
Ordered Fast Fourier Transforms on a Massively
Parallel Hypercube Multiprocessor

by

Charles Tong 1,3 and Paul N. Swarztrauber 2,3

J. Parallel and Dist. Comput., 12(1991), pp. 50-59

ABSTRACT

We examine design alternatives for ordered FFT algorithms on massively parallel
hypercube multiprocessors such as the Connection Machine. Particular emphasis is
placed on reducing communication which is known to dominate the overall computing
time. To this end we combine the order and computational phases of the FFT and also
use sequence to processor maps that reduce communication. The class of ordered
transforms is expanded to include any FFT in which the order of the transform is the
same as that of the input sequence. Two such orderings are examined, namely,
"standard-order" and "A-order" which can be implemented with equal ease on the Con-
nection Machine where orderings are determined by geometries and priorities. If the
sequence has N = 2r elements and the hypercube has P = 2d processors then a
standard-order FFT can be implemented with d +r ⁄2+1 parallel transmissions. An A-
order sequence can be transformed with 2d −r ⁄2 parallel transmissions which is r −d +1
fewer than the standard order. A parallel method for computing the trigonometric
coefficients is presented that does not use trigonometric functions or interprocessor
communication. A performance of 0.9 GFLOPS was obtained for an A-order
transform on the Connection Machine.

1 Department of Computer Science, University of California at Los Angles, Los Angles, California
90024-1596.

2 National Center for Atmospheric Research, Boulder, Colorado 80307, which is sponsored by the
National Science Foundation.

3 This work was supported by the NAS Systems Division via Cooperative Agreement NCC 2-387
between NASA and the University Space Research Association (USRA). It was performed while
the authors were visiting the Research Institute for Advanced Computer Science (RIACS), NASA
Ames Research Center, Moffett Field, CA 94035.

- 2 -

1. Introduction

The increased availability of various parallel architectures poses many challenges

for algorithm development. One notable example is the Fast Fourier Transform (FFT)

with many variants that are targeted for different types of computers. The main differ-

ence between these variants is the order of the intermediate sequences which have

been selected to favor certain architectural characteristics. For example, orderings that

result in long vectors with unit stride are selected for vector computers [6]. Orderings

that minimize communication are selected for hypercube multiprocessors [7]. Interpro-

cessor communication is the major source of performance degradation on hypercube

multiprocessors.

In this paper we examine efficient implementation of ordered FFTs on massively

parallel hypercube computers such as the Connection Machine. The concept of an

ordered transform is expanded to include any transform in which the ordering of the

input sequence matches that of its transform. This is a reasonable consideration on the

Connection Machine where orderings can be selected with equal ease by the

specification of geometries and priorities. Two "ordered" transforms are considered,

namely, standard-order and A-order transforms. These transforms differ in communi-

cation complexity and their suitability will likely depend on the application. If a

standard-order transform is not required then an A-order transform with less communi-

cation may be appropriate.

The standard-order transform was considered earlier [7] where it was demon-

strated that a sequence with N = 2r elements could be transformed with r ⁄2+d +1

parallel transmissions on a hypercube with P = 2d processors if d > r ⁄2. Here we

show that an A-order transform can be computed with 2d −r ⁄2 parallel transmissions.

Both orderings belong to the class of orderings called index-digit permutations [1].

Besides reducing the amount of communication, we also show that this algorithm

facilitates the parallel computation of the trigonometric coefficients without evaluating

the trigonometric functions or interprocessor communication. Although we will con-

sider only "ordered" transforms in the expanded sense, it is important to note that an

unordered transform can be computed with only d parallel transmissions.

In section 2, we begin with a class of orderings called index-digit permutations.

In particular, we review the concept of i-cycle which is central to the implementation

of ordered hypercube FFT as well as the general index-digit permutation. In particular,

we examine the standard-order FFT and the A-order transform which is yet to be

defined. In section 3, we first discuss different ways of computing the trigonometric

coefficients and then present a new parallel method for the direct computation of the

- 3 -

trigonometric coefficients. Next we show that this method is particularly suited to a

hypercube implementation using i-cycles. The performance results of these FFTs are

presented in section 4.

