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CHAPTER 1

Basic differential geometry

1. Differentiable manifolds

1.1. Differentiable manifolds and differentiable maps. Let M be a topo-
logical space. A chart on M is a triple ¢ = (U, ¢, p) consisting of an open subset
U C M, an integer p € Z, and a homeomorphism ¢ of U onto an open set in
RP. The open set U is called the domain of the chart ¢, and the integer p is the
dimension of the chart c.

The charts ¢ = (U,¢,p) and ¢ = (U',¢',p’) on M are compatible if either
UNU =0orUNU #Pand ¢ o=t : oUNU") — (UNU') is a C®-
diffeomorphism.

A family A of charts on M is an atlas of M if the domains of charts form a
covering of M and any two charts in A are compatible.

Atlases A and B of M are compatible if their union is an atlas on M. This is
obviously an equivalence relation on the set of all atlases on M. Each equivalence
class of atlases contains the largest element which is equal to the union of all atlases
in this class. Such atlas is called saturated.

A differentiable manifold M is a hausdorff topological space with a saturated
atlas.

Clearly, a differentiable manifold is a locally compact space. It is also locally
connected. Therefore, its connected components are open and closed subsets.

Let M be a differentiable manifold. A chart ¢ = (U, ¢, p) is a chart around
m € M if m € U. We say that it is centered at m if ¢(m) = 0.

Ifc= (U,p,p)and ¢’ = (U’, ¢, p’) are two charts around m, then p = p’. There-
fore, all charts around m have the same dimension. Therefore, we call p the dimen-
sion of M at the point m and denote it by dim,, M. The function m —— dim,,, M
is locally constant on M. Therefore, it is constant on connected components of M.

If dim,, M = p for all m € M, we say that M is an p-dimensional manifold.

Let M and N be two differentiable manifolds. A continuous map F: M — N
is a differentiable map if for any two pairs of charts ¢ = (U,p,p) on M and d =
(V,4,q) on N such that F(U) C V, the mapping

YoFop™:pU)— pV)

is a C*°-differentiable map. We denote by Mor(M, N) the set of all differentiable
maps from M into N.

If NV is the real line R with obvious manifold structure, we call a differentiable
map f: M — R a differentiable function on M. The set of all differentiable func-
tions on M forms an algebra C*° (M) over R with respect to pointwise operations.

Clearly, differentiable manifolds as objects and differentiable maps as mor-
phisms form a category. Isomorphisms in this category are called diffeornorphisms.
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2 1. DIFFERENTIAL GEOMETRY

1.2. Tangent spaces. Let M be a differentiable manifold and m a point in
M. A linear form £ on C*°(M) is called a tangent vector at m if it satisfies

£(fg) = &(f)g(m) + f(m)E(g)

for any f,g € C*°(M). Clearly, all tangent vectors at m form a linear space which
we denote by T3, (M) and call the tangent space to M at m.

Let m € M and ¢ = (U, ¢, p) a chart centered at m. Then, for any 1 <1i < p,
we can define the linear form

o.5) = 22 )

Clearly, 0; are tangent vectors in T, (M).

1.2.1. LEMMA. The vectors 01,02, ..., 0y for a basis of the linear space Ty, (M).
In particular, dim T,,(M) = dim,, M.

Let FF: M — N be a morphism of differentiable manifolds. Let m € M.
Then, for any & € T,,,(M), the linear form T, (F){ : g — &(go F) for g € C*(N),
is a tangent vector in Tp () (NN). Clearly, Ty (F) : Ty (M) — Tp(m)(N) is a linear
map. It is called the differential of F' at m.

The rank rank,, F' of a morphism F' : M — N at m is the rank of the linear
map T, (F).

1.2.2. LEMMA. The function m — rank,, F' is lower semicontinuous on M.

1.3. Local diffeomorphisms, immersions, submersions and subimmer-
sions. Let F': M — N be a morphism of differentiable manifolds. The map F
is a local diffeomorphism at m if there is an open neighborhood U of m such that
F(U) is an open set in N and F': U — F(U) is a diffeomorphism.

1.3.1. THEOREM. Let F : M — N be a morphism of differentiable manifolds.
Let m € M. Then the following conditions are equivalent:

(i) F is a local diffeomorphism at m;
(i) Ton(F) : Tin(M) — Tpm)(N) is an isomorphism.

A morphism F : M — N is an immersion at m if Ty, (F) : Tpp(M) —
Tr(m)(N) is injective. A morphism F': M — N is an submersion at m if T,,(F) :
Trn(M) — Tpm)(N) is surjective.

If F is an immersion at m, rank,, F = dim,, M, and by 1.2.2, this condition
holds in an open neighborhood of m. Therefore, F' is an immersion in a neighbor-
hood of m.

Analogously, if F' is an submersion at m, rank,, F' = dimg,,) N, and by 1.2.2,
this condition holds in an open neighborhood of m. Therefore, F' is an submersion
in a neighborhood of m.

A morphism F': M — N is an subimmerson at m if there exists a neighbor-
hood U of m such that the rank of F' is constant on U. By the above discussion,
immersions and submersions at m are subimmersions at p.

A differentiable map F' : M — N is an local diffeomorphism if it is a local
diffeomorphism at each point of M. A differentiable map F : M — N is an
immersion if it is an immersion at each point of M. A differentiable map F : M —
N is an submersion if it is an submersion ant each point of M. A differentiable
map F': M — N is an subimmersion if it is an subimmersion at each point of M.
The rank of a subimmersion is constant on connected components of M.
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1.3.2. THEOREM. Let F': M — N be a subimmersion at p € M. Assume that
rank,, F' = r. Then there ezists charts c = (U, p,m) and d = (V,1,n) centered at
p and F(p) respectively, such that F(U) CV and

(¢OF0§O—1)(xlv"'axn) = (xla"'vx?“aow")o)
for any (x1,...,2,) € ©(U).

1.3.3. COROLLARY. Leti: M — N be an immersion. Let F': P — M be a
continuous map. Then the following conditions are equivalent:

(i) F is differentiable;
(ii) ¢ o F is differentiable.

1.3.4. COROLLARY. Let p: M — N be a surjective summersion. Let F :

N — P be a map. Then the following conditions are equivalent:
(i) F is differentiable;
(ii) F op is differentiable.

1.3.5. COROLLARY. A submersion F': M — N is an open map.

1.4. Submanifolds. Let N be a subset of a differentiable manifold M. As-
sume that any point n € N has an open neighborhood U in M and a chart (U, ¢, p)
centered at n such that (N NU) = ¢(U) NR? x {0}. If we equip N with the
induced topology and define its atlas consisting of charts on open sets N NU given
by the maps ¢ : NNU — RY, N becomes a differentiable manifold. With this

differentiable structure, the natural inclusion i : N — M is an immersion. The
manifold N is called a submanifold of M.

1.4.1. LEMMA. A submanifold N of a manifold M is locally closed.

1.4.2. LEMMA. Let f : M — N be an injective immersion. If f is a homeo-
morphism of M onto f(M) C N, f(M) is a submanifold in N and f : M — f(M)
s a diffeomorphism.

Let f: M — N is a differentiable map. Denote by I'y the graph of f, i.e., the
subset {(m, f(m)) € M x N | m € M}. Then, a: m +—— (m, f(m)) is a continuous
bijection of M onto I'¢. The inverse of o is the restriction of the canonical projection
p: M x N — M to the graph I'y. Therefore, o : M — I'¢ is a homeomorphism.
On the other hand, the differential of « is given by T, («)(§) = (£, T (f)(§)) for
any & € T, (M), hence « is an immersion. By 1.4.2, we get the following result.

1.4.3. LEMMA. Let f: M — N be a differentiable map. Then the graph Iy
of f is a closed submanifold of M x N.

1.4.4. LEMMA. Let M and N be differentiable manifolds and F : M — N
a differentiable map. Assume that F is a subimmersion. Then, for any n € N,
F~Y(n) is a closed submanifold of M and

T (F~(n)) = ker T),, (F).
for any m € F~1(n).
In the case of submersions we have a stronger result.

1.4.5. LEMMA. Let F : M — N be a submersion and P a submanifold of N.
Then F~Y(P) is a submanifold of M and the restriction f|p-1(py: F~'(P) — P
is a submersion. For any m € F~(P) we also have
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1.5. Products and fibered products. Let M and N be two topological
spaces and ¢ = (U,¢,p) and d = (V,1,q) two charts on M, resp. N. Then
(U xV,px1,p+q) is a chart on the product space M x N. We denote this chart
by ¢ x d.

Let M and N be two differentiable manifolds with atlases A and B. Then
{exd|ce Ad e B} is an atlas on M x N. The corresponding saturated atlas
defines a structure of differentiable manifold on M x N. This manifold is called the
product manifold M x N of M and N.

Clearly dimy, ) (M x N) = dim,, M + dim,, N' for any m € M and n € N..

The canonical projections to pri : M x N — M and pro : M x N — N are
submersions. Moreover,

(T(m,n) (p?”l), T(m,n) (p?”g)) : T(m,n)(M X N) — Tm(M) X Tn(N)

is an isomorphism of linear spaces for any m € M and n € N.
Let M, N and P be differentiable manifolds and ¥ : M — Pand G: N — P
differentiable maps. Then we put

M xp N ={(m,n) € M x N | f(m)=g(n)}
This set is called the fibered product of M and N with respect to maps F' and G.

1.5.1. LEMMA. If F: M — P and G : N — P are submersions, the fibered
product M xp N is a closed submanifold of M x N.

The projections p: M xp N — M and q: M xp N — N are submersions.

For any (m,n) € M xp N,

Timn)(M xp N) = {(X,Y) € Tm,n) (M X N) | Tin(f)(X) = T (G)(Y)}-

PRrROOF. Since F' and G are submersions, the product map F X G: M x N —
P x P is also a submersion. Since the diagonal A is a closed submanifold in P x P,
from 1.4.5 we conclude that the fiber product M xp N = (F x G)~(A) is a closed
submanifold of M x N. Moreover, we have

Timm) (M xp N) = {(X,Y) € Timn) (M x N) | Trn(F)(X) = Tn(G)(Y)}.

Assume that (m,n) € M xp N. Then p = f(m) = g(n). Let X € T,,(M). Then,
since G is a submersion, there exists Y € T, (N) such that T,,(G)(Y) = T, (F)(X).
Therefore, (X,Y) € T(y n)(M xp N). It follows that p : M xp N — M is a
submersion. Analogously, ¢ : M xp N — N is also a submersion. |

2. Quotients

2.1. Quotient manifolds. Let M be a differentiable manifold and R C M x
M an equivalence relation on M. Let M/R be the set of equivalence classes of M
with respect to R and p : M — M /R the corresponding natural projection which
attaches to any m € M its equivalence class p(m) in M/R.

We define on M/ R the quotient topology, i.e., we declare U C M/R open if and
only if p~!(U) is open in M. Then p : M — M/R is a continuous map, and for
any continuous map F': M — N, constant on the equivalence classes of R, there
exists a unique continuous map F : M/R — N such that F' = F o p. Therefore,
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we have the commutative diagram
M—L=N.
F
M/R

In general, M/R is not a manifold. For example, assume that M = (0,1) C R, and
R the union of the diagonal in (0,1) x (0,1) and {(z,vy), (y,z)} for z,y € (0,1),
xz # y. Then M/R is obtained from M by identifying x and y. Clearly this
topological space doesn’t allow a manifold structure.

X p(x)=p(y)

M/R
M

Assume that M/ R has a differentiable structure such that p: M — M/Ris a
submersion. Since p is continuous, for any open set U in M/R, p~1(U) is open in
M. Moreover, p is an open map by 1.3.5. Hence, for any subset U € M /R such that
p~1(U) is open in M, the set U = p(p~1(U)) is open in M/R. Therefore, a subset U
in M/R is open if and only if p~1(U) is open in M, i.e., the topology on M /R is the
quotient topology. Moreover, by 1.3.4, if the map F from M into a differentiable
manifold N is differentiable, the map F': M/R — N is also differentiable.

We claim that such differentiable structure is unique. Assume the contrary and
denote (M/R); and (M/R)s two manifolds with these properties. Then, by the
above remark, the identity maps (M/R); — (M/R)2 and (M/R)s — (M/R);
are differentiable. Therefore, the identity map is a diffeomorphism of (M/R); and
(M/R)s, i.e., the differentiable structures on M/R are identical.

Therefore, we say that M/R is the quotient manifold of M with respect to R
it it allows a differentiable structure such that p : M — M/R is a submersion. In
this case, the equivalence relation is called regular.

If the quotient manifold M/R exists, since p: M — M/R is a submersion, it
is also an open map.

2.1.1. THEOREM. Let M be a differentiable manifold and R an equivalence
relation on M. Then the following conditions are equivalent:

(i) the relation R is regular;
(ii) R s closed submanifold of M x M and the restrictions p1,ps : R — M
of the natural projections pri,pro : M X M — M are submersions.

The proof of this theorem follows from a long sequence of reductions. First
we remark that it is enough to check the submersion condition in (ii) on only one
map p;, ¢ = 1,2. Let s : M x M — M x M be given by s(m,n) = (n,m) for
m,n € M. Then, s(R) = R since R is symmetric. Since R is a closed submanifold
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and s : M x M — M x M a diffeomorphism, s : R — R is also a diffeomorphism.
Moreover, pri = prqos and pro = prios, immediately implies that p; is a submersion
if and only if ps is a submersion.

We first establish that (i) implies (ii). It is enough to remark that R = M x 5;/g
M with respect to the projections p : M — M/R. Then, by 1.5.1 we see that
R is regular, i.e., it is a closed submanifold of M x M and p1,p2 : R — M are
submersions.

Now we want to prove the converse implication, i.e., that (ii) implies (i). This
part is considerably harder. Assume that (ii) holds, i.e., R is a closed submanifold
in M x M and p1,ps : R — M are submersions. We first observe the following
fact.

2.1.2. LEMMA. The map p: M — M/R is open.
PRrROOF. Let U C M be open. Then

p~H(p(U) = {m e M | p(m) € p(U)}
={meM|(mn)eR, neU}=pri(RN(M xU))=p1(RN(M x U)).

Clearly, M x U is open in M x M, hence RN (M x U) is open in R. Since
p1 : R — M is a submersion, it is an open map. Hence p1(RN (M x U)) is an
open set in M. By the above formula it follows that p~!(p(U)) is an open set in
M. Therefore, p(U) is open in M/R. O

Moreover, we have the following fact.
2.1.3. LEMMA. The quotient topology on M /R is hausdorff.

PROOF. Let x = p(m) and y = p(n), © # y. Then, (m,n) ¢ R. Since R
is closed in M x M, there exist open neighborhoods U and V of m and n in M
respectively, such that U x V' is disjoint from R. Clearly, by 2.1.2, p(U) and p(V)
are open neighborhoods of z and y respectively. Assume that p(U) N p(V) # 0.
Then there exists € M such that p(r) € p(U) Np(V). It follows that we can find
u € U and v € V such that p(u) = p(r) = p(v). Therefore, (u,v) € R, contrary
to our assumption. Hence, p(U) and p(V) must be disjoint. Therefore, M/R is
hausdorf. |

Now we are going to reduce the proof to a “local situation”.

Let U be an open set in M. Since p is an open map, p(U) is open in M/R.
Then we put Ry = RN (U x U). Clearly, Ry is an equivalence relation on U.
Let py : U — U/Ry be the corresponding quotient map. Clearly, (u,v) € Ry
implies (u,v) € R and p(u) = p(v). Hence, the restriction p|y : U — M/R is
constant on equivalence classes. This implies that we have a natural continuous
map iy : U/Ry — M/R such that p|y = iy o py. Moreover, iy (U/Ry) = p(U).
We claim that iy is an injection. Assume that iy () = iy (y) for some z,y € U/Ry.
Then z = py(u) and y = py(v) for some u, v € U. Therefore,

p(u) = iv(pu(u) = iv(z) = iww(y) = iv(pu(v)) = p(v)
and (u,v) € R. Hence, (u,v) € Ry and = = py(z) = py(y) = y. This implies our
assertion. Therefore, iy : U/Ry — p(U) is a continuous bijection. We claim that

it is a homeomorphism. To prove this we have to show that it is open. Let V be
an open subset of U/Ry. Then p;;' (V) is open in U. On the other hand,

vy (V) =pg' (i (iv (V) = (plv) ' Gu (V) =p Hiv(V)) N U
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is open in M. Since p is open, p(p~(iy(V)) N U) is open in M/R. Clearly,
p(p~(iv(V))NU) Ciy(V). On the other hand, if y € iy (V), it is an equivalence
class of an element u € U. So, u € p~*(iy(V)) NU. Therefore, y € p(p~(iy(V)) N
U). Tt follows that p(p~'(iy(V)) NU) =iy (V). Therefore, iy (V) is open in M/R
and iy is an open map. Therefore, iy : U/Ry — M/R is a homeomorphism of
U/Ry onto the open set p(U). To summarize, we have the following commutative
diagram
u —— M

b | |7

U/Ry — M/R
U

where iy is a homeomorphism onto the open set p(U) C M/R.

If R is regular, M /R has a structure of a differentiable manifold and p : M —
M/R is a submersion. Since U/Ry is an open in M/R, it inherits a natural dif-
ferentiable structure, and from the above diagram we see that py is a submersion.
Therefore, Ry is also regular.

Assume now that only (ii) holds for M. Then Ry is a closed submanifold of
U x U and open submanifold of R. Therefore, the restrictions p;|r, : Ru — U
are submersions. It follows that Ry satisfies the conditions of (ii).

We say that the subset U in M is saturated if it is a union of equivalence classes,
ie., if p~L(p(U)) =U.

First we reduce the proof of the implication to the case local with respect to
M/R.

2.1.4. LEMMA. Let (U; | i € I) be an open cover of M consisting of saturated
sets. Assume that all Ry,, i € I, are regular. Then R is regular.

PROOF. We proved that M/R is hausdorff. By the above discussion, for any
J € 1, the maps iy, : U;j/Ry, — M /R are homeomorphisms of manifolds U; /Ry,
onto open sets p(U;) in M/R. Clearly, (p(U;) | j € I) is an open cover of M/R.
Therefore, to construct a differentiable structure on M/ R, it is enough to show that
for any pair (j, k) € J xJ, the differentiable structures on the open set p(U;)Np(Us)
induced by differentiable structures on p(U;) and p(Uy) respectively, agree. Since
U, and Uy, are saturated, U; N Uy, is also saturated, and p(U; NUx) = p(U;) Np(Uy).
From the above discussion we see that differentiable structures on p(U;) and p(Uy)
induce the quotient differentiable structure on p(U; NUy) for the quotient of U; NUj
with respect to Ry;nu,. By the uniqueness of the quotient manifold structure, it
follows that these induced structures agree. Therefore, by gluing these structures we
get a differentiable structure on M/R. Since py, : U; — U;/Ry, are submersions
for all j € I, we conclude that p : M — M/R is a submersion. Therefore, R is
regular. O

The next result will be used to reduce the proof to the saturated case.

2.1.5. LEMMA. Let U be an open subset of M such that p~1(p(U)) = M. If Ry
is reqular, then R is also regular.

PROOF. As we already remarked, iy : U/Ry — M/R is a homeomorphism
onto the open set p(U). By our assumption, p(U) = M/R, so iy : U/Ry — M/R
is a homeomorphism. Therefore, we can transfer the differentiable structure from
U/RU to M/R
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It remains to show that p is a submersion. Consider the following diagram

(UxM)nR -2 M
pll l”
U ——— U/Ry = M/R
pu

It is clearly commutative. Since p; : R — M, i = 1,2, are submersions, their
restrictions to the open submanifold (U x M) N R are also submersions. By our
assumption, py : U — U/Ry is also a submersion. Therefore, p o p2|wxarynr =
pu o pilwxmyng : (U x M) R — M is a submersion. By our assumption,
p2lwxmynr 2 (U x M)N R — M is also surjective. Therefore, p: M — M/R is
differentiable. Moreover, since p o pa|(xa)nr is a submersion, it also follows that
p is a submersion for the differentiable structure on M/R. g

Now we can reduce the proof to a situation local in M.

2.1.6. LEMMA. Let (U; | i € I) be an open cover of M such that Ry, are regular
foralli e I. Then R is regular.

PROOF. Since p is open by 2.1.2, we see that p(U;) are all open. Therefore,
Vi = p~Y(p(U;)), i € I, are open sets in M. They are clearly saturated. Moreover,
since U; C V; for i € I, (V; | i € I) is an open cover of M. Since Ry, satisfy the
conditions of (ii) and Ry, are regular, by 2.1.5, we see that Ry, are regular for ¢ € I.
Therefore, by 2.1.4, we conclude that R is regular. (]

It remains to treat the local case. Assume, for a moment, that R is regular. Let
mo € M. Then N = p~1(p(mg)) is the equivalence class of mg, and it is a closed
submanifold of M by 1.4.5. Also, the tangent space T,,(N) to N at myq is equal to
ker Trno (p) : Tong (M) — Tpy(me)(M/R). On the other hand, since R = M X 5;/p M,
by 1.5.1, we see that

Tongmo (B) = {(X,Y) € Ty (M) X Tig (M) | Ty (p)(X) = T (p)(Y) }-
Therefore, we have
T (N) = {X € Ting (M) | (X,0) € Tng,mo) (R)}-
This explains the construction in the next lemma.
2.1.7. LEMMA. Let mg € M. Then there exists an open neighborhood U of mg

in M, a submanifold W of U containing mg, and a differentiable map r : U — W
such that for any m € U the point r(m) is the unique point in W equivalent to m.

PROOF. Let
E={X€Tn,(M)|(X,0) € Timyme (R)}

Let F be a direct complement of the linear subspace E in T),,(M). Denote by W' a
submanifold of M such that mg € W’ and F = Ty, (W'). Put ¥ = (W’ x M)N R.
Since p; : R — M is a submersion, by 1.4.5 we see that ¥ = p;'(W') is a
submanifold of R. Moreover, we have

Tmo,mo) (B) = {(X,Y) € Timg,me) (R) | X € Ting (W)}
= {(Xa Y) € T(mo,mo)(R) | X e F}
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Let ¢ = po|X, then ¢ : ¥ — M is a differentiable map. In addition, we have

kerT(mo,mo)(¢) = {(X7 O) € T(mo,mo)(z)} = {(X’O) € T(mo,mo)(R) | X e F}
On the other hand, (X,0) € T(;,y,m,)(I?) implies that X € E, hence for any X in
the above formula we have X € ENF = {0}. Therefore, ker T(;,,,m,)(¢) = 0 and
¢ is an immersion at mg.

Let Y € T),,(M). Then, since p; : R — M is a submersion, there exists
X € Typy(M) such that (X,Y) € Timgmy)(R). Put X = X; + Xo, X; € E,
Xy € F. Then, since (X1,0) € T(my,mo)(R), we have

(X2,Y) = (X,Y) = (X1,0) € Tirmg,mo) (R)-

Therefore, (X2,Y) € T(mg,mo)(X) and ¢ is also a submersion at (1mg,mg). It follows
that ¢ is a local diffeomorphism at (mg, mg). Hence, there exist open neighborhoods
Uy and Us of mg in M such that ¢ : XN (U; x Uy) — Uy is a diffeomorphism.
Let f: Uy — XN (Up x Uy) be the inverse map. Then f(m) = (r(m), m) for any
m € Us, where r : Uy — Uy is a differentiable map. Since ¢ : XN (Uy x Uy) — Us
is surjective, we have Uy C U;. Let m € Uy N W’'. Then we have (m,m) €
(W' x M)N R = X. Hence, it follows that (m,m) € ¥ N (U; x Uy). Also, since
m € Us, (r(m),m) = f(m) € 2N (Uy x Uy). Clearly,
¢(m, m) = pa(m,m) = m = pa(r(m),m) = ¢(r(m), m)

and since ¢ : ¥ N (U; x Uy) — Uy is an injection, we conclude that r(m) = m.

Therefore, r(m) = m for any m € Uy N W',
Finally, since r is a differentiable map from Us into W', we can define open sets

U={meUs|r(m)cUnNW'}and W=UnW'.

We have to check that U, W and r satisfy the assertions of the lemma. First
we show that r(U) C W. By definition of U, for m € U we have r(m) € Uy N W".
Hence 7(r(m)) = r(m) € Uz N W'. This implies that r(m) € U. Hence, r(m) € W.
Since W is an open submanifold of W', r: U — W is differentiable.

Let m € U. Then (r(m),m) = f(m) € R, i.e., r(m) is in the same equivalence
class as m. Assume that n € W is in the same class as m. Then

(n,m) € (WxU)NRCENU xU)

and ¢(n,m) = pa(n,m) = m = ¢(r(m), m). Since ¢ : XN (U; x Uy) — Us is an
injection, we see that n = r(m). Therefore, r(m) is the only point in W equivalent
to m. (]

Now we can complete the proof of the theorem. Let mg € M and (U, W, r) the
triple satisfying 2.1.7. Let ¢ : W — U be the natural inclusion. Then r o4 = id.
Therefore, Tiny(r) © T, (i) = 17, (w) and 7 is a submersion at mo. Therefore,
there exists an open neighborhood V' of mg contained in U such that r : V — W
is a submersion. Let Wi = (V). Then W; is open in W. We have the following
commutative diagram

v LEIRGS /A
prv

|
V/Ry

Clearly, ( is a continuous bijection. We claim that g is a homeomorphism. Let O
be an open set in V/Ry . Then py,' (O) is open in V. Since r is a submersion, it is
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an open map. Hence, r(py,' (0)) = B(pv (p;,'(0))) = B(O) is open. It follows that
0 is also an open map, i.e, a homeomorphism. Hence, we can pull the differentiable
structure from Wi to V/Ry. Under this identification, py corresponds to r, i.e.,
it is a submersion. Therefore, Ry is regular. This shows that any point in M has
an open neighborhood V such that Ry is regular. By 2.1.6, it follows that R is
regular. This completes the proof of the theorem.

2.1.8. PROPOSITION. Let M be a differentiable manifold and R a regular equiv-
alence relation on M. Denote by p : M — M/R the natural projection of M
onto M/R. Let m € M and N the equivalence class of m. Then N is a closed
submanifold of M and

dim,, N = dim,,, M — dim,,(,,) M/R.

PrOOF. Clearly, N = p~!(p(m)) and the assertion follows from 1.4.5 and the
fact that p: M — M/R is a submersion. O

In particular, if M is connected, M/R is also connected and all equivalence
classes have the same dimension equal to dim M — dim M/R.

Let M and N be differentiable manifolds and Rj; and Ry regular equivalence
relations relation on M and N, respectively. Then we can define an equivalence
relation R on M x N by putting (m,n) ~ (m’,n’) if and only if (m,m’) € Ry and
(n,n’) € Ry. Consider the diffeomorphism g : M x M x NXxN — M x N x M x N
given by g(m,m’,n,n’) = (m,n,m’,n’) for m,m’ € M and n,n’ € N. It clearly
maps the closed submanifold Ry; x Ry onto R. Therefore, R is a closed submanifold
of M x N x M x N. If we denote by par; : Ry — M, pys : Rv — N and
pi : R — M x N the corresponding projections, we have the following commutative
diagram

MxN-+=R.

PM,iXPN,il
Pi
M x N

This implies that R is regular and (M x N)/R exists. Moreover, if we denote by
pv M — M/Ry,pn : N — N/Ry and p: M x N — (M x N)/R, it clear
that the following diagram is commutative

M x N b

(M x N)/R

PM XPN

M/Ry x N/Ry

where all maps are differentiable and the horizontal maps are also submersions.
Since (M x N)/R — M /Ry x N/Ry is a bijection, it is also a diffeomorphism.
Therefore, we established the following result.

2.1.9. LEMMA. Let M and N be differentiable manifolds and Ry and Ry reg-
ular equivalence relations on M and N respectively. Then the equivalence relation

R ={((m,n), (m',n")) | (m,m') € Rar, (n,n') € Ry}
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is reqular. Moreover, the natural map (M X N)/R — M/Ry x N/Ry is a diffeo-
morphism.

3. Foliations

3.1. Foliations. Let M be a differentiable manifold. Let ¢ : L — M be an
immersion of a differentiable manifold L such that
(i) i is a bijection;
(ii) for any m € M there exist a chart (U, p,n) at m; the integers p,q € Z4
such that p + ¢ = n; and connected open sets V' C RP, W C R? such that
(a) o(U) =V xW;
(b) (poi)~t({v} x W) is open in L for any v € V;
(c) poi:(poi) t({v} x W) — {v} x W is a diffeomorphism for any
velV.
The pair (L, 1) is called a foliation of M.

Let m € M. Then the connected component of L containing i~1(m) is called
the leaf of L through m. We denote it by L,,. The map i|r,, : L, — M is an
immersion since L., is open in L. In general, L., is not a submanifold of M.

Clearly, the function m — dim L, is locally constant. Therefore, all leaves of
L lying in the same connected component of M have the same dimension.

Let T (M) be the tangent bundle of M. Let E be a vector subbundle of T'(M).
We say that E is involutive if the submodule of the C*°(M)-module of all vector
fields on M consisting of sections of F is closed under the Lie bracket [X,Y] =
XoY —Y oX, ie, if for any two differentiable vector fields X and Y on M such
that X,,,Y,, € E,, for all m € M, we have [X,Y],, € E,, for all m € M.

3.1.1. LEMMA. Let (L,4) be a foliation of M. Then T (i)T(L) is an involutive
subbundle of T(M).

PRrROOF. Let m € M. Assume that s € L such that m = i(s). There exists a
chart ¢ = (U, ¢, n) centered at m such that ¢(U) =V x W for connected open sets
V € RP, W € R? such that (¢ 0i)~*({v} x W) is an open set in L. Denote by 9;,
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1 < j < n, the vector fields on U which correspond to the partial derivatives
with respect to the j-th coordinate in R™ under the diffeomorphism ¢. Then
T.(i)T(L) C Tyry(M) is spanned by vectors (9j), p+1 < j < n, for any r €
i~Y(U). Therefore, T(i)T (L) is a vector subbundle of T(M). Moreover, if X and
Y are two vector fields on M such that their values are in T'(i)T(L), we have
X =37 1[0 andY =37 ., g;0; on U. Therefore, we have

(XY= Y 000k = D (£i0:(9x) 0k — gr0k(;)05)
Jik=p+1 Jik=p+1

n

- Z (f30;(gr) — 9505 (fr)) Ok

J,k=p+1
and the value of the vector field [X,Y] is in L, (¢)T,(L) for any r € i~ 1(U). O

In the next section we are going to prove the converse of this result.

3.2. Frobenius theorem. Let F be an involutive vector subbundle of T'(M).
An integral manifold of E is a pair (N, j) where
(i) N is a differentiable manifold;
(ii) 7: N — M is an injective immersion;
(iii) Ts(j)Ts(N) = Ejs) for all s € N.
If m = j(s) we say that (N, j) is an integral manifold through m € M.
The observation 3.1.1 has the following converse.

3.2.1. THEOREM (Frobenius). Let M be a differentiable manifold and E an
involutive vector subbundle of T(M). Then there exists a foliation (L,i) of M with
the following properties:

(i) (L,1) is an integral manifold for E;
(ii) for any integral manifold (N,j) of E there exists a unique differentiable
map J : N — L such that the diagram

N1

BN

L

commutes and J(N) is an open submanifold of L.

3.2.2. REMARK. The map J : N — J(N) is a diffecomorphism. First, J
is an injective immersion. In addition, for any s € N, we have dim T (L) =
dim B,y = dimT,(N) since L and N are integral manifolds. Hence J is also a
submersion.

This also implies that the pair (L,4) is unique up to a diffeomorphism. If we
have two foliations (L,4) and (L’,4’) which are integral manifolds for E, then we
have a commutative diagram

I —

17

L
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where the mapping I : L’ — L is a diffeomorphism.

The pair (L, ) is the integral foliation of M with respect to E.
The proof of Frobenius theorem is based on the following local version of the
result.

3.2.3. LEMMA. Let m € M, n = dim,, M and q = dim FE,,. Then there exists
a chart ¢ = (U, p,n) centered at m and connected open sets V.C RP and W C R?
such that o(U) =V x W and ({v} x W, yxw) is an integral manifold of E
foranyv e V.

Since {v} x W are submanifolds of p(U), ¢~ ({v} x W) are submanifolds of
M.
We postpone the proof of 3.2.3, and show first how it implies the global result.

3.2.4. LEMMA. Let (N,j) be a connected integral manifold of E such that
j(N) C U. Then there exists v € V such that j(N) C o~ *({v} x W) and j(N) is
an open submanifold of =1 ({v} x W).

PrOOF. Let p1 : V. x W — V be the projection to the first factor. Then
p1opo N — V is a differentiable map and for any » € N we have

(Tpoiy () (1) © Ty (¢) o Tr(NNLr(N)) = (T(pojy ) (P1) © Ty (0)) (Eij(r))
= Tpojy(r)(p1)({0} x R?) = {0},
i.e., the differential of p; o p o j is equal to 0 and, since N is connected, this map is
constant. It follows that there exists v € V such that (po j)(N) C {v} xW. O

Let
B={j(N)|(N,j) is an integral manifold of E}.

