than the original. Running the gen-
eration process many times may produce a well structured
sequence but this isn’t guaranteed. The search process takes
no account of the global structure and so repeated segments
appear.

4 Method

This paper relates to any multi dimensional temporal se-
quence. In particular, we have concentrated on video tex-
tures and model animation. A video is a series of pixel
based frames and model animation refers to joint rotations.
With videos we concatenate each row of pixels to produce
a 1xM array for each frame. This then creates a very high
dimension sequence and this is a major difficulty when try-
ing to carry out any statistical modelling. For example for a
multivariate ARP the size of the parameter vector is related
to the number of dimensions squared times the order of the
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ARP. Hence the number of unknowns increases exponen-
tially with the number of dimensions therefore we use Prin-
cipal Components Analysis (PCA) to reduce the complex-
ity of the sequences. With model animation the above is still
relevant as models may include tens even hundreds of joints
each potentially involving x, y and z rotations. Next the se-
quence must be separated into a set of overlapping tempo-
ral segments. For the purposes of this paper we have kept a
constant segment size but there may be benefits in varying
their size. A larger segment which is stationary and Gaus-
sian has a much higher chance of being modelled correctly
using an ARP. The segment size is one of the inputs to the
system. Now that we have a smaller subset of the sequence
it may not contain the same non-lineararities as the whole
sequence. Using PCA on each segment we can further re-
duce the dimensions of the segments without introducing
significantly more error in reconstruction. This also intro-
duces constraints on the generated segments which helps
maintains their look and feel and reduces the number of un-
knowns helping to produce better models. ARPs are trained
for each segment. The parameter estimation phase chooses
the “best” model from the given dataset. Here an impor-
tant question is whether the “best” possible model is good
enough to model the segment correctly. We look to validate
the model, especially with small segments of motion where
a perfect fit is unlikely. To address this problem we have two
solutions firstly we generate sequences using the ARP’s and
then compare range, mean and variance. Our second filter
is Schwarz’s Bayesian Criterion (SBC) [14]. The funda-
mental use of SBC is for model order selection. We extend
this so we can use it as an initial estimate of the segments
which will be modelled well using their respective ARP’s.
The synthesis phase starts by chosing a random segment.
Following segments are chosen such that the final values
of the last segment correspond to the beginning of the new
one using the the root mean squared difference. Finding the
lowest three values provides us with the best matches from
which segments are then randomly selected. We use a sin-
gle frame overlap and find the average between the layers to
help hide the seams. Using SBC to select which segments
to model using an ARP introduces a trade-off, since setting
the threshold too high can include badly modelled segments
and setting it too low will result in tiling with no new seg-
ments. A number of segments are generated and from these
segments ones which exceed the range of the original seg-
ment are removed. Tests on the variance and mean are also
used to eliminate incorrectly structured segments.

5 Results

We have found that the segmented ARP process can pro-
duce results which fit our original aim. High resolution
characteristics are maintained and new unseen data is syn-

Original Sequence sin(x)/4 + sin(x)/10 + sin(x)/20

Segmented ARP Generated Sequence

ARP Generated Sequence

Figure 2. (Top) Original sequence. (Centre)
Segmented ARP generated sequence, dot-
ted portions represented copied segments
and solid lines represent ARP generated seg-
ments. (Bottom) ARP Generated sequence.

thesised and integrated well into the sequence. Figure 2
shows one of our synthetic signals which is a sum of three
sine waves. The results from the ARP model show a sine
wave with a upward trend whereas our model provides us
with a similar sequence to the original and includes new
segments. The number of modelled segments varies greatly
between output sequences. Figure 3 shows two randomly
chosen output sequences and an ARP sequence for the can-
dle flame sequence. The original candle flame is a short
video clip of about 1100 frames. Using PCA we trans-
formed the sequence into a 20D space with a reconstruction
error of 6.8%. The first and second modes are shown in Fig-
ure 3 and the first mode in Figure 5. It is a particularly hard
sequence to model because it is non-linear and nonstation-
ary. The sequence does not follow a periodic pattern, how-
ever, both of the generated sequences are good matches to
the original and have the same concentrated curve along the
bottom right and randomly cut across into the centre of the
plot. Approximately 20% of the generated sequences are
new unseen segments. The barman sequence originated as
a manually animated model. Here we show the application
of our method on a sequence of joint rotations. The barman
sequence is similar to the candle flame in the complexity of
the first two modes (Figure 4). In the original clip the bar-
man mostly wipes a small area in front of him but takes one
large sweep of the surface. This can be seen in the concen-
trated area in the top left and then the long sweeping curve
which steams from it. An ARP generated version of the se-
quence does not maintain any of the original characteristics.
Our generated versions maintain the low and high resolu-
tion characteristics and they include approximately 15-25%
of segments which have been generated using an ARP. The
new sequences are particularly appealing as they maintain
the general feel of the original but include a large perceptual
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variation.

Original candle flame sequence in 2D Segmented ARP generated sequence

ARP generated sequence

Figure 3. (Top left) Original candle flame se-
quence, reduced to 2D using the first two
modes from PCA. (Bottom left) ARP gener-
ated sequence. (Right) Two randomly picked
sequences generated with our process. The
black lines represent segments generated us-
ing an ARP and the rest were copied.

6 Conclusions and Further Work

We have shown that it is possible to produce new se-
quences using a segment copying based scheme, and by
modelling the segments using an ARP we can generate new
unseen data. Our method allows us to model nonstationary
sequences and produce new unseen data within the gener-
ated sequences which has not been previously addressed.
Around 20-30% of the generated sequences in the exam-
ples shown have been generated using an ARP. One limit
of our system is that segment copying has no hierarchical
structure. Each segment is only selected on the basis of the
previous n frames. There is no consideration of the global
structures and so sequences may be produced which are lo-
cally correct but globally invalid. In some cases, if the se-
quence has a single peak which is only reached once, the
generation process can get stuck copying the same segments
repeatedly. Our technique currently has little user interac-
tion other than a starting point and a level of randomness
which is allowed in the sequence. Future work could benefit
from allowing variable segment lengths and dimensionality
and more advanced crossover techniques. The need for a
global structure could be addressed by clustering the seg-
ments using a reduced eigenspace and then learn a model of
the changes in state.
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Original Sequence Segmented ARP generated sequences

Figure 4. (Left) Original barman sequence, re-
duced to 2D using first two modes from PCA.
(Right) Two randomly picked sequences gen-
erated with our process. The black lines rep-
resent segments generated using an ARP and
the rest were copied.
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Figure 5. (Top left) Original candle flame se-
quence, reduced to 1D using the first mode
from PCA. (Bottom) Randomly picked se-
quence generated with our process. The
black lines represent segments generated us-
ing an ARP and the rest were copied.
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