2. Parallel Hypercube FFTs

2.1 Introduction

In this paper we consider the implementation of ordered FFTs on hypercube mul-

tiprocessors. It is assumed that the number of physical processors is P = 2d where d

is the dimension of the hypercube. Each processor has its own local memory (also

called distributed-memory system). It is also assumed that the number of elements to

be transformed is N = 2r and that N ⁄P is a small constant (massively parallel version

of the original hypercube FFT [7]). Moreover, if N ⁄P > 2 (number of elements is

more than twice the number of physical processors), the elements are mapped to vir-

tual processors which then contain exactly two elements, (after the Connection

Machine model). It is known that interprocessor communication consumes a substan-

tial amount of time and hence its minimization is of primary concern. Communication

between virtual processors located in the same physical processor does not contribute

to interprocessor communication. Throughout the text we will use the following nota-

tion.

If xn has N = 2r elements then it can be mapped into the multidimensional array

x (ir −1, . . . ,i 0) where ir −1ir −2
. . . i 0 is the binary form of n . The FFT can then be

loosely described as a sequence of 2r −1 transforms of length two in each of r dimen-

sions. An example for the case N = 16 is given in Table I. below.

Table I : Intermediate Orderings for Cooley-Tukey FFT,

N =16, using Subscript Notation
_ ______________________

x (i 0,i 1,i 2,i 3)

X (1)(i 0,i 1,i 2,k 3)

X (2)(i 0,i 1,k 2,k 3)

X (3)(i 0,k 1,k 2,k 3)

X (4)(k 0,k 1,k 2,k 3)

X (4a)(k 3,k 2,k 1,k 0)_ ______________________ 





















The original sequence is given as the first entry in Table I. The transform in the

dimension i 3 is designated by replacing i 3 by k 3 in the second entry. Subsequent

- 4 -

multiple 1-D transforms correspond to subsequent entries in Table I. The FFT

requires the multiple 1-D transforms to be computed in the order of decreasing indices,

i.e., i 3, i 2, i 1, and i 0. The last entry corresponds to the bit-reversal that is necessary to

order the FFT. Between each of the multiple 1-D transforms the sequence xn is multi-

plied by certain roots of unity. For example, X (1)(i 0,i 1,i 2,k 3) is computed from

X (1)(i 0,i 1,i 2,0) = x (i 0,i 1,i 2,0) + x (i 0,i 1,i 2,1) (1)

X (1)(i 0,i 1,i 2,1) = ωi 0i 1i 2[x (i 0,i 1,i 2,0) − x (i 0,i 1,i 2,1)] (2)

where ω = e −i π⁄4.

We will adopt the binary notation in place of the subscript notation to avoid

conversions between the two. Table II is the binary equivalent of the subscript notation

that is used in Table I. Element locations are then given directly in binary form.

Table II : Intermediate Orderings for Cooley-Tukey FFT,

N =16 Binary Notation
_ ________________________

x (i 3 i 2 i 1 i 0)

X (1)(k 3 i 2 i 1 i 0)

X (2)(k 3 k 2 i 1 i 0)

X (3)(k 3 k 2 k 1 i 0)

X (4)(k 3 k 2 k 1 k 0)

X (4a)(k 0 k 1 k 2 k 3)_ ________________________ 





















The last two entries in Table II correspond to a reordering in which the element

in position k 3k 2k 1k 0 binary is moved to position k 0k 1k 2k 3. This illustrates the advan-

tage of the binary notation which provides the locations directly without reversing the

order of the subscripts.

The last entry in Tables I and II is an example of an index-digit permutation [1],

called a bit-reversal. Other examples include the perfect shuffle and matrix transposi-

tions. The time required for communication is known to contribute substantially to the

overall computing time. It is also known to depend significantly on how the sequence

xn is mapped to the processors. We will begin with perhaps the most common map-

ping in which the first N/P elements are mapped to the first processor, the second N/P

elements are mapped to the second processor and so forth.

- 5 -

Definition 1 : A standard sequence to processor map

x (ir −1
. . . ir −d  ir −d −1

. . . i 0) is one in which the element xn with

n = ir −1ir −2
...i 0 (binary) has address ir −d −1ir −d −2

. . . i 0 in processor number

ir −1ir −2
. . . ir −d .

Both a processor number and address are required to identify a particular element

in the sequence. The partition  is introduced for expository purposes to separate the

address on the right from the processor number on the left. For example if r = 4 and

d = 2 then the element xn with n = i 3i 2i 1i 0 has address i 1i 0 and is located in proces-

sor number i 3i 2 and the mapping is designated by x (i 3 i 2  i 1 i 0).

Definition 2 : An index-digit permuted sequence to processor map is one in which

the indices i j are permuted. That is, the element xn with n = ir −1ir −2
...i 0 (binary) has

address im (r −d −1)im (r −d −2)
. . . im (0) in processor number im (r −1)i (r −2)

. . . i (r −d) where

m (j) is an arbitrary permutation of the integers 0, . . . ,r −1.