3.2.5. LEMMA. The family B is a basis of a topology on M finer than the natural
topology of M .

PROOF. Let O; and O» be two elements of B such that Oy N Oy # (. Let
r € O1NO0y. We have to show that there exists O3 € B such that r € O3 C O1N0Os.

Let (U, p,n) be a chart around r satisfying 3.2.3. Let O1 = j1(N1) and Oy =
j2(N2) for two integral manifolds (N;,4;), i = 1,2, of E. Let C7 and C3 be the
connected components of j; *(U), resp. jy '(U), containing j;*(r), resp. j; (7).
Then Ci, resp. Ca, are open submanifolds of Ny, resp. Na, and (C4,j|¢, ), resp.
(Cs,jlc, ), are integral manifolds through r. By 3.2.4, there exists v € V such that
r € o 1 ({v} x W) and j1(C1) and ja(C2) are open submanifolds of ¢~ ({v} x
W) which contain 7. Therefore, O3 = j1(C1) N j2(C2) is an open submanifold of
e 1({v} x W). Hence Ojz is an integral manifold through r and O3 € B.

Since we can take U to be arbitrarily small open set, the topology defined by
B is finer than the naturally topology of M. O

Let L be the topological space obtained by endowing the set M with the topol-
ogy with basis B. Let i : L — M be the natural bijection. By 3.2.5, the map ¢ is
continuous. In particular, the topology of L is hausdorff.

Let | € L. By 3.2.3, there exists a chart (U, ¢,n) around [, and v € V such
that (¢~ !({v} x W),i) is an integral manifold through [. By the definition of the
topology on L, ¢~} ({v} x W) is an open neighborhood of [ in L. Any open subset
of o1 ({v} x W) in topology of L is an open set of ¢ ~*({v} x W) as a submanifold
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of M. Therefore, i : =1 ({v} x W) — M is a homeomorphism on its image.
Clearly, ' ({v} x W) has the natural structure of differentiable submanifold of
M. We can transfer this structure to ¢ =*({v} x W) considered as an open subset
of L. In this way, L is covered by open subsets with structure of a differentiable
manifold. On the intersection of any two of these open sets these differentiable
structures agree (since they are induced as differentiable structures of submanifolds
of M). Therefore, we can glue them together to a differentiable manifold structure
on L. clearly, for that structure, i : L — M is an injective immersion. Moreover,
it is clear that (L, %) is an integral manifold for E. This completes the proof of (i).

Let (IV,7) be an integral manifold of E. We define J = i~!oj. Clearly, J is an
injection. Let » € N and [ € L such that j(r) = i(l). Then, by 3.2.3, there exists
a chart (U, p,n) around [, and v € V such that (¢~'({v} x W),i) is an integral
manifold through [. Moreover, there exists a connected neighborhood O of r € N
such that j(O) C U. By 3.2.4, it follows that J(O) is an open submanifold in
o t({v} x W). Therefore, J|o : O — ¢~ ({v} x W) is differentiable. It follows
that J : N — L is differentiable. This completes the proof of (ii).

Now we have to establish 3.2.3. We start with the special case where the fibers
of E are one-dimensional. In this case, the involutivity is automatic.

3.2.6. LEMMA. Let m € M. Let X be a vector field on M such that X,, # 0.
Then there exists a chart (U, p,n) around m such that Xy corresponds to 01 under
the diffeomorphism .

PROOF. Since the assertion is local, we can assume that U = ¢(U) C R™ and
m =0 € R™. Also, since X,,, # 0, we can assume that X (z1)(0) # 0. We put

Fj(xl,xg, P ,Z‘n) = X(.’E])
for 1 < j < n. Then we can consider the system of first order differential equations

dej

= F; ey Pn
dt J(SDDQOZ; 790)

for 1 < j < n, with the initial conditions

©1(0,¢2,¢3,...,¢,) =0

p2(0,¢2,C3, ..., Cn) = Co

©n(0,¢2,¢C3,...,Cn) = Cp

for “small” ¢;, 2 < i < n. By the existence and uniqueness theorem for systems of
first order differential equations, this system has a unique differentiable solutions
¢;, 1 < j < n, which depend differentiably on ¢, c1, ca, . .., ¢, for [t| < e and |¢;| <€
for2<j <n.

Consider the differentiable map ® : (—¢, €)™ — R™ given by

(I)(ylayQa' . ’yn) = ((pl(ylay%" ~;yn)7§02(y1;y27~~ ~;yn)7~~ ~7§0n(y1;y27~~ ;yn))
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Then ®(0) = 0. Moreover, The Jacobian determinant of this map at 0 is equal to

81(,01 (0) 82(,01 (0) e 8n(p1 (0)
81(,02 (0) 82(,02 (0) e 8n(p2 (0)
016a(0) D2pu(0) .. Duipn(0)
F1(0,0,...,0) 0 0
F5(0,0,...,0) 1 ... 0
= = R0.0,.,0) = X(@)(0) £0.
Fn(0,0;...,O) 0 ... 1

Therefore, ® is a local diffeomorphism at 0. By reducing e if necessary we can
assume that @ : (—¢,e)” — R" is a diffeomorphism onto its image which is
contained in U.

Let y = (y1,Y2,---,Yn) € (—€,€)™. Then

Ty (®)((91)y)(xi) = 01 (i 0 ©)(D(y)) = Drpi(P(y))

dy;
= d_tz(gol(ylayQV' 'ayn)7<)02(y15y27" -7yn)7-- '7<)0n(y15y27" ayn))

= Fi(p1(y1, 92, Yn)s 021,92, - 3 Un)s - s @n (Y1, Y25 -+ Yn)) = Xa(y) (@)

Hence, X and T'(®)0; agree on coordinate functions z;, 1 < i < n. Since vector
fields are uniquely determined by their action on these functions, X = T'(®)9;. O

This proves 3.2.3 for vector subbundles such that dim F,,, = 1 for all m € M.
In this case, the involutivity condition is automatic. To see this, let m € M. Then
there exists a vector field X on an open set U around m such that X span F for
any s € U. Therefore, any vector field Y on U such that Yy € E; for all s € U is
of the form Y = fX for some f € C°(U). Therefore, if Y, Z are two such vector
fields, we have Y = fX,Y = gX for f,g € C*°(U), and

Y, Z] = [f X, 9X] = fX(9)X — gX ()X = (fX(9) — gX(f)X.

It follows that F is involutive.

By 3.2.6, by shrinking U if necessary, we can assume that there exists a chart
(U, p,n) around m such that ¢(U) = (—¢,€) x V where V is an open connected set
in R"~!, and X corresponds to d;. In this case ¢~ ((—¢,€) x {v}) are the integral
manifolds for F.

It remains to prove the induction the proof of 3.2.3. We assume that the
assertion holds for all involutive vector subbundles with fibers of dimension < ¢—1.
Assume that dim E,, = ¢ for all m € M. Since the statement is local, we can
assume, without any loss of generality, that M is an connected open set in R™
and X1, Xo,..., X, are vector fields on M such that F is spanned by their values
X1,5,X25,...,Xgs in s € M. Since E is involutive,

q
[Xi, X;] = Z Cijk Xk
k=1
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with ¢;j, € C*°(M). By 3.2.6, after shrinking M if necessary, we can also assume
that X7 = 01. If we write

X; = Z Aijaj

j=1
we see that the values of Y7 = X; and
Yi=X; - An0:
for ¢ = 2,...,q, also span Es at any s € M. Therefore, we can assume, after

relabeling, that

:(91 and Xi:ZAijaj fOYiZZ,...7q

=2
Now, for 7,7 > 2, we have
[Xi, X;] = Z [Ai Ok, Aji0)] = Z (AirOk (Aj1)01 — Aji01(Ai)Ok)
k=2 k=2
Z (Aik Ok (A1) — AjiOk(Ay)) O = Zszkak
k=2

)

On the other hand, we have

(X0, X5 = cijeXe = cijid + Y cijeAnd,
k=1 k=2

for all 4,7 > 2. Hence, we conclude that c;;; = 0 for 4,5 > 2, i.e.,
XuX Zczijk

for i,j > 2. By shrinking M even more, we can assume that M = (—e, ¢) x N where
N is an open subset in R"~!. Clearly,

Xi 04 = Z Ai(0,1)0;
j=2

can be considered as a vector field Z; on N. Moreover, Za 4, ..., Zq+ span a (g—1)-
dimensional subspace F; of T(N) for any t € N. Therefore, they define a vector
subbundle F of T(N). By the above calculation, this subbundle is involutive.
Therefore, by the induction assumption, by shrinking N we can assume that there
exists a coordinate system (ya,...,¥,) on N such that the submanifolds given by
Yg+1 = Cqt1s - - - Yn = Cp for |¢;| < 0 for n—q+1 < i < n are integral submanifolds
for F. Relabeling y;, 2 < i <mn, as x;, 2 <14 < n, defines a new coordinate system

on M such that
X; = ZAijﬁj
j=2
with
A;;(0,t) =0forg+1<j<n,
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for 2 < i <n. Now, for 2 <1i,j < n, we have

a n n
9, i = X1(Xi(w)) = (X1, X,](25) = Y cijpXn(zs) = D crjuAiy-

k=1 k=2
It follows that, for any ¢ + 1 < j < n, the functions A; = (Ay;,..., Ay;), satisfy
the linear system of first order differential equations

a n
8_xlAij = Z 1k Ak
k=2
on (—e,€) x (—0,8)" ! with the initial conditions
Aij (Oa t) = 0)
for 2 < ¢ < n. Therefore, by the uniqueness theorem for such systems, it follows
that A;; =0for2<i<nandg¢+1<j<n
Therefore, we finally conclude that X; = 0; and X; = Z?:z A;;0; for 2 <
i < g. This implies that Ey is spanned by 015,02, ...,0q,s for all s € M. Hence,

the submanifolds given by the equations xq11 = c¢41,...,%n = ¢y, are integral
manifolds for E. This completes the proof of 3.2.3.

3.3. Separable leaves. In general, a connected manifold M can have a fo-
liation with one leave L such that dim(L) < dim(M). In this section, we discuss
some topological conditions under which this doesn’t happen.

A topological space is called separable if it has a countable basis of open sets.

We start with some topological preparation.

3.3.1. LEMMA. Let M be a separable topological space and U = {U; | i € I} be
an open cover of M. Then there exists a countable subcover of U.

PRrROOF. Let V = {V,, | n € N} be a countable basis of the topology on M.
Every U; in U is a union of elements in V. Therefore, there exists a subfamily A of
Y such that V € A implies V' C U; for some i € I. Since V is a basis of the topology
of M, A is a cover of M. For each V € A, we can pick U; such that V C U;. In
this way we get a subcover of & which is countable. (]

3.3.2. LEMMA. Let M be a connected topological space. LetU = {U; | i € I} be
an open cover of M with the following properties:
(i) U; are separable for all i € I;
(i) {j €I |U;NU;# 0} is countable for eachi € I.
Then M is separable.

PROOF. Let ig € I be such that U;, # (). We say that ¢ € I is accessible in n
steps from 14 if there exists a sequence (i1, 2, ...,in), § = in, such that U;,_, NU;, #
0 fork=1,2,...n.

Let A, be the set of all indices accessible in n steps from ig. We claim that A,,
are countable. First, the condition (ii) implies that A; is countable. Assume that
A, is countable. If j € A, 41, there exists i € A,, such that U; NU; # 0. Since A,
is countable and (ii) holds we conclude that A,; must be countable. Therefore
A=, A, is countable.

Let U = (J;c4 Ui- Then U is an open subset of M. Since it contains Uj, it
must be nonempty. Let m € U. Then there exists ¢ € I such that m € U;. Hence,
we have U; NU # 0. It follows that U; NU; # 0 for some j € A. If j € A, we
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see that i € A,,+1 C A. Therefore, we have m € U; C U. Hence, U is also closed.
Since M is connected, U must be equal to M.

Therefore, M is a union of a countable family of separable open subsets U,
i € A. The union of countable bases of topology on all U;, i € A, is a countable
basis of topology of M. Therefore, M is also separable. O

3.3.3. LEMMA. Let M be a locally connected, connected topological space. Let
U ={U, | n € N} be an open cover of M such that each connected component of
U, is separable. Then M 1is separable.

PRrROOF. Since M is locally connected, the connected components of U,,, n € N,
are open in M. Let U, «, o € A,, be the connected components of U,,. Therefore,
V={Upal|aecA,necN}is an open cover of M.

Let Apam = {8 € A | Un,a NUn g # 0} for a € Ay, n,m € N. We claim
that A, o;m is countable for any a € A,, n,m € N. First we remark that the
set Up, N Uy, is open in U, o, and since Uy, is separable, Uy, N U, o can have
only countably many components. We denote them by S,, p € N. Since S, is
connected, it must be contained in a unique connected component U,, (p) of Up,.
Let 3 € Ay a;m. Then we have Uy, g N U, o # 0. If we take s € Uy, g N Uy q, then
s is in one of S,. It follows that 8 = G(p). It follows that A, 4. is countable.
Hence, the cover V satisfies the conditions of 3.3.2, and M is separable. (]

The main result which we want to establish is the following theorem.

3.3.4. THEOREM. Let M be a differentiable manifold such that all of its con-
nected components are separable. Let (L,1) be a foliation of M. Then all leaves of
L are separable manifolds.

PROOF. Let m € M and L,, be the leaf passing through m. We want to prove
that L,, is separable. Since L,, is connected, it lies in a connected component of
M. Therefore, we can replace M with this component, i.e., we can assume that M
is connected and separable.

By 3.3.1, there exists a countable family of charts ¢,, = (Up,pn), n € N,
such that U, n € N, cover M; ¢, (Uy) =V,, x W,,, V,, and W,, are connected and
(pnoi) t({v} x W,,) are open in L and (¢, 01) : (pn08) L({v} x W,) — {v} x W,
are diffeomorphisms for all v € V;,, and n € N. Therefore, {i"}(U,);n € N} is a
countable cover of L. In addition, the connected components of i ~*(U,,) are of the
form (¢, 04) "1 ({v} x W,,) for v € V,,, hence they are separable. By 3.3.3, the leaf
L., is separable. O

3.3.5. REMARK. A differentiable manifold has separable connected components
if and only if it is paracompact. Therefore, 3.3.4 is equivalent to the statement that
any foliation of a paracompact differentiable manifold is paracompact.

This result allows us to use the following observation.

3.3.6. LEMMA. Let M be a differentiable manifold and (L,i) a foliation with
separable leaves. Let N be a differentiable manifold and f : N — M a differen-
tiable map such that f(N) is contained in countably many leaves. Then there exists
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a differentiable map F : N — L such that the diagram

N—f>M

17

L

commutes.

PROOF. Let p € N and (U, p,n) a chart centered at f(p) such that o(U) =
V x W where V and W are connected and such that (o oi)~!({v} x W) are open
in L and poi: (poi) t({v} x W) — {v} x W are diffeomorphisms for all v € V.
Since the leaves are separable, for a fixed leaf L,,, passing through m € M, we have
(poi) ' ({v} x W) C L,, for countably many v € V. By our assumption, f(N)
intersect only countably many leaves, ((¢ o f)~*({v} x W) is nonempty for only
countably many v € V.

Let U’ be a connected neighborhood of p such that f(U’) C U. Denote by
pri1 : V. x W — V the projection to the first factor. Then (pri o po f)|y maps U’
onto a countable subset of V. Therefore, it is a constant map, i.e., (p o f)(U’) C
{vo} x W for some vg € V. This implies that F' is differentiable at p. O

3.3.7. COROLLARY. Let M be a separable, connected differentiable manifold.
Let (L,i) be a foliation of M. Then either L = M or L consists of uncountably
many leaves.

PROOF. Assume that L consists of countably many leaves. Then the identity
map id : M — M factors through L by 3.3.6. Therefore, i : L — M is a
diffeomorphism and L = M. O

4. Integration on manifolds

4.1. Change of variables formula. Let U and V be two open subsets in
R™ and ¢ : U — V a diffeomorphism of U on V. Then ¢(z1,22,...,2,) =
(p1(z1, 22,y Tn), p2(T1, T2y o Tn )y e v oy (X1, X2y ..oy Xy)) With ¢; 0 U — R,
1 <i<mn,forall (x1,x2,...,2,) € U. Let

p1 Op1 91
1 oo te oz
9pa  Opa D
o1 Oxo Tt ox,
J(p) =" : :
Opn Opn O¢n
oz Oxo e RE2S

be the Jacobian determinant of the mapping ¢. Then, since ¢ is a diffeomorphism,
J(p)(x1, 22, ..., xy) # 0 for all (z1,22,...,2,) € U.

Let f be a continuous function with compact support on V. Then we have the
change of variables formula

/f(y1,y27-~~,yn)dy1dy2...dyn
1%

= / flo(zr,za,. .., z0))|J (@) (21, T2, . .., Tp)| dx1 dxa . . . dyy.
U
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Let w be the differential n-form with compact support in V. Then w is given
by a formula

w=fy1,Y2,--,yn)dy1 Ndy2 A --- Ndy,
for (y1,v2,...,yn) € V. On the other hand,

(W) = flp(x1,x, ..., xn)) J(p) (21, T2, ..., Tp)dxy ANdxg A -+ ANday,

for (z1,z2,...,2,) € U.

4.2. Positive measure associated to a differential form of top degree.
Let M be a manifold of pure dimension n. Let w be a differential n-form on M
with compact support. Let ¢ = (U, p,n) be a chart on M such that suppw C U.
Let d = (V,4,n) be another chart such that suppw C V. Clearly, suppw C UNV.
We can consider the differential n-forms (¢=1)*(w) on (U) C R™ and (¢~ 1)*(w)
on (V) C R™. These forms are represented by

(™) (W) = fulxr, 2o, ..., xn)dry Adza A -+ Adzy,
for all (x1,22,...,2,) € p(U), and
(W) (W) = fv W, Y2, - yn) dyr Adyz A+ A dyn,

for all (y1,v2,.-.,yn) € Y(V), respectively. Moreover, a« = o=t : p(UNV) —
(U NV) is a diffeomorphism, and o*((¢~1)*(w)) = (¢ ~1)*(w). By the discussion
in 4.1, we have

(¢™) (W) =" ((¥71)* ()

= fv(a(zr,xe, ... xn))J (@) (x1,22,. .., &pn)dxy Adzo A -+ ANdzy,
for all (x1,22,...,2,) € p(U). Hence,

fulz1,ze, ... zn) = fv(a(zr, ze, ..., xn)) (@) (z1, 22, .. ., Ty)

for all (z1,xa,...,z,) € (U).
For any continuous function g on M, by the change of variables formula in 4.1,
we also see that

/ g(gpil(xlvaa"'axn))|fU(x1;x2;---,xn))|dx1dx2...d$n

»(U)

:/ g @1, o) [ @@y m))| [T @) @1, )| das - .. dan
e (U)

:/ g0 @, ) [ (@@ )| [T @)@, 2n)| s . da
P(UNV)

=/ g Y1, y2, - yn) v (Y1, Y2, - yn) | dyr dys .. dyn,
HUAY)

= / 9@y yze - yn)) [y (W, y2, - yn)l dyr dys - dyy.
»(V)
Therefore, the expression

/ 9(@71@1%2, v xn)) | fuler, oy )| day das . day,
e (U)



4. INTEGRATION ON MANIFOLDS 21

is independent of the choice of the chart ¢ such that suppw C U. Hence we can
define

[t [ 7 w2 ) 01,22 o
e(U

for any chart ¢ = (U, ¢,n) such that suppw C U. The linear map g — [ g|w|
defines a positive measure on M with compact support.

Now we want to extend this definition to differential n-forms on M with arbi-
trary compact support. Let w be a differentiable n-form with support in a compact
set K in M. Let ¢; = (Ui, ¢i,n), 1 < i < p, be a finite cover of K by charts. Let
a;, 1 <1i < p, be a partition of unity such that

(i) ai, 1 <i < p, are positive smooth functions with compact support on M;
(ii) suppa; C U; for all 1 < i < p;

(iii) Y7  a;j(m) =1for all m € K.

Then w = Y7 | ayw. Moreover, the differential n-forms o;w are supported in U;,
hence the measures |o,w| are well-defined.

We claim that the sum Y 7, |a;w]| is independent of the choice of the cover U;
and the partition a;. Let d; = (V},1;,n), 1 < j < g, be another open cover of K
by charts on M. Let 3;, 1 < j < g, be the corresponding partition of unity. Then,
we have

S ol =3 [ 37yl =Z<Z|mﬂjw|>
i=1 j=1 1

i=1 \j=1 =
P

q q
_y (z aiwm) Y 5l
=1 j=1

=1

and this establishes our claim. Therefore, we can define

p
/glwl = Z/glaiwl
=1

for any continuous function g on M.

Finally we want to extend the definition to arbitrary differentiable n-forms on
M. Let K be a compact set in M and « a positive smooth function with compact
support on M such that a(m) = 1 for all m € K. Then aw is a differentiable
n-form with compact support on M. For any continuous function with support in
K, the expression [ glaw| doesn’t depend on the choice of . In fact, if § is another
positive smooth function on M which is equal to 1 on K, we have

[ slawt = [ gplawi = [ glasel = [ galpui = [ gipul.

Therefore, we can define
[alel = [ glaw

for any continuous function g with compact support in M. Therefore, w defines a
positive measure |w| on M.

From the construction of the positive measure associated to a differentiable
n-form we deduce the following result.
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4.2.1. PROPOSITION. Let M and N be differentiable manifolds and ¢ : M —
N a diffeomorphism of M onto N. Let w be a differentiable n-form on N. Then

| toalewl= [ s

for any compactly supported continuous function f on N.



CHAPTER 2
Lie groups

1. Lie groups

1.1. Lie groups. A set G is a Lie group if

(i) G is a differentiable manifold;
(ii) G is a group;

(iii) the map ag : (g,h) — gh~! from the manifold G x G into G is differen-

tiable.

Let G be a Lie group. Denote by m : G Xx G — G the multiplication map
m(g,h) = gh, 1 : G — G the inversion map t(g) =g ' and by i: G — G x G
the inclusion i(g) = (1,¢). Then we have ag o i = ¢, hence the inversion map is
differentiable. On the other hand, m = ag o (1 x ¢), hence the multiplication map
is also differentiable.

For g € G, we define the left translation v(g) : G — G by ~v(g)(h) = gh for
h € G, and the right translation 6(g) : G — G by 6(g)(h) = hg~! for h € G.
Clearly, left and right translations are diffeomorphisms. Therefore, the function
g — dimy G is constant on G, i.e., the manifold G is of pure dimension.

Let V be a finite-dimensional linear space over R. Then the group GL(V) of
all linear automorphisms of V' has a natural Lie group structure. It is called the
general linear group of V.

A morphism ¢ : G — H of a Lie group G into a Lie group H is a group
homomorphism which is also a morphism of differentiable manifolds.

Let G be a Lie group. Define the multiplication (g,h) — go h = hg. The
set G with this operation is a group. Moreover, it is a Lie group. We call this Lie
group G°PP the opposite Lie group of G. The map g — ¢! is an isomorphism of
G onto G°PP. Evidently, we have (G°PP)°PP = @.

Let H be a subgroup of G. If H is a submanifold of G we call it a Lie subgroup
of G.

Let H be a Lie subgroup of G. Then we have the following commutative

diagram:
HxH —— GxG

aHl lac

H —— G
Clearly, the map ayg : H x H — G is differentiable. This in turn implies that
ag : H x H— H is differentiable and H is a Lie group.
Clearly, the map i : H — G is a morphism of Lie groups.
By its definition a Lie subgroup is locally closed.

1.1.1. LEMMA. Let G be a topological group and H its locally closed subgroup.
Then H 1is closed in G.

23
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PrROOF. Let z be a point in the closure of H. Let V be a symmetric open
neighborhood of 1 in G such that VN H is closed in V. Then 2V is a neighborhood
of # and since z is in the closure of H, xV N H is nonempty. Let y € 2V N H. Then,
x € yV. Moreover, y(V N H) =yV N H is closed in yV. Assume that x is not in
H. Then there exists an open neighborhood U of x in yV such that U N H = (.
But this clearly contradicts our choice of z. Hence, z € H. (]

Therefore, we have the following obvious consequence.
1.1.2. COROLLARY. Any Lie subgroup H of a Lie group G is closed in G.

A(left) differentiable action of G on a manifold M is a differentiable map p :
G x M — M satisfying
(i) p(lg,m)=m for all m € M;
(ii) u(g, u(h,m)) = pu(m(g,h),m) for all g,h € G and m € M, i.e., the dia-

gram

GxGxMMGxM

mXid]uJ( J{/”'

GxM — G
m

is commutative.

Clearly, ¢ : G x G — G defined by ¢(g,h) = v(g)h and ¥(g,h) = §(g)h,
g,h € G, respectively, define differentiable actions of G on G by left and right
translations respectively.

Let 4 : G x M — M be a differentiable action of G on M. We denote
w(g,m) = g-m for g € G and m € M. For any ¢ € G we define the map
7(g) : M — M by 7(g)(m) = g-m for any m € M. It is easy to check that

7(gh) = 7(g)7(h). Moreover, 7(g) is differentiable. Hence, for any g € G, 7(g) is a
diffeomorphism of M with inverse 7(g~!).

The set Q = {g-m | g € G} is called the G-orbit of m € M. The differentiable
map p(m) : G — M given by p(m)(g) = g - m is the orbit map of m. Its image is
the orbit €.

The action of G on M is transitive if M is a G-orbit.

The set G, = {g € G | gm = m} = p(m)~t(m) is a subgroup of G which is
called the stabilizer of m in G.

1.1.3. LEMMA. For any m € M, the orbit map p(m) : G — M has constant
rank. In particular, p(m) is a subimmersion.

ProOOF. For any a,b € G we have

(r(a) o p(m))(b) = 7(a)(b-m) = (ab) - m = p(m)(ab) = (p(m) o ¥(a))(b),
i.e., we have
7(a) o p(m) = p(m) o ~(a)
for any a € G. If we calculate the differential of this map at the identity in G we
get

Tm(7(a)) o Tri(p(m)) = Ta(p(m)) o Ta(v(a))

for any a € G. Since 7(a) and y(a) are diffeomorphisms, their differentials Ty, (7(a)
and 77 (vy(a)) are isomorphisms of tangent spaces. This implies that rank T4 (p(m)) =



1. LIE GROUPS 25

rank T, (p(m)) for any a € G. Hence the function a — rank, p(m) is constant on

G. O
By 1.1.4.4, we have the following consequence.

1.1.4. PROPOSITION. For any m € M, the stabilizer G,, is a Lie subgroup of
G. In addition, T1(Gp,) = ker Ty (p(m)).

Let G and H be Lie groups and ¢ : G — H a morphism of Lie groups. Then
we can define a differentiable action of G on H by (g,h) — ¢(g)h for g € G and
h € H. The stabilizer in G of 1 € H is the Lie subgroup ker¢ = {g € G | #(g9) = 1}.
Therefore, we have the following result.

1.1.5. PROPOSITION. Let ¢ : G — H be a morphism of Lie groups. Then:

(i) The kernel ker ¢ of a morphism ¢ : G — H of Lie groups is a normal
Lie subgroup of G.
(if) Ti(ker ¢) = ker T (¢).
(iii) The map ¢ : G — H is a subimmersion.

On the contrary the image of a morphism of Lie groups doesn’t have to be a
Lie subgroup.

1.2. Orbit manifolds. Let G be a Lie group acting on a manifold M. We
define an equivalence relation Rg on M by

Rg={(g-mm)eMxM|geG, me M}.

The equivalence classes for this relation are the G-orbits in M. The quotient M/R¢
is called the orbit space of M and denoted by M/G.
The next result is a variant of 2.1.1 for Lie group actions.

1.2.1. THEOREM. Let G be a Lie group acting differentiably on a manifold M.
Then the following conditions are equivalent:

(i) the relation Rg is regular;
(ii) Rg 1is a closed submanifold in M x M.

ProoF. First, from 2.1.1, it is evident that (i) implies (ii).

To prove that (ii) implies (i), by 2.1.1, we just have to show that py : Rg — M
is a submersion.

Define the map 6 : G x M — M x M by 6(g,m) = (g - m,m) for g € G
and m € M. Clearly, 6 is differentiable and its image in M x M is equal to Rg.
Therefore, we can view 6 as a differentiable map from G x M onto Rg. Then we
have po 0@ = pro : G x M — M. Therefore, this composition is a submersion.
Since 6 is surjective, ps must also be a submersion. O

Therefore, if Rg is a closed submanifold, the orbit space M/G has a natural
structure of a differentiable manifold and the projection p : M — M/G is a
submersion. In this situation, we say that the group action is regular and we call
M/G the orbit manifold of M.

For a regular action, all G-orbits in M are closed submanifolds of M by 2.1.8.
Let © be an orbit in M in this case. By 1.3.3, the induced map G x 2 — € is
a differentiable action of G on 2. Moreover, the action of G on 2 is transitive.
For any g € G, the map 7(g) : Q@ — Q is a diffeomorphism. This implies that
dimg.p, Q@ = dim,, Q, for any g € G, ie., m — dim,, 2 is constant on €, and Q
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is of pure dimension. Moreover, for m € (2, the orbit map p(m) : G — Q is a
surjective subimmersion by 1.1.3.

In addition, the map 6 : GXx M — R is a differentiable surjection. Fix m € M
and let 2 denote its orbit. We denote by j,, : G — G x M the differentiable
map jm(g) = (g,m) for g € G. Clearly, j,, is a diffeomorphism of G onto the
closed submanifold G x {m} of G x M. Analogously, we denote by k,, : Q@ —
M x M the differentiable map given by k,,(n) = (n,m) for n € Q. Clearly, ky,
is a diffeomorphism of © onto the closed submanifold Q x {m}. Since Q x {m} =
Re N (M x {m}), we can view it as a closed submanifold of Rg. It follows that we
have the following commutative diagram:

a p(m) 0

| Jim

GXMT)MXM

We say that a regular differentiable action of a Lie group G on M is free if the
map 0 : G x M — R is a diffeomorphism.

The above diagram immediately implies that if the action of G is free, all orbit
maps are diffeomorphisms of G onto the orbits. In addition, the stabilizers G,, for
m € M are trivial. In §1.4 we are going to study free actions in more detail.

1.3. Coset spaces and quotient Lie groups. Let G be a Lie group and H
be a Lie subgroup of G. Then u; : HXG — G given by pe(h, g) = v(h)(g) = hg for
h € H and g € G, defines a differentiable left action of H on G. The corresponding
map 0y : HxG — G x G is given by 6,(h, g) = (hg, g). This map is the restriction
to H x G of the map ay : Gx G — G x G defined by ay(h, g) = (hg, g) for g, h € G.
This map is clearly differentiable, and its inverse is the map f: G x G — G x G
given by B¢(h,g9) = (hg™',g) for g,h € G. Therefore, ay is a diffeomorphism.
This implies that its restriction 6, to H X G is a diffeomorphism on the image R¢.
Therefore, Rg is a closed submanifold of G x G, and this action of H on G is
regular and free. The quotient manifold is denoted by H\G and called the right
coset manifold of G with respect to H.

Analogously, i, : H x G — G given by u,(h,g) = §(h)(g) = gh~! for h € H
and g € G, defines a differentiable left action of H on G. The corresponding map
0: HxG — GxG is given by 0,.(h,g) = (gh~ ', g). This map is the restriction to
H x G of the map o, : Gx G — G x G defined by a,.(h,g) = (gh™1,g) for g, h € G.
This map is clearly differentiable, and its inverse is the map 5, : G x G — G x G
given by B,.(h,g) = (gh,g) for g,h € G. Therefore, «, is a diffeomorphism. This
implies that its restriction 6, to H x G is a diffeomorphism on the image Rg.
Therefore, Rg is a closed submanifold of G x G, and this action of H on G is
regular and free. The quotient manifold is denoted by G/H and called the left
coset manifold of G with respect to H.

Since G acts differentiably on G by right translations, we have a differentiable
map Gx GG H\G. This map is constant on right cosets in the first factor.
By the above discussion it induces a differentiable map pg, : G x H\G — H\G.
It is easy to check that this map is a differentiable action of G on H\G.

Analogously, we see that G acts differentiably on the left coset manifold G/H.
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If N is a normal Lie subgroup of G, from the uniqueness of the quotient it follows
that G/N = N\G as differentiable manifolds. Moreover, the map G x G — G/N
given by (g, h) — p(gh™1) = p(g)p(h)~! factors through G/N x G/N. This proves
that G/N is a Lie group. We call it the quotient Lie group G/N of G with respect
to the normal Lie subgroup V.

Let G be a Lie group acting differentiably on a manifold M. Let m € M and
G, the stabilizer of m in G. Then the orbit map p(m) : G — M is constant on
left G,,,-cosets. Therefore, it factors through the left coset manifold G/G,,, i.e., we
have a commutative diagram

a0 g

| A

G /G,

Since p(m) is a has constant rank by 1.1.3, we have

rank, p(m) = rank; p(m) = dimim 71 (p(m)) = dim 71 (G) — dimker T (p(m))
=dim 7 (G) —dim Ty (Gp,) = dim G — dim G, = dim G/G,.

On the other hand, since p is a submersion we have rank,,) o(m) = rank, p(m) =
dim G/G,,. Since p is surjective, this in turn implies that o(m) is also a subimmer-
sion. On the other hand, o(m) is injective, therefore it has to be an immersion.

1.3.1. LEMMA. The map o(m) : G/G,, — M ‘is an injective immersion.

In particular, if ¢ : G — H a morphism of Lie groups, we have the commuta-
tive diagram

G—H

| A7

G/ ker ¢

of Lie groups and their morphisms. The morphism ® is an immersion. There-
fore, any Lie group morphism can be factored into a composition of two Lie group
morphisms, one of which is a surjective submersion and the other is an injective
immersion.

1.4. Free actions. Let G be a Lie group acting differentiably on a manifold
M. Assume that the action is regular. Therefore the quotient manifold M /G exists,
and the natural projection p : M — M/G is a submersion. Let U be an open set
in M/G. A differentiable map s : U — M is called a local section if po s = idy.
Since p is a submersion, each point u € M/G has an open neighborhood U and a
local section s on U.

Let U C M/G be an open set and s : U — M a local section. We define
a differentiable map ¢ = po (idg x s) : G x U — M. Clearly, if we denote by
p2 1 G x U — U the projection to the second coordinate, we have

p((g,w)) = p(p(g, s(u))) = p(g - s(u)) = p(s(u)) = u = p2(g,u)
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for any g € G and U, i.e., the diagram
GxU _¥, M

| J»
v —— M/G

is commutative.

Clearly, the open subset p~(U) of M is saturated and s(U) C p~*(U). Let
m € p~1(U). Then p(m) corresponds to the orbit Q of m. Moreover, p( (p(m))) =
p(m) and s(p(m)) is also in Q. This implies that m = g - s(p(m)) = (g, p(m)) for
some g € G, and the map 1 is a differentiable surjection of G x U onto p~(U).

Let m = s(u) for w € U and ¢ € G. Denote by Q the G-orbit through
m. Then Ty, (p) o Tu(s) = 1r,(m/c)- Therefore, Ty (s) @ Tu(M/G) — Ty (M)
is a linear injection, Tj,(p) is a linear surjection, ker Tp,(p) Nim Ty, (s) = {0} and
T (M) = ker Ty, (p) @ im Ty, (s). By 1.1.4.4, we have ker Tp,,(p) = T, (92). Hence,
we have T, (M) = T, (Q) @ im Ty, (s).

Now we want to calculate the differential T{y ) (¥) : T(g,u)(GXU) — Ty (M).
Let iy, : G — G x {u} and iy : U — {g} x U. First, we have

($oin)(h) = hem = 7(g)(9™ " h-m) = ((g)op(m)) (g~ ') = (r(g)op(m)ov(g™"))(h),
for any h € G. So, by taking the differentials

Ty(y 0 iu) = T (7(9)) o Ta(p(m)) 0 Ty(v(g™1)).
Second, we have
(Y oig)(v) =g-s(v) = (r(g) o s)(v)
so, by taking differentials we have
Tu(¥ oig) = Tin(7(g)) o Tu(s).
Since T{g,,) (G x U) = Ty(G) © Tu(M/G), we have the formula

g ()X, Y) = Ton(7(9))(T1 (p(m) ) (Ty (v(9™))(X))) + T (7(9)) (Tu(5) (V)
=Tm(T(9))<T1(p(m))(T( (97)(X) + T )

for X € Ty(G) and Y € T,(M/G). Since 7(g) is a diffeomorphism, T,,(7(g)) :
Tn(M) — T, m(M ) is a linear isomorphism. Moreover, since v(g) is a diffeomor-
phism, Ty(v(g7")) : Ty(G) — Ti(G) is a linear isomorphism. Hence, T(, ) (¢) is
surjective if and only if

im Ty (p(m)) +im T, (s) = T (M).

Clearly, im Ty (p(m)) C T, () and as we already remarked 7T,,(Q) @ im Ty, (s) =
T (M). Hence, T(g ., (1) is surjective if and only if T (p(m)) : T1(G) — T5,,(2) is
surjective.

Therefore, v is a surjective submersion of G x U onto p~!(U) if and only if all
orbit maps p(m) are submersions of G onto the orbits of m € s(U). Since

p(h-m) = p(m)od(h~")
and §(h™1) is a diffeomorphism, we see that p(h-m), h € G, are subimmersions
of the same rank. Therefore, the above condition is equivalent to all maps p(m)
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being submersions of G onto orbits of m € p~1(U). By 1.3.1, this is equivalent to
all maps o(m) being diffeomorphisms of G/G,, onto orbits of m € p=(U).

Let M be a manifold. Consider the action of G on Gx M given by uas (g, (h,m)) =
(gh,m) for any g,h € G and m € M. This is clearly a differentiable action
and Rg = {(g,m,h,m) € G x M x G x M}. Therefore, Rg is a closed sub-
manifold of G x M x G x M and this action is regular. Moreover, the corre-
sponding map Oy : G X G X M — G x M x G x M is given by the formula
Or (g, h,m) = (gh,m,h,m) for g,h € G and m € M, hence it is a diffeomorphism
of G x G x M onto R and the action of G on G x M is free.

No we we want to give a natural characterization of free actions and show that
they locally look like the free action from the above example.

1.4.1. THEOREM. Let G be a Lie group acting differentiably on a manifold M.
Assume that the action is regular. Then the following conditions are equivalent:
(1) the action of G is free;
(i) all orbit maps p(m) : G — Q, m € M, are diffeomorphisms;
(iii) for any point w € M/G there exists an open neighborhood U of u in M/G
and a local section s: U — M such that the map ¢ : G x U — M is a
diffeomorphism of G x U onto the open submanifold p~*(U) of M.

PROOF. We already established that if the action of G is free, all orbit maps
are diffeomorphisms. Hence, (i) implies (ii). If (ii) holds, by the above discussion,
we see that 1 is a surjective submersion. On the other hand,

dim, (G x U) = dim G + dim, (M/G) = dim Q + dim,, (M/G) = dimg.., M,

s0 T(g,u)(¥) is also injective. Therefore, 9 is a local diffeomorphism. On the other
hand, if ¥ (g,u) = ¥ (h,v), we have u = p(¢(g,u)) = p(¢»(h,v)) = v. Moreover,
g-u = h-u implies that ¢ = h, since the orbit maps are diffeomorphisms. It follows
that 1 is a bijection. Since it is a local diffeomorphism, it must be a diffeomorphism.
Therefore, (iii) holds.

It remains to show that (iii) implies (i). First assume that we have an open
set U in M/G and a local section s on U such that ¢ : G x U — p~1(U) is a
diffeomorphism. Then, p~!(U) is G-invariant and we can consider the G-action
induced on p~!(U). Clearly, this action of G is differentiable. If we consider the
action of G onto G x U from the previous example, the diagram

GxGxU 2. agxU
Mcx¢l l¢
Gxp~i(U) — = p7}(U)
is commutative, since
(v (g, (h,w)) = (gh,u) = gh - s(u) = (g, Y (h, s(u)))
for all g,h € G and v € U. This implies that the diagram

GxGxU - GxUxGxU

z’dewl lwxw

Gxp ' (U) —2— p=1(U) x p~ (V)
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is commutative and the vertical arrows are diffeomorphisms. The diffeomorphism
1) X 1 maps the graph of the equivalence relation on G x U onto the graph of the
equivalence relation on p~!(U). Since the action on G x U is free, the action on
p~1(U) is also free. Therefore, the restriction of § to G x p~*(U) is a diffeomorphism
onto Rg N (p~1(U) x p~1(U)).

Therefore (iii) implies that 6 is a local diffeomorphism of G x M onto Rg. In
addition, the orbit maps are diffeomorphisms.

It remains to show that 6 : G x M — M x M is an injection. Assume that
0(g,m) = 0(h,n) for g,h € G and m,n € M. Then we have (g -m,m) = (h-n,n),
i.e., m =n and g-m = h-m. Since the orbit maps are bijections, this implies that
g =h. O

1.5. Lie groups with countably many components. Let G be a Lie
group. The connected component Gy of G containing the identity is called the
identity component of G. Clearly, Go is an open and closed subset of G. For any
g € Go the right translation §(g) permutes connected components of G. Moreover,
it maps the g into 1, hence it maps Gy onto itself. It follows that Gy is a Lie
subgroup of G.

Moreover, the map Int(g) : G — G is a Lie group automorphism of G. There-
fore, it also permutes the connected components of G. In particular it maps Gg
onto itself. This implies that Gy is a normal Lie subgroup of G. The quotient
Lie group G/Gj is discrete and its cardinality is equal to the number of connected
components of G.

1.5.1. LEMMA. Let G be a connected Lie group. For any neighborhood U of the
identity 1 in G, we have
¢=\Ju"
n=1

PrOOF. Let V be a symmetric neighborhood of identity contained in U. Let
H=J2, V" Ifge V" and h € V™, it follows that gh € V"™™ C H. Therefore,
H is closed under multiplication. In addition, if g € V™, we see that g=! € V" since
V' is symmetric, i.e., H is a subgroup of G. Since V C H, H is a neighborhood of
the identity in G. Since H is a subgroup, it follows that H is a neighborhood of
any of its points, i.e., H is open in G. This implies that the complement of H in G
is a union of H-cosets, which are also open in G. Therefore, H is also closed in G.
Since G is connected, H = G. O

This result has the following consequence.
1.5.2. COROLLARY. Let G be a connected Lie group. Then G is separable.

PROOF. Let U be a neighborhood of 1 which is domain of a chart. Then, U
contains a countable dense set C'. By continuity of multiplication, it follows that
C™ is dense in U™ for any n € Zy. Therefore, by 1.5.1, D = [J.2_, C™ is dense in
G. In addition, D is a countable set. Therefore, there exists a countable dense set
D in G.

Let (Up;n € Z4), be a fundamental system of neighborhoods of 1 in G. With-
out any loss of generality we can assume that U,, are symmetric. We claim that
U={U,d| meZ,,de D} is a basis of the topology on G. Let V be an open set
in G and g € V. Then there exists n € Z, such that U2g C V. Since D is dense in
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G, there exists d € D such that d € U,,g. Since U, is symmetric, this implies that
g € Upd. Moreover, we have
Und CU2gC V.

Therefore, V' is a union of open sets from U. g

A locally compact space is countable at infinity if it is a union of countably
many compact subsets.

1.5.3. LEMMA. Let G be a Lie group. Then the following conditions are equiv-
alent:

(1) G is countable at infinity;
(ii) G has countably many connected components.

PROOF. (i) = (i1) Let K be a compact set in G. Since it is covered by the
disjoint union of connected components of GG, it can intersect only finitely many
connected components of G. Therefore, if G is countable at infinity, it can must
have countably many components.

(1) = (i) Let g;, @ € I, be a set of representatives of connected components
in G. Then G = {J;c; 9:Go. Let K be a connected compact neighborhood of the
identity in G. Then K C Gy and by 1.5.1, we have Gy = |J,—; K™. Moreover, K",
n € N, are all compact. It follows that

G = U UglKn

1€l n=1
Therefore, if I is countable, G is countable at infinity. (]

A topological space X is a Baire space if the intersection of any countable
family of open, dense subsets of X is dense in X.

1.5.4. LEMMA (Category theorem). Any locally compact space X is a Baire
space.

PRrROOF. Let U,, n € N, be a countable family of open, dense subsets of X.
Let V = V; be a nonempty open set in X with compact closure. Then V; NU;
is a nonempty open set in X. Therefore, we can pick a nonempty open set with
compact closure Vo C Vo C V3 NU;. Then Vi N Us is a nonempty open subset of
X. Continuing this procedure, we can construct a sequence V,, of nonempty open
subsets of X with compact closure such that V11 C V,,41 C V,, N U,,. Therefore,
Vi1 C V, for n € N, ie., V,,, n € N, is a decreasing family of compact sets.
Therefore, W = ﬂflo:l V, # 0. On the other hand, W C V,,41 C U, for all n € N.
Hence the intersection of all U,, n € N, with V is not empty. ]

1.5.5. PROPOSITION. Let G be a locally compact group countable at infinity
acting continuously on a hausdorff Baire space M. Assume that the action of G on
M is transitive. Then the orbit map p(m) : G — M ‘s open for any m € M.

PROOF. Let U be a neighborhood of 1 in G. We claim that p(m)(U) is a
neighborhood of m in M.

Let V be a symmetric compact neighborhood of 1 in G such that V2 C U.
Clearly, (¢V;g € G), is a cover of G. Since G is countable at infinity, this cover has
a countable subcover (g,V;n € N), ie,, G = J,_, g, V. Therefore, M is equal to
the union of compact sets (g, V) -m, n € N. Let U, = M — (g,V) - m for n € N.
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Since V is compact, all g,V, n € N, are compact. Hence their images (g,V) - m
are compact and therefore closed in M. It follows that U,, n € N, are open in M.
Moreover, we have

oo

(VUn= (1M~ (gaV)-m)=M— | J(gV)-m=0.
n=1 n=1 n=1

Therefore, by 1.5.4, at least one U, cannot be dense in M. Hence M —V -m =
7(g; ) (M — (g, V) - m) is not dense in M. It follows that V - m has a nonempty
interior. Assume that g-m, g € V, is an interior point of V. Then (¢7'V)-m is a
neighborhood of m. Therefore,

(g'V)-mcV:-mcU-m=p(m)U)

is a neighborhood of m € M. This establishes our claim.

Assume now that U is an arbitrary open set in G. Let g € U. Then g~—'U is
a neighborhood of 1 € G. Hence, by the claim, g=1 - p(m)(U) = p(m)(g~1U) is a
neighborhood of m € M. This implies that p(m)(U) is a neighborhood of g - m.
Therefore, p(m)(U) is a neighborhood of any of its points, i.e., it is an open set. [

Let G be a Lie group acting differentiably on a manifold M. If the action
is transitive, the orbit map p(m) : G — M is a surjective subimmersion. If G
has countably many connected components, it is countable at infinity by 1.5.3.
Therefore, by 1.5.5, p(m) is an open map. By 1.1.3.2, it has to be a submersion. As
we remarked before, it factors through a differentiable map o(m) : G/G,, — M.
Clearly, in our situation, the map o(m) is an bijective submersion. By 1.3.1, it is
also an immersion. Therefore, we have the following result.

1.5.6. THEOREM. Let G be a Lie group with countably many connected compo-
nents acting differentiably on a manifold M. Assume that the action of G on M is
transitive. Then the orbit map induces a diffeomorphism o(m) : G/Gn — M.

This has the following direct consequences.

1.5.7. COROLLARY. Let ¢ : G — H be a surjective Lie group morphism.
If G has countably many connected components the induced homomorphism ® :
G/ker¢ — H is an isomorphism.

1.5.8. THEOREM. Let G be a Lie group with countably many connected com-
ponents acting differentiably on a manifold M. Assume that the action is reqular.
Then the following conditions are equivalent:

(i) all stabilizers G,,, m € M, are trivial;
(ii) the action of G on M is free.

Another consequence of the argument in the proof of 1.5.5 is the following
observation.

1.5.9. LEMMA. Let G be a locally compact group countable at infinity acting
continuously on a hausdorff Baire space M. Assume that G has countably many
orbits in M. Then there exists an open orbit in M.

PrROOF. Let my, i € I, be a family of representatives of all G-orbits in M. Let
V be a compact neighborhood of 1 € G. Then, as in the proof of 1.5.5, there exists
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a sequence (gn;n € N) such that G = |J,—, g, V. Therefore, we have

i€l n=1
If we define U; , = M — (g,V) - my, i € I,n € N, the sets U, ,, are open sets in M.

In addition,
o0 o0

) Vin =M~ U (gaV) mi=0.

i€l n=1 i€l n=1
Since I is countable, by 1.5.4, at least one U;,, cannot be dense in M. Therefore,
that g,V - m; has a nonempty interior. This implies that the orbit G - m; has
nonempty interior. Let m be an interior point of G -m;. Then, for any g € G, g-m
is another interior point of G - m;. Therefore, all points in G - m; are interior, i.e.,
the orbit G - m; is open in M. O

This has the following consequence.

1.5.10. PROPOSITION. Let G be a Lie group with countably many components
acting differentiably on a manifold M. If G acts on M with countably many orbits,
all orbits are submanifolds in M.

PROOF. Let Q be an orbit in M. Since € is G-invariant, its closure  is G-
invariant. Therefore € is a union of countably many orbits. Moreover, it is a locally
compact space. Hence, by 1.5.4, it is a Baire space. If we apply 1.5.9 to the action
of G on Q, we conclude that ) contains an orbit €’ which is open in Q. Since Q
is dense in 2, we must have ' = Q. Therefore, 2 is open in Q. Therefore, there
exists an open set U in M such that QN U = €, i.e., Q is closed in U. Therefore,
the orbit Q is locally closed in M. In particular, €2 is a locally compact space with
the induced topology. Let m € €. Using again 1.5.4 and 1.5.5 we see that the map
o(m) : G/Gp, — Q is a homeomorphism. By 1.3.1, Q is the image of an immersion
o(m) : G/G, — M. Therefore, by 1.1.4.2, Q is a submanifold of M. O

1.6. Universal covering Lie group. Let X be a connected manifold with
base point zg. A covering of (X, x¢) is a triple consisting of a connected manifold
Y with a base point yg and a projection g : Y — X such that

(i) q is a surjective local diffeomorphism;
(i) q(yo) = @o;
(iii) for any = € X there exists a connected neighborhood U of X such that ¢
induces a diffeomorphism of every connected component of ¢~1(U) onto
U.
The map ¢ is called the covering projection of Y onto X.

A cover (X,p,&o) of (X,x0) is called a universal covering if for any other
covering (Y, q,y0) of (X, x0) there exists a unique differentiable map r : X ——Y
such that (X,r, %) is a covering of (Y, ) and the diagram

X—=Y

pl/
q

X

is commutative.
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Clearly, the universal covering is unique up to an isomorphism.
Any connected manifold X with base point z¢ has a universal cover X and
71 (X, &) is trivial, i.e., X is simply connected.

1.6.1. LEMMA. Let (X, z0) be a connected manifold and (Y, p,yo) its covering.
Let (Z,z,) be a connected and simply connected manifold, and F : Z — X a
differentiable map such that F(z9) = xo. Then there exists a unique differentiable
map F' : Z —'Y such that

(i) F'(z0) = yo;
(ii) the diagram

’
7 L>

N

Let (Y, q,y0) be a covering space of (X, z¢). A diffcomorphism ¢ : Y — Y is
called a deck transformation if g o ¢ = q.

Let (X,a?o) be the universal covering space of (X,xz¢). Then any loop 7 :
[0,1] — X such that v(0) = (1) = ¢ can be lifted to the unique curve 7 :
[0,1] — X such that

(i) 7(0) = Zo;

(ii) poy =1.
The end point 5(1) of 7 is in p~1(x). This map induces a bijection of (X, z¢)
onto p~!(zg). On the other hand, for any x € p~!(xg) there exists a unique deck
transformation of X which maps %, into z. In this way, we construct a map from
the fundamental group 71 (X, ) onto the group of deck transformations of X . This
map is a group isomorphism. Therefore, m (X, z¢) acts on X and X is the quotient
of X with respect to this action.

Let G be a connected Lie group. Denote by (G p,1) the universal covering
space of (G,1). Then G x G is connected and simply connected. Therefore, the
mapping mo (p X p) : G x G — @ has a lifting m : G x G — G such that
a(11) =1,

We claim that G with the multiplication defined by m is a group. First, we
have

18 commutative.

po (mo (idz x m)) =mo (pxp)o (idz x m)
=mo(pXpom)=mo(pXxmo(pxp))=mo(idgxm)o(pXpXxp)
and
po(mo(mxidz)) =mo(pxp)o(m Xidz)
=mo(pomxp)=mo((mo(pxp))xXp) =mo(mxidg)o(pXpXxp).
Since the multiplication on G is associative, it follows that m o (ids x m) and
mo (m x ids) are the lifts of the same map from G x G x G into G. Since both

maps map (1, i i) into 1, it follows that they are identical, i.e., the operation m is
associative.
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Also, we have
p((g, 1)) = m(p(9), 1) = p(q)
for any g € G, hence § — T:n(g, 1) is the lifting of p : G — G. Since m(1,1) =1,
this map is the identity on G, i.e., m(g,1) = g for all § € G.
Analogously, we have

p(m(1,9)) = m(1,p(9)) = p(9)

for any g € G, hence § — (1, §) is the lifting of p : G — G. Since m(1,1) =1,
this map is the identity on G, i.e., m(1,§) = g for all § € G.
It follows that 1 is the identity in G.
Let i : G — G be the lifting of the map ¢ o p: G — G such that i(1) = 1.
Then we have

p(m(g,2(9))) = m(p(g), p(i(g))) = m(p(g),p(3) ") = 1.

Therefore, g — m(g,i(g)) is the lifting of the constant map of G into 1. Since
(m(1,2(1)) = 1, we conclude that this map is constant and its value is equal to 1.
Therefore, we have
m(g,1(g)) =1
for all § € G.
Analogously, we have

p((i(g), 9)) = m(p((9)), p(3)) = m(p(9) ", p(g)) = 1.

Therefore, § — 1m(i(§), §) is the lifting of the constant map of G into 1 € G. Since
(m(i(1),1) = 1, we conclude that this map is constant and its value is equal to 1.
Therefore, we have

m(i(g),9) =1
for all § € G.

This implies that any element § € G has an inverse ! = i(§). Therefore, G
is a group. Moreover, since 1 and 7 are differentiable maps, G is a Lie group. It is
called the wuniversal covering Lie group of G.

By the construction we have mo (p x p) = pom, i.e., p: G — G isalLie group
homomorphism. Let D = kerp. Then D is a normal Lie subgroup of G. Since p is
a covering projection, D is also discrete.

For any d € D, y(d) : G — G is a deck transformation which moves 1 into
d. Therefore d — ~(d) defines an isomorphism of D with the group of all deck
transformations of G. Composing this with the isomorphism of the fundamental
group 71 (G, 1) with the group of all deck transformations we see that

m1(G,1) = kerp.

1.6.2. LEMMA. Let D be a discrete subgroup of a Lie group G. Then D is a
closed subgroup.

PRrROOF. Clearly, D is locally closed. Hence, by 1.1.1, D is closed in G. O

1.6.3. LEMMA. Let G be a connected Lie group and D its discrete normal sub-
group. Then D is a central subgroup.
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PROOF. Let d € D. Then « : g — gdg~! is a continuous map from G
into G and the image of « is contained in D. Therefore, the map a : G — D
is continuous. Since G is connected, and D discrete it must be a constant map.
Therefore, gdg=* = a(g) = a(1) = g for any g € G. It follows that gd = dg for any
g € G, and d is in the center of G. |

In particular, the kernel ker p of the covering projection p : G — G is a discrete
central subgroup of G. From the above discussion, we conclude that the following
result holds.

1.6.4. PROPOSITION. The fundamental group m1(G,1) is abelian.

Let (Y, q,y0) be another covering of (G, 1). Then there exists a covering map
r: G — Y such that p = gor and r(1) = yo. All deck transformations of
G corresponding to the covering r : G — Y are also deck transformations for
p: G — G. Therefore they correspond to a subgroup C of D. Since D is a
central subgroup of G, C is also a central subgroup of G. It follows that r is
constant on C-cosets in G and induces a quotient map C;'/C — Y. This map is a
diffeomorphism, hence Y has a Lie group structure for which yg is the identity. This
proves the following statement which describes all covering spaces of a connected
Lie group.

1.6.5. THEOREM. Any covering of (G, 1) has a unique Lie group structure such
that the base point is the identity element and the covering projection is a morphism
of Lie groups.

On the other hand, we have the following characterization of covering projec-
tions.

1.6.6. PROPOSITION. Let ¢ : G — H be a Lie group homomorphism of con-
nected Lie groups. Then ¢ is a covering projection if and only if Ty (p) : T1(G) —
T1(H) is a linear isomorphism.

PrOOF. If ¢ is a covering projection, it is a local diffeomorphism and the
assertion is obvious.

If T (p) : Th(G) — T1(H) is a linear isomorphism, ¢ is a local diffeomorphism
at 1. By 1.1.5, ¢ has constant rank, i.e., it is a local diffeomorphism. In particular,
it is open and the image contains a neighborhood of identity in H. Since the
image is a subgroup, by 1.5.1 it is equal to H. Therefore, ¢ is surjective. Moreover,
Ty (ker ¢) = {0} by 1.1.5, i.e., D = ker ¢ is discrete. By 1.6.3, D is a discrete central
subgroup. It follows that ¢ induces an isomorphism of G/D onto H. Therefore, H
is evenly covered by G because of 1.4.1. g

Let G and H be connected Lie groups and ¢ : G — H be a Lie group
homomorphism. Assume that G is simply connected. Then there exists a unique
lifting ¢ : G — H such that ¢(1) = 1. Since, we have
pomo(@x@) = mo(pxp)o($x @) = mo((pe@)x (po@)) = mo(pxp) = pom = pogom
the maps mo (¢ x @) and @ om are the lifts of the same map. They agree on (1,1)
in G x G, hence they are identical. This implies that ¢ : G — H is a Lie group

homomorphism.
Therefore, we have the following result.
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1.6.7. LEMMA. Let ¢ : G — H be a Lie group homomorphism of a simply
connected, connected Lie group G into a connected Lie group H. Let H be the
universal covering Lie group of H and p : H — H the covering projection. Then
there exists a unique Lie group homomorphism @ : G — H such that po ¢ = .

In addition, if ¢ : G — H is a Lie group morphism of connected Lie groups,
there exists a unique Lie group homomorphism ¢ : G — H such that the diagram

G —— H

o | [

G —2 - H

where the vertical arrows are covering projections, is commutative.

1.7. A categorical interpretation. Let Lie be the category of Lie groups.
Denote by ConnLie its full subcategory of connected Lie groups. If G is a Lie group,
its identity component Gy is a connected Lie group. Moreover, if ¢ : G — H is
a Lie group morphism, ¢(Gp) C Hy. Therefore, the restriction g of ¢ to Gy is a
morphism ¢qg : Gy — Hp. It is easy to check that this defines a functor from the
category Lie into the category ConnLie. In addition, we have

Hom(G, H) = Hom(G, Hy)

for any connected Lie group G and arbitrary Lie group H. Therefore, taking the
identity component is the right adjoint to the forgetful functor For : ConnLie —
Lie.

Let SimplyConnLie be the full subcategory of Lie consisting of simply con-
nected connected Lie groups. It follows from the above discussion that ™ is a functor
from ConnLie into SimplyConnLie. By 1.6.7, the universal covering functor ~ is
the right adjoint to the forgetful functor For : SimplyConnLie — ConnLie.

It follows that the composition of the identity component functor and the uni-
versal covering functor is the right adjoint to the forgetful functor from the category
SimplyConnLie into Lie.

In the next section we are going to show that SimplyConnLie is equivalent to
a category with purely algebraic objects.

1.8. Some examples. Let M be a manifold with an differentiable map m :
M x M — M which defines an associative multiplication operation on M. Assume
that this operation has the identity 1.

Let G be the set of all invertible elements in M. Then, G is a group.

1.8.1. LEMMA. The group G is an open submanifold of M. With this manifold
structure, G is a Lie group.

ProOOF. Consider the map ¢ : M x M — M x M defined by ¢(a,b) =
(a,m(a,b)) form,n € M. ThenTi 1(¢)(X,Y) = (X, X+Y) for any X,Y € Ty (M).
Therefore, ¢ is a local diffeomorphism at 1. Therefore, there exists neighborhoods
U and V of (1,1) € M x M such that ¢ : U — V is a diffeomorphism. Let
1 : V. — U be the inverse map. Then ¢(a,m(a,b)) = (a,b) for all (a,b) € U.
Hence, if we shrink V to be of the form W x W for some open neighborhood W of 1 in
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M, we have ¢(a,b) = (a, a(a, b)) for some differentiable function o : WxW — M
and a,b € W. In particular, if we put ¢(a) = a(a, 1), we have

(a,m(a,u(a))) = ¢(a, ((a)) = ¢(a; a(a, 1)) = (a,1)

for a € W. Therefore, all elements in W have a left inverse.

Analogously, by considering the opposite multiplication m°(a, b) = m(b,a) for
a,b € M, we conclude that there exists an open neighborhoods W’ where all ele-
ments have a right inverse. Therefore, elements of O = W NW’ have left and right
inverses. Let a € O, b a left inverse and ¢ a right inverse. Then

b = b(ac) = (ba)c = ¢,

i.e., any left inverse is equal to the right inverse ¢. This implies that the left and
right inverses are equal and unique. In particular the elements of W are invertible.

It follows that W C G. Let g € G. Then the left multiplication y(g) : M — M
by g is a diffeomorphism. Therefore, g - W C G is an open neighborhood of g. It
follows that G is an open submanifold of M.

Since the map ¢ — ¢~ ! is given by ¢« on W, it is differentiable on W. If
h € g-W, we have h=t = (g(g7th))™! = (g7 th)~tg~! = (g7 h)g™?, and this
implies that the inversion is differentiable at g. It follows that G is a Lie group. O

In particular, this implies that checking the differentiability of the inversion map
in a Lie group is redundant. If G is a manifold and a group and the multiplication
map m : G x G — G is differentiable, then G is automatically a Lie group.

Let A be a finite dimensional associative algebra over R with identity. Then the
group G of invertible elements in A is an open submanifold of A and with induced
structure it is a Lie group. The tangent space T1(G) can be identified with A.

In particular, if A is the algebra £(V') of all linear endomorphisms of a linear
space V, this group is the group GL(V). If V.= R", the algebra £(V') is the algebra
M, (R) of n x n real matrices and the corresponding group is the real general linear
group GL(n,R). Tts dimension is equal to n?.

Let det : GL(n,R) — R* be the determinant map. Then it defines a Lie
group homomorphism of GL(n,R) into R*. TIts kernel is the real special linear
group SL(n,R).

The tangent space at I € M,(R) can be identified with M,,(R). To calculate
the differential of det at I, consider the function

t— det(I +tT) =1+ ttr(T) +t3(...)

for arbitrary T' € M, (R). Since T is the tangent vector to the curve t — I + ¢T
at t = 0, we see that the differential of det is the linear form tr : M, (R) — R.
It follows that the tangent space to SL(n,R) at I is equal to the subspace of
all traceless matrices in M, (R).
Therefore, the dimension of SL(n,R) is equal to n? — 1.
Let A be a finite dimensional associative algebra over R with identity. An
involution 7 on A is a linear map a — a” such that
(i) (a™)” =a for any a € A;
(ii) (ab)™ =b7a7 for all a,b € A.

Clearly, 7 is a linear isomorphism of A and

1"=17(1" =(1"1)" = (17)" = 1.
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Let G be the Lie group of all regular elements in A. Let
H={g9eG|gg"=9"g=1}.
Then H is a subgroup of G.

1.8.2. LEMMA. The group H is a Lie subgroup of G.
The tangent space T1(H) can be identified with the linear subspace {a € A |
a=—a"}.

PrOOF. The tangent space to G at 1 can be identified with A, by attaching to
a € A the tangent vector at 1 to the line R 3 ¢ +—— 1+ ta. Let ¥ : A — A be the
map ¥(a) = aa”. Then

U(l+ta)=(1+ta)1+ta)” = (1 +ta)(1+ta”) =1+tla+a")+t?aa”

for all ¢ € R. Therefore, T1(¥)(a) = a+a".

Let S ={a € A| a=a"}. then S is a linear subspace of A and therefore
a submanifold. The image of ¥ is in S. Therefore, ¥ : A — S is differentiable.
Moreover, by the above calculation, ¥ is a submersion at 1. Hence, there exists
an open neighborhood U of 1 in G such that the restriction ¥ : U — S is a
submersion. By 1.1.4.4, HNU = U N¥~1(1) is a submanifold of G. This implies
that v(h)(HNU) = HNh-U is a submanifold of G for any h € H. Therefore, H
is a submanifold of G and a Lie subgroup of G. In addition, T (H) = ker T} (¥) =
{a€A|a=-a"}. O

Let V be a finite dimensional real linear space and ¢ : V xV — R a symmetric
(resp. skewsymmetric) nondegenerate bilinear form. Then for any T € £(V') there
exists a unique T* € L(V') such that

o(Tv,w) = (v, T*w) for all v,w € V.
The mapping T +—— T* is an involution on £(V'). The Lie group
G={TeGL(V)|TT"=T"T =1}

is called the orthogonal (resp. symplectic) group of .
For example, if V = RP*¢ and

P pt+q
p(o,w) = vwi — Y viw;,
i=1 i=p+1

then the corresponding orthogonal group is denoted by O(p, ¢). It is a Lie subgroup
of GL(p + ¢, R).

Then det : O(p,q) — R* is a Lie group homomorphism. Its kernel is the
special orthogonal group SO(p, q) which is also a Lie subgroup of the special linear
group SL(p + ¢, R).

If V=R? and
p(v,w) =Y (Vitwn i — Vnriwi),
i=1
then the corresponding symplectic group is denoted by Sp(n, R). It is a Lie subgroup
of GL(2n,R).

Consider now the Lie subgroup O(n) = O(n,0) of GL(n,R). For any T € O(n),
its matrix entries are in [—1,1]. Therefore, O(n) is a bounded closed submanifold
of My (R). It follows that O(n) is a compact Lie group.
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Clearly, for a matrix T € O(n), T™ is its transpose. Therefore, det(T) =
det(T*) and

1 = det(I) = det(TT*) = det(T") det(T™*) = (det(T'))?

ie., det(T) = £1. It follows that the homomorphism det maps O(n) onto the
subgroup {£1} of R*. Therefore, SO(n) is a normal Lie subgroup of O(n) of index
2. In particular, SO(n) is open in O(n).

The group O(n) preserves the euclidean distance in R™. Moreover, it acts
transitively on the unit sphere S"™1 = {# € R" | 23 + 22 + -+ + 22 = 1}. Let
e = (1,0,...,0) € S»~1. Consider the orbit map p(e) : GL(n,R) — R"™ given by
T — T - e. Since we have

(I+tT)e=e+tTe

we see that the differential T7(p(e)) : GL(n,R) — R™ is given by T7(p(e))(S) = Se
for any matrix S. The restriction p1(e) : O(n) — S™~1 of p(e) to O(n) is the orbit
map of e for the action of O(n). Its differential at I is the restriction of T7(p(e)) to
T;1(O(n)) which is equal to the space of all nxn skewsymmetric matrices. Therefore,
we have im T (p1(e)) = {(0,z2,...,2,) | ; € R} C R™. This is clearly the tangent
space to the sphere S"~1 at e, hence p;(e) is a submersion. Therefore, its restriction
to SO(n) is also a submersion. It follows that the orbit of e under SO(n) is open in
Sn=1. Since SO(n) is compact, that orbit is also compact and closed. Since S"~1! is
connected, this must be the only orbit, i.e., SO(n) acts transitively on S"~!. The
stabilizer of e in SO(n) is the group

1 0
0 T
which is isomorphic to SO(n — 1). Therefore, by 1.3.1, the orbit map induces a
diffeomorphism of SO(n)/SO(n — 1) with S7~1.
The dimension of SO(n) is equal to the dimension of its tangent space at I.

Therefore, by 1.8.2, it is equal to the dimension of the space of all real skewsym-
metric n X n matrices, i.e., we have

TESO(n—l)}.

nin —1)
—

1.8.3. LEMMA. The group SO(n) is a connected compact Lie group.
The group O(n) has two connected components.

dim SO(n) =

We need to prove the first statement only. It is a consequence of the following
lemma.

1.8.4. LEMMA. Let G be a Lie group and H its Lie subgroup. Assume that H
and G/H are connected. Then G is a connected Lie group.

PROOF. Let e be the identity coset in G/H. Then the orbit map p(e) : G —
G/H is a submersion. Let G be the identity component of G. Then, the restriction
of p(e) to Gy is also a submersion. It follows that the orbit of e under Gy is open.
Therefore, all orbits of G in G/H are open. Since G/H is connected, it follows
that Go acts transitively on G/H. Let T € G. Then there exists S € Gg such
that Te = Se. It follows that S™'Te = ¢ and S™!T is in the stabilizer of e, i.e.,
in H. Since H is connected, it follows that ST € Gy and T € Gy. Therefore,
G = Go. O
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Now we prove 1.8.3 by induction in n € N. If n = 1, SO(1) = {1} and the
statement is obvious. Hence we can assume that SO(n — 1) is connected. As we
remarked above, SO(n)/SO(n — 1) is diffeomorphic to S”~!. Hence, the assertion
follows from 1.8.4.

Consider now V' = C™. The algebra of complex linear transformations on V can
be identified with the algebra M,,(C) of n x n complex matrices. It can be viewed
as a real algebra with identity. The corresponding group of regular elements is
the group GL(n,C) of regular matrices in M,,(C). It is called the complex general
linear group. Clearly, it is an open submanifold of M, (C) and also a Lie group.
Its tangent space at I can be identified with M, (C). Therefore the dimension of
GL(n,C) is equal to 2n?.

The determinant det : GL(n,C) — C* is again a Lie group homomorphism.
Its kernel is the complex special linear group SL(n,C). As before, we can calculate
its differential which is the complex linear form tr : M, (C) — C. Therefore, the
tangent space to SL(n, C) at I can be identified with the space of traceless matrices
in M, (C). It follows that the dimension of SL(n,C) is equal to 2n? — 2.

Let V = CP*9 and

P p+q
o(v,w) = E V;W; — E ;104
i=1 i=p+1

for v,w € V. This form is linear in the first variable and antilinear in the second,
but if we forget the complex structure, it is bilinear. Therefore, the above discussion
applies again. If ' — T* is the corresponding involution on M, (C), the group
H={T € GL(n,C) | TT* = T*T = 1}, is called the unitary group with respect to
¢ and denoted by U(p, q).

If V = C", we put U(n) = U(n,0). In this case T* is the hermitian adjoint
of the matrix T. The absolute values of all matrix entries of T' € U(n) are < 1.
Therefore, U(n) is a bounded closed submanifold of M,,(C). It follows that U(n) is
a compact Lie group. In addition, we have

1 = det(TT*) = det(T) det(T)* = | det(T)|?

for T € U(n), i.e. det is a Lie group homomorphism of U(n) into the multiplicative
group of complex numbers of absolute value 1. The kernel of this homomorphism
is the special unitary group SU(n).

By 1.8.2, the tangent space to U(n) at I is equal to the space of all skewadjoint
matrices in M, (C). Therefore, we have

dim U(n) = n?.

The tangent space to SU(n) at I is the kernel of the linear map induced by tr,
i.e., the space of all traceless skewadjoint matrices in M,,(C). Therefore, we have

dimSU(n) =n? — 1.

The group U(n) preserves the euclidean distance in C™. Moreover, it acts
transitively on the unit sphere S?"~! = {z € R" | |z1|> + |22 + - - - + |zn|> = 1}.
Let e = (1,0,...,0) € S?"~1. Consider the orbit map p(e) : GL(n,C) — C™ given
by T — T - e. Since we have

(I+tTe=e+1tTe
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we see that the differential T7(p(e)) : GL(n,C) — C™ is given by Tr(p(e))(S) = Se
for any matrix S. The restriction p;(e) : SU(n) — S?"~! of p(e) to SU(n) is the
orbit map of e for the action of SU(n). Its differential at I is the restriction of
T1(p(e)) to Tr(SU(n)) which is equal to the space of all n x n traceless skewadjoint
matrices. Therefore, we have imT7(p1(e)) = {(iy1,22,...,2n) | y1 € R,z € C} C
C". This is clearly the tangent space to the sphere S?"~1 at e, hence pi(e) is a
submersion. It follows that the orbit of e under SU(n) is open in S?"~!. Since
SU(n) is compact, that orbit is also compact and therefore closed. Since $27~!
is connected, that is the only orbit, i.e., SU(n) acts transitively on S?"~!. The
stabilizer of e in SU(n) is the group

{7

which is isomorphic to SU(n — 1). Therefore, by 1.3.1, the orbit map induces a
diffeomorphism of SU(n)/SU(n — 1) with $2"~1.

TESU(n—l)}.

1.8.5. LEMMA. The group SU(n) is a connected compact Lie group.

ProoF. This follows immediately from the above discussion and 1.8.4 as in the
proof of 1.8.3. ]

On the other hand, U(n)/SU(n) is isomorphic to the multiplicative group of
complex numbers of absolute value 1. Hence, applying 1.8.4 again, we conclude
that the following result holds.

1.8.6. COROLLARY. The group U(n) is a connected compact Lie group.

Now we want to study the fundamental groups of the above examples.

Assume that G is a Lie group and H a Lie subgroup. Let Hy be the identity
component of H. Then Hj is a Lie subgroup of G. Moreover, the natural quotient
morphism p : G — G/H is constant on left Hy-cosets. Therefore it induces a
differentiable map © : G/Hy — G/H. Let po : G — G/H, be the natural
quotient morphism. Then we have 7o pg = p. Since p is a submersion, 7 has to be
a submersion. Moreover, we have

dim(G/H) = dim G — dim H = dim G — dim Hy = dim(G/ Hy),
and 7 is a local diffeomorphism.
Consider the differentiable map H x G — G given by u,(h,g) = gh~! for
h € H and g € G. It defines an action of H on G. The composition of this map

with po defines a differentiable map A : H x G — G/H,. We can view Hy x Hy
as a Lie subgroup of H x G. Clearly, since Hy is a normal subgroup in H, we have

A(hho, gh1) = ghihg 'h™ Ho = gh™"(hhihg 'h™')Hy = gh™ " H,
for any g € G, h € H and hg,h; € Hy. Hence, the differentiable map A\ factors
through a differentiable map x : H/Hy x G/Hy — G/H, which satisfies
#(hHo,gHo) = gh™ " Hy
for any ¢ € G and h € H. Clearly, this is a differentiable action of the discrete
group H/Hy on G/Hy. The orbits on this action in G/Hy are the projections of
left H-cosets in G in G/Hy. Therefore, G/H is the quotient manifold of G/Hy for

that action. Hence, the action of the discrete group H/Hy on G/H) is regular. By
1.4.1, this action is free. By (iii) in 1.4.1, we also see that 7 is a covering projection.
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Assume that G is a connected Lie group. Then G/H and G/H, are connected
manifolds, and 7 : G/Hy — G/H is a covering projection. Moreover, the order of
the covering is equal to Card(H/Hy), i.e., to the number of the components of H.

1.8.7. LEMMA. Let G be a connected Lie group and H a Lie subgroup of G. If
G/H is simply connected, the group H is connected.

In addition, the natural morphism of fundamental groups 71 (H,1) — m1(G,1)
s surjective.

PROOF. Let Hy be the identity component of H. Then 7 : G/Hy — G/H is a
covering projection. Since G/H is simply connected, 7 has to be a diffeomorphism,
i.e., the order of the covering is 1. This implies that H = Hy.

Let G be the universal cover of G and r : G — G the natural projection.
Since 7 is a local diffeomorphism, K = r~1(H) is a Lie subgroup of G. Moreover,
the differnetiable map por : G — G/H induces a diffeomorphism G/K — G/H.
Hence, G /K is simply connected. By the first part, K is connected. Let C' = kerr.
As we established before, C' is isomorphic to the fundamental group of G. Then
C C K is a discrete central subgroup of K and K/C = H. It follows that the
universal covering group of K is also the universal covering group Hof H. Moreover,
C is a quotient of the kernel of the projection H — H, which is isomorphic to the
fundamental group of H. |

This has the following consequence.

1.8.8. COROLLARY. Let G be a connected Lie group and H a connected Lie
subgroup of G. If H and G/H are simply connected, G is also simply connected.

In particular, SU(n), n > 1, are connected, all spheres of dimension > 2 are
simply connected and SU(1) = {1}. Therefore, by induction in n, from the isomor-
phism of SU(n)/SU(n — 1) with S?"~! for n > 2, the next result follows.

1.8.9. LEMMA. All groups SU(n), n > 1, are simply connected.

Now we want to discuss some low dimensional examples. Let T € SL(2,C) be
given by the matrix
_ (> B
te (v J ) ’

with «, 3,7,6 € C satisfying ad — 8y = 1, then its inverse is

T71 — d _6
_fy a .
If T € SU(2), then we must also have

-1 __ * O}
T =T _<5

Therefore, § = & and v = —f3. It follows that

a f
r=(5 7))

with |a|? + |8]? = 1. Therefore, SU(2) is diffeomorphic to a three dimensional unit
sphere S3 in C2. In particular, SU(2) is simply connected, as we already established
above.

2l
N~
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We identify R? with the space H of traceless selfadjoint 2 x 2 matrices via the

map:
) T y+iz
it (5 Y00

Then
det H(z,y,z) = —(2* +y* + 2?),

i.e., it is the negative of the square of the distance from the origin to the point
(r,y,2). Clearly, for any T € SU(2) and S € H, the matrix TST* = TST~!
satisfies

(TST*)* = TS*T* = TST* and tr(T'ST*) = tr(ST*T) = tr(S) = 0,

i.e., is again selfadjoint and traceless. Therefore, the map ¢(T') : S —— T'ST* is a
representation of SU(2) on the real linear space H. Clearly, det(T'ST*) = det(S),
Hence, if we identify H with R® using H, we see that the action of SU(2) on R? is
by orthogonal matrices. Therefore, we constructed a continuous homomorphism
of SU(2) in the group of O(3). Since SU(2) is connected, this is a homomorphism
of SU(2) into SO(3).

Since we have

TH(z.y,2)T —(_3 d) (y_ N )(5 a>‘

(lef? = BI*)z + 2 Re(af)y — 2Im(af)z —2afz + (o — By +i(a® + 5%)z
—2afz+ (a* — By —i(a*+ %)z —(la]* = |B|*)z — 2Re(aB)y + 2Im(af)z )’

we see that

o] =8> 2Re(af) —2Im(af3)
P(T) = | —2Re(aB) Re(a? —3?) —Im(a? + 5?)
—2Im(aB) Im(a? —3?) Re(a? +3?)

Let T be in the kernel of ¢». Then (1,1) coefficient of ¥(T) has to be equal to 1,
ie., |a|?> —|B* = 1. Since |a|?> + |3|*> = 1, we see that |a| = 1 and 3 = 0. Now,
from the (2, 3) coefficient we see that Im(a?) = 0 and from the (2, 2) coefficient we
see that Re(a?) = 1. It follows that a? = 1 and o = £1. Hence, the kernel of ¢
consists of matrices ((1) (1)) and (_01 91 ) Therefore, the differential of v is injective.
Since SU(2) and SO(3) are three-dimensional, it follows that the differential of v is
an isomorphism of tangent spaces at the identity. Since both groups are connected,
it must be a covering projection by 1.6.6.

1.8.10. LEMMA. The fundamental group of SO(3) is Zo. Its universal covering
group is SU(2).

Clearly, SO(1) = {1} is simply connected. The group SO(2) is isomorphic
to the circle S', and its fundamental group is Z. On the other hand, from the
isomorphism SO(n)/SO(n — 1) with S"1, the fact that spheres of dimension > 2
are simply connected and 1.8.10, we see that the fundamental groups of SO(n),
n > 3, are either trivial or equal to Zs.!

1One can actually show that they are all isomorphic to Zs.
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2. Lie algebra of a Lie group

2.1. Lie algebras. A Lie algebra a over a field k of characteristic 0 is a linear
space over k with a bilinear operation (z,y) — [z, y] such that
(i) [z,2] =0 for all z € g;
(ii) (Jacobi identity) [z, [y, 2]] + [y, [z, z]] + [z, [z,y]] = O for all z,y, 2z € a.
The operation (x,y) — [z,y] is called the commutator. The condition (i)
implies that
O=[z+y,x+yl =22+ [,y + [y, 2] + [y, 9] = [z, 9] + [y, 7]
i.e.
[z,y] = [y, 2]

for all z,y € a.
A k-linear map ¢ between Lie algebra a and b is a morphism of Lie algebras if

o([z,y]) = [p(x), o(y)] for all z,y € a.

Lie algebras over k and morphisms of Lie algebras for the category of Lie
algebras.

If A is an associative algebra, we can define [S,T] = ST —T'S for all S,T € A.
By direct calculation one can check that A with this commutator becomes a Lie
algebra. This defines a functor from the category of associative algebras into the
category of Lie algebras.

In particular, if V' is a linear space over k and L£(V') the algebra of all linear
transformations on V', the commutator defines on £L(V') a structure of a Lie algebra.
This Lie algebra is denoted by gl(V).

A Lie algebra homomorphism ¢ : a — gl(V) is called a representation of a on
V.

Let a be a Lie algebra. For « € a we denote by ad(x) the linear transformation
on a defined by ad(z)(y) = [z, y] for all y € a.

2.1.1. LEMMA. ad is a representation of a on a.

PROOF. Let x,y € a. Then, by the Jacobi identity, we have

ad([z,y])(2) = [[z,y], 2] = —[z, [z,9]] = [, [y, 2]] + [y, [z, 2]]
= ad(z)(ad(y)(2)) — ad(y)(ad(z)(z)) = [ad(z), ad(y)] (=)
for any z € a. O

This representation is called the adjoint representation of a.

Let b be a linear subspace of a. If z,y € b imply that [z,y] € b, the restriction
of the commutator to b defines a structure of Lie algebra on b. The Lie algebra b
is called the Lie subalgebra of a. Let b be such that x € a and y € b imply that
[z,y] € b. Then the Lie subalgebra b is an ideal in a.

Let a be a Lie algebra and b an ideal in a. Let z, 2’ € a be two representatives
of the same coset modulo b. Also, let y,3" € a be two representatives of the same
coset modulo b. Then

[(E,y] - [xlvyl] = [if - xlay] + [xlvy - y/] € bv
ie., [x,y] and [2/,y'] are in the same coset modulo b. Therefore,

(x+b,y+b)— [z,y] +b
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is a well defined bilinear operation on a/b. Clearly, a/b is a Lie algebra with that
operation. It is called the quotient Lie algebra a/b of a modulo the ideal b.

2.1.2. LEMMA. Let ¢ : a — b be a morphism of Lie algebras. Then:

(1) The kernel ker ¢ of ¢ is an ideal in a.
(ii) The image im @ of ¢ is a Lie subalgebra in b.

Let a and b be two Lie algebras. Then the linear space a x b with the commu-
tator

[(2,9), (@ y)] = ([z.2'], [y, 9])
for z,2' € a and y,y’ € b is a Lie algebra — the product a x b of Lie algebras a and
b.
Let a be a Lie algebra. The center ¢ of a is

c={z€allr,y=0forall y € a}.

Clearly, ¢ is an ideal in a.

A Lie algebra a is abelian if [z,y] = 0 for all z,y € a.

Let a be a Lie algebra. We denote by a°PP the opposite Lie algebra of a. It is the
same linear space with the commutator (x,y) — [z,y]° = —[z,y]. Clearly, a°?? is
a Lie algebra. Moreover, x — —z is an isomorphism of a with a°PP. Evidently, we
have (a°PP)°PP = q.

If dima = 1, a has to be abelian.

If dim a = 2, we can pick a basis (v1,v2) of a and see that [z, y] is proportional
to [v1,v] for any z,y € a. Therefore, we can assume that [z, y] is proportional to ey
for any z,y € a. If a is not abelian, there exists e such that [e1, ea] = e;. Therefore,
we conclude that up to a linear isomorphism there exists a unique nonabelian two
dimensional Lie algebra over k.

Finally, we quote the following fundamental theorem of Ado (which will be
proven later) which says that every finite-dimensional Lie algebra has a faithful
finite-dimensional representation.

2.1.3. THEOREM (Ado). Let g be a finite-dimensional Lie algebra over k. Then
g is isomorphic to a Lie subalgebra of gl(V') for some finite-dimensional linear space
V over k.

2.2. Lie algebra of a Lie group. Let G be a Lie group. Let T1(G) be
the tangent space to G at the identity 1. If ¢ : G — H is a morphism of Lie
groups, T1(y) is a linear map from T (G) into T1(H ). Therefore, in this way we get
a functor from the category of Lie groups into the category of finite-dimensional
linear spaces over R.

We want to show that these objects have additional structure which carries
additional information about Lie groups.

For any g € G, Int(g) : G — G given by Int(g)(h) = ghg™! is an automor-
phism of G. Therefore, Ad(g) = T3 (Int(g)) is a linear automorphism of T4 (G).

2.2.1. LEMMA. The map Ad : G — GL(T1(Q)) is a Lie group homomorphism.
PROOF. We have

Ad(gg") = Th(Int(gg')) = T1(Int(g) o Int(g"))
= Ti(Int(g)) o T1(Int(g")) = Ad(g) o Ad(g")
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for all g,¢' € G. Therefore, Ad is a group homomorphism. Clearly, it is also
differentiable. O

Let ¢ : G — H be a Lie group morphism. Then we have

e(Int(9)(9") = (99'9™") = @(9)(g)e(9) ™" = Int(p(9))(¢(g"))
for g, ¢’ € G. By differentiation at 1 € G we get

T1() o Th(Int(g)) = Ti(Int(p(g)) o T1(p)
ie.,
T1(#) o Ada(g) = Adu(p(9)) © Ti(p)
for any g € G. Hence T1(y) intertwines the group actions.

By differentiating the Lie group homomorphism Ad : G — GL(T1(G)) we get

a linear map T1(Ad)) : T4 (G) — L(T1(G)). This map defines a bilinear map
(&) — [&m] = (T2 (Ad)(€))(n)

from T1(G) x T1(G) — T1(G). We can view it as a bilinear operation on T4 (G).

We shall prove that 73 (G) with this operation is a Lie algebra.

We start first with a special case. Let G = GL(n,R). Then, we can identify
T1(G) with the space M, (R). For small ¢, the line ¢ — I + tT lies in GL(n,R).
Moreover,

Int(S)(I +tT) = S(I +tT)S~' =T +tSTS™*
and we have
Ad(S)(T) = STS™!
for any T € M,,(R) and S € GL(n,R). Moreover, for small ¢ we have
(I4+tS) ™t =T1—tS+1%(...),
for any S € M,(R), what yields to
Ad(I +tS)(T) = (I +tS)T(I +tS)" ' =T + (ST —TS) +t(...),
for small ¢t. It follows that
T (AA(S)(T)=ST —-TS =[S,T]
and the above bilinear operation is the natural commutator on M, (R). Therefore,
T1(GL(n,R)) is a Lie algebra.

Now we want to prove this for an arbitrary Lie group. This requires some
preparation.

Consider first the multiplication map m : G x G — G. Its differential
T,y(m) : T (G) x T1(G) — T1(G) at (1,1) is equal to

Tan(m)(&n) =&+n
for all &, € T1(G).
Since we have m(g,t(g)) = 1, it follows that
0= T,1)(m) o (Iry @) X T1(1)) 0 TL(A) = Iry () + T1(v),
where A : G — G X (G is the diagonal map. Hence, we have

Tl(L) = _ITl(G)'
Let M and N be two differentiable manifolds, p € M and ¢ € N. Let X €
T,(M) and Y € Ty(N). For f € C>(M x N) we denote by

fx i X(f(n)) and f¥:m— Y (f(m,-))
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are smooth functions in C*°(N) and C*° (M) respectively. In addition, Y (fx) =

X(f).
Let G be a Lie group and &,n € T1(G). Put

(Exn)(f) = &((f om)?) =n((f o m)e)

for any f € C*°(G). Then & 7 is a linear form on the real linear space C*°(G). It
is called the convolution of £ and 7.

2.2.2. LEMMA. For &, n € T1(G) we have
[€,m] = Exn—nxE.

PROOF. Fix £,n € T1(G). Let f € C*°(G). Then can consider the function
w: g+ (Ad(g)n)(f). The differential of w at 1 satisfies

dw1(§) = (T1(Ad)(E)n)(f) = [&,n)(f)-
On the other hand,

w(g) = (Ad(g)n)(f) = (T1(Int(g))n)(f) = n(f o Int(g))
for all g € G. Therefore, if we put

F(g,h) = (f oInt(g))(h) = f(ghg™")
for all g,h € G, it follows that

w(g) = n(f oInt(g)) = n(F(g,-)) = F"(g)
and
dw1(§) = E(F") = n(Fe).
On the other hand, if we define p : G x G x G — G as u(g,9’,h) = ghg’ for
9,9, h € G, we have
F(g,h) = (fou)(g.g" h) = (fon)(g.ulg)h)
for g, h € G. Therefore,

Fe(h) = &((f o p)(-,1,h)) +&((f o p)(1,0(-), b))
=&((fom)(-,h) = &((f om)(h,-)) = (f om)e(h) — (f om)*(h),
what finally leads to

dwi(€) = n((f o m)e) — n((f om)*) = (Exm)(f) — (n*€)(f).
(]

In particular, the bilinear operation (&,7n) — [£,n] on T1(G) is anticommuta-
tive.

The algebra End(C*°(G)) is an associative algebra with identity. Therefore,
with the commutator [A, B] = Ao B — Bo A it is a real Lie algebra.

A wvector field X on G is an element of End(C*°(G)) which is also a derivation
of O (@), i.e., it satisfies

X(py) = o X(¢) + X(p)¢
for all p, 9 € C(G).
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We claim that the linear space 7 (G) of all vector fields on G is a Lie sublagebra
of End(C*°(G)). Let X,Y € T(G). Then we have

(X, Y](pt) = X(Y(py)) — Y(X(p9))
= X (Y () + X(Y(0)9) = Y(eX(¥)) = Y (X(p)9) = X(0)Y(¥) + X (Y (¢))
+ X(Y(0)¢ +Y(0)X(¢) = Y(p)X(¥) — oY (X (¥)) — X ()Y (¢)
= XY (¥)) =Y (X(¥)) + X(Y(9)¥ = Y(X(0) = o[ X, Y](¥)) = [X, Y](¢)¥
for all ¢, 1) € C°°(G). Therefore, [X,Y] is a vector field on G. It follows that 7 (G)
is a Lie subalgebra of End(C*(Q)).
Let X be a vector field on G. Let g € G. Then f —— X(f)(g) is a tangent
vector X, in Ty(G) which we call the value of X at g.
The vector field X is left-invariant if X, = Th(v(g)) X for any g, h € G. This
implies that for any f € C*°(G), we have
X(f)(gh) = X(f o~(9))(h)
for all g,h € G, i.e.,
X(f)onlg) = X(for(g))

for all ¢ € G. Tt is clear that the last property of X is equivalent to the left-
invariance.
Let X and Y be two left-invariant vector fields on G. Then

(X, Y](for(9) = X(Y(for(g) —Y(X(for(g)))
= X(Y(f)on(g9) = Y(X(f)ov(9) = X(Y(f)) ov(g9) = Y(X(f)) o ¥(9)
= [X,Y](f) ov(9)

for all g € G, i.e., the vector field [X,Y] is also left-invariant.
Therefore, left-invariant vector fields form a Lie subalgebra £(G) of 7(G).

2.2.3. LEMMA. The map X —— X3 is a linear isomorphism of L(G) onto
T (G).

ProOF. If X is left-invariant, X, = T1(y(g))X: for any g € G, i.e., the map
X — X is injective.

On the other hand, for any £ € T1(G), the map f —— &(f o () is a left-
invariant vector field on G. ]

Let &,n € T1(G). Then, by 2.2.3, there exist left invariant vector fields X and
Y on G such that X; =€ and Y7 = 1n.

2.2.4. LEMMA. We have
[X7 Y]l = [5777]
PROOF. To prove this, it is enough to establish that
(€ *n)(f) =&Y(f))
for any f € C*°(G). Since Y is left-invariant, we have
Y (f)(g) = Yg(f) = n(f ov(9)) = n((f em)(g,-)) = (f om)"(g)
for any g € G. Therefore, we have
Y (f)) =&((f om)") = (Exn)(f)

for any f € C*°(QG). O
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Therefore, we see that the linear isomorphism £(G) onto T4 (G) also preserves
the commutators, i.e., T7(G) is a Lie algebra. Moreover, X —— X7 is an isomor-
phism of the Lie algebra £(G) onto T4 (G).

The Lie algebra T7(G) with the commutator (£,n) — [¢, 7] is called the Lie
algebra of the Lie group G and denoted by L(G).

Moreover, from the definition of the commutator we see that the following
relation holds

Tl (Ad) =ad.

Let ¢ : G — H be a Lie group morphism. As we already remarked, we have

Ti(p) o Ada(g) = Admu(e(g)) o Ta(yp)
for any g € G. This implies that for any n € T1(G) we have

T1(¢)(Ada(g)n) = Adu(e(9)(Ti(e)(n))

by taking the differential of this map at 1 € G and evaluating it on £ € T1(G), we
get

Ti(p)([&,m) = [T1()(€), Ta () (n)]-
Therefore, Ty (p) : L(G) — L(H) is a morphism of Lie algebras. We denote it by
L(p).
It is easy to check that in this way we define a functor L from the category of
Lie groups into the category of Lie algebras.
Let G be a Lie group and G°PP the opposite Lie group. Then the map ¢ : g —

g~ ! is an isomorphism from G onto G°PP. As we remarked already, L(1) = ey
and it defines an isomorphism of L(G) onto L(G°PP). Therefore, we have L(GPP) =
L(G)e°rp.

We say that a vector field X on G is right-invariant if

X(fod(g)=X(f)eod(g)

for all f € C*°(G) and g € G.
Let v°(g) be the left translation by g € G°PP. Then

7(9)(h) =goh=hg=38(g~")(h).
for any h € G. Therefore, a right-invariant vector field on G is a left-invariant vector
field on G°PP. This in turn implies that all right-invariant vector fields on G form
a Lie algebra which we denote by R(G). Moreover, X — X; is an isomorphism
of R(G) onto L(G)°PP. Therefore, for two right-invariant vector fields X and ¥ on
G such that £ = X; and n = Y7, we have

[5777] = _[X7 Y]l

This gives an interpretation of the commutator in L(G) in terms of right-invariant
vector fields.
The above formula implies the following result.

2.2.5. LEMMA.
L(Ad) = ad.

Let G be a Lie group and g € G. Then Int(g) is an automorphism of G.
Therefore, Ad(g) = L(Int(g)) is an automorphism of L(G). Therefore, the adjoint
representation Ad : G — GL(L(G)) is a homomorphism of G into the group
Aut(L(G)) of automorphisms of L(G).
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Let H be a Lie subgroup of a Lie group G. Then the natural inclusion i : H —
G is a Lie group morphism. Therefore, the natural inclusion L(¢) : L(H) — L(G)
is a Lie algebra morphism, i.e., we can view L(H) as a Lie subalgebra of L(G).

2.2.6. LEMMA. Let H be a normal Lie subgroup of a Lie group G. Then L(H)
is an ideal in L(G).

PRrROOF. For any g € G we have Int(g)(H) = H. Therefore, Ad(g)(L(H))
L(H) for any g € G. By differentiation, from 2.2.5 we conclude that ad(§)(L(H))
L(H) for any £ € L(G).

aon

2.2.7. LEMMA. Let ¢ : G — H be a morphism of Lie groups. Then L(ker ) =
ker L(y).

PRrROOF. This is just a reformulation of 1.1.5.(ii). O

2.2.8. LEMMA. Let G be a Lie group and H its normal Lie subgroup. Denote
byp: G — G/H the canonical projection. Then L(p) : L(G) — L(G/H) induces
an isomorphism of L(G)/L(H) with L(G/H).

PRrOOF. By 2.2.6, L(H) is an ideal in L(G). Since the canonical projection p is
a submersion, L(p) is surjective. Moreover, by 2.2.7, we have ker L(p) = L(H). O

2.2.9. LEMMA. Let ¢ : G — H be a morphism of connected Lie groups. Then
the following statements are equivalent:

(i) @ is a covering projection;
(ii) L(p) : L(G) — L(H) is an isomorphism of Lie algebras.
ProoF. This follows immediately from 1.6.6. g

2.2.10. PROPOSITION. Let ¢ : G — H be a morphism of Lie groups. Let K
be a Lie subgroup of H. Then, o~ *(K) is a Lie subgroup of G and

L(¢™ ! (K)) = L(p) " (L(K)).

Proor. Let H/K be the left coset space of H. Let p: H — H/K be the
quotient projection. Then, K is equal to the fiber over the identity coset in H/K.
Hence, since p is a submersion, by 1.1.4.4, L(K) = ker T} (p).

The group H acts differentiably on H/K. Therefore, the composition of this
action with ¢ defines a differentiable action of G on H/K. The stabilizer at the
K-coset of 1 is equal to ¢~ !(K). Therefore, by 1.1.4, ¢~ 1(K) is a Lie subgroup of
G and

L™ (K)) = {£ € L(G) | Ti(po p)(€) = 0} = {€ € L(G) | T1(¢)(€) € L(K)}.
O
Let G and H be two Lie groups. Then G x H is a Lie group.
2.2.11. LEMMA. L(G x H) = L(G) x L(H).

Let A be the diagonal in G x G. Then A is a Lie subgroup of G x G. Clearly,
the map a : g — (g,g) is an isomorphism of G onto A. Let H and H' be
two Lie subgroups of G. Then H x H' is a Lie subgroup of G x G. Moreover,
a~'(H x H') = H N H'. Therefore, by 2.2.10, we have the following result.

2.2.12. LEMMA. Let H and H' be two Lie subgroups of G. Then H N H' is a
Lie subgroup of G.
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2.2.13. LEMMA. Letp: G — H and v : G — H be two Lie group morphisms.
Then

K={geG|elg) =29}
is a Lie subgroup of G and

L(K) = {§ € L(G) | L(p)(€) = L($)(£)}-

PROOF. We consider the Lie group morphism ® : G — H x H given by
®(g) = (¢(g9),%(g)) for all g € G. Clearly, L(®) : L(G) — L(H) x L(H) is given
by L(®)(&) = (L(v)(&), L(y)(&)) for € € L(G). The Lie algebra of the diagonal A
in H x H is the diagonal in L(H) x L(H). Therefore, by 2.2.10,

K=3"1A)
is a Lie subgroup of G and its Lie algebra is equal to

L(®)"HL(A)) = {€ € L(G) | L(9)(§) = L(¥)(€)}-
O

Let G and H be two Lie groups. In general, we cannot say anything about the
map ¢ — L(p) from Hom(G, H) into Hom(L(G), L(H)).

2.2.14. PROPOSITION. Let G and H be Lie groups. Assume that G is connected.
Then the map ¢ — L(p) from Hom(G, H) into Hom(L(G), L(H)) is injective.

PROOF. Let ¢ : G — H and v : G — H be two Lie group morphisms such
that L(p) = L(¢). Then, by 2.2.13, K = {g € G | ¢(g) = ¥(g)} is a Lie subgroup
of G. Moreover, the Lie algebra L(K) of K is equal to L(G). It follows that K
contains a neighborhood of 1 in G. Since it is a subgroup of G, and G is connected,
it must be equal to G by 1.5.1. Therefore, ¢ = 1. O

Of course, even if G is connected, the map ¢ — L(p) from Hom(G, H) into
Hom(L(G), L(H)) is not bijective in general. For example, if G = R/Z and H = R,
the set Hom(G, H) consists of the trivial morphism only, while Hom(L(G), L(H))
is the space of all linear endomorphisms of R.

We are going to prove later that if G is in addition simply connected, the map
¢ — L(y) from Hom(G, H) into Hom(L(G), L(H)) is bijective.

2.2.15. LEMMA. Let G be a connected Lie group. Then

(i) the center Z of G is a Lie subgroup;
(ii) Z = ker Ad;
(i) L(Z) is the center of L(G).

PROOF. Clearly (ii) implies (i).

Let z € Z. Then Int(z) = idg and Ad(z) = L(Int(z)) = 1. Assume that
Ad(g) = 1 for ¢ € G. Then L(Int(g)) = L(idg), and by 2.2.14, we see that
Int(g) = idg, ie., g € Z. This proves (ii).

By 2.2.7, we have L(Z) = L(ker Ad) = ker L(Ad) = kerad. Clearly, kerad is
the center of L(G). O

2.2.16. LEMMA. Let G be a connected Lie group. Then the following statements
are equivalent:
(i) G is abelian;
(ii) L(QG) is abelian.
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PRrOOF. (i)=(ii) If G is abelian, it is equal to its center. Therefore, by 2.2.15,
L(G) is equal to its center, i.e., it is abelian.

(il)=(i) If L(G) is abelian, by 2.2.15, the Lie algebra of the center Z of G is
equal to L(G). Therefore, Z contains a neighborhood of 1 in G. Hence Z is an
open subgroup of G and, since G is connected, it is equal to G. O

2.3. From Lie algebras to Lie groups.

2.3.1. LEMMA. Let G be a Lie group. Let b be a Lie subalgebra of the Lie
algebra L(G) of G.
(i) There exists a connected Lie group H and an injective Lie group morphism
i: H — G such that L(i) : L(H) — L(G) is an isomorphism of L(H)
onto hy.
(ii) The pair (H, 1) is unique up to an isomorphism, i.e., if (H',i') is another
such pair, there exists a Lie group isomorphism o : H — H' such that
the diagram

commutes.

The proof of this lemma consists of several steps.

Let T(G) be the tangent bundle of G. Let E vector subbundle of T(G) such
that the fiber E, at g € G is equal to T1(v(9))h. Let (1,82, ..,&m) be a basis of h.
Denote by X1, Xa, ..., X,, the left-invariant vector fields on G such that the value
of X; at 1is equal to & for 1 < i < m. Then the values of X;, 1 <i<m,atge G
span the fiber E,. In particular, E is a trivial vector bundle on G.

Since, b is a subalgebra, there exist c;;1 € R, 1 < 4,7,k < m, such that

6,651 = cijuén
k=1
for all 1 <14,j < m. Therefore, we also have
[Xi, X = Z Cijk Xk
k=1
forall 1 <i,j <m.
A smooth vector field Y on G is a section of F if and only if X, € E, for all
g€ G, ie,if X =" ¢X, for some e; € C(G). Let Z be another such vector

field. Then we have Z ="' | fiX; for some f; € C(G).
Hence, we have

Y, 2] = > [eiXi £ X] = > (eXi(£)X; — £;X;(e0) X + ei f1Xi, X;])
ij=1 ij=1
=Y (@Xilfy) = [iXi(e) X5+ > cigreifi X,
ij=1 i,4,k=1

ie., [X,Y], € E, for any g € G. Therefore it follows that E is involutive.
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By 1.3.2.1, E determines an integral foliation (L, ) of G which we call the left
foliation attached to b.

Let H be the leaf of this foliation through 1 € G. We claim that H is a Lie
group.

Let g € G. Then iy = v(g9)oi : L — G is again an integral manifold.
Therefore, by 1.3.2.1, 4, induces a diffecomorphism j, : L — L. Hence, j,(H) is
a leaf through g € G. In particular, if g € H, we see that j,(H) = H. Therefore,
the left multiplication by g € H induces a diffeomorphism of H onto H. Moreover,
its inverse is j,-1 : H — H. Hence, j,—1(1) = g~' € H. It follows that H is a
subgroup of G.

In addition, the map u : H x H — G given by u(g,h) = gh for g,h € H, is
differentiable and its image is equal to the leaf H. Since H is connected, it lies in
the identity component of G. Hence, without any loss of generality we can assume
that G is connected. Therefore, by 1.5.2, G is a separable manifold. By 1.3.3.4,
it follows that H is a separable manifold. Hence, by 1.3.3.6, we conclude that the
map p : H x H — H is differentiable. It follows that H is a Lie group. This
completes the proof of (i).

If (H',4') is another such pair, it is an integral manifold for the left foliation
attached to . It follows that there exists « : H' — L which is a diffeomorphism
onto an open submanifold of L. Since H' is connected and i'(1) = 1, a(H’) must
be an open subgroup of H. This in turn implies that a(H’) = H. Therefore, (ii)
follows.

2.4. Additional properties of the Lie algebra functor. Let G and H be
Lie groups. Assume in addition that G is connected. We already established in
2.2.14 that the map the functor L induces from Hom(G, H) into Hom(L(G), L(H))
is injective.

First, let ¢ : G — H be a Lie group morphism. Then we can consider its
graph 'y, = {(g,¢(9)) € G x H | g € G} in G x H. By 1.1.4.3, it is a Lie subgroup
of G x H. The natural morphism X : g — (g, p(g)) is a Lie group isomorphism of
G with I',. Its inverse is the restriction of the projection to the first factor.

Moreover, its Lie algebra L(I',) is the image of L(\) : L(G) — L(G) x L(H).
Since L(A) : & — (& L(9)(€)), € € L(G), we see that L(I'y) = {(¢, L(p)(S)) €
L(G) x L(H) | € € L(G)}, i.e., it is equal to the graph of the Lie algebra morphism
L(y) in L(G) x L(H).

2.4.1. PROPOSITION. Let G be a simply connected, connected Lie group. Let H
be another Lie group and ® : L(G) — L(H) a Lie algebra morphism. Then there
exists a Lie group morphism ¢ : G — H such that L(p) = ®.

PROOF. Let L(G) x L(H) be the product Lie algebra of L(G) and L(H). Then
the graph I'e = {(&,®(§)) € L(G) x L(H) | £ € L(G)} of ® is a Lie subalgebra of
L(G) x L(H). The map « : L(G) — L(G) x L(H) given by a(§) = (£, ®(€)) is
a Lie algebra isomorphism from L(G) into I'g. Its inverse is given by the canon-
ical projection to the first factor in L(G) x L(H). On the other hand, ® is the
composition of o with the canonical projection to the second factor.

By 2.3.1, there exists a connected Lie group K and an injective Lie group mor-
phism ¢ : K — G x H such that L(i) : L(K) — L(G) x L(H) is an isomorphism
of L(K) onto I's. Let p: G x H — G be the canonical projection to the first
factor. Then it is a Lie group morphism, and L(p) : L(G) x L(H) — L(G) is also
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the canonical projection to the first factor. The composition poi: K — G is a Lie
group morphism of connected Lie groups. Moreover, since the canonical projection
to the first factor is an isomorphism of I'y onto L(G), L(p o i) = L(p) o L(i) is
an isomorphism of the Lie algebra L(K) onto L(G). By 2.2.9, poi is a covering
projection. Since G is simply connected, p o 7 is an isomorphism of Lie groups.
Therefore, its inverse 8 : G — K is a Lie group morphism. Clearly, L(3) is the
composition of a with the isomorphism L(i)~*.

Let g : G x H — H be the canonical projection to the second factor. Then,
goio(B:(G — H is a Lie group morphism. Its differential is equal to

L(goiopB)=L(g)o L(i) o L(B) = L(g) ca=P. O
This has the following obvious consequence.

2.4.2. COROLLARY. Let G be a simply connected, connected Lie group. Let H be

another Lie group. Then, Then the map induced by the functor L from Hom(G, H)
into Hom(L(Q), L(H)) is bijective.

In other words, the functor L from the category SimplyConnLie of simply
connected, connected Lie groups into the category of finite-dimensional real Lie
algebras LieAlg is fully faithful.

On the other hand, Ado’s theorem has the following consequence.

2.4.3. THEOREM. Let g be a finite-dimensional real Lie algebra. Then there
exists a simply connected, connected Lie group G such that L(G) is isomorphic to

g.

PrROOF. By 2.1.3, there exists a finite-dimensional real linear space V such
that g is isomorphic to a Lie subalgebra of gl(V'). Since gl(V) is the Lie algebra of
GL(V), by 2.3.1 we conclude that there exists a connected Lie group with the Lie
algebra isomorphic to g. Therefore, taking its universal covering Lie group for G
completes the proof. O

This implies that the Lie algebra functor L from the category SimplyConnLie
into LieAlg is also essentially onto. Therefore, we have the following result.

2.4.4. THEOREM. The Lie algebra functor L is an equivalence of the category
SimplyConnLie of simply connected, connected Lie groups with the category Lie Alg
of finite-dimensional real Lie algebras.

2.5. Discrete subgroups of R”. Let V' be an n-dimensional linear space
considered as an additive Lie group. We want to describe all discrete subgroups in
V.

Let D be a discrete subgroup in V. The elements of D span a linear subspace
W of V. We say that dim W is the rank of D.

2.5.1. THEOREM. Let D be a discrete subgroup of V' of rank r. Then there
erists a linearly independent set of wvectors ay,as,...,a, in V such that Z© >
(n1,n2,...,n) — niay + neas + - - - + npa, is an isomorphism of Z" onto D.

We first observe that without any loss of generality we can assume that r = n.
We start the proof with the following weaker result. Since D has rank n, there
exists a linearly independent set by, bo, ..., b, contained in D.
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2.5.2. LEMMA. There exists a positive integer d such that D is contained in the
discrete subgroup D' of V' generated by ébl, ébg, ceey ébn,

PROOF. Let

Q={veV|v=> wb; with0<w; <1forl<i<n}
i=1
Then 2 is a compact subset of V' and D N is a finite set. Clearly, D N} contains
bl) b2) e ;bn-

Let v € D. Then v = Z?:l a;b;. Let u = Z?;l[ai]bi € D. It follows that
v—u= Z?;l(ai — [au])bi € D N Q. Therefore, D is generated by the elements of
DnNQ.

Let v € D N Q. Applying the above argument to mv, m € N, we see that

Z(mai — [may])b; € DN Q.
i=1
Since the set D N € is finite, there exist m, m’ € N, such that m # m’ and
ma; — [ma;] = m’a; — [m o]
for all 1 < < n. Therefore,
(m —m')a; = [ma;] — [m' o] € Z,

for all 1 <i < n, i.e., a; are rational numbers.

It follows that the coordinates of all vectors in DNS) with respect to by, bs, ..., b,
are rational. Since D N} is finite, the coordinates of these points all lie in (—EZ for
sufficiently large d € N.

This implies that D is contained in the subgroup generated by ébl, ébg, ceey ébn.

O

Fix a linearly independent set by, b, ..., b, of vectors in D. Let d € N be an
integer which satisfies the conditions of the preceding lemma. Let ¢; = %bi, 1< <
n. Then, an element v € D can be represented uniquely as v = Z?:l m;c; where
my; € Z. It follows that for any linearly independent set vy, vs, ..., v, contained in
D we have v; = Z?:l m;jc; where my;; € Z for all 1 <4, j < n. Define the function

mi1 M1z ... Mip
mo1 Mmoo e maon
Avy,vg,. .., 0p) =
Mp1 Mp2 ... Mpp
for any such linearly independent n-tuple vy, va, ..., v,. Clearly A(vy,va,...,v,) €
Z. Moreover, since the n-tuple is linearly independent, A(vy,vs,...,v,) # 0.
Therefore, there exists an n-tuple di,ds,...,d, such that the absolute value of
A(dy,ds, . ..,dy) is minimal.
2.5.3. LEMMA. The map (mq, ma,...,my) — midy + mada + - -+ + my,d, is

an isomorphism of Z™ onto D.

PROOF. Denote by D" the discrete subgroup generated by dy,ds, . .., d,. Clearly,
D" c D.



2. LIE ALGEBRA OF A LIE GROUP 57

Let v € D. Then v = 2?21 a;d; where a; € R, 1 <4 < n. In addition, we
have u = Y7 [a;]d; € D”. Therefore, w =v—u=>3 " (; —[a;])d; € D. By the
construction w = Z?Zl e;d; with 0<e; <1lforalll <i<n,.

Assume that w # 0. Then the set w,d;,ds,...,d, is linearly dependent. After
relabeling, we can assume that e; > 0. This implies that w,ds, ..., d, is a linearly
independent set of vectors in D. Clearly,

n n
w = E €7d7 = E eimijbj.
i=1

ij=1
Therefore,
n n n
D1 GG D €Mia .. D i €My
mo1 »p) e maon
A(w,dg, . ,dn) =
Mn1 Mpo e Man
€1mir  e1Mmg2 ... €1Myp
mo1 Mmoo . Mmaon
= . . . . :61A(d1,d2,...,dn).
mMnp1 mn2 s Mnn
Since 0 < e; < 1, we have a contradiction with the minimality of A(dy,ds, ..., d,).

Hence, we must have w = 0, and v = v € D”. This implies that D = D”. [
This completes the proof of 2.5.1.

2.6. Classification of connected abelian Lie groups. Let G be a con-
nected abelian Lie group. Then, by 2.2.16, the Lie algebra L(G) of G is abelian.
Therefore, it is isomorphic to R™ with the trivial commutator for n = dim G.

This Lie algebra is the Lie algebra of the additive Lie group R™. Since R" is
simply connected, by 2.4.1, there exists a Lie group morphism ¢ : R® — G such
that L(p) is a Lie algebra isomorphism of R™ onto L(G). By 2.2.9, ¢ : R® — G
is a covering projection. This immediately implies the following result.

2.6.1. PROPOSITION. Let G be a simply connected, connected abelian Lie group.
Then G is isomorphic to R™ for n = dimG.

If G is not simply connected, the kernel of ¢ is a discrete subgroup D of R™
and G =R"/D.

Let T = R/Z. Then T is a one-dimensional connected compact abelian Lie
group. The product T" of r copies of T is an r-dimensional connected compact
abelian Lie group which we call the r-dimensional torus.

2.6.2. THEOREM. Let G be an n-dimensional connected abelian Lie group. Then
there exists 0 < r < n such that G is isomorphic to T x R®"~".

PRrOOF. This follows from 2.5.1 and the above discussion. [l

2.6.3. COROLLARY. Let G be a one-dimensional connected Lie group. Then G
is isomorphic to either R or T.

PRrROOF. Let L(G) be the Lie algebra of G. Then L(G) is a one-dimensional Lie
algebra. Therefore, it must be abelian. By 2.2.16, G is an abelian Lie group. [
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2.7. Induced structure on subgroups. Let G be a Lie group and H a
subgroup of G. Let § be the set of all £ € L(G) such that there exist
(i) an open interval I C R containing 0;
(ii) a smooth curve I' : I — G such that I'(0) = 1 and I'(I) C H;
(ii) To(T)(1) = €.

2.7.1. LEMMA. Let H be a subgroup of a Lie group G. Then

(i) The subset b of L(G) is a Lie subalgebra.
(ii) Ad(h)(h) = b for each h € H.

PROOF. Let I'y : I1 — G and I'y : Is — G be two curves in G such that
'1(0) =T2(0) =1, I'1(f1) C H, I'y(I2) C H and & = To(I'1)(1), & = To(I'2)(1).
Put I =1 NI. ThenT : I — G given by I'(t) = I'1(t) - Ta(¢) for t € I, is a
smooth curve in G. Moreover, I'(I) C H and T'(0) = 1. Finally,

To(I)(1) = To(m o (I't x I'2))(1) = T(1,1)(m)(To(I'1)(1), To(T2)(1))
=T,1)(m) (&1, &) = & + &
Hence, b is closed under addition.

Let A € R*. Then I'\(t) = I'y(\t) for ¢t € Iy = £I; is a smooth curve in G.
Clearly, 'x(0) =T'1(0) = 1 and I'x(I») =T'1(I1) C H. Also, we have

To(I'x)(1) = To(I'1)(A) = ATo(I'1)(1) = A&
Therefore, A§; € b. It follows that b is a linear subspace of L(G).
It he H Ty, : I — G defined by I'y,(t) = Int(h)(T'1(t)) is a smooth curve in

G. Clearly, T',(0) = 1 and Ty (I1) = Int(h)(T'1(I1)) C Int(h)(H) = H. Moreover,
we have

To(Tn)(1) = Ta(Int(h))(To(T'1)(1)) = L(Int(h))(&1) = Ad(h)(&1)-
Therefore, Ad(h)(h) C b. This proves (ii).
Finally, by (ii), for any ¢t € I, we have Ad(T'1(¢))(&2) € h. Therefore, t —

Ad(T1(¢))(&2) is a smooth curve in b, and its tangent vector at 0 is also in h. This
tangent vector is equal to

(To(AdoI'1)(1))(&2) = ((T1(Ad) o Tp(I'1))(1))(&2) = (L(Ad)(&1))(&2)
= ad(§1)(&2) = [&1, &)
Therefore, § is a Lie subalgebra of L(G). O

We say that b is the Lie subalgebra tangent to the subgroup H.
2.7.2. THEOREM. Let G be a Lie group and H its subgroup. Then:

(i) On the set H there exists a unique structure of a differentiable manifold
such that for any differentiable manifold M and map f: M — H, fis a
differentiable map from M into H if and only if it is a differentiable map
from M into G.

(ii) With this differentiable structure on H:

(a) H is a Lie group;

(b) the canonical injection i : H — G is a morphism of Lie groups;

(¢) L(i) is an isomorphism of L(H) onto the Lie subalgebra by tangent to
H.
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We say that this Lie group structure on H is induced by the Lie group structure
of G.

PRrOOF. Let (L,%) be the left foliation attached to h and E the corresponding
involutive vector subbundle of the tangent bundle T'(G).

Let M be a differentiable manifold and f : M — G a differentiable map
such that f(M) C H. Let m € M and £ € T,,,(M). Then there exists and open
interval I C R, 0 € I, and a smooth curve I' : I — M such that I'(0) = m and
To(T')(1) =& Then fol : I — @ is a smooth curve in G, (f oT')(0) = f(m)
and To(f o T)(1) = Ty, (f)E. Tt follows that Ty, = v(f(m)" Yo fol : I — G is
a smooth curve in G such that I',,,(0) = y(f(m)~1)(f(m)) = 1 and Tp(T),)(1) =
Tt my(Y(f (M) 1) T (f)€. Since f(m) C H and H is a subgroup of G, it follows that
Iy (I) € H. Hence, To(T'y,)(1) € b, ie., we have Ty, ()€ € Ti(v(f(m)))b = Ef(m).-
Therefore, we see that

Ton(f)(Trn(M)) C Ef(y, for any m € M.

Assume that mo € M is such that f(mo) = 1. Let ¢ = (U, p,n) be a chart
centered at 1 such that p(U) =V x W where V and W are connected open subsets
in R"~! and R! respectively, such that ¢~ ({v} x W) are integral manifolds for F.
Let O be an open connected neighborhood of mg such that f(O) C U. Denote by p
the projection to the first factor in R®~! x R!. Then, by the first part of the proof,
we have

Tn(powo f)=Tp(s(m))(P) © Ts(m)(¢) © Tn(f)

C (Tp(smy) (@) © Ty (@) (Efm)) = (Tp(p(my) (p) ({0} x RY) = {0}
for any m € O. Since O is connected, p o ¢ o f is constant on O. This in turn
implies that f(O) C ¢=1({0} x W). Therefore, f(O) is contained in the leaf Hy of
L through 1 € G. Moreover, f: O — Hj is a differentiable map.

As we proved in the proof of 2.3.1, Hy is a Lie group, the canonical inclu-
sion j : Hy — G is a morphism of Lie groups and L(j) : L(Hy) — L(G) is
an isomorphism of L(Hy) onto h. Let (&1,&2,...,&) be a basis of h. Denote by
Iy, To,...,Iy : I — G the corresponding smooth curves such that T';(I) C H,
Fz(O) =1 and To(rz)(l) = 57 for 1 S ) S {. We define

Flt1,ta, ..., t1) = Ti(t1) - Da(ta) ... Tu(t)

for (t1,ta,...,t;) € I'. Then F : I' — G is differentiable and F(I') C H. Since
F(0) = 1, by the preceding part of the proof, there exists a neighborhood O of 0
in I' such that F|o : O — Hy is a differentiable map. Clearly, if we denote by
e1,es,...,e the canonical basis of R!, we have Ty(F)(e;) = & for all 1 < i < I.
Therefore, F' is a local diffeomorphism at 0. In particular, it is an open map. It
follows that H N Hy contains a neighborhood of 1 in Hy. Since Hy is a connected
Lie group, by 1.5.1, Hy is contained in H.

Let ¢ € G. Then, as we proved in the proof of 2.3.1, v(9) : L — L is a
differentiable map which permutes the leaves of L. If h € H, we see that vy(h)(Ho)
is a leaf of L through h. Since Hy C H, it follows that v(h)(Hy) C H. Therefore,
H is a union of leaves of L. We consider H to be equipped with the corresponding
differentiable structure (as an open submanifold of L).

Let f: M — H amap. If f: M — H is differentiable, f : M — G is also
differentiable.
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Conversely, if f : M — G is differentiable, y(h)o f : M — G is differentiable
for any h € H. Fix m € M. Then f,, = v(f(m)~')of : M — G is a differentiable
map and f,,(m) = v(f(m)~1)(f(m)) = 1. Therefore, by the above argument, there
exists a neighborhood O of m such that f,, is a differentiable map from O into Hy.
This implies that f = v(f(m)) o fi, : M — H is differentiable at m. Therefore
f: M — H is differentiable. Hence, the differentiable structure on H satisfies (i).

It remains to prove the uniqueness. Assume that there exists another dif-
ferentiable structure on H with the same universal property. Denote by H the
corresponding manifold. Then H — G is differentiable, hence the identity map
H — H is differentiable. Reversing the roles, we see that the identity map
H — H is also differentiable. Hence, the differentiable structures on H and
H are identical. This completes the proof of (i).

The multiplication map m : H x H — G is differentiable. Moreover, its image
is in H. Therefore, by (i), m : H x H — H is differentiable and H is a Lie group.
Clearly, Hy is the identity component of H. Therefore, we have L(H) = L(H)).
From 2.3.1 we conclude that L(i) : L(H) — L(G) is injective and its image is
equal to h. Therefore, the Lie group structure on H satisfies (ii). [l

The induced structure is the obvious one in the case of Lie subgroups.

2.7.3. LEMMA. Let H be a Lie subgroup of G. Then the induced structure on
H is equal to its natural differentiable structure.

PROOF. It is clear that the differentiable structure of a submanifold has the
universal property of the induced structure. By the uniqueness, they have to be
equal. O

2.7.4. PROPOSITION. Let G be a Lie group and H a subgroup of G. On the
subgroup H there exists at most one structure of a Lie group with countably many
components such that the canonical injection is a morphism of Lie groups.

If such structure of Lie group with countably many components exists on H, it
is equal to the induced structure.

PROOF. Assume that H has a structure of a Lie group with countably many
components such that the canonical inclusion 7 : H — G is a Lie group morphism.
Denote H the Lie group H with induced structure on it. Then, by 2.7.2.(i), the
identity map from H — H is a morphism of Lie groups. Since H has countably
many components, by 1.5.7, this morphism must be an isomorphism. O

The next result is just a special case of the above result.

2.7.5. COROLLARY. Let G be a Lie group and H a subgroup of G. There
exists at most one structure of connected Lie group on H such that the canonical
injection is a morphism of Lie groups. If such structure exists, it is equal to the
induced structure on H.

Let G be a Lie group. An integral subgroup of G is a subgroup H with a
structure of connected Lie group such that the canonical inclusion is a Lie group
morphism. This structure must be equal to the induced structure.

Let G be a Lie group and H an integral subgroup of G. We identify L(i)L(H)
with its image in L(G) under L(3). Then L(H) is the Lie algebra tangent to H.
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2.7.6. THEOREM. Let G be a Lie group. The map H — L(H) is a bijection
from the set of all integral subgroups of G onto the set of all Lie subalgebras of
L(G).

This bijection is order preserving, i.e., Hy C Hs if and only if L(H,) C L(Hz2).

ProOF. Let H and H' be two integral subgroups such that L(H) = L(H’).
Then, by 2.3.1.(ii), we see that H = H'. Therefore, the map from integral subgroups
of G into Lie subalgebras of L(G) is injective.

On the other hand, 2.3.1.(i), implies that the this map is also surjective.

It remains to prove that this bijection preserves the inclusions. Clearly, if H;
and H, are two integral subgroups such that H; C Hs, their tangent Lie algebras
satisfy L(Hy) C L(Ha).

On the other hand, assume that H; and Hs are two integral subgroups of G
such that L(Hy) C L(Hz). Then L(H;) is a Lie subalgebra of L(Hj3). Therefore,
by the first part of the proof, there exists an integral subgroup H’ of Hs such that
L(H') = L(H,). Clearly, H' is an integral subgroup of G, and by the first part of
the proof H' = Hj. O

2.7.7. LEMMA. Let G be a Lie group and Hy and Hy two integral subgroups of
G. For any g € G the following assertions are equivalent:
(i) gHig™' = Ha;
(ii) Ad(g)(L(H1)) = L(Hz).

PROOF. Clearly, Int(g) is a Lie group automorphism of G. Therefore, it induces
a bijection on the set of all integral subgroups of G. Since L(Int(g)) = Ad(g),
this bijection corresponds to the bijection induced by Ad(g) on the set of all Lie
subalgebras of L(G). O

2.7.8. LEMMA. Let G be a Lie group and H an integral subgroup of G. Then
the following conditions are equivalent:
(i) H is a normal subgroup of G;
(ii) L(H) is an ideal in L(G) invariant under Ad(G).
PROOF. From 2.7.7 we immediately see that H is normal if and only if L(H) is
invariant under Ad(G). By differentiation, this implies that ad(§)(L(H)) C L(H)
for any £ € L(G). Hence L(H) is an ideal in L(G). O

2.8. Lie subgroups of R™. Let V be an n-dimensional linear space considered
as an additive Lie group. We want to describe all Lie subgroups in V.
We start with a technical lemma.

2.8.1. LEMMA. Let G be a Lie group, H a Lie subgroup and N a normal Lie
subgroup of G contained in H. Then H/N is a Lie subgroup of G/N.

PROOF. Clearly, the natural map j : H/N — G/N is injective. Therefore, by
1.1.5, it must be an immersion. By definition of the quotient topology, it is also a
homeomorphism onto its image. Hence, by 1.1.4.2, the image of j is a Lie subgroup

and j is a diffeomorphism of H/N onto j(H/N). O
2.8.2. THEOREM. Let H be a Lie subgroup of V. Then there ezists a linearly

independent set ay,as,...,a, in'V such that

RFXZ" %3 (a1, .., 0, Mg, ..., my) — aqa1+- -+ apap+mps1ap+- - +mpa,

is an isomorphism of RF x Z"~% onto H.
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PRrOOF. Let L(H) be the Lie subalgebra of L(V) = V corresponding to H.
Then L(H) is a subspace of V', and therefore a connected Lie subgroup of V. Since
its Lie algebra is identified with L(H), by 2.7.6, we conclude that the identity
component Hy of H is equal to this subspace. Let k = dim Hy. We can pick a basis
ai,as,...,ar of Hy as a linear subspace of V.

Then V/H, is a Lie group isomorphic to R"~*. By 2.8.1, H/H, is a Lie
subgroup of V/Hy. Moreover, it is a discrete subgroup. Hence, by 2.5.1, it is
isomorphic to Z"~* for some r — k < dim(V/Hy) = n — k. More precisely, there

exist ag41,...,a, in H such that their images in V/Hy are linearly independent
and generate H/H.
The image H' of the map R¥ x Z" 7% 3 (ay, ..., ap, Mpt1, - .., My) — arag +

-+ agar +my41ak+ - - - +mpa, is a Lie subgroup contained in H. It also contains
Hy. On the other hand, H'/Hy is the discrete subgroup in V/Hj generated by the
images of ag+1,...,a, i.e., it is equal to H/Hy. Therefore, H' = H. O

2.9. Exponential map. In this section we construct a differentiable map
from the Lie algebra L(G) of a Lie group G into G, which generalizes the exponential
function exp : R — R*.

2.9.1. THEOREM. Let G be a Lie group and L(G) its Lie algebra. Then there
exists a unique differentiable map ¢ : L(G) — G with the following properties:

(i) ¢(0) =1;
(ii) To(p) = 1r(c)s
(iil) @((t+ 9)§) = o(t&)p(s) for every t,s € R and & € L(G).

PROOF. We first prove the uniqueness part. Let ¢; and @2 be two maps
having the properties (i), (ii) and (iii). Take £ € L(G). Then, because of (ii),
Y;i(t) = ;i (t€), t € R, are Lie group morphisms of R into G for ¢ = 1,2. Because of
(ii), To(w;) =&, for i = 1,2; hence, L(1)1) = L(1)2). Since R is connected, by 2.2.14,
it follows that 11 = 1. This implies that ¢1(£) = 2(£). since £ was arbitrary, it
follows that @1 = @s.

It remains to show the existence. Let & € L(G). By 2.4.2, since R is a sim-
ply connected, connected Lie group, the morphism ¢t —— t£ from R into L(G)
determines a unique Lie group morphism f; : R — G such that L(f¢)(1) = ¢&.

Let s € R. Then ¢, : t — st, t € R, is a Lie group homomorphism of R into
itself. Clearly, L(cs) : t — st, t € R. Therefore, the composition fe o ¢, is a Lie
group morphism of R into G with the differential

L(fe 0 cs)(1) = L(fe)(L(cs)(1)) = To(fe)(s) = sTo(fe)(1)-
Therefore, L(fe 0 cs) = L(fs¢), and by 2.2.14, we have

fe(st) = (fe o cs)(t) = fue(t)
for all t € R.
Consider the map ¢(§) = fe(1) for £ € L(G). Clearly, ¢(0) = fo(1) = 1. Hence,
© satisfies (i).
In addition, by the above calculation, for ¢,s € R and £ € L(G), we have
((t+5)8) = ft+)e(1) = fe(t +5) = fe(t) fe(s) = fre(1) foe(1) = p(t&)p(sE).

Therefore, (iii) also holds.
It remains to prove the differentiablity of ¢ and (ii).
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First we prove that the function ¢ is differentiable in a neighborhood of 0 €
L(G). Clearly,

(Ya(fe(t)) o fe)(s) = fe(t) fe(s) = fe(t + 8) = (fe 0 mr(2))(s)

for any t, s € R. Therefore,

Ti(fe)(1) = Ti(fe) (To(yr () (1)) = To(fe o v (t))(1)
= To(va(fe(t) © fe)(1) = Ta(va (fe()(To(fe) (1)) = Ta(va(fe())E

for any t € R.

Let (U, v, n) be a chart on G centered at 1. Denote by D1, Da, ..., D,, the vector
fields on U which correspond to 01,0, ...,0, on ¥(U) under the diffeomorphism
1. Then & = D1 1,82 = Do, ...,&, = D, 1 form a basis of T1(G). Moreover,

n

Ti(va(9)& = Z(Fw 0 1)(9)Djq

j=1

for any g € U; where Fj; : ¢(U) — R are smooth functions. For £ = >""" | z;&; €
L(G) there exists €(x1,x2,...,%,) > 0 such that

|t| < e(x1,22,...,2,) implies p(t§) € U.
We denote by 9;(u), 1 <14 <n, the coordinates of ¢(u) for v € U, and put
fl(ta T1,T2,... 7‘2:71:) = ¢7(¢(t€))
for |t| < e(z1,x2,...,2zn). Then, by the above calculation, we have

d;
dt

= Typwe) (Vi) Ti(va (fe(t)))E = inFij(fl(t; Tiyees @)y falt @, 20)

=1

=T (f;)(1) = Ti(vj o fe) (1) = Tpey () T2 (fe)(1)

for every |t| < e(z1,22,...,2n) and x1, x9, ..., z, € R. In addition, we have
fi(O; 1,20, ...,2,) =0

for 1 < i < n. If we consider the first order system of differential equations
df -
d—; = ;xiﬂj(fl(t;xl, e ,Z‘n), ey fn(t;xl, e ,Z‘n))

with the initial conditions
fi(O;xl,xg, ‘e ,:En) =0
for 1 < i < n, it follows that this Cauchy problem has unique solution on (—d,0)
with parameters |z;| < €, 1 < i < n, for some €,d > 0. Moreover, the solutions f;,
1 <4 < n, are smooth functions in [¢t| < ¢ and |z;| < €, 1 <4 < n. Therefore, if we
put V ={¢ € L(G) | £ = X", x:&,|xi| < de}, V is an open neighborhood of 0 in
L(G) and the function ¢ is differentiable on V.
On the other hand, by (iii) we have
GEERE
p(&) =~

for any n € N. Therefore, the differentiability of ¢ on V implies the differentiability
on nV for any n € N. Hence ¢ is differentiable on L(G). O
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The map ¢ : L(G) — G is called the exponential map and denoted by exp
(or just exp).

Let G be the multiplicative group of positive real numbers R . Then its Lie
algebra is equal to R. Clearly, the function ¢t — e? satisfies the properties (i), (ii)
and (iii) of 2.9.1. Therefore, in this example we have ¢(t) = e* for t € R.

2.9.2. COROLLARY. (i) Exponential map expg : L(G) — G is a local
diffeomorphism at 0 € L(G).
(ii) For every & € L(G), v : t — exp(t€) is the unique Lie group morphism
of R into G such that L(1)(1) = &.

For every &€ € L(G), {exp(t§) | t € R} is an integral subgroup of G which we
call one-parameter subgroup attached to . From 2.6.3, we see that one-parameter
subgroups are isomorphic to either R or T.

2.9.3. PROPOSITION. Let G and H be two Lie groups and ¢ : G — H a
morphism of Lie groups. Then
(i) poexpg = expy oL(p);
(ii) if G is an integral subgroup of H, we have expg = expy ()

PRrROOF. Clearly, (ii) is a special case of (i).
To prove (i) we remark that ¢ : t — @(expq(t€)) and g : t — expy (tL(9)E)
are two Lie group morphisms of R into H. Also, we have

L) (1) = L(e)é = L(g2)(1),
ie., L(1) = L(v9). By 2.2.14, it follows that ¥; = 1. In particular, we have
plexpg(§)) = ¥1(1) = (1) = expy (L(p)§). O
Let G = GL(V). Then L(G) is the Lie algebra £(V') of all linear endomorphisms

on V. For any linear transformation 7" on V, the series > >~ %T" converges to

a regular linear transformation on V. Therefore, this defines a real analytic map
T +— €T from L(V) into GL(V). Clearly, this map satisfies the properties (i), (ii)
and (iii) from 2.9.1. Hence exp(T) = eT for T € L(G).

2.9.4. COROLLARY. (i) Let ¢ € L(G). Then
Ad(exp(§)) = e™*.
(ii) Let g € G. Then
glexp€)g™" = exp(Ad(g)(€))
for all ¢ € L(QG).

PROOF. (i) The adjoint representation Ad is a Lie group morphism of G into
GL(L(G)). Therefore, by 2.9.3 and the above discussion, we have

Ad(exp(§)) = €AV,

The final statement follows from 2.2.5.
(ii) Int(g) is an automorphism of G, hence, by 2.9.3, we have

g(exp&)g™" = Int(g)(exp(£)) = exp(L(Int(g))§) = exp(Ad(g)¢)
for all £ € L(G). O

2.9.5. COROLLARY. Let G be a Lie group and H an integral subgroup of G.
Then, the following statements are equivalent for £ € L(G):
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(i) £ € L(H);
(ii) expq(t€) € H for all t € R.

ProOF. By 2.9.3.(ii), we see that £ € L(H) implies that expg(t£) € H for all
teR.

If exp(t€) € H for all t € R, then ¢ is in the Lie algebra tangent to H. Hence,
by 2.7.6, we see that £ € L(H). O

Clearly, the image of exp : L(G) — @ is in the identity component of G. On
the other hand, exp in general is neither injective nor surjective. The answer is
simple only in the case of connected abelian Lie groups.

2.9.6. PROPOSITION. Let G be a connected Lie group. Then the following as-
sertions are equivalent:
(i) the group G is abelian;
(ii) exp : L(G) — G is a Lie group morphism of the additive group L(G)
into G.

If these conditions are satisfied, exp : L(G) — G is a covering projection.

PROOF. Assume that G is a simply connected abelian Lie group. Then L(G)
is an abelian Lie algebra by 2.2.16. In addition, by 2.6.1, G is isomorphic to R™
for n = dim G. Moreover, L(G) is also isomorphic to R™ as an abelian Lie algebra.
Clearly, the identity map on R™ satisfies the conditions of 2.9.1. Therefore, exp is
the identity map in this case, so it is clearly a Lie group morphism.

If G is an arbitrary connected abelian Lie group, its universal cover is isomor-
phic to R™ for n = dim G. Let p : R® — G be the covering projection. Then, by
2.9.3 and the first part of the proof, we have p = exp. It follows that exps is a
Lie group morphism and the covering projection.

If exp : L(G) — G is a Lie group morphism, its image is a subgroup of G.
By 2.9.2.(i), it contains an open neighborhood of 1 in G. Since G is connected, by
1.5.1, we see that exp is surjective. Therefore, G has to be abelian. O

2.9.7. LEMMA. Let G be a connected Lie group and H an integral subgroup of
G. Then the following conditions are equivalent:
(i) H is a normal subgroup of G;
(ii) L(H) is an ideal in L(G).

PROOF. Assume that H is a normal subgroup in G. Then by 2.7.8, L(H) is
an ideal in L(G).
If L(H) is an ideal in L(G), by 2.9.4, we have

Ad(exp(€))(L(H)) = e ©(L(H)) = L(H)

for any £ € L(G). By 2.9.1, there exists a neighborhood U of 1 in G such that
Ad(g)(L(H)) = L(H) for all g € U. Since G is connected, by 1.5.1, it follows that
Ad(g)(L(H)) = L(H) for all g € G. Hence, by 2.7.8, H is a normal subgroup. O

2.10. Some examples. First we consider the group of affine transformations
of the space R", n € N. For A € GL(n,R), a € R", we define the affine transfor-
mation

ape(r) =Az +a, z € R™
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Clearly, for A, B € GL(n,R) and a,b € R™, we have
aAq0apy(x) =agq(Bxr+b) =ABx + Ab+ a = 0apt+q,aB(T)

for all z € R™. Therefore, the group of all affine transformations of the real line
can be identified with the the manifold R” x GL(n,R) with the operation

(a,A) - (b,B) = (Ab+ a, AB).
This is clearly a Lie group G, which we call the group of affine transformations of
R™.
We define a map 7 : (a, A) — (

have
w(a, A) o 7(b, B) = <6‘ ‘1’) (zg ll’) - <AOB At ") — (A, a) - (B,b)),

i.e., m is a representation of G. The image of 7 is the subgroup H of GL(n + 1,R)
which is the intersection of the open submanifold GL(n+1,R) of the space M,,+1(R)
of all (n4+1) x (n+1) real matrices with the closed submanifold of all matrices having
the second row equal to (0...0 1). Therefore, H is a Lie subgroup of GL(n+ 1,R).
Since 7 is injective, by 1.5.7, 7 is an isomorphism of G onto H.

Therefore, the Lie algebra L(G) of G is isomorphic to the Lie algebra L(H) of
H. On the other hand, the Lie algebra L(H) is the subalgebra of the Lie algebra
M, +1(R) consisting of all matrices with with last row equal to zero.

Consider now the case n = 1. Then G is diffeomorphic to R x R*. Therefore,
it has two components, and the identity component Gy is simply connected. The
Lie lgebra of G is spanned by the vectors

_O—1d_10
a={y o and ez = {, ]

By direct calculation we check that [eq, es] = e;. Therefore, the Lie algebra L(G)
is isomorphic to the unique two-dimensional nonabelian Lie algebra which we dis-
cussed in 2.1.

Let (a,b) be in the center of Gy. Then

(a,b) - (¢,d) = (a+ be, bd)

A a

0 1) of G into GL(n + 1,R). Clearly, we

is equal to
(¢,d) - (a,b) = (c+ da,bd)
for all c € R and d € R. This implies that a + bc = ¢ + da for all ¢ € R and
d € R This is possible only if a = 0 and b = 1. Therefore, the center of Go (and
of Q) is trivial. This implies that, up to a Lie group isomorphism, Gy is the unique
connected Lie group with Lie algebra isomorphic to L(G).
Combining this with the above discussion, we get the following result.

2.10.1. LEMMA. The connected component of the group of affine transforma-
tions of the real line is (up to an isomorphism) the unique connected 2-dimensional
nonabelian Lie group.

Combined with 2.6.2, this completes the classification of all connected Lie
groups of dimension < 2.

2.10.2. PROPOSITION. Any connected Lie group G of dimension 2 is isomorphic
to one of the following Lie groups:
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(i) real plane R?;
(ii) two-dimensional torus T?;
(iii) the product R x T;
(iv) the connected component Go of the group of affine motions of the real line.

By direct calculation we see that
-1
b a\ (0 -1\ /(b a b a\ (0 -1\ /b' —ab7!
Ad(a’b)el_(o 1><0 0)(0 1) _(0 1><0 0><0 1 )

and

e A [ B R I I
:<(1) _Oa):ael—i—eg.

Therefore, in the basis (e, e2) the adjoint representation of G is equal to the rep-
resentation .

Now we return to the general case. We want to calculate the exponential map
for G. The Lie algebra L(G) can be viewed as the Lie subalgebra of M,41(R)
consisting of all matrices with last row equal to 0. Therefore, an element of L(G)
can be written as (g 8) where T' € M, (R) and v € R™. Since G is a Lie subgroup
of GL(n + 1, R) its exponential map is given by the usual exponential function on

M,,+1(R). Therefore, me have
T v\ ~1/(T v\’
o (0 0) 250 )
p=0
By induction in p we see that

T v\* (1P TPl
0o 0o/ —\o 0

for any p € N. Let

el—1

for any t € C. Then, f is an entire function, and for ¢ # 0 we have f(t) =

With this notation we have

n(d )5 )

In particular, returning to the case n = 1, we see that

(s -G )
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for any t,v € R. On the other hand, the identity component Gy of G consists of
matrices (a b) where @ > 0. If t =0, f(0) = 1, and we have

0 1
0 vy (1 w
Plo o) \o 1)~
t v _ et (ef‘zl)v

From these formulae it is easy to see that the exponential map is a diffeomorphism
of L(G) onto Gy.

From the above discussion we conclude that the exponential map is a diffeo-
morphism for all simply connected, connected Lie groups of dimension 1 and 2.

Consider now the group G for n = 2. This is the group of affine transformations
of the plane R?. Let H be the subgroup of G consisting of all affine transformations
which preserve the euclidean distance in R2. This is the group of euclidean motions
A a
0 1
where A € O(2) and a € R?. Therefore, H is diffeomorphic to R? x O(2). By 1.8.3,
H has two connected components. Its identity component Hy is the group of orien-

If t # 0, we have

of R2. From the above discussion, we see that H consists of all matrices

tation preserving euclidean motions consisting of all matrices of the form < 0 Cll)

where A € SO(2) and a € R?. Therefore, its fundamental group is isomorphic to
Z.
Consider the manifold H = R3 with multiplication

(z,y,0) - (2,9, ¢") = (x+ 2" cosp+y'sing,y — z'sinp + y' cosp, 0 + ¢').

By direct calculation, one can check that this is a Lie group. Moroever, the mapping
®: H — Hj given by

cosy sing x
(z,y,p) = | —sinp cosp y
0 0 1

is a Lie group morphism. The kernel of ® is (0,0, 27k), k € Z, and ® is surjective.
Therefore, ® is a covering projection. It follows that H is the universal cover of
Hy.

The Lie algebra of H is spanned by matrices

0 0 1 0 0 0 0 1 0
er=[00 0], ea=10 0 1], e5=(-1 0 0
0 0 O 0 0 0 0 0 O
Then, we have
[e1,e2] =0, [e3,e1] = —ea, [e3,e2] = €1

and these relations determine L(H) completely.
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Now we consider the exponential map exp : L(H) — H. By induction we see

that
10
(0 1)p_ (—1)= <0 1) if p is even
-10 B p— 1
(—1)%" (01 0) if p is odd.

Therefore, we have

(0 LP) = (—1)P 10 (-1 0 1
S :<Z Cp)! “”2p> ¢ 1>+<mew> (50

p=0 p=0
[ cosp singp
“ \—singp cosp)’

Analogously, if ¢ # 0, we have

(D)= (E k) ¢ (S (4 )

p=0 p=0

_sinp (1 0 +1—cos<p 0o 1\ _ 1 sin ¢ 1—cosyp
o \0 1 © -1 0) ¢p\cosp—1 sing )’

Hence, by above calculation, we have

0 0 =z 1 0 =z
expgy (0 0 y| =10 1 y
0 00 0 0 1
and, if ¢ # 0,
0 ¢ =« cosp sing %(xsingp—i—y(l—cosg@))
expg [ —¢ 0 y ] =/[—sinp cosp %(x(cosgp — 1)+ ysingp)
0 0 0 0 0 1

From this one easily sees that

8

exp = (z,9,0)

o O O
o O O
ow

and

0 ¢ =z 1 1
expg [ —¢ 0 y =(—(xsincp+y(1—COSSO)%—(fv(cosso—l)+ysinso),<p)
0 0 0 ¥ ®

for ¢ # 0.
From this we immediately deduce that for k € Z*, we have
0 2k x
expg | =20k 0y | =(0,0,27k).
0 0 O

Hence, the exponential map is neither injective nor surjective for H.
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2.11. Cartan’s theorem. In this section we prove the following fundamental
result in the theory of Lie groups.

2.11.1. THEOREM (E. Cartan). A closed subgroup of a Lie group is a Lie sub-
group.

PROOF. Let G be a Lie group and H its closed subgroup. Let h be the Lie
subalgebra of L(G) which is tangent to H. Denote by H the integral subgroup of
G attached to h. Then, by 2.7.2, Hy C H.

Let ¢ be a complementary linear subspace to  in L(G). Then the map h x £ >
(&1,&2) — exp(&1) - exp(€2) is a differentiable map from § x € into G. By 2.9.1, the
differential of this map at (0,0) is equal to (£1,&2) — & + &. Hence the map is a
local diffeomorphism at (0,0). There exist open symmetric convex neighborhoods
Ui and Us of 0 in h and ¢ respectively, such that (£1,&2) — exp(&1) - exp(&2) is a
diffeomorphism of U; x Us onto an open neighborhood U of 1 in G.

Clearly, exp(U1) C Hp. We claim that there is a neighborhood U C Uz of
0 € € such that

H nexp(Uy) - exp(U}) = exp(Uy).

Assume the opposite. Then there exist sequences (£,) in Uy and (n,) in Uy —
{0} such that 1, — 0 and exp(&,) - exp(n,) € H. Since we have exp(n,) =
exp(—&,) exp(&n) exp(n,), we see that exp(n,) € H for all n € N. Taking possibly
a subsequence, we can find \,, € R — {0}, n € N, such that \;'n, — n € t— {0}
as n — oo. For example, if we take a norm || - || on €, we can put A\, = ||n,].
Clearly, we must have A,, — 0 asn — oco. Let A € R. Let k,, be the largest integer
less than or equal to A\, !. Then |\ — A\, k,| — 0 as n — oo. Therefore, by the
continuity of the exponential map, we have

exp(A1) = exp (A lim A 1%) = lim exp(A\;"n,)
= lim (exp((A = knAn) Ay 0n) - exp(knnn)) -
On the other hand, by the same reasoning, we have
nlirgo exp((A — knAn) A, 1) = exp (JLII;O((A . kn)\n))\glnn)) =exp(0) = 1.
Therefore, we have
exp(An) = lim (exp((A — knAn) A7 1) - exp(knin))
= lim exp(—(\ — ko)A, ) - nh—>H;o (exp((A = EnAn) A, 1110 - exp(knin))

n—oo

= lim exp(knn,) = lim exp(r]n)k" € H,
n—oo n—oo

since ky, € Z, exp(n,) € H and H is closed in G.

It follows that exp(An) € H for all A € R. Hence, n € b, which is impossible.
Therefore, we have a contradiction.

Therefore, we established that there exists a neighborhood Uj of 0 in £ such
that H Nexp(U;) exp(U}) = exp(U1). Hence, there exists an open neighborhood O
of the identity such that H N O is a submanifold. Since H is a subgroup of G, any
h € H has such neighborhood ~(h)(O). Therefore, H is a submanifold of G and a
Lie subgroup of G. (]

Cartan’s theorem has the following consequence.
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2.11.2. THEOREM. Let G and H be two Lie groups and ¢ : G — H a continu-
ous group homomorphism. Then  is differentiable, i.e., it is a Lie group morphism.

PROOF. Since ¢ is continuous, the graph I',, of ¢ in G x H is a closed subgroup.
Therefore, I' is a Lie subgroup in G x H. Hence, the restriction p of the projection
G x H — G to I'y, is a morphism of Lie groups. Clearly, it is a homeomorphism.
Since it is injective, by 1.1.5 and 2.2.7, it must be an immersion. On the other
hand, since it is open, it must be a local diffeomorphism. It follows that p is a
diffeomorphism, and an isomorphism of Lie groups. On the other hand, ¢ is the
composition of the inverse of p with the projection to the second factor in G x H.
This implies that ¢ is a Lie group morphism. U

2.11.3. COROLLARY. Let G be a locally compact group. Then on G there exists
at most one structure of a Lie group (compatible with the topology of G).

2.12. A categorical interpretation. Let Lie be the category of Lie groups
and 7 opGrp the category of topological groups. Then we have the natural forgetful
functor For : Lie — TopGrp. By 2.11.2 this functor is fully faithful. Moreover, by
2.11.3, this functor is an isomorphism of the category Lie with the full subcategory
of TopGrp consisting of topological groups which admit a compatible Lie group
structure.

The following property distinguishes Lie groups among topological groups.

2.12.1. PROPOSITION. Let G be a Lie group. Then there exists a neighborhood
U of 1 in G with the following property: If H is a subgroup of G contained in U,
H is trivial, i.e., H = {1}.

We say that Lie groups do not admit small subgroups.

PrOOF. Let U be an open neighborhood of 1 in G and V' a bounded open
convex neighborhood of 0 in L(G) such that exp : V. — U is a diffeomorphism.
Let V' C 1V C V be another neighborhood of 0 in L(G). Then U’ = exp(V’)
is an open neighborhood of 1 in G. Let H be a subgroup of G contained in U’.
Let h € H. Then h = exp(§) for some £ € V'. Hence, we have h? = exp(£)? =
exp(2¢) € H. Moreover, h?> € H and h? = exp(n) for some n € V'. Tt follows
that exp(n) = exp(2€) for 26,7 € V. Since exp is injective on V', we must have
2¢ = 1. Hence, { € 1V'. Tt follows that H C exp (3V’). By induction we get that
H C exp (55V’) for any n € N. Since V' is bounded, this implies that H = {1}. O

2.12.2. EXAMPLE. In contrast to 2.12.1, there exist compact groups with small
subgroups. For example, let C' = Z/27Z be the cyclic group of order two, and G
the infinite product of countably many copies of C. Then G is a compact group.
On the other hand, by the definition of topology on G, there exists a fundamental
system of open neighborhoods of 1 in G consisting of subgroups of finite index in
G.

This proves that the full subcategory of 7 opGrp consisting of all locally compact
groups is strictly larger than Lie.

On the other hand, a connected locally compact group without small subgroups
is a Lie group. In particular, a topological group which is a topological manifold
has no small subgroups and therefore is a Lie group. This gives the positive answer
to Hilbert’s fifth problem.
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2.13. Closures of one-parameter subgroups. Let G be a Lie group. Let
H be a subgroup of G. By continuity of multiplication and inversion in G, the
closure H of H is a closed subgroup of G. By Cartan’s theorem 2.11.1, H is a Lie
subgroup of G.

Let £ € L(G) and H the corresponding one-parameter subgroup {exp(t§) | t €
R}. Then, by 2.6.3, H is isomorphic to R or T. In the second case, H is compact,
and therefore closed in G.

We want to study the closure H of H in the first case. Since H is connected
and abelian, H must be a connected abelian Lie group. Hence, by 2.6.2, H is
isomorphic to a product TP x R? for some p,q € Z .

The universal cover of H is isomorphic to R4, The Lie algebra L(H) can also
be identified with RP*? and the exponential map exp : RPt? — H is the covering
projection by 2.9.6. We can assume that the kernel of this covering projection is
7P x {0}. Since ¢ € L(H) C L(H), ¢ determines a line in L(H). Let e1,ea,...,ep1q
denote the canonical basis of RPT2. Then ey, ea,...,e, and the line {t{ | t € R}
generate a subgroup K of RP*9. Let U be a nonempty open subset of RP*9. Since
the projection of RP*9 onto H is open, the image V of U is a nonempty open set
in H. Since H is dense in H, V must intersect H. It follows that K intersects U.

Hence, K is dense in RP*4. This first implies that ey, es,..., e, and £ must span
RP*4. Hence, ¢ < 1. On the other hand, if ¢ = 1, ¢ is linearly independent from
e1,€a,...,6p. In this case, K is closed in RPT!. Since it is also dense in RPF!, it

must be equal to RPTL. This is possible only if p = 0 and H is one-dimensional.

Since H is one-dimensional too, by 2.7.6, we see that H = H. Therefore, we
established the following result.

2.13.1. PROPOSITION. Let H be a one-parameter subgroup in a Lie group G.
Then, either H is a Lie subgroup isomorphic to R or H is a Lie group isomorphic
to T" for some n € N.

Now we want to show that any torus T™ can be obtained in this way.

2.13.2. PROPOSITION. Letn € N. There exists a one-parameter subgroup dense
in T™.

PrOOF. As we remarked above, it is enough to show that for any n € N there
exists a line L in R™ such that it and ey, es, ..., e, generate a dense subgroup H in
R™.

Let L be an arbitrary line in R™ and H the subgroup generated by L and
€1,€2,...,en. Then H is a closed subgroup of R”. By Cartan’s theorem, H is a Lie
subgroup of R™. Therefore, by 2.8.2, there exists a basis ai,as,...,a, such that
(Q1, ey @y M1,y My) = Qa1+ -+ QpGy + My 10 g1 + -+ + Mpay s an
isomorphism of R” x Z"~" onto H. If H is different from R", we have r < n. Let
f be the linear form on R™ defined by f(a;) =0 for 1 <i<n-—1and f(a,) = 1.
Then f is a nonzero linear form on R satisfying f(H) C Z.

Therefore, if H is not dense in R™, there exists a nontrivial linear form f on
R™ such that f(H) C Z.

Let ¢; = f(e;) for 1 < i < n. Since e1,e3,...,e, € H, we must have ¢; € Z
for 1 <4 <mn. Let £ = (01,02,...,0,) be a nonzero element of L. Since f takes
integral values on L, it must be equal to 0 on L. Therefore, we must have

c101 + ol + - - - + ¢,0, = 0.
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Therefore, if a nontrivial f exists, 61,02, ..., 0, must be linearly dependent over Q.
Since R is infinite dimensional linear space over QQ, we see that we can always find
& such that 61,0, ...,0, are linearly independent over Q. In this case H must be
dense in R™. Hence, the corresponding one-parameter subgroup is dense in T™. [

3. Haar measures on Lie groups

3.1. Existence of Haar measure. In this section we prove the existence
of left invariant positive measures on Lie groups. They generalize the counting
measure on a finite group G. The main result is the following theorem.

3.1.1. THEOREM. Let G be a Lie group.

(1) There exists a nonzero left invariant positive measure i on G.
(ii) Let v be another left invariant measure on G. Then there exists ¢ € C
such that v = cu.

Therefore, any nonzero positive left invariant measure on G is of the form c- p,
¢ > 0. Such measure is called a left Haar measure on G.

Since a left Haar measure p on G is left invariant, its support supp(u) must be
a left invariant subset of G. Therefore, since p is nonzero, supp(u) has to be equal
to G. In particular, the measure u(U) of a a nonempty open set U in G must be
positive.

PRrROOF. Let n = dimG. Then A" T1(G)* is one-dimensional linear space. A
nonzero n-form  in A" T3 (G)* determines a differentiable n-form w on G by

we(T1(7(9))€1 A (T1(v(g)Ea A=+ A (T1(7(9))6n) = QUEL A Ea A=+ AN En)

for all &1,&s,...,&, € T1(G). Clearly, w satisfies y(g)*w = w for any g € G, i.e.,
this form is left invariant. The corresponding positive measure |w| is a nonzero left
invariant measure on G. This proves (i).

Now we prove the uniqueness of left invariant measures. Let p be a nonzero
positive left invariant measure on G. Let v be another left invariant measure on G.
Let ¢ € Cp(G) such that u(p) # 0. Then we can define the function

1
Flo) = = / o(hg) duh).

This is a continuous function on G.
For any ¢ € Cy(G), we have

o) [ vy = [ ( / so(g)w(h—l)du(h)) du()

— [ ([ etorwta iy am) aute) = [ ( [ etarayan ) auto
= [ ([ ctrarwta)avin) duto) = o) [ 015t auts).

It follows that

/ G di(h) = / $(9)Fo(g) dulg)
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for any ¢ € Cy(G). Since left side is independent of ¢, we conclude that for
©, ¢ € Co(G) such that u(p) # 0 and u(¢’) # 0, we have

[e@Fug)dute) = [ 6)F(6) duto)

Therefore, we have

/ $(9)(Falg) — For(g)) dug) = 0

for any ¢ € Co(G). Hence, the measure (F, — F,/)p is equal to zero. This is
possible only if the set S = {g € G | (F, — F,/)(g) # 0} is a set of measure zero
with respect to . On the other hand, since F, — F,s is continuous, the set S is
open. It follows that this set must be empty, i.e., Fyr = F,.

Hence, the function F,, is independent of ¢, and we can denote it by F. From
its definition we get

F(1) / o(g) dulg) = / o(g) dvlg)

for any ¢ € Cy(G) such that u(p) # 0. The complement of {¢ € Co(G) | u(¢) =0}
spans the space Co(G). Therefore, the above identity holds on Cy(G), ie., v =
F(1)p. This proves the part (ii) of the theorem. O

3.2. Modular function. Let G be a Lie group and p a left Haar Ineabure on
G. Let 7 be an automorphism of the Lie group G. Then v; : o — [ ¢(7(g)) di(g)
is a positive measure on G. In addition, for any ¢ € C,(G), we have

/ o(hg) dvy (g) = / o(hr(g)) dulg) = / o(r(r ()g)) dulg) = / o(9) dvr ().

e., the measure v, is left invariant. Therefore, there exists a positive number
mod(7) such that mod(7)v, = u, i.e.,

mod() [ ¢(r(9)) dutg) = [ (o) duto).
for all ¢ € Cy(G). Equivalently, we have
(7 (S)) = mod(7)u(S)
for any measurable set S in G.

3.2.1. LEMMA. The function mod is a homomorphism of the group Aut(G) of
automorphisms of G into the multiplicative group R’ of positive real numbers.

PROOF. Let 0,7 € Aut(G). Then, for any measurable set S in G, we have
mod(a o 7)u(S) = p((o 0 7)(5)) = u(o(r(5)))
= mod(0)u(7(5)) = mod(a) mod(7)u(S),
o mod(o o 7) = mod(o) mod(7). O

Clearly Int : G — Aut(G) is a group homomorphism. Therefore, by composi-
tion with mod we get the group homomorphism mod o Int of G into R? . Clearly,
the function A, defined by

A(g) = Ag(g) = mod(Int(g)) !
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from G into R, is a group homomorphism. It is called the modular function of G.
By the above formulas, we have

[ ethg™autt) = [ otahg™) dutr) = o) [ o(h duto
for any ¢ € Cy(G). Equivalently,
w(Sg) = A(g)u(S)

for any g € G and measurable set S in G. Therefore, a left Haar measure is right
invariant if and only if Ag = 1.

3.2.2. PROPOSITION. Let G be a Lie group. Then:

(i) The modular function A : G — R is a Lie group homomorphism.
(ii) For any g € G, we have

Ag(g) = | det Ad(g)| .

PROOF. Let n = dim G. Let w be a nonzero left invariant differential n-form
on G. Then w is completely determined by its value at 1. Let Clearly,

(Int(g) o y(h))(k) = ghkg™" = (v(ghg™") o Int(g)) (k)
for any k € G. Hence, for any h € G, we have

~(9)* (Int(h)*w) = (Int(h) 0 (g))*w = (v(hgh™") o Int(h))*w
= Int(h)*(y(hgh™")*w) = Int(h)*w
for all g € G, i.e., Int(h)w is a left invariant differential n-form on G. Therefore, it
must be proportional to w.
On the other hand,
(Int(g)"w)(&1 A& A+ Aén) = w(Ti(Int(g))&1 A Ti(Int(g))a A - - - AT1(Int(g))En)
= det(T1(Int(g)))w (& A &2 A+ A &n)
for any &1,&a,...,&, € T1(G). It follows that
Int(g)*w = det(T1 (Int(g))w = det(Ad(g))w
for any g € G. Therefore, we have
| Tnt(g)*w| = | det Ad(g)) - [«

for any g € G.
Let p be the left Haar measure attached to w. Then, by 1.4.2.1, for any ¢ €
Co(G), we have

/ (1) du(h) = / o] = / (poTnt(g)) | Tnt(g)"w| = | det Ad(g)| / (oTnt(g)) ||

= | det Ad(g)| /@(ghg’l)du(h) = | det Ad(g)\A(g)/w(h) dpu(h).

Hence, (ii) follows.
From (ii) it follows that A is differentiable. This establishes (i). O

A Lie group G is called unimodular if Ag = 1. As we remarked above, a left
Haar measure on a unimodular Lie group is also right invariant, i.e., it is bitnvariant.

Clearly, abelian Lie groups are unimodular. In addition, we have the following
result.
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3.2.3. PROPOSITION. Let G be a compact Lie group. Then G is unimodular.

ProoF. If G is compact, the image A(G) of G is a compact subgroup of R .
Therefore, it must be equal to {1}. O

3.2.4. EXAMPLE. Let G be the Lie group of affine transformations of the line
studied in 2.10. We established there that

Ad(a,b) = <8 Cf)

for any (a,b) € G. Therefore, we have
A(a,b) = |det Ad(a, b)|~* = |b].
It follows that G is not unimodular.

3.3. Volume of compact Lie groups. In this section we prove the following
characterization of compact Lie groups.

3.3.1. THEOREM. Let G be a Lie group and u(G) a left Haar measure on G.
Then, the following conditions are equivalent:

(i) The group G is compact.
(i1) u(Q) is finite.

PROOF. If G is compact, u(G) < oco.

Assume that §(G) < co. Let V be a compact neighborhood of 1 in G. Then
w(V) > 0.

Let S be the family of finite sets {g1, g2, ..., 9n} such that g,V N g;V = 0 for
all i # j, 1 <4,7 <n. Then we have

1W(G) > p (U giV> = Zu(giV) =nu(V),

1S Tt follows that the elements of S have bounded cardinality. In

and n < MUAR
particular, there exist elements in S of maximal cardinality ng. Let {g1, g2, .- - Gno }
be such element in S. Let ¢ € G. Then {g,g1,...,9n,} is not in §. Therefore,
there exists 1 < i < ng such that gV N ¢;V # 0. Therefore, g € ¢;VV L. Since g
was completely arbitrary, it follows that G = |J°; ¢;V'V ™. Hence G is a union of
compact sets, i.e., G is compact. 0




CHAPTER 3
Compact Lie groups

1. Compact Lie groups

1.1. Lie algebra of a compact Lie group. Let G be a compact Lie group
and L(G) its Lie algebra. By 2.3.1.1, there exists a left Haar measure on G. By
2.3.2.3, this measure is biinvariant. Moreover, by 2.3.3.1, the volume of G is finite.
therefore, we can select the biinvariant Haar measure p on G such that pu(G) = 1.

1.1.1. LEMMA. Let G be a compact group.

(i) The Lie algebra L(G) admits an inner product such that the image of
Ad: G — GL(L(Q)) is a closed subgroup of O(L(G)).

(il) With respect to this inner product, ad(§), £ € L(G), are skew symmetric
linear transformations.

PRrROOF. Since G is compact, the image Ad(G) C GL(L(G)) is compact and
therefore closed.

Let (&,m) — (&]n) be an arbitrary inner product on L(G). Then we define
another inner product on L(G) by

€1 = [ (Ad(@)é] Ad(o)n) dun(a),
for £, € L(G) Clearly, we have

[Ad(g)¢| Ad(g)n] = /G (Ad(h) Ad(g)¢| Ad(h) Ad(g)n) du(g)

- /G (Ad(hg)€| Ad(hg)n) du(g) = /G (Ad(g)¢| Ad(g)n) du(g) = €]
for all £, € L(G) and g € G. Therefore, Ad(g) € O(L(G)) for all g € G. This

proves (i).
(ii) follows immediately the description of Lie algebra of the orthogonal group
in 2.1.8. O

1.2. Tori in compact Lie groups. By 2.2.6.2 a compact connected abelian
n-dimensional Lie group is isomorphic to a torus T™. Therefore, we are going to
call it a torus.

Let G be a compact Lie group and T a torus in G. Then the Lie algebra L(T')
of T' is an abelian Lie subalgebra of L(G).

We consider the set of all subgroups of G and the set of all Lie subalgebras of
L(G) equipped with the partial ordering given by inclusion.

1.2.1. LEMMA. Let G be a compact Lie group.

(1) Any abelian Lie subalgebra of L(G) is contained in a mazimal abelian Lie
subalgebra.

e
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(ii) Any torus in G is contained in a mazimal torus.

(iii) An integral subgroup T is a maximal torus in G if and only if L(T) is a
maximal abelian Lie subalgebra of L(G).

(iv) the map T —— L(T) is a bijection between mazimal tori in G and mazximal
abelian Lie subalgebras in L(QG).

PROOF. (i) is obvious, since L(G) is finite-dimensional.

Let b be an abelian Lie subalgebra of L(G). Denote by H the integral subgroup
of G corresponding to h. Then the closure H of H is a compact connected abelian
subgroup of G. By Cartan’s theorem 2.2.11.1, it is a torus in G. Hence, its Lie
algebra L(H) is an abelian Lie subalgebra of L(G) containing L(H).

If h is a maximal abelian Lie subalgebra of L(G), L(H) = b, i.e., H = H by
2.2.7.6. It follows that H is a torus. Assume that H’ is a torus containing H. Then
its Lie algebra L(H’) is an abelian Lie subalgebra of L(G) and L(H') D h. By the
maximality of b, it follows that L(H') = b, and H' = H by 2.2.7.6. Therefore, H
is a maximal torus in G.

It follows that the bijection from Lie subalgebras into integral subgroups maps
maximal abelian Lie subalgebras into maximal tori.

If T is a maximal torus in G, its Lie algebra L(T') is contained in a maximal
abelian Lie subalgebra . The maximal torus H corresponding to h must contain
T by 2.2.7.6, hence T'= H and L(T) = § is a maximal abelian Lie algebra. This
completes the proof of (iii) and (iv).

Let T be a torus in G. By (i), its Lie algebra L(T) is contained in a maximal
abelian Lie subalgebra § of L(G). The corresponding integral subgroup H is a
maximal torus in G, and by 2.2.7.6, T C H. This proves (ii). O

Let G be a compact Lie group and T a torus in G. For any g € G, Int(g)(T) =
gTg~'is a torus in G, i.e., Int(g) permutes tori in G. Clearly, this action preserves
the inclusion relations, therefore Int(g) permutes maximal tori in G. Hence, G acts
by inner automorphisms on the set of all maximal tori in G.

Analogously, for any abelian Lie subalgebra § of L(G), the Lie algebra Ad(g)(h)
is also an abelian Lie subalgebra. Therefore, Ad(g) permutes all abelian Lie subal-
gebras in L(G). Since this action also preserves the inclusion relations, Ad(g) also
permutes all maximal abelian Lie subalgebras of L(G).

1.2.2. THEOREM. Let G be a compact Lie group. Then

(i) The group G acts transitively on the set of all maximal tori in G, i.e., all
maximal tori are conjugate.

(ii) The group G acts transitively on the set of all mazimal abelian Lie subal-
gebras in L(Q), i.e., all mazimal abelian Lie subalgebras are conjugate.

By 1.2.1, the statements (i) and (ii) are equivalent.

This implies that all maximal tori in G have same dimension. Also, all maximal
abelian Lie subalgebras in G have same dimension. Finally, by 1.2.1, these two
numbers are equal. This number is called the rank of G.

The proof of the theorem is based on the following lemma.

1.2.3. LEMMA. Let G be a compact Lie group. Let £&,m € L(G). Then there
exists g € G such that [Ad(g)&,n] = 0.
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Proor. By 1.1.1, L(G) admits an Ad(G)-invariant inner product. Consider
the function

G 3 g+ F(g) = (Ad(g)&|n)-

Clearly, this is a smooth function on G. Since G is compact, F' must have a sta-
tionary point in G. If g¢ is a stationary point of F', the function ¢ — F'(exp(¢{)go)
has a stationary point at ¢t = 0 for any ¢ € L(G). On the other hand, we have

F(exp(t€)go) = (Ad(exp(tC)go )
= (Ad(exp(t0)) Ad(go)ln) = (e'*©) Ad(gu)e|n)

by 2.2.9.4. Therefore, since ad(¢) and ad(n) are skew symmetric by 1.1.1, we have

0= HEPEID) | (2a(0) Ad(go)eln) = —(Ad(go)e]ad(O)
t=0
— (Ad(go)€] ad()<) = —(ad() Ad(g0)€]C) = ([Ad(go)é, 7]IC)
for all ¢ € L(G). Tt follows that [Ad(go)&,n] = 0. O

Now we can prove 1.2.2. Let T and T” be two maximal tori in G. Let L(T') and
L(T") be their Lie algebras. Then, by 2.2.13.2, there exist £ € L(T") and n € L(T")
such that the corresponding one-parameter subgroups are dense in T', resp. 7. By
1.2.3, There exists g € G such that [Ad(g)&, n] = 0. Therefore, Ad(g)¢ and 7 span
an abelian Lie subalgebra. Moreover, by 2.2.9.3, exp(t Ad(g)¢) and exp(sn) are in
the corresponding integral subgroup H for all ¢, s € R. By 2.2.2.16, H is an abelian
Lie group.

It follows that

exp(t Ad(g)€) exp(sn) = exp(sn) exp(t Ad(g)¢)
for all ¢, s € R. Therefore, by 2.2.9.4, we have

gexp(t&)g~" exp(sn) = exp(sn)gexp(t&)g~"

for all ¢, s € R. Since one-parameter subgroups corresponding to £ and n are dense
in T, resp. T’, by continuity we have

gtg 't =t'gtg™
forallt € T and t' € T'. Clearly, T, = gTg~! is a maximal torus in G, and its
elements commute with elements of 7”. The differentiable map v : T' x Ty — G
given by v(t,s) = ts, t € T', s € Ty, is a Lie group morphism. Therefore, its
image S is a connected compact abelian subgroup of G. By Cartan’s theorem,

2.2.11.1, S is a torus in G. Since S contains the maximal tori 77 and Ty, we see
that 77 = S = T,. Hence, gTg~' =T, and (i) in 1.2.2 follows.

1.3. Surjectivity of the exponential map. In this section we prove the
following basic result.

1.3.1. THEOREM. Let G be a connected compact Lie group. The exponential
map exp : L(G) — G is surjective.

Let G be a connected compact Lie group and T a maximal torus in G. We
claim first that the following two statements are equivalent

(i) the exponential map exp : L(G) — G is surjective.
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(ii) every element of G lies in a conjugate of T', i.e., the map ¢ : G X T — G
given by ¢(g,t) = gtg~! is surjective.

If (i) holds, for any g € G we have g = exp(§) for some £ € L(G). Therefore,
g lies in the one-parameter subgroup {exp(t¢) | ¢ € R}. The closure of this one-
parameter subgroup is a torus in G. Therefore, by 1.2.1, it is contained in a maximal
torus 77 in G. By 1.2.2, T’ = hTh~! for some h € G. Therefore, g € T' = hTh™!
and g = ¢(h,t) for some t € T

On the other hand, if (ii) holds, any g € G is of the form g = hth~! for some
h € G and t € T. Therefore, g is in the maximal torus hTh~! in G. By 2.2.9.6, ¢
is in the image of the exponential map.

It follows that to prove 1.3.1 it is enough to establish (ii).

Let X = ¢(G x T). Then X is a nonempty compact subset of G. Since G is
connected to prove that X is equal to G it is enough to prove that X is open. Since
X is invariant under conjugation by elements of G, it is enough to show that X is
a neighborhood of any t € T

We prove the statement by induction in dim G—dimT > 0. If dimG—dim T =
0, we have dim G = dim T and G = T since G is connected. In this case the assertion
is evident by 2.2.9.6.

Therefore, we can assume that dim G — dim 7" > 0.

Let t € T. Let H be the centralizer of T in G, i.e., H = {g € G | gt = tg}.
Then, we have H = {g € G | Int(t)g = ¢g}. By 2.2.2.13, it follows that H is a Lie
subgroup and

L(H) = {¢ € L(G) | Ad(t)¢ = ¢}.
Clearly, H is a compact Lie subgroup. Let Hy be the identity component of H.
Then T' C Hy, and Hj is a compact connected Lie group. Evidently, T is a maximal
torus in Hy.

Clearly, there are two possibilities: either ¢ is in the center Z of G or t is not
in the center of G.

Assume first that ¢ € Z. Let T’ be a maximal torus in G. Then, by 1.2.2, we
have T' = hTh~! for some h € G. Therefore, t = hth™! € T'. It follows that ¢
is contained in all maximal tori in G. Let £ € L(G). Then, ¢ is in some maximal
abelian Lie subalgebra of L(G), and by 1.2.1, exp(§) is in the corresponding maximal
torus T"”. Since ¢ € T", we conclude that ¢ - exp(§) € T”. By 1.2.2, there exists
k € G such that T = kTk~!, hence it follows that texp(¢) € kTk~! C X. Since
the exponential map is a local diffeomorphism at 0 by 2.2.9.1, we conclude that
{texp(§) | € € L(G)} is a neighborhood of ¢ in G.

It remains to treat the case t ¢ Z. In this case, by 2.2.2.15, we have Ad(t) #
Ir). It follows that L(H) # L(G). In particular, we have dim Hy = dim H <
dim G. Hence, we have dim Hy — dim7T < dimG — dimT. By the induction
assumption, we have

Ho = {ht'h™" | h € Hy,t' € T}.
Therefore, we have

X ={ghg™' | g€ G,h € Hy}.
Hence, to prove that X is a neighborhood of ¢ it is enough to show that the map
Y G x Hy — G defined by (g, h) = ghg~! is a submersion at (1,¢). Since the
exponential map is a local diffeomorphism at 0 by 2.2.9.1, it is enough to show that
the map

L(G) x L(H) > (§,n) = (exp&, texpn)
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is a submersion at (0,0). This in turn is equivalent to

L(G) x L(H) 3 (&) — t ™ (exp &, texpn)
being a submersion at (0,0). On the other hand, by 2.2.9.4, we have

™ (exp &, texpn) =t~ exp(&)t exp(n) exp(—€) = exp(Ad(t™)€) exp(1) exp(—§).
Therefore, the differential of this map at (0,0) is

a: () Ad(tTE+n— €= (Ad(t™") — )¢ +.

As we remarked in 1.1.1, there exists an inner product on G such that Ad(¢~!)
is an orthogonal transformation. Therefore, L(H )" is invariant for Ad(¢~!). Hence,
it is invariant for Ad(t~!) — I too. Let £ € L(H)* be in the kernel of Ad(t~1) — I.
Then, as we remarked before, ¢ is in L(H) too. It follows that £ € L(H)NL(H)+ =
{0}. Therefore, Ad(¢t~!) — I induces an isomorphism of L(H)L. It follows that
a(L(G) x L(H)) D L(H)* © L(H) = L(G). Hence, v is a submersion at (1,t).
This completes the proof of the induction step, and finishes the proof of 1.3.1.

As we mentioned at the beginning of the proof of 1.3.1, this also establishes
the following result.

1.3.2. COROLLARY. Let G be a connected compact Lie group and T a mazimal
torus in G. Then the differentiable map ¢ : G x T — G given by ©(g,t) = gtg~*
1S surjective.

1.3.3. COROLLARY. Let G be a connected compact Lie group. Then any g € G
lies in a maximal torus.

PRrROOF. By 1.3.2, for g € G, there exists h € G and t € T such that g = hth™!.
It follows that g is in the maximal torus hTh~". O

1.4. Centralizers of tori.

1.4.1. THEOREM. Let G be a connected compact Lie group and T a torus in G.
Let

C={geG|gt=tg forallteT}
be the centralizer of T. Then:

(i) C is connected Lie subgroup of G containing T .
(ii) If, in addition, T is a mazimal torus in G, we have C =T.

ProOF. Clearly, the centralizer of T is a compact subgroup of G containing 7.
Hence, by Cartan’s theorem, 2.2.11.1, it follows that C is a compact Lie subgroup
of G.

Let t € C. First we show that ¢ and T lie in a torus in G. Let H be the
centralizer of ¢t in G. By 1.3.3, t is in a maximal torus 7" in G. Clearly, T’ C H.
Therefore, T' is in the connected component Hy of H. In particular, this implies
that ¢t € Hy. Hence, t and T are in Hy. Since Hy is a compact Lie group, by 1.2.1,
T is contained in a maximal torus .S in Hy. By 1.3.2, there exists h € Hy such that
t € hSh~!. Tt follows that t = h~'th € S. Hence, the torus S satisfies the above
requirement.

If T is a maximal torus in GG, we must have S = T. This implies that t € T
Since t € C' was arbitrary, it follows that C' = T in that case. This completes the
proof of (ii).
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In general situation, S is in C. Since S is connected, it is in the identity
component Cy of C'. Hence, t is in Cy. Since t € C was arbitrary, it follows that
Cy = C. This proves (i). O

1.4.2. COROLLARY. Let G be a connected compact Lie group and Z the center
of G. Then Z is equal to the intersection of all maximal tori in G.

PROOF. Let T be a maximal torus in G and z € Z. Then z centralizes T', and
z € T by 1.4.1.(ii). Hence, we have Z C T. It follows that Z is contained in the
intersection of all maximal tori in G.

Conversely, let z be in the intersection of all maximal tori in G. Let g € G. By
1.3.3, there exists a maximal torus T in G which contains g. Hence, z commutes
with g. It follows that z is in the center Z of G. g

1.5. Normalizers of maximal tori. Let T be an n-dimensional torus and let
T be its universal covering group. Then, by 2.2.9.6, T can be identified with R” and
T with R™/Z™. The projection map T—T corresponds to the natural projection
R™ — R™/Z™ = T". Since the exponential map on R™ is the identity, we can
also identify L(T") with R™ and the covering map R™ — T" corresponds to the
exponential map. Let o be an automorphism of 7', Then L(«) is an automorphism
of L(T), i.e., L(a) € GL(L(T)). By 2.2.9.3, a0 exp = expoL(a). Hence, the
action of @ on T is induced by the action of L(«) on L(T'). This implies that L(«)
must map the lattice ker exp into itself. Since the same argument applies to a1,
it follows that L(«) is a bijection of ker exp.

With our identification, L(«) corresponds to an element of GL(n,Z), the sub-
group of GL(n,R) consisting of all matrices which map Z" onto itself. A matrix A
is in GL(n, Z) if and only if A and A~! are in M,,(Z), i.e., their matrix entries are
integers. This is equivalent to A € M, (Z) and det A = £1. Clearly, GL(n,Z) is a
discrete subgroup of GL(n,R).

Let T be a torus in a compact group G. Let g be an element of G which
normalizes T, i.e., such that ¢T'¢~' = T. Then, t — gtg~' is an automorphism of
T.

1.5.1. LEMMA. Let T be a torus in a connected compact Lie group G. Let
N={g€G|glg~' =T} be the normalizer of T. Then N is a Lie subgroup of G
and its identity component is the centralizer of T .

PROOF. Clearly, N is a closed subgroup of G. Therefore, G is a Lie subgroup
by 2.2.11.1. Let Ny be the identity component of N. Let C be the centralizer of
T. Then C C N. Moreover, by 1.4.1.(i), we see that C' C No.

Let n € N. Hence, Int(n) induces an automorphism of 7. Therefore, its
differential Ad(n)|r(ry is in a discrete subgroup of GL(L(T)). It follows that
n — Ad(n)|L(T) is a Lie group homomorphism of N into a discrete subgroup

of GL(L(T)). Therefore, the identity component Ny of N maps into the iden-
tity, i.e., Ad(n)|L(T) = I for any n € Ny. Moreover, by 2.2.2.14, it follows that

Int(n)|T = idr for any n € Ny, i.e., Ng C C. This in turn implies that No = C. O

1.5.2. THEOREM. Let T be a mazximal torus in a connected compact Lie group
G. Let N be the normalizer of T. Then the identity component Noy of N is equal
toT.

Moreover N/T is a finite group.
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ProoFr. By 1.5.1, Ny is equal to the centralizer of T'. By 1.4.1.(ii), the central-
izer of T is equal to T'. This proves the first statement.

Since N is a compact group, the discrete group N/T is also compact. Therefore,
N/T must be finite. U

The group W = N/T is called the Weyl group of the pair (G, T).

1.5.3. EXAMPLE. Let G = SU(2). Then G is a simply connected, connected
compact Lie group. Let T be the subgroup consisting of diagonal matrices in G,

., T:{@ g) |a|:1}.

Clearly, T' is a one-dimensional torus in GG. An element g € G can be written as

< @ b) with |a|? + |b|* = 1.

-b a

Therefore, we have

GGG (59606 )
_ <a|a|2+oz|l3|2 (@ — a)ab )

(@ —a)ab  alal® + afb)?

for any «, || = 1. If g is in the normalizer of T', we must have ab = 0. Therefore,
either a = 0 or b = 0. Clearly, b = 0 implies that g € T. On the other hand, if

a =0, we have
_ (0 —=b\ _ (0 -1\ (b 0
9=\ o)~ \1 o)\o o

with |b| = 1. Therefore, we have

0 -1
N=TU (1 0 ) T.

It follows that the connected component of N is equal to T'. Hence, T is a maximal
torus in G, and the rank of G is equal to 1. On the other hand, the Weyl group
of (G,T) is isomorphic to the two-element group. The nontrivial element of W is
represented by (9 ').

1.6. Universal covering groups of connected compact Lie groups. Let
G be a connected compact Lie group. We want to describe the structure of the
universal covering group G of G.

We start with some technical preparation.

1.6.1. LEMMA. Let G be a connected Lie group and C' a discrete central subgroup
of G such that G/C is compact. Then there exists a compact neighborhood D of 1
in G such that

int(D)-C =G.

PROOF. Let U be an open neighborhood of 1 in G such that its closure U is
compact. Since the natural projection p : G — G/C is open, p(U) is an open
neighborhood of 1 in G/C. Therefore, the translates v(k)(p(U)), k € G/C, form
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an open cover of G/C. Since G/C' is compact, there exist k1 = 1,ks,...,k, € G/C
such that

P
G/C = J(ki)(p(U)).
i=1
Let g1 = 1,62,...,9p € G be such that p(g;) = k; for 1 <i < p. Then

P
D= U giU
i=1
is a compact set in G. In addition,

p(int(D)) D p (U giU> =G/C,

hence we have int(D) - C = G. O

1.6.2. COROLLARY. Let G be a connected Lie group and C a discrete central
subgroup of G such that G/C is compact. The group G is compact if and only if C
is finite.

PROOF. Since C is a discrete subgroup, if G is compact, C must be finite.
Conversely, if C is finite, by 1.6.1, G is a union of finitely many compact sets.
Therefore, G is compact. O

1.6.3. LEMMA. Let G be a connected Lie group and C' a discrete central subgroup
of G such that G/C is compact. Then C is finitely generated.

PROOF. By 1.6.1, there exists a compact neighborhood D of 1 in G such that
the translates v(c) int(D) cover G. Since D? is a compact set in G, it is covered by
finitely many such translates, i.e.,

D? € Dey UDeyU---U Deyy,

for some c1,ca,...,¢cp € C. Let T be the subgroup of C' generated by c1, ca, . . ., Cp.
Then, as we remarked, D? C D -T. We claim that D® C D -T. We prove this
statement by induction in n. Assume that the statement holds for n. Then

Dtl'=D.D"cD?> TcD-T.

Since G is connected, by 2.1.5.1 we have

G=|JD"cD T
n=1
Therefore, every element of ¢ € C is of the form ¢ = db with d € D and b € T". This
implies that d € DN C. Hence, C is generated by DN C and ¢y, ca,. .., Cp. Since
D is compact and C discrete, D N C' is finite. g

Let G be a connected compact Lie group and G its universal covering group.
Let p : G — G be the canonical projection and C' = kerp. By the results from
2.1.6 we know that C is isomorphic to the fundamental group of G. Hence we have
the following consequence.

1.6.4. COROLLARY. The fundamental group of a connected compact Lie group
is finitely generated.
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1.6.5. LEMMA. Let G be a connected Lie group and C' a discrete central subgroup
of G such that G/C is compact. Let ¢ : C — R be a group homomorphism. Then
@ extends to a Lie group homomorphism of G into R.

PrOOF. Let D be a compact set satisfying the conditions of 1.6.1. Let r1 be a
positive continuous function on G with compact support such that r1|p = 1. We
put

ra(9) =Y ri(cg)
ceC
for any g € G. Let U be a compact symmetric neighborhood of 1in G. Then gU is a
neighborhood of g € G. Moreover, h — r1(ch) is zero on gU if supp(r1)NegU = 0.
This is equivalent to ¢ ¢ supp(r;)Ug~!. Since the set supp(r1)Ug~! is compact,
the function h — 71(ch) is nonzero on gU for finitely many ¢ € C only. Hence, 19
is a continuous function on gU.

It follows that ro is a continuous function on G constant on C-cosets. Any

g € G can be represented as g = dc with d € D and ¢ € C. Hence, we have

ro(g) = ra(ed) = Z ri(ced) = Z ri(d'd) > ri(d) = 1.
ceC ceC
Therefore, r2(g) > 0 for any g € G. Hence, we can define
r1(9)
r(g) =
9= )

This is a positive continuous function on G with compact support. Moreover,

1
r(cg) = — ri(cg) =1
Z 9 T2(9)§19

ceC

for any g € G.

for any g € G.
Therefore, we constructed a continuous function r : G — R satisfying

(1) suppr is compact;

(2) r(g) >0 for all g € G;

(3) > cecrlcg) =1 for any g € G.
Now, define ¥ : G — R by

U(g) = plor(c'g)

ceC
for any g € G. As before, we conclude that v is a continuous function on G and

Yieg) =D pb)r(b~reg) =D w(cb)r(b™ g) =Y (wlc) +9(b)r(b~"g)

beC beC beC
=) > rb7rg) + > e)r(b'g) = @lc) + (9)
beC beC

forall ce C'and g € G.
Define

®(g) = ¢(g) —v(1) for g € G.
If g = ¢, from the above relations we get
D(c) = () = (1) = p(c) + ¥(1) — (1) = ¢(c)
for all ¢ € C. Therefore, the function ® extends ¢ to G.
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Moreover, we have

D(cg) = (cg) —v(1) = @(c) + ¥(g) — ¥ (1) = ®(c) + (g)
forall ce C'and g € G.
Now define
F(z;9) = ®(xg) — () for x,9 € G.
Then, we have
F(z;c) = ®(xc) — (z) = 0(c) = ¢(c)
for any z € G and ¢ € C; and

F(z;99') = ®(xgg’) — (x) = ®(xgg’) — ®(zg) + ®(xg) — ®(x) = F(zg;9') + F(x; 9)
for all z, 9,9 € G. Also, we have
F(cx; g) = ®(cxg) — P(cx) = @(c) + P(zg) — (c) — (x) = ®(2g) — P(2) = F(x39),

ie, F: G x G — R factors through G/C x G. Let F be the continuous function
from G/C x G into R induced by F.

Since G/C' is a compact Lie group, it admits a biinvariant Haar measure p such
that u(G/C) = 1.

Therefore, we can define

U(g) =/G/C F(y; 9) dp(y)

for any g € G.
Then we have
U(c) = Fy; ) dp(y) = #(c)
Ga/c
for all ¢ € C, i.e., ¥ also extends ¢ to G.
On the other hand, we have

T(gg') = /G | Fag) duty) = / (Fuplg): o) + F(y. 9)) du(y)

G/C
/ F(y; ¢') duly / F(y:9) du(y) = ¥(g) + ¥(g');

i.e., ¥ : G — Ris a homomorphism. By 2.2.11.2, ¥ is a Lie group homomorphism.
O

Let G be a connected compact Lie group. Then, by 1.1.1, there exists an
invariant inner product on L(G), i.e., Ad is a Lie group homomorphism of G into
O(L(G)). This implies that ad is a Lie algebra morphism of L(G) into the Lie
algebra of O(L(G)), i.e., all linear transformations ad(§), £ € L(G), are skewadjoint.

Let b be an ideal in L(G). Then it is invariant under all ad(¢), £ € L(G). This
implies that the orthogonal complement h* of b is invariant for all ad(¢), € € g,
i.e., bt is an ideal in g. It follows that L(G) = h @ b as a linear space. On the
other hand, for ¢ € h and 1 € h*, we have [¢,7] € h N bt = {0}, i.e., L(G) is the
product of h and b as a Lie algebra.

Therefore we established the following result.

1.6.6. LEMMA. Let G be a connected compact Lie group. Let b be an ideal in
L(G). Then L(G) is the product of b with the complementary ideal h=.
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Let Z be the center of G. By 2.2.2.15, Z is a Lie subgroup of G and its Lie
algebra L(Z) is the center of L(G). By 1.6.6, if we put £ = L(Z), € is an ideal in
L(G) and L(G) =t® L(Z).

Let g be a Lie algebra and a and b two ideals in g. Let [a, b] be the span of all
commutators [£,n], £ € a, n € b. Then [a, b] is an ideal in g.

1.6.7. LEMMA. ¢ =[L(G), L(GQ)].
PROOF. Let &, € L(G) and ¢ € L(Z). Then we have

(&, m11¢) = (ad(§)()]C) = —(nlad(£)(¢)) = 0.
Therefore, we have [L(G), L(G)] C L(Z)*. This implies that L(Z) C [L(G), L(G)]*.
Conversely, let £, € L(G) and ¢ € [L(G), L(G)]*. Then we have

0 = ([&,7][¢) = (ad(€)()[¢) = —(n[ad(£)(¢)) = —=(l[E, ¢])-

Since 7 is arbitrary, it follows that [¢,¢] = 0 for any £ € L(G). Therefore, ¢ is in
the center of g. It follows that [L(G), L(G)]* C L(Z). O

In particular, the decomposition L(G) = ¢ & L(Z) does not depend on the
choice of the invariant inner product on L(G).

1.6.8. THEOREM. Let G be a connected compact Lie group. Then the following
statements are equivalent:
(i) The center Z of G is finite;
(ii) The universal covering group G of G is compact.

PROOF. Let C C G be the kernel of the covering projection p : G — G. By
1.6.3, C'is a finitely generated abelian subgroup of G. Assume that C' is not finite.
Then, by 1.7.7, we have C = C7 X Z, for some finitely generated abelian group
C1. The projection to the second factor defines a homomorphism ¢ of C into Z.
By 1.6.5, this homomorphism extends to a Lie group homomorphism ¢ : G —R.
The kernel of L(y) : L(G) — R is an ideal a of codimension 1 in L(G). Moreover,
if £,n € L(G), we have

L()([&n]) = [L()(£), L(#)(m)] = 0.

Hence, [L(G), L(G)] C a. It follows that [L(G), L(G)] is a nontrivial ideal in L(G).
By 1.6.7, this implies that L(Z) is nonzero. Therefore, Z is not finite.

Therefore, we proved that if Z is finite, C' must be finite too. Hence G is a
finite cover of G. By 1.6.2, this implies that G is compact.

Conversely, assume that the center Z of G is infinite. Since Z is compact, it
has finitely many components. Therefore, the identity component of Z has to be
infinite. It follows that L(Z) is nonzero and ¢ = dimL(Z) > 0. Let K be the
integral subgroup of G corresponding to [L(G), L(G)] and K the universal covering
group of K. Then K xR? is a simply connected, connected Lie group with Lie
algebra isomorphic to [L(G), L(G)] x L(Z) = L(G). By 2.2.4.2, we conclude that
G is isomorphic to K x R?. In particular, G is not compact. ([

1.7. Appendix: Finitely generated abelian groups. Let A be an abelian
group. The group A is finitely generated if there exists elements ay, as, ..., a, such
that the homomorphism

ZO®L®---DL> (my,ma,...,My) —> mia1 + meas + -+ mpa, € A
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is surjective. The elements a1, ao, ..., a, are generators of A.

A finitely generated abelian group A is free, if there is a family a1, as, ..., a, of
generators of A such that the homomorphism ZOZ®- - -BZ > (mq, ma, ..., my) —
miay +maas+- - - +myay is an isomorphism. In this case, the family aq, as, ..., a,

of generators is called a basis of A.

1.7.1. LEMMA. All bases of a free finitely generated abelian group have same
cardinality.

PROOF. Let aq,aq,...,a, be a basis of A. Then A/2A is a product of n copies
of two-element group. Therefore, the number of elements of A/2A is equal to
2m, O

The cardinality of a basis of a free finitely generated abelian group is called the
rank of A.

1.7.2. LEMMA. Let A be a finitely generated abelian group and B a free finitely
generated abelian group. Let ¢ : A — B be a surjective group homomorphism. Let
C = kerp. Then there exists a subgroup B’ of A such that A = C & B’ and the
restriction of ¢ to B’ is an isomorphism of B’ onto B.

PrOOF. Let by,bs,...,b, be a basis of B. We can pick a, as, ..., a, such that
p(a;) = b; for 1 < i < n. Let B’ be the subgroup generated by a1, as,...,a,. Then
the homomorphism ¢ : ZOZD---BZ > (my,ma,...,My) —> mia; +moag+-- -+
mpay is a surjection on B’. Moreover, since by, b, . . ., by, is a basis of B, po1) is an
isomorphism. Therefore, ¢ has to be injective. It follows that B’ is a free finitely
generated abelian group. Moreover, BN C = {0}.

Let a € A. Then ¢(a) = m1by +- - - +myb, for some integers myq, ..., m,. This
in turn implies that a — (mia1 + - - - + myay,) is in the kernel of ¢, i.e., it is in C.
It follows that a € C ® B’. O

1.7.3. LEMMA. Let A be a free finitely generated abelian group. Let B be a

subgroup of A. Then B is a free finitely generated abelian group and rank B <
rank A.

PrOOF. We prove the statement by induction in the rank of A. If the rank is
1, A is isomorphic to Z and its subgroups are either isomorphic to Z or {0}.

Assume that the statement is true for free abelian groups of rank < n — 1.

Assume that the rank of A is n. Let a1, a9, ...,a, be a basis of A.

We can consider the homomorphism ¢ : mia; + moas + -+ + mpa, — my,
of A into Z. Let A’ be the kernel of ¢. Then, A’ is free abelian group with basis
ai,as,...,a,_1. Moreover, B’ = BN A’ is a free abelian group of rank < n — 1 by
the induction assumption.

Now, either B is a subset of A’ or not. In the first case, B = B’ and B is a free
abelian group of rank < n — 1. In the second case, ¢(B) is a nontrivial subgroup
of Z. As we remarked above, this implies that ¢(B) is isomorphic to Z. Therefore,
by 1.7.2, B = B’ & C, where C is a subgroup isomorphic to Z. It follows that B is
a free abelian group of rank < n. O

1.7.4. LEMMA. Let A be a finitely generated abelian group and B its subgroup.
Then B is also finitely generated.
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PrROOF. Since A is finitely generated, there exist a free finitely generated
abelian group F' and surjective group homomorphism ¢ : F — A. Let B’ =
@ 1(B). Then B’ is a subgroup of F, and by 1.7.3, it is finitely generated. Let
b1,ba,...,by be a family of generators of B’. Then ¢(b1), ¢(b2), ..., ¢(by) generate
B. ([l

Let A be an abelian group. Let a,b € A be two cyclic elements in A, i.e.,
pa = qb = 0 for sufficiently large p,q € N. Then pg(a + b) = 0 and a + b is also
cyclic. This implies that all cyclic elements in A form a subgroup. This subgroup
is called the torsion subgroup of A. We say that A is torsion-free if the torsion
subgroup of A is trivial.

1.7.5. LEMMA. Let A be a finitely generated abelian group. Then its torsion
subgroup T is finite.

PRrROOF. By 1.7.4, T is finitely generated. Let t1,%o,...,t, be a family of gen-
erators of T'. Since t1,ts,...,t, are cyclic, there exists p € N such that pt; = 0
for all 1 < ¢ < n. This implies that any element ¢ € T is of the form ¢t =
mit1 + maty + -+ + myt, with m; € Z; and 0 < m; < p. Therefore, T is fi-
nite. ([l

1.7.6. LEMMA. Let A be a torsion-free finitely generated abelian group. Then
A is free.

PROOF. Assume that A # {0}. Let S be a finite set of generators of A. Then,
it contains an element nonzero element a. Hence, since A is torsion-free, ma = 0
implies m = 0.

Let ay,as9,...,a, be a maximal subset of S such that

mia; +maag + -+ mpa, =0

implies that m; = my = --- = m,, = 0. Let B be the subgroup generated by
ai,as,...,a,. Then B is a free finitely generated subgroup of A.

Let a € S different from aq, aq, ..., a,. By the maximality, there exist integers
m,mi, Mo, ..., My, not all equal to zero, such that

ma + miai; + maas + - + mya, = 0.

Again, by maximality, it follows that m # 0. Therefore, a multiple ma of a is in B.
Since S is finite, there exists m such that ma € B for any a € S. This implies that
mA C B. Since A is torsion free the endomorphism a — ma of A is injective.
Therefore, A is isomorphic to a subgroup mA of B. On the other hand, mA is a
free finitely generated abelian group by 1.7.3. This implies that A is free. O

1.7.7. THEOREM. Let A be a finitely generated abelian group and T its torsion
subgroup. Then there exists a subgroup B of A such that

(i) B is a free finitely generated abelian group;
(i) A=T®B.

PROOF. Let @ be an element of A/T represented by a € A. Assume that
ma = 0 for some m € N. Then ma € T, and ma is cyclic. This in turn implies that
a is cyclic, i.e., a € T. It follows that @ = 0. Therefore, A/T is torsion-free. By
1.7.6, A/T is a free finitely generated abelian group. The statement follows from
1.7.2. O
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1.8. Compact semisimple Lie groups. A Lie algebra g is called simple, if
it is not abelian and it doesn’t contain any nontrivial ideals.

Clearly, all one-dimensional Lie algebras are abelian. The only nonabelian
two-dimensional Lie algebra has an one-dimensional ideal. Therefore, there are no
simple Lie algebras of dimension < 2.

On the other hand, assume that G = SU(2). Then G is a connected, compact
three-dimensional Lie group. Its Lie algebra L(G) is the Lie algebra of all 2 x 2-
skewadjoint matrices, i.e., the Lie algebra of all matrices of the form

< ia b+ic

btic —ia ) with a,b,c € R.

Therefore, L(G) is spanned by matrices

0 1 0 2 vt 0
x=(0 o)ovr=(0 ) maz=(5 %)

By a short computation we find that
[X,Y] =27, [Y,Z] = 2X, [Z,X] =2Y.

Assume that a is a nonzero ideal in L(G). Let aX 4+ bY + ¢Z € a. Since the above
commutation relations are invariant under cyclic permutation of X,Y, Z, we can
assume that a # 0. Then

ad(Y)(aX +bY 4+ ¢Z) = —2aZ + 2¢X € a,

and finally
ad(X)(aZ — cX) = —2aY € a.

Therefore, Y € a. From the commutation relations, we see that this immediately
implies that X and Z are in a, and a = L(G). Therefore, L(G) is a simple Lie
algebra.

A Lie algebra is called semisimple if it doesn’t contain any nonzero abelian
ideals. Clearly, a simple Lie algebra is semisimple.

Also, the center of a semisimple Lie algebra is always trivial.

A Lie group is called semisimple (resp. simple) if its Lie algebra is semisimple
(resp. simple).

Consider now an arbitrary connected compact Lie group G. Let Z be the center
of G. Since Z is compact and abelian, its identity component Zj is a torus in G.
By 1.6.7, we have

L(G) = [L(G), L(G)] & L(Z).

1.8.1. LEMMA. The ideal [L(G), L(G)] in L(G) is a semisimple Lie algebra.

PROOF. Let a be an abelian ideal in [L(G), L(G)]. Then, by 1.6.6, at is an
ideal in L(G) and L(G) is the product of a and a*. This implies that a is in the
center L(Z) of L(G). By 1.6.7, it follows that that a = {0}. Therefore, [L(G), L(G)]
is semisimple. O

Let H = G/Zy. Then H is a connected compact Lie group. Let p: G — H be
the natural projection. Then, ker L(p) = L(Z), by 2.2.2.7. Therefore, L(p) induces
a Lie algebra isomorphism of [L(G), L(G)] onto L(H). By 1.8.1, this implies that
the center of L(H) is trivial. Hence, by 2.2.2.15, it follows that the center of H is
discrete. Since H is compact, the center of H is finite.
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Let K be the integral subgroup of G corresponding to [L(G), L(G)]. Then we
have the natural Lie group morphism p : K — H. As we remarked above, the
differential of this morphism L(p) is an isomorphism of L(K) = [L(G), L(G)] onto
L(H). Hence, by 2.2.2.9, this map is a covering projection.

1.8.2. LEMMA. The integral subgroup K is a semisimple Lie subgroup of G.

ProoF. We remarked that K is a covering group of H. Moreover, H is a
connected compact Lie group with finite center. Therefore, by 1.6.8, the universal
covering group H must be compact. This implies that K is a compact Lie group.
Therefore, it must be closed in G. ]

Consider the connected compact Lie group K x Zy and the differentiable map
p: K xZy— G given by ¢(k,z) = kz for k € K and z € Z;. Clearly, ¢ is a Lie
group homomorphism and L(p) is an isomorphism of Lie algebras. Therefore, by
2.2.2.9, ¢ is a covering projection. The kernel of ¢ is a finite central subgroup of
K x Zy. More precisely, we have

kerp = {(k,z) € Ko x Zo | kz =1} ={(c,c ) e K x Zy | c € KN Zy}.
Therefore we established the following result.

1.8.3. PROPOSITION. Let G be connected compact Lie group. Let C = K N Zy
and D = {(c,c™') € K x Zy | ¢ € C}. Then ¢ induces an isomorphism of the Lie
group (K X Zy)/D with G.

Therefore, any connected compact Lie group is a quotient by a finite central
subgroup of a product of a connected compact semisimple Lie group with a torus.

This reduces the classification of connected compact Lie groups to the classifi-
cation of connected compact semisimple Lie groups.

1.8.4. EXAMPLE. Let G = U(2). Then L(G) is the Lie algebra of all 2 x 2
skewadjoint matrices. The center of L(G) consists of pure imaginary multiples of
the identity matrix. Moreover, [L(G), L(G)] is contained in the Lie subalgebra £
of 2 x 2 skewadjoint matrices of trace zero. Since the latter is the Lie algebra of
the connected simple Lie subgroup SU(2), we conclude that ¢ = [L(G), L(G)]. The
center Z of G consists of matrices which are multiples of the identity matrix by a

complex number «, || = 1. Therefore, the center of G is connected. In addition,
we have SU(2) N Z = {£1}. Hence, G = (SU(2) x Z)/{£I}.

Moreover, we have the following result.

1.8.5. COROLLARY. Let G be a connected compact Lie group. Then its universal
covering group is a product of a simply connected, connected compact semisimple
Lie group with RP for some p € Z.

PROOF. As we have seen it the proof of 1.8.2 the universal covering group K
of K is a simply connected, connected compact semisimple Lie group. On the other
hand, the universal cover of Z; is R? for p = dim Zo. Therefore, by 1.8.3, K x RP
is isomorphic to the universal covering group of G. O

Another byproduct of the above discussion is the following variation of 1.6.8.

1.8.6. THEOREM. Let G be a connected compact semisimple Lie group. Then
its universal covering group G is compact.
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This reduces the classification of connected compact semisimple Lie groups to
the classification of simply connected, connected compact semisimple Lie groups.

In addition, we see that, for a connected semisimple Lie group G, its com-
pactness depends only on the Lie algebra L(G). To find an algebraic criterion for
compactness, we need some preparation.

1.8.7. PROPOSITION. Let G be a compact Lie group. Let by be a semisimple Lie
subalgebra of L(G). Then the integral subgroup H attached to b is a compact Lie
subgroup.

ProOF. Clearly, we can assume that G is connected. Assume first that f is an
ideal in L(G). By 1.1.1, the Lie algebra L(G) admits an G-invariant inner product.
By 1.6.6, the Lie algebra L(G) is a direct product of the ideal h and its orthogonal
complement ideal h+.

Assume, in addition that G is also semisimple. In this case, by 1.8.6 the
universal covering group G of G is also compact. Let H be the universal covering
group of H. Also, let K be integral subgroup corresponding to h* and K its
universal covering group. Then H x K is a simply connected, connected Lie group
with Lie algebra h x b+ = L(G). Hence, by 2.2.4.2, it follows that H x K is
isomorphic to G. Since G is compact, it follows that H is also compact. This in
turn implies that H is a compact subset of G and therefore closed in G. By 2.2.11.1,
it follows that H is a Lie subgroup of G. This proves the assertion in this case.

Now we drop the assumption that G is semisimple. Let ¢ be an element of the
center 3 of L(G). Then ¢ = ¢’ + ¢"” where ¢’ € h and (" € h+. Let £ € h. Then we
have

[57 gl] = [fa C - C”] = [57 C] - [ga C”] =0.

It follows that ¢’ is in the center of . Since b is semisimple, ¢’ = 0. It follows
that ¢ € h*. Therefore, we have 3 C h*. By 1.6.7, this implies that h C 3+ =
[L(G), L(G)]. Let M be the integral subgroup of G corresponding to the ideal
[L(G),L(GQ)]. By 1.8.2, M is a compact Lie subgroup of G. By 1.8.1, it is also
semisimple. By 2.2.7.6, since L(H) = h C L(M), we see that H C M and we are in
the situation above. Therefore, H is a compact Lie subgroup of M, and therefore
a compact Lie subgroup of G.

Now we drop the assumption that § is an ideal. Let H be the closure of H. Then
H is a connected compact subgroup of G. By Cartan’s theorem, 2.2.11.1, it is a Lie
subgroup of G. Since H C H, we see that h C L(H). Clearly, Ad(h)(h) = b for any
h € H. Therefore, by continuity, Ad(h)(h) = b for any h € H. By differentiation,
we see that ad(£)(h) C b for all £ € L(H), i.e., b is an ideal in L(H). This reduces
the situation to the second case. It follows that H is a compact Lie subgroup of H.

Therefore, it is also a compact subset of G. Hence, it is closed in G and equal to
H. O

Let g be a finite-dimensional Lie algebra over a filed k of characteristic 0. Define
the bilinear form B : g x g — k by

B(&,n) = tr(ad(§) ad(n))

for all £, € g. This form is called the Killing form of g.
Let A be an automorphism of g. Then for £,n € g we have

ad(A€)(n) = [A&,n] = AJ§, A7) = (Aad(A™H) (),
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ie.,
ad(A¢) = Aad(¢)A™?
for all £ € g. Therefore,

B(Ag, An) = tr(ad(A€) ad(An)) = tr(Aad(§) A~ Aad(n) A
= tr(Aad(§) ad(n)A™") = tr(ad(€) ad(n)) = B(&,n),

for any &, € g.
Let Aut(g) denote the automorphism group of g.

1.8.8. LEMMA. The Killing form on g is Aut(g)-invariant.

Let G be a Lie group. Then Ad : G — GL(L(G)) is a homomorphism of G
into Aut(L(G)). Therefore, the Killing form on L(G) is Ad(G)-invariant.

The following result gives a criterion for compactness of a connected semisimple
Lie group in terms of its Lie algebra.

1.8.9. THEOREM. Let G be a connected Lie group. Then the following condi-
tions are equivalent:
(i) G is compact and semisimple;
(ii) the Killing form on L(G) is negative definite.

PROOF. (i)=-(ii) Assume that G is compact and semisimple. Then, by 1.1.1,
there exists an Ad(G)-invariant inner product on L(G). With respect to this inner
product, Ad is a homomorphism of G into O(L(G)). Therefore ad is a Lie algebra
homomorphism of L(G) into the Lie algebra of antisymmetric linear transformations
on L(G). Let ¢ € L(G). Then B(&,€) = tr(ad(€)?) is the sum of squares of all
(complex) eigenvalues of ad(£). Since ad(£) is antisymmetric, all its eigenvalues are
pure imaginary. Hence their squares are negative. This implies that B(£,€) < 0
and B(£,€) = 0 implies that all eigenvalues of ad(§) are equal to 0. Since ad(§)
is antisymmetric, it follows that ad(£) = 0. Therefore, £ is in the center of L(G).
Since L(G) is semisimple, its center is equal to {0}, i.e., £ = 0. Therefore, B is
negative definite.

(ii)=-(i) Assume that B is negative definite. Then, ({|n) = —B(&,n) is an
Ad(G)-invariant inner product on L(G). Therefore, Ad is a Lie group morphism of
G into the compact Lie group O(L(G)).

Let a be an abelian ideal in L(G). Then L(G) = a @ a® and a is in the center
of L(G). Let ¢ € a. Then ad ¢ = 0 since ( is in the center of L(G). It follows that
B(¢,¢) = 0. Since B is negative definite, we see that ( = 0. Therefore, we see that
a = {0}. Hence, G is semisimple.

By 2.2.2.15, the center Z of G is equal ker Ad and its Lie algebra is equal to {0}.
Hence Z is a discrete subgroup of G. Therefore, Ad induces an injective immersion
of G/Z into O(L(G)). Hence, the image Ad(G) is an integral subgroup of O(L(G))
isomorphic to G/Z. Its Lie algebra is isomorphic to L(G), hence it is semisimple.
By 1.8.7, Ad(G) is a compact Lie subgroup of O(L(G)). Hence, G is a covering
group of a connected compact semisimple Lie group. By 1.8.6, G is a compact Lie
group. O

Let G be a connected compact semisimple Lie group. Then, by 1.8.9, (£, ) —
—B(¢,n) is an Ad(G)-invariant inner product on L(G). Let a be an ideal in L(G).
Then, by 1.6.6, a* is a complementary ideal in L(G), i.e., L(G) = a ® a™.
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Assume that b is another ideal in L(G) such that anb = {0}. Let £ € a and
n € b. Then, ad(n)(L(G)) C b and

(ad(§) ad(n))(L(G)) = ad(§)(ad(n)(L(G)) C ad(£)(b) C anb = {0}

Therefore, ad(¢)ad(n) = 0 and B({,n) = tr(ad(€)ad(n)) = 0. It follows that
bCal.

In particular, if b is a direct complement of a, we must have b = a*. Therefore,
the complementary ideal is unique.

The set of all ideals in L(G) is ordered by inclusion. Let m be a minimal ideal
in L(G). Since L(G) is semisimple, this ideal is not abelian.

Clearly, L(G) = m @ m™. Let a C m be an ideal in m. Then [a,m*] = {0} and
a is an ideal in L(G). By the minimality of m, a is either m or {0}. It follows that
m is a simple Lie algebra.

Let a be another ideal in L(G). Then a Nm is an ideal in L(G). By the
minimality of m, we have either m C a or a N m = {0}. By the above discussion,
the latter implies that a C m*, i.e., a is perpendicular to m.

Let my, mg,...,m, be a family of mutually different minimal ideals in L(G).
By the above discussion m; is perpendicular to m; for ¢ # j, 1 <4,j5 < p. Hence,
p has to be smaller than dim L(G). Assume that p is maximal possible. Then
a=m Gme P --- Pmy, is an ideal in L(G). Assume that a # L(G). Then
L(G) =a@at. Let my11 be a minimal ideal in at. Then Mp11 is a minimal ideal
in L(G) different from m;, 1 <+ < p, contradicting the maximality of p. It follows
that L(G) =m; ®my @ - -- @ my, i.e., we have the following result.

1.8.10. LEMMA. The semisimple Lie algebra L(G) is the direct product of its
minimal ideals. These ideals are simple Lie algebras.

In particular, L(G) is a product of simple Lie algebras.

Let K1, Ko, ..., K, be the 1ntegral subgroups of G corresponding to Lie algebras
my, Mo, ..., Wy, Let Kl, Kg, .. K be their universal covering groups. Then K1 X
Koy X -+ % f(p is a snnply connected Lie group with Lie algebra 1som0rphlc to
L(G) =mi &my & --- & my. Hence, Ki x Ky X -+ % Kp is 1som0rphlc to G by
2.4.2. Since G is compact by 1.8.6, the subgroups Kl, Ko, .. K are also compact.
This in turn implies that Ky, Ks, ..., K, are compact Lle subgroups of G. The
map ¢ : Ky x Ko x --- x K, — G given by o(k1,ks,...,kp) = kika...k, for
any k; € Kq,ky € K»,...,k, € K, is a Lie group homomorphism. Clearly, it is a
covering projection.

Therefore, we established the following result.

1.8.11. THEOREM. Connected compact semisimple Lie group G is a quotient
by a finite central subgroup of a product K; x K x --- x K, of connected compact
simple Lie groups.

This reduces the study of connected compact Lie groups to the study connected
compact simple Lie groups.

1.9. Fundamental group of a connected compact semisimple Lie group.
Let G be a connected compact semisimple Lie group with Lie algebra L(G). Let G
be the universal covering group of G and p : G — G be the covering projection.
By 1.8.6, G is also compact. Hence, ker p is a finite central subgroup of G.
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Then, as we remarked in 2.1.6, we have 71 (G, 1) = kerp. In particular, (G, 1)
is a finite abelian group.

Let T' be a maximal torus in G and L(T) its Lie algebra. By 1.2.1, its Lie
algebra is a maximal abelian Lie subalgebra in L(G). Let T be the corresponding
integral subgroup in G. Then, by 1.2.1, T is a maximal torus in G. The map p
induces a Lie group homomorphism ¢ of T onto T which is a covering map. Clearly,
ker q C ker p.

Let Z be the center of G. As we remarked in the proof of 1.3.1, an element
z € Z is contained in a maximal torus H in G. Since H is conjugate to T by 1.2.2,
there exists g € G such that gHg~! = T. This in turn implies that z = gzg~' € T'.
Hence, Z C T'. In particular, kerp C Z C T. This implies that ker g = ker p.

By 2.2.9.6, we have the commutative diagram

L(T)
87 YT
T 7 T

of Lie groups. Put L = kerexp, and L = ker exps. Then L and L are discrete
subgroups of L(T') of rank dim L(T').
Clearly, L C L and

kerp = kerq = L/f/

Therefore, any connected compact semisimple Lie group G with Lie algebra
L(G) determines a discrete subgroup L of L(T) which contains L.

In the proof of 1.8.9 we proved that Gy = Ad(G) is a connected compact Lie
group with Lie algebra L(G). Moreover, by 2.2.2.15, the center Z of G is equal to
the kernel of Ad : G — Gy. Let Ty be the maximal torus in Go corresponding to
L(T). Then the above construction attaches to G a discrete subgroup Lo of L(T")
containing L.

In addition, we see that the following result holds.

1.9.1. LEMMA. The center Z ofé is 1somorphic to Lo/f/,
From the above discussion we see the following result.

1.9.2. THEOREM. The map G —— L defines a surjection from all connected
compact semisimple Lie groups with Lie algebra L(G) onto all discrete subgroups L
in L(T) such that Ly C L C L.

The center of G is isomorphic to Lo/L. The fundamental group m(G,1) is
isomorphic to L/ L.

1.9.3. EXAMPLE. Let G = SU(2). Then G is a connected compact simple Lie

group. The subgroup
e 0
r={(0 )|eer

is a maximal torus in G. As we remarked in 2.1.8, the group G is simply connected
and it is a two-fold covering of the group SO(3). The covering projection induces
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a Lie group morphism
0 (1) ‘02 n 2
0 eiv) cgb( p) —sin(2¢p)
0 sin(2¢)  cos(2¢)
of the torus T onto a torus Tp in SO(3). Since the center of SO(3) is trivial, SO(3)
is isomorphic to the adjoint group Ad(G). If we identify L(T) with R and the

exponential map with
e 0
eXpr : ¢ 0 e—iga

the discrete subgroup L corresponds to 27Z and Lg to nZ.



CHAPTER 4

Basic Lie algebra theory

All Lie algebras in this chapter are finite dimensional Lie algebras over a field
k of characteristic 0. All representations of Lie algebras are finite dimensional.

1. Solvable, nilpotent and semisimple Lie algebras

1.1. Derivations and characteristic ideals. Let g be a Lie algebra over a
field k. A derivation D of g is a linear map on g such that

Dlz,y] = [Dx,y] + [z, Dy]
for all z,y € g.
1.1.1. LEMMA. All derivations of g for a Lie subalgebra Der(g) of L(g).

PROOF. Clearly, the set of all derivations of g is a linear subspace of L(V'). Let
D, D’ be two derivations of g. Then we have

(DD")[z,y] = D(|D'x,y]+ [z, D'y]) = [DD'z,y|+ [D'x, Dy]+ [Dx, D'y + [z, DDy
and
[D, D'|([z,y]) = (DD'=D'D)[x,y] = [DD"x, y|+[D"z, Dy|+[Dx, D'y|+[x, DD"y]
— [D'Dz,y] — [Dx, D'y] — [D'z, Dy] — [z, D' Dy| = [[D, D'|z,y] + [z, [D, D']y]

for all z,y € g. Therefore, [D, D’] is a derivation of g. It follows that Der(g) is a
Lie subalgebra of L(g). O

If z € g, we have

adx([y, Z]) = [xv [yv ZH = _[ya [Z,J?]] - [Zv [Z‘, y]] = [adx(y), Z] + [y’ adx(z)]
for all y,z € g. Therefore, adz is a derivation of g. The derivations adz, = € g,
are called the inner derivations of g.

Therefore, ad : g — L(g) is a Lie algebra homomorphism into Der(g).
Let D be a derivation of g and x € g. Then

ad(Dz)(y) = [Dz,y] = Dlz,y] — [z, Dy] = [D, ad z|(y)
for any y € g.
1.1.2. LEMMA. Let D be a derivation of g and x € g. Then
ad(Dz) = [D,ad z].
The image of ad is the space of all inner derivations in Der(g).

1.1.3. LEMMA. The linear space imad of all inner derivations is an ideal in
Der(g).

PRrROOF. This follows immediately from 1.1.2. O

97
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If h is an ideal in g, b is an invariant subspace for ad x for any = € g.
A linear subspace § in g is a characteristic ideal if D() C b for all D € Der(g).
Clearly, a characteristic ideal in g is an ideal in g.
Let a and b be two characteristic ideals in g. Then [a, b] is a characteristic ideal
in g.
Let B be the Killing form on g, i.e.,
B(z,y) = tr(ad(z) ad(y)) for z,y € g.
1.1.4. LEMMA. Let D € Der(g). Then
B(Dz,y) + B(z, Dy) =0
for any x,y € g.
PrOOF. By 1.1.2, we have
B(Dz,y) + B(z, Dy) = tr(ad(Dxz) ad(y)) + tr(ad(x) ad(Dy))
= tr([D, ad(z)] ad(y)) + tr(ad(z)[D, ad(y)])
= tr(D ad(z) ad(y))—tr(ad(z) D ad(y))+tr(ad(z) D ad(y))—tr(ad(z) ad(y) D) = 0.
O
Let b be a linear subspace in g. We denote by h+ the linear space
bt ={z € g | B(z,y) =0 for all y € h}.

1.1.5. LEMMA. (i) Let b be an ideal in g. Then bt is an ideal in g.
(i) Let b be a characteristic ideal in g. Then b is a characteristic ideal in g.

ProOF. (i) Let z € h*. Then
Bad(y)z, ) = —B(z,ad(y)2) = 0

for any y € g and z € b.
(ii) Let = € h*. Then

B(Dz,y) = —B(z,Dy) =0
for any y € h and D € Der(g). O
1.2. Solvable Lie algebras. Let g be a Lie algebra. We put
Dg = [g, g
This is the derived ideal of g. We put
D =g, D'g=Dg, DPg = [DP~'g, DP1g] for p > 2.
These are characteristic ideals in g. The decreasing sequence
g2Dg2D’g2---2DPgD ...

is called the derived series of ideals in g.
Since g is finite dimensional, the derived series has to stabilize, i.e., DPg =
Drtlg = ... for sufficiently large p.
We say that the Lie algebra g is solvable if DPg = {0} for some p € N.
Clearly, an abelian Lie algebra is solvable.

1.2.1. LEMMA. (i) Let g be a solvable Lie algebra and y C g a Lie subal-
gebra. Then b is solvable.
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(ii) Let g be a solvable Lie algebra and h) C g an ideal in g. Then g/b is
solvable.

(iii) Let g be a Lie algebra and b an ideal in g. If § and g/b are solvable, g is
a solvable Lie algebra.

PROOF. (i) We have
Dh = [h,b] C [9.9] = Dg.
Moreover, by induction in p, we get
DPh = [DP~'h, D" 'p] C [DP" g, DPlg] = DPyg

for all p € N. Therefore, if g is solvable, DPg = {0} for some p € N. This in turn
implies that DPh = {0}, i.e., b is a solvable Lie algebra.

(ii) Let m : ¢ — g/b be the natural projection. Then D(g/h) = n(Dg). By
induction in p, we see that

DP(g/b) = [D"~"(a/), D"~ (g/b)] = m([D"~'g, D"~ 'g]) = m(D"g)
for any p € N. If g is solvable, DPg = {0} for some p € N. This in turn implies that
DP(g/h) = {0}, i.e., g/b is a solvable Lie algebra.
(iii) Since g/b is solvable, DP(g/h) = {0} for some p € N. Therefore, DPg C b.
Since b is solvable, D%h = {0} for some g € N. Therefore,

'Derqg — Dq('ng) C th — {0}7
and g is solvable. O

1.2.2. EXAMPLE. Let g be the two-dimensional nonabelian Lie algebra dis-
cussed in 2.2.1. Then g is spanned by e; and ey and Dg is spanned by e;. This
implies that D2g = {0}, i.e., g is a solvable Lie algebra.

Let a and b be two solvable ideals in the Lie algebra g. Then a + b is an ideal
in g. Moreover, by 1.2.1, anb is solvable. On the other hand, (a+b)/b = a/(aNb).
Therefore, by 1.2.1, a + b is a solvable ideal.

Let S be the family of all solvable ideals in g. Since g is finite dimensional,
there exist maximal elements in S. Let a and b be two maximal solvable ideals
in g. Then a + b is a solvable ideal containing a and b. Therefore, we must have
a=a+b=0>b. It follows that S contains the unique maximal element. This is the
largest solvable ideal in g.

The largest solvable ideal of g is called the radical of g.

1.3. Semisimple Lie algebras. A Lie algebra g is semisimple if its radical
is equal to {0}.
The next result shows that this definition is equivalent to the definition in 3.1.8.

1.3.1. LEMMA. A Lie algebra is semisimple if and only if it has no nonzero
abelian ideals.

PRrROOF. If g contains a nonzero abelian ideal a, the radical t of g contains a.
Therefore, g is not semisimple.

Let x € g. Then adz induces a derivation of v. Since DPr, p € N, are char-
acteristic ideals in t, we see that adz(DPtr) C DPr for any p € N. Therefore, all
DPr are ideals in g. Let ¢ € Z be such that DIv # {0} and D% v = {0}. Then,
a = D7t is a nonzero abelian ideal in g. O
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In particular, the center of a semisimple Lie algebra is {0}. Since the center of
g is the kernel of ad we see that the following result holds.

1.3.2. LEMMA. Let g be a semisimple Lie algebra. Then kerad = {0}.

1.3.3. PROPOSITION. Let g be a Lie algebra and v its radical. Then g/t is
semisimple.

PROOF. Let m : g — g/t be the natural projection. Assume that s is a
solvable ideal in g/t, and put 7—1(s) = §’. Then, s’ is an ideal in g containing r. In
addition, s’ /vt = s, and by 1.2.1, ¢’ is solvable. This in turn implies that s’ = v and
s = {0}, i.e., the only solvable ideal in g/t is {0}. Therefore, g/t is semisimple. O

1.4. Nilpotent Lie algebras. Let g be a Lie algebra. Define Cg = Dg, and
C'g=g, C'g=Cy, CPg=[g,C""'g] forp >2.

Moreover,
g2Cg2C%D---DCPgD...

is a decreasing sequence of characteristic ideals which is called the descending central
Series.

Since g is finite dimensional, the descending central series has to stabilize, i.e.,
CPg = CPtlg = ... for sufficiently large p.

Clearly, since Cg = Dg, by induction we have

Crg=[g.C""'g] 2 [D"~'g, D" 'g] = D'y

for all p € N.

A Lie algebra g is nilpotent if CPg = {0} for some p € N.

Clearly, abelian Lie algebras are nilpotent. Also, nilpotent Lie algebras are
solvable.

On the other hand, the two-dimensional solvable Lie algebra we considered in
1.2.2 is not nilpotent. As we remarked, Cg = Dg is spanned by the vector e;. This
in turn implies that C2g = [g,Cg] = Cg and inductively CPg = Cg for all p € N.

1.4.1. LEMMA. (i) Let g be a nilpotent Lie algebra and h C g a Lie sub-
algebra. Then b is nilpotent.

(ii) Let g be a nilpotent Lie algebra and ) C g an ideal in g. Then g/bh is
nilpotent.

PRroOF. (i) We have Ch C Cg. Moreover, by induction in p, we get
CPh = [h,CP~"'h] C [g,CP""g] = CPg
for all p € N. Therefore, if g is nilpotent, CPg = {0} for some p € N. This in turn
implies that CPh = {0}, i.e., b is a nilpotent Lie algebra.
(ii) Let m : g — g/bh be the natural projection. Then C(g/h) = n(Cg). By
induction in p, we see that

CP(g/b) = [8/h.C"" (g/b)] = n([g.C*""g]) = 7(C"g)
for any p € N. If g is nilpotent, C’g = {0} for some p € N. This in turn implies
that CP(g/h) = {0}, i.e., g/b is a nilpotent Lie algebra. O

On the other hand, the extensions of nilpotent Lie algebras do not have to be
nilpotent. For example, the nonabelian two-dimensional solvable Lie algebra g has
a one-dimensional abelian ideal Dg and the quotient g/Dg is a one-dimensional
abelian Lie algebra.
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1.5. Engel’s theorem. Let V be a finite-dimensional linear space and L(V)
the Lie algebra of all linear transformations on V.

1.5.1. LEMMA. Let T € L(V). Then
P
TS =Y (=1)!( " |TP=isT!
(@ T'S =3 (-1 () s

foranyp e Zy.

PrOOF. We prove this statement by induction in p. It is obvious for p = 0.
Therefore, we have

p
(ad T)P™S = T(ad T)PS—(ad T)PST = Z(—N (i’ ) (TP~ ST — TPTH ST
=0

D [ p+1 D
_ 1\é p—i+1 i LY p—i+1 i
E ( 1) (z)T ST + E ( 1) <i—1>T ST

i=1

p+z p+1 +1
=Y (-1) ((];) + (Z_p1>) TPHIST =y (p . )TP“%’ST%’.

i=0
t

1.5.2. COROLLARY. Let T is a nilpotent linear transformation on V. Then
ad T is a nilpotent linear transformation on L(V').

PROOF. We have TP = 0 for some p € Z,. By 1.5.1, it follows that (ad T')?P =
0, and ad T is nilpotent. O

1.5.3. THEOREM (Engel). Let V' be a finite dimensional linear space and g a
Lie subalgebra of L(V) consisting of nilpotent linear transformations. Then there
exists a vector v € V, v # 0, such that Tv =0 for oll T € g.

PROOF. We prove the theorem by induction in dimension of g. The statement
is obvious if dimg = 1.

Now we want to show that g contains an ideal a of codimension 1. Let § be
an arbitrary Lie subalgebra of g such that dimh < dimg. Let T' € h. Then T is
a nilpotent linear transformation, and by 1.5.2, ad T is a nilpotent linear transfor-
mation on L(V). Since g and h invariant subspaces for ad T, it induces a nilpotent
linear transformation o(7") on g/h. Clearly, o : h — L(g/h) is a representation of
. By the induction assumption, there exists a linear transformation R € g, R ¢ b,
such that o(T)(R+H) =0, ie., [T,R] =adT(R) € h for all T € h. Let b’ be the
linear span of R and h. Then §’ is a Lie subalgebra of g, dimf’ = dimb + 1, and
b is an ideal in b’ of codimension 1. By induction in dimension of b, starting with
h = {0}, we show that g contains an ideal a of codimension 1.

Let T' € g, T ¢ a. By the induction assumption, there exists w € V, w # 0,
such that Sw = 0 for any S € a. Consider the linear subspace U = {u € V | Su =
0 for all S € a}. Clearly, U is nonzero. If u € U, we have

S(Tu) =8Tu—TSu=[S,Tlu=0,
for all S € a, since [S,T] € a. Therefore, Tu € U. It follows that U is invariant for

T. Since T is nilpotent, there exists v € U, v # 0, such that Tv = 0. Hence, v is
annihilated by all elements of g. O
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The following result characterizes nilpotent Lie algebras in terms of their adjoint
representations.

1.5.4. PROPOSITION. Let g be a Lie algebra. Then the following conditions are
equivalent:

(i) g is nilpotent;
(ii) all adzx, x € g, are nilpotent.

PROOF. (i)=-(ii) Assume that g is nilpotent. Let C?g = {0}. By induction, we
can find a basis of g by completing the basis of C*g to a basis of C*~1g for all s < p.
In this basis, all adz, z € g, are upper triangular matrices with zeros on diagonal.

(il)=-(i) If all adz are nilpotent, by 1.5.3, there exists y € g, y # 0, such that
[z,y] = ad(z)y = 0 for all x € g. Therefