Molecular Photochemistry

What is molecular photochemistry?

Is a science that is concerned with the description of physical and chemical processes Induced by the absorption of photons / light.

The **notion of structure, energetics, and dynamics** are crucial for understanding of molecular photochemistry.

Photochemical Reactions

Differences to thermal reaction

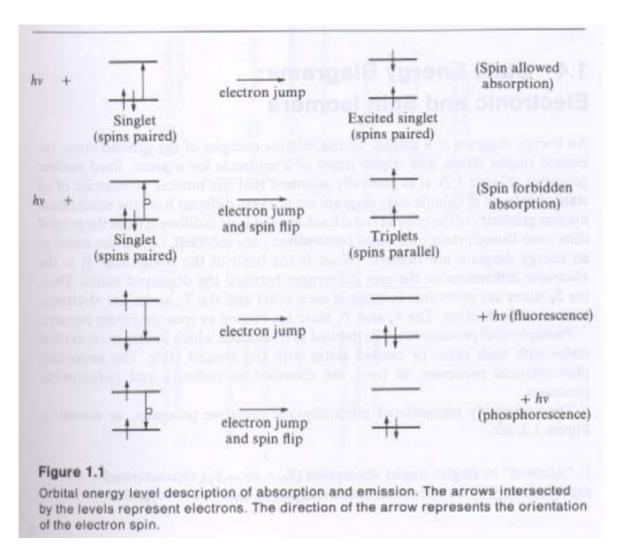
• The **initiating activation of a photoreaction** is mainly provided by the **absorption of light**; activation of a **thermal reaction** is mainly provided by **heat**.

• The **electronic distribution** and **nuclear configuration** of a photochemically activated molecule generally **differ substantially** from those of a thermally activated one.

electronic isomer of the ground state molecule

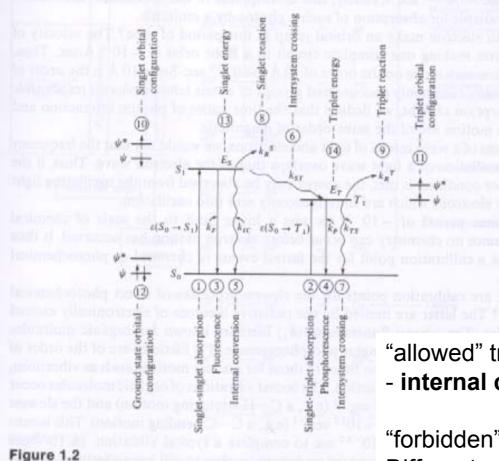
• The **thermodynamically favorable products** accessible to a photoexcited molecule **are far greater** than those accessible to a ground state molecule.

possesses an excess energy content


Chronologically of Photoreactions

• <u>absorptive act</u> – interaction of photon and molecule, resulting in absorption of photon and formation of an electronically excited molecule

• **primary photochemical processes** – involving electronically excited molecules


• <u>secondary or "dark" processes</u> – occur from the intermediates formed by the primary photochemical process

Electronic Excitation and De-excitation of Organic Molecules

 S_0 - singlet ground state; S_1 - lowest singlet excited state, T_1 - lowest triplet excited state

State Energy Diagrams: Electronic and Spin Isomers

State energy diagram. A standard paradigm

allowed: singlet-singlet absorption forbidden: singlet-triplet absorption allowed: singlet-singlet emission forbidden: triplet-singlet emission

"allowed" transitions between states of same spin - internal conversion

"forbidden" transitions between excited states of Different spin – **intersystem crossing**

"forbidden" transitions between triplet states and The ground state – **intersystem crossing**

Calibration Points for Molecular Dimensions and Motions

atoms or groups that are involved in absorption or photoreactions are 2 - 10 Å

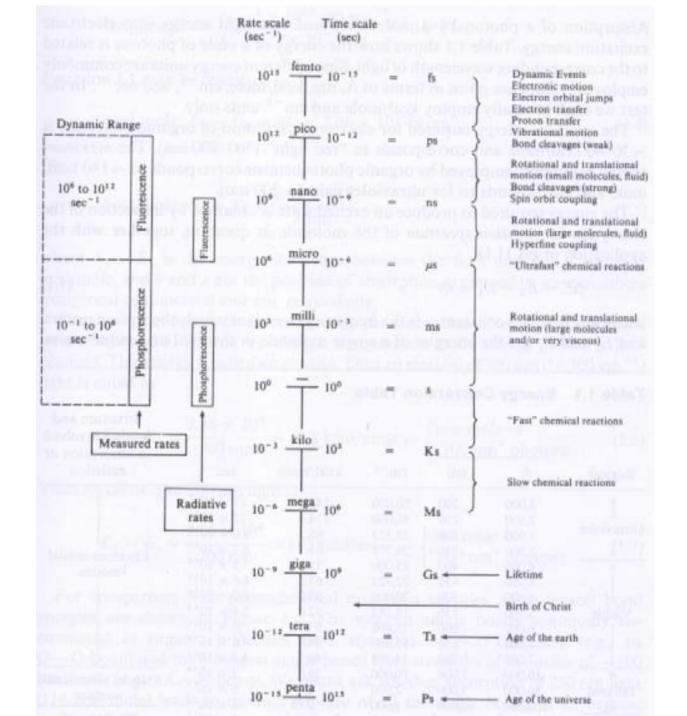
a particle / photon, traveling at the speed of light, moves 3 x 10¹⁸ Å / sec

if we associate the wavelength of light with the size of a photon, than **blue light** have "the size" of 4000 Å

"size" of photon is their ability to collide with a molecule

time it takes a blue photon to pass a point in space t = d/v is ~ 10⁻¹⁵ sec

~ 10⁻¹⁵ sec is maximum interaction time


velocity of an electron is 10⁻¹⁶ sec

electron may move on the order of **10** Å in **10**⁻¹⁵ sec

10 Å is the size of commonly used chromophores

wave model of light and electrons:

frequency of the oscillation of a light wave overlaps that of the electron wave

longest fluorescence (S_1) lifetimes for organic molecules are ~10⁻⁶ sec **longest phosphorescence** (T_1) lifetimes for organic molecules are **30 sec** fastest vibration of organic molecules occur with a frequency of 10¹³ sec⁻¹ slowest vibration of organic molecules occur with a frequency of 10¹² sec⁻¹ in ~10⁻⁶ sec an organic molecule will have executed 10⁶ – 10⁷ vibrations in 30 sec an organic molecule will have executed 10¹³ – 10¹⁴ vibrations

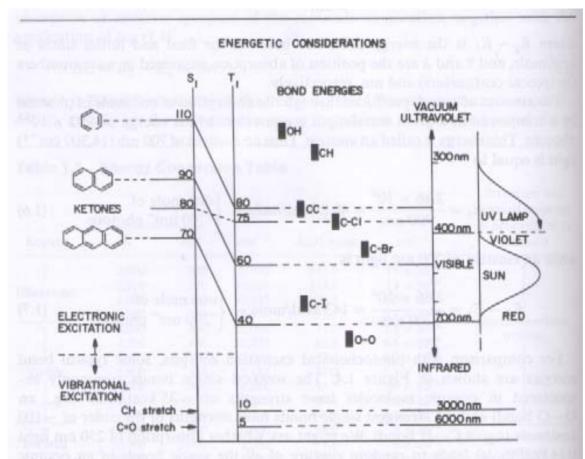
plenty of time

Calibration Points for Molecular Energetics and Reaction Dynamics

absorption of a photon by a molecule transforms light energy into electronic excitation energy

Region	Energy Conversion Table					
	λ		v	ΔE	v	Structure and motion involved in absorption or
	Å	nm	cm ⁻¹	kcal/mole	sec ⁻¹	emission
†	2,000	200	50,000	143.0	15×10^{13}	1
Ultraviolet	2,500	250	40,000	114.4	12×10^{15}	d selection of the
	3,000	300	33,333	95.3	1.0×10^{15}	
<u> </u>	3,500	350	28,571	81.7	8.7×10^{14}	Electrons-orbital motion
	4,000	400	25,000	71.5	7.5×10^{14}	
	4,500	450	22,222	63.5	6.6×10^{14}	
	5,000	500	20,000	57.2	6.0×10^{14}	
Visible	5,500	550	18,182	52.0	5.4×10^{14}	
	6,000	600	16,666	47,7	5.0×10^{14}	rand the document
0	6,500	650	15,385	44.0	4.6×10^{14}	10 10 10 10 10 10 10 10 10 10 10 10 10 1
1	7,000	700	14,286	40.8	4.2×10^{14}	-
Infrared	10,000	1,000	10,000	28.6	3×10^{14}	Nuclei-vibrational motion
	50,000	5,000	2,000	5.8	6×10^{13}	
	100,000	10,000	1,000	2.86	3×10^{13}	
Microwave	108	107	10	3×10^{-2}	3×10^{11}	Electron spin-
	1010	109	0.1	3×10^{-4}	3×10^{9}	precessional motion
Radiowave	1012	1011	0.001	3×10^{-6}	3×10^7	Nuclear spin- precessional motion

minimum energy required is ~30-40 kcal/mol – "red light" (700 – 800 nm)
maximum energy commonly used is ~149 kcal/mol – "UV light" (200 nm)


energy required to produce an excited state is obtained by inspection of the absorption and emission spectra

 $\Delta E = E_2 - E_1 = hv$

h = Planck's constant
 v = Frequency at which absorption occurs
 E₂ / E₁ = Energies of the molecule in the final (2) and initial (1) states

the **position** of an absorption band is often expressed by its wavelength in nanometer wave number in reciprocal centimeters frequency in sec⁻¹

<u>300 nm:</u> frequency (v) = c / λ = 3 x 10¹⁰ cm sec⁻¹ / 3 x 10⁻⁵ cm

Figure 1.4

Some energetic considerations. The "energy spread" of conventional photochemistry is compared to the emission spectrum of the sun. Vibrational energies are shown for comparison.

Reaction Dynamics

the energy of activation (E_a) is the quantity of interest

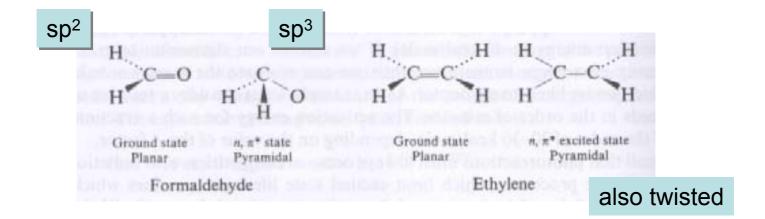
Often rates are represented in term of two factors:

A (sec⁻¹): the probability of a reaction from a state with the minimum energy

E_a (kcal / mol): the minimum energy required for a reaction

Rate = A exp – E_a / RT = A x 10^{-Ea/(0.0046T)}

Maximal values of A are 10¹² to 10¹⁵ sec⁻¹ (unimolecular reactions) Minimal values of A are 10⁶ to 10⁸ sec⁻¹ (bimolecular reactions)


A reflects entropy of a reaction: if the entropy of reaction is highly positive - increase in freedom of the particles of the system then A is very large

Nuclear Geometry of Electronically Excited States

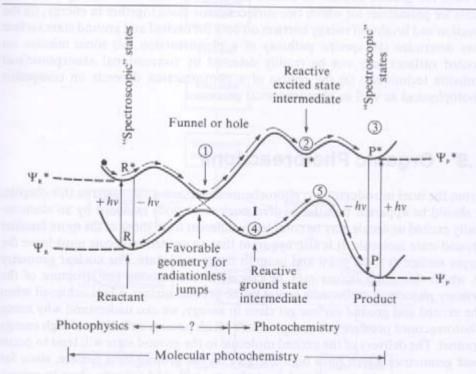
nuclear shape or geometry of an electronically excited state such as

energy electronic configuration electronic spin

might be different from that of the ground state

A number of interesting questions concerning photochemical properties and reactions arise:

1) Are the photochemical properties of S_1 and T_1 the same if they possess the same two electron configurations?


2) Do the photochemical properties of states of the **same spin but different electron configuration** differ?

3) What are the photochemical reactions for **different electronic spin isomers**?

An Energy Surface Description of Molecular Photochemistry

potential energy curves control nuclear motion

except when two surfaces come close together

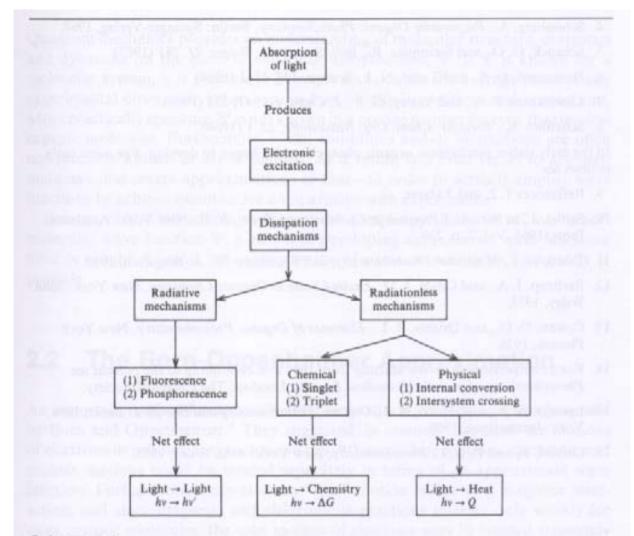


Figure 1.5

Schematic representation of a ground-state and excited-state surface. The arrows on the surface indicate the motion of a point which represents a molecule whose nuclear geometry is moving along the reaction coordinate.

each point represents a specific **nuclear geometry** – horizontal axis and a **specific energy** – vertical axis

Summary

Scheme 1.1

Schematic of the network of processes of interest to a molecular photochemist.