From the last two entries in Table II it is evident that a method will be needed

for converting between index-digit permuted maps on the hypercube. To that end we

introduce a specific class of communication tasks.

Definition 3 : An i-cycle is an index-digit permutation of xn in which the most

significant digit of the address (called the pivot) is exchanged with any other digit,

either in the address or the processor number.

For example, if a standard sequence to processor map is used for xn , an i-cycle is

a reordering that exchanges the digit in position r −d −1 with any other digit. Two i-

cycle examples are given in Table III.

Table III : Sample i-cycles for the case d = 2 and r = 4
_ ______________________

X (i 3 i 2  i 1 i 0)

X (i 3 i 2  i 0 i 1)

X (i 0 i 2  i 3 i 1)_ ______________________ 











The second entry in Table III is obtained from the first by an i-cycle that

exchanges the first and second (pivot) digits. The third entry is obtained from the

second by an i-cycle that exchanges the second and fourth digits.

For N = 16 and P = 4 the data exchanges for two sample i-cycles are given in

Table IV below.

- 6 -

Table IV : Sample i-cycle communication paths for N =16 and P =4

_ ___
X (i 3 i 2  i 1 i 0) X (i 3 i 2  i 1 i 0)

X (i 3 i 1  i 2 i 0) X (i 1 i 2  i 3 i 0)_ ___
i 3i 2i 1i 0 i 3i 1i 2i 0 p i 3i 2i 1i 0 i 1i 2i 3i 0_ ___

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1

0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0

0 0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 1

0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0

0 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 1

0 1 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0

0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1

1 0 0 0 1 0 0 0 2 1 0 0 0 0 0 1 0

1 0 0 1 1 0 0 1 2 1 0 0 1 0 0 1 1

1 0 1 0 1 1 0 0 2 1 0 1 0 1 0 1 0

1 0 1 1 1 1 0 1 2 1 0 1 1 1 0 1 1

1 1 0 0 1 0 1 0 3 1 1 0 0 0 1 1 0

1 1 0 1 1 0 1 1 3 1 1 0 1 0 1 1 1

1 1 1 0 1 1 1 0 3 1 1 1 0 1 1 1 0

1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1_ ___ 











































































































































The i-cycles consist of parallel exchanges of packets with N ⁄(2P) elements. The

i-cycle on the left side of Table IV consists of two exchanges. The last two elements

in processor 0 are exchanged with the first two elements in processor 1 and the last

two elements in processor 2 are exchanged with the first two elements in processor 3.

The i-cycle on the right side of Table IV also consists of two exchanges. The last two

elements in processor 0 are exchanged with the first two elements in processor 2 and

the last two elements in processor 1 are exchanged with the first two elements in pro-

cessor 3.

The i-cycle has three properties that make it useful for the development of paral-

lel communication algorithms on the hypercube.

- 7 -

I-cycle property A :

An i-cycle may or may not require interprocessor communication, depending on

whether or not the digit is in the processor number. For example, the first i-cycle in

Table III does not require interprocessor communication because the processor number

is unchanged. However the second i-cycle does require interprocessor communication

because the processor number is changed. When interprocessor communication is

required it is between processors that are directly connected because the processor

numbers differ in only one bit. Through this discussion we are assuming that the

sequence to processor map is an index-digit permuted map. A direct connection would

not be established if the underlying map was (for example) a binary Gray code.

I-cycle property B :

It can be shown that at each stage of the FFT the packets transmitted between

processors each contains 2r −d −1 = N ⁄(2P) elements and that P ⁄2 packets are

exchanged in parallel.

I-cycle property C :

Any index-digit permutation can be implemented as a sequence of i-cycles. To

see this, first decompose the permutation into disjoint cycles. Next decompose each

cycle into i-cycles by interchanging the first position with the pivot position and

restore it following the completion of the cycle. For example, if the cycle is (2,8,7,5)

and the pivot is in position 3, then this cycle is equivalent to the i-cycles

(3,2)(3,8)(3,7)(3,5)(3,2) applied from left to right. Any index permutation can be

implemented in no more than 1.5d i-cycles [7].

2.2 The Standard-order FFT

Consider now the implementation of a standard-order FFT. The i-cycles are

given in Table V below for the case r = 8 and d = 5. The subscripts of the digits are

increasing for a transform in standard order like the last entry in Table II. The letter

"a" in the superscript indicates an ordering rather than computational step and an "*"

following an entry indicates that a parallel transmission was necessary for that step.

The sequence of i-cycles is selected based on the theory presented in [7] where it is

shown that for even r > d ⁄2 a total of r ⁄2+d +1 = 10 parallel transmissions are

required.

- 8 -

Table V : Intermediate Orderings for a standard order FFT

for N = 256 and P = 32
_ ______________________________________

x (i 7 i 6 i 5 i 4 i 3  i 2 i 1 i 0)

X (1)(i 2 i 6 i 5 i 4 i 3  k 7 i 1 i 0)*

X (2)(i 2 k 7 i 5 i 4 i 3  k 6 i 1 i 0)*

X (3)(i 2 k 7 k 6 i 4 i 3  k 5 i 1 i 0)*

X (4)(i 2 k 7 k 6 k 5 i 3  k 4 i 1 i 0)*

X (5)(i 2 k 7 k 6 k 5 k 4  k 3 i 1 i 0)*

X (5a)(i 2 k 7 k 6 k 3 k 4  k 5 i 1 i 0)*

X (6)(k 5 k 7 k 6 k 3 k 4  k 2 i 1 i 0)*

X (6a)(k 5 k 7 k 2 k 3 k 4  k 6 i 1 i 0)*

X (7)(k 5 k 7 k 2 k 3 k 4  k 1 k 6 i 0)

X (7a)(k 5 k 1 k 2 k 3 k 4  k 7 k 6 i 0)*

X (8)(k 5 k 1 k 2 k 3 k 4  k 0 k 6 k 7)

X (8a)(k 0 k 1 k 2 k 3 k 4  k 5 k 6 k 7)*_ ______________________________________ 









































2.3 The A-order FFT

The mapping of a sequence onto the processors is known to significantly

influence the time that is required for communication and hence mappings that reduce

communication are of considerable interest. The difficulty with selecting a map that

minimizes communication for a particular algorithm is that it may not be optimum for

a different part of the overall computation. However without knowledge of the other

algorithms, and their optimal maps, it is not unreasonable to permit orderings other

than the standard order. If order is not a consideration then it is known that the FFT

can be performed with d parallel transmissions. However it is likely that the other

parts of the overall computation will expect the order of the transform and the input

sequence to be the same, particularly if utilities and subroutines are used. Therefore

we define an ordered transform as any transform in which the order of the sequence

and its transform are the same.

In this section we will consider a variant of the parallel FFT presented above in

which the input sequence and transform are A-ordered. Communication is reduced and,

as mentioned in the introduction, it is just as simple to select this order as the standard

order on the Connection Machine using geometry and priorities.

- 9 -

Definition 4 : An A-order sequence to processor map x (id −1
. . . i 0  ir −1

. . . id) is

one in which the element xn with n = ir −1ir −2
...i 0 (binary) has address ir −1ir −2

. . . id
in processor number id −1i 1

. . . i 0.

An A-order FFT is an ordered FFT according to the definition that was given in

section 1 and it requires fewer parallel transmissions than a standard-order FFT. An

example is given in Table VI below for the case N = 256 and P = 32. As before, the

locations that correspond to the digits on the right of the partition ’ ’ reside in the

same physical processor. The digits on the left of the partition correspond to the pro-

cessor number. An entry that ends with a ’*’ indicates a parallel transmission and the

lines with superscripts that end with a ’a’ involve only communication.

Table VI : Intermediate Orderings for an A-order FFT with

N = 256 and P = 32

x (i 4 i 3 i 2 i 1 i 0  i 7 i 6 i 5)

X (1)(i 4 i 3 i 2 i 1 i 0  k 7 i 6 i 5)

X (2)(i 4 i 3 i 2 i 1 i 0  k 6 k 7 i 5)

X (3)(i 4 i 3 i 2 i 1 i 0  k 5 k 7 k 6)

X (4)(k 5 i 3 i 2 i 1 i 0  k 4 k 7 k 6)*

X (5)(k 5 k 4 i 2 i 1 i 0  k 3 k 7 k 6)*

X (5a)(k 3 k 4 i 2 i 1 i 0  k 5 k 7 k 6)*

X (6)(k 3 k 4 k 5 i 1 i 0  k 2 k 7 k 6)*

X (6a)(k 3 k 4 k 5 i 1 i 0  k 6 k 7 k 2)

X (7)(k 3 k 4 k 5 k 6 i 0  k 1 k 7 k 2)*

X (7a)(k 3 k 4 k 5 k 6 i 0  k 7 k 1 k 2)

X (8)(k 3 k 4 k 5 k 6 k 7  k 0 k 1 k 2)*_____________________________________ 







































The communication complexity for an A-order FFT on parallel hypercube is

given in the following lemma.

Lemma : An A-order FFT of length N = 2r can be implemented on a hypercube of

dimension d (where d > r ⁄2) with 2d − r ⁄2 parallel transmissions if r is even and

2d − (r −1)⁄2 parallel transmissions if r is odd.

Proof :

- 10 -

The normal i-cycles require d parallel transmissions since every physical proces-

sor address digit has to be transferred into the pivot position. The extra i-cycles

are performed on the most significant r ⁄2 digits, r ⁄2−(r −d) of which are located

in the processor address. Thus, a total of d + r ⁄2 − (r −d)) = 2d − r ⁄2 parallel

transmissions is needed. A similar proof can be developed for odd r .

The A-order transform in Table VI requires six parallel transmissions compared

with ten for the standard-order FFT in Table V. In general the A-order FFT requires

anywhere from d to 1.5d parallel transmissions and the standard-order FFT requires

anywhere from 1.5d to 2d parallel transmissions. More specifically, for d > r ⁄2, the

A-order FFT requires 2d −r ⁄2 transmissions compared to d +r ⁄2+1 for the standard-

order FFT. Therefore the A-order FFT requires r −d +1 fewer parallel transmissions

than the standard-order FFT. For the finest grain computations with d = r −1 they

differ by only two parallel transmissions. Nevertheless this difference will likely be

noticeable because the total communication time is proportional to O (logN) which is

also a small integer.

The FFT is often a part of a larger computation that is posed on a grid so it is

reasonable to ask about the compatibility of the Binary Reflected Gray code ordering

and A-ordering. In both the standard-order and the A-order transform the processors

can be mapped so that nearest neighbors are at a distance of one, but at the expense of

the i-cycles being conducted at a distance of two.

2.4 The Algorithm

The parallel hypercube FFT algorithm, written in pseudocode (similar to CM

FORTRAN) is included in the following. The variable declaration and initialization

have not been included.

C Parallel Hypercube FFT using the A-order Transform

C K : log2 (N) - 1

SUBROUTINE FFT

DO I = K, 0, -1

IF (I≠K) CALL ICYCLE (I) /* I-cycle */

CALL CALCULATE_TWIDDLE /* Calculate trigonometric factor */

TEMP = DATA1 + DATA2 /* Compute new data points */

DATA2 = (DATA1 - DATA2) * TWIDDLE

DATA1 = TEMP

IF (I <= n/2 AND I≠0) THEN /* Extra I-cycles */

- 11 -

CALL ICYCLE (n-I-1)

END IF

END DO

END

3. Computing the Trigonometric Coefficients

There are a few alternative methods for computing the trigonometric coefficients

depending on the available memory, I/O bandwidth, and processing capabilities [3].

a. Recursion All of the trigonometric coefficients at each stage are generated by

recursion. This scheme requires only O (1) storage and is popular on a uniproces-

sor or vector processors. However, the computation is highly sequential and not

suitable for multiprocessors.

b. Table look-up The trigonometric coefficients are precomputed and stored in each

processor. This scheme has an advantage for many FFTs since the trigonometric

coefficients would be available for use without recalculation. However, this

scheme also requires a large amount of memory proportional to log N in each of

the N processors. This may not be desirable for massive parallel computers

where memory is limited.

c. Direct calculation The trigonometric coefficients can be computed directly from

the equation W −k = cos (2k π⁄N) − i sin (2k πk ⁄N). However, the calculation of

the trigonometric functions on each stage is very time consuming. Particularly

since the FFT itself requires only a few operations.

d. Permutation Initially, the trigonometric coefficients are distributed among the

processors according to the calculations required in the first stage. In the subse-

quent stages, half of the trigonometric coefficients are permuted each to two other

processors. This scheme may be inefficient on parallel machine such as the Con-

nection Machine where communication is expensive.

- 12 -

None of these methods are completely satisfactory on massively parallel comput-

ers if memory is limited and communication is expensive. However, by performing a

few additional operations at each stage, the trigonometric coefficients can be computed

in parallel without any communication.

Consider the following example of a 16-point FFT (unordered transform) and

suppose that element i is mapped to processor i, then the trigonometric factors needed

at each stage are as in Table VII below. The entries in each column correspond to k in

the trigonometric factor W −k . Entries with the form (k) refer to the exponent of a

coefficient that is not used at the current stage but is needed to compute the

coefficients at a subsequent stage of the FFT.

- 13 -

Table VII : Trigonometric Coefficients for a 16-point unordered FFT

_ __

Processor Value of k in W −k

_ __

Processor Number (binary) Stage 1 Stage 2 Stage 3 Stage 4
_ __

0000 (0) (0) (0) (0)

0001 (1) (2) (4) 0

0010 (2) (4) 0 (0)

0011 (3) (6) 4 0

0100 (4) 0 (0) (0)

0101 (5) 2 (4) 0

0110 (6) 4 0 (0)

0111 (7) 6 4 0

1000 0 (0) (0) (0)

1001 1 (2) (4) 0

1010 2 (4) 0 (0)

1011 3 (6) 4 0

1100 4 0 (0) (0)

1101 5 2 (4) 0

1110 6 4 0 (0)

1111 7 6 4 0
_ __ 














































































































































































































































































It can be seen that the integers in each column are twice (mod N/2) the integers

in the previous column and hence the trigonometric coefficients can be computed from

the identities.

cos 2θ = cos2θ − sin2θ , and (3)

- 14 -

sin 2θ = 2 cos θ sin θ . (4)

Thus, we can calculate the trigonometric coefficients for the current stage from the

previous stage by four multiplications and one addition (or three multiplications and

two additions). This method can also be used to generate the table for the table look-

up scheme. It can also be used to compute the coefficients for the ordered (both A-

order and standard-order) parallel hypercube FFT presented in section 2 with a slight

modification for the initial trigonometric factor calculations. Table VIII below contains

the exponents for the A-order transform with N =16. An initial standard sequence to

processor map is assumed.

- 15 -

Table VIII : Trigonometric Coefficients for a 16-point

parallel hypercube FFT using A-order and i-cycles

_ __

Processor Value of k in W −k

_ __

Processor Number (binary) Stage 1 Stage 2 Stage 3 Stage 4
_ __

0000 - - - -

0001 - - - -

0010 - - - -

0011 - - - -

0100 - - - -

0101 - - - -

0110 - - - -

0111 - - - -

1000 0 0 0 0

1001 1 2 4 0

1010 2 4 0 0

1011 3 6 4 0

1100 4 0 0 0

1101 5 2 4 0

1110 6 4 0 0

1111 7 6 4 0
_ __ 














































































































































































































































































Fewer computations are required because every trigonometric coefficient is used

and therefore a factor of two is saved compared to the unordered FFT. In general, this

method of computing trigonometric coefficients can be used if the order of the not-

yet-transformed bits (i j) is preserved. The characteristics of the methods for

- 16 -

computing the trigonometric coefficients are summarized in Table IX below.

Table IX : Characteristics of Different Methods for Computing

Trigonometric Coefficients

_ ___

Method storage computation communication comment
_ ___

recursion O (1) O (N log N) 0 highly sequential

table look up O (N log N) O (log N) 0 reuseability

permutation O (N) O (1) O (log N) --

direct calculation O (N) O (log N) 0 use sin & cos

new method O (N) O (log N) 0 no sin & cos
_ ___ 

























































































4. Performance of the Parallel Hypercube FFTs on the CM-2

4.1 Performance results for the TMC FFT

Consider first the performance of the TMC FFT that is currently available on the

Connection Machine. The execution times of both the ordered and unordered FFT is

presented in table X. FFT (A) and FFT (B) correspond to the unordered and ordered

FFTs respectively and the results were obtained on a 32k processor CM-2. The entry

’--’ means that the result could not be computed because it required more memory

than what was available. The MFLOPS are computed from the formula MFLOPS =

5Nlog N /time which does not include the precomputed trigonometric coefficients.

- 17 -

Table X : Execution times for TMC FFT (32k)

_ __

size FFT FFT (A) (sec) MFLOPS(32k) FFT (B) (sec) MFLOPS(32k)
_ __

65536 0.02 262 0.03 175

131072 0.04 279 0.08 139

262144 0.09 262 0.22 107

524288 0.17 293 0.56 89

1048576 0.35 300 1.79 59

2097152 0.69 319 6.21 35

4194304 1.40 330 -- --

8388608 







































2.81 



















343 



















-- 



















--
_ __

FFT (A) is the TMC FFT without bit-reversal

FFT (B) is the TMC FFT with bit-reversal

-- memory was exceeded
_ __ 























































The difference between the time for FFT (A) and FFT (B) is due to the additional

communication that is required to bit-reverse the results of FFT(A). From the table it

is clear that performing bit-reversal is expensive and that performance deteriorates for

larger problems.

4.2 Performance of a CM FORTRAN version of the standard-order FFT

In this subsection we will examine the performance of the standard-order FFT

using i-cycles in the intermediate phases of the algorithm. The program was written in

the beta release version of the CM FORTRAN with partial optimization using com-

piler options. At present, the system software will use a binary reflected Gray code

mapping of the logical processors onto the physical processors. Therefore most i-

- 18 -

cycles will communicate over a physical distance (Hamming distance) of two which

requires twice the communication of a map in which the logical and physical proces-

sors have the same number. The latter case will be discussed in the next subsection.

The execution times and MFLOPS for the FORTRAN version are listed in Table

XI.

Table XI : Execution times for the CM FORTRAN standard-order FFT (32k)

_ __

size FFT Execution time (sec) MFLOPS(32k)
_ __

65536 0.08 98

131072 0.16 104

262144 0.32 111

524288 0.66 113

1048576 1.34 117

2097152 2.81 118

4194304 5.67 122

8388608 11.68 124
_ __ 








































































































The MFLOPS in Table XI above are calculated from MFLOPS = 7.5Nlog N /time

(which includes 2.5 N log N operations for computing the trigonometric coefficients).

Comparing Table X and XI it can be observed that for small N , the ordered TMC FFT

is about twice as fast as the standard-order FFT, (e.g. 0.08 sec versus 0.16 sec for

131072-point FFT). However for large N , the standard-order FFT using i-cycles out-

performs the ordered TMC FFT (e.g. 2.81 sec versus 6.21 sec for 2M-point FFT).

Also, from Table X, the execution times for FFT (B) triples when the size of the input

doubles. On the other hand, from Table XI, the execution times for standard-order

- 19 -

FFT using i-cycles approximately doubles when the size of the input doubles.

From these comparisons we conclude that the standard-order FFT using i-cycles

provides enhanced performance compared to an FFT with separate bit-reversal and

butterfly phases. It should be mentioned that the TMC FFT was written in lower level

languages while the results in Table XI were obtained with a high level language (CM

FORTRAN) which is also in its beta release. Thus, further improvement is expected

for an implementation in a optimized low level languages or with a mature FORTRAN

compiler.

Even though the FFT has been implemented with an efficient communication

algorithm using i-cycles, over 80 percent of the execution time is still spent in com-

munication. In the next section, communication will be further reduced by avoiding

the binary reflected Gray code mapping of the logical to physical processors.

4.3 A Comparison of three FFTs on the Connection Machine.

In the previous subsection we examined the performance of a CM FORTRAN

version of the FFT in which the binary reflected Gray code was used to map logical

processors to physical processors. Although this map is ideal for nearest neighbor

communication, it slows the i-cycle communication for the FFT by a factor of two. In

this section we will consider the performance of three ordered FFTs on a hypercube

whose logical and physical processor numbers are the same.

1. The standard-order FFT which combines the bit-reversal and the butterfly phases.

2. The A-order FFT which also combines the bit-reversal and the butterfly phases.

3. An FFT written by Hertz [2] which separates the bit-reversal and the butterfly

phases.

Using CM FORTRAN/PARIS it is possible to equate logical and physical proces-

sor numbers. That is, any reference to processor id −1
. . . i 0 is a reference to a proces-

sor with the same binary representation in the hypercube and not to a processor whose

- 20 -

number is the binary reflected Grey code map of id −1
. . . i 0. A significant improve-

ment is obtained because the key communication task (i-cycle) is conducted at a physi-

cal distance of at most one using news communication for all i-cycles. The programs

were written in CM FORTRAN/PARIS and run on a 32k CM-2. The times for dif-

ferent size FFT are listed in Table XII and the corresponding MFLOPS counts are

listed in Table XIII.

- 21 -

Table XII : Computing time in seconds for three ordered FFTs

_ ___

size FFT machine size FFT (1) FFT (2) FFT (3)
_ ___

131072 8k 0.22 0.16 --

262144 8k 0.45 0.32 --

524288 8k 0.94 0.67 --

1048576 8k 1.92 1.39 --

2097152 8k 3.95 2.89 --

262144 16k 0.23 0.17 0.688

524288 16k 0.49 0.36 1.40

1048576 16k 1.01 0.72 2.95

2097152 16k 2.07 1.50 6.10

4194304 16k 4.23 3.07 12.68

524288 32k 0.25 0.19 --

1048576 32k 0.52 0.39 --

2097152 32k 1.09 0.80 --

4194304 32k 2.22 1.59 --

8388608 



































































32k 

































4.55 

































3.29 

































--
_ ___

FFT (1) standard order FFT.

FFT (2) A-order FFT.

FFT (3) P. Hertz FFT [2].
_ ___ 



















































































- 22 -

Table XIII : MFLOPS for three ordered FFTs

_ ___

size FFT machine size FFT (1) FFT (2) FFT (3)
_ ___

131072 8k 76 104 --

262144 8k 79 111 --

524288 8k 79 112 --

1048576 8k 82 113 --

2097152 8k 84 114 --

262144 16k 154 208 51

524288 16k 152 208 53

1048576 16k 156 218 53

2097152 16k 160 220 54

4194304 16k 164 225 55

524288 32k 299 393 --

1048576 32k 302 403 --

2097152 32k 303 413 --

4194304 32k 318 435 --

8388608 



































































32k 

































318 

































440 

































--
_ ___

FFT (1) standard order FFT.

FFT (2) A-order FFT.

FFT (3) P. Hertz FFT [2].

-- data not available
_ ___ 























































































Note : The MFLOPS for (3) is calculated using the same formula as (1) and (2). In

reality, method (3) requires more than 7.5 operation per point and thus the

MFLOPS count should be higher.

- 23 -

These results demonstrate the attributes of A-ordering, i-cycles, and the new

parallel method of computing the trigonometric coefficients. From Table XIII, we

estimate a performance of about .9 GFLOPS for a 16M-point FFT on a full 64k CM-2.

5. Summary and Conclusion

First, the experimental results in section 4 demonstrate that performance can be

improved by using the ordered parallel FFTs that reduce communication by combining

the communication and computational phases [7]. Although this result has been

demonstrated on the Connection Machine it would also be true for any hypercube

because communication time is a significant part of the overall computing time.

Second, the A-order FFT has performance that is superior to the standard-order FFT

and is therefore recommended where applicable. In addition, a parallel algorithm for

computing the trigonometric coefficients was presented that represents an attractive

compromise between the communication, computation, and memory constraints that

exist on the Connection Machine. The use of the i-cycle, A-ordering, and the new

parallel algorithm for computing the trigonometric coefficients have resulted in the

development of a high performance ordered FFT for the Connection Machine.

References :

1. D. Fraser, "Array permutation by index-digit permutation", J. ACM, 22(1976), pp.

298-306.

2. P. Hertz, "An Algorithm for the Fast Fourier Transform On the Connection

Machine", accepted by Computers in Physics, June 1989.

3. R.A. Kamin III, and G.B. Adams III, "Fast Fourier Transform Algorithm Design

and Tradeoffs on the CM", Proceedings of the Conference on Scientific Applica-

tions of the Connection Machine, Editor : H. Simon, World Scientific Publishing

Co., 1989.

- 24 -

4. O.A. McBryan, "Connection Machine Application Performance", CU-CS-434-89,

Department of Computer Science, University of Colorado, April 1989.

5. A.V. Oppenheim, and R.W. Schafer, Digital Signal Processing, Prentice Hall,

1975.

6. P.N. Swarztrauber, "FFT algorithms for vector computers", Parallel Computing, 1

(1984), pp. 45-63.

7. P.N. Swarztrauber, "Multiprocessor FFTs", Parallel Computing, 5 (1987), pp.

197-210.

- 25 -

Biographies

Charles H. Tong is a graduate student in the Computer Science Department at the

University of California, Los Angeles. He received his B.S. degree in Electrical

Engineering and Computer Science at U.C. Berkeley in 1982 and M.S. degree in

Electrical and Computer Engineering at U.C. Davis in 1986. He worked as a test sys-

tem engineer in Intel Corporation from August 1982 to August 1985. His research

interests are parallel numerical solution of partial differential equations, parallel algo-

rithms for numerical linear algebra, parallel computer architectures, and systolic arrays

for numerical solutions of sparse linear systems.

Paul N. Swarztrauber is a Senior Scientist at the National Center for Atmospheric

Research and a Adjoint Professor in the Computer Science Department at the Univer-

sity of Colorado. His research interests are in computational mathematics including the

numerical solution of partial differential equations, parallel algorithms for numerical

linear algebra, harmonic analysis, parallel and vector algorithms for the fast Fourier

transform and numerical software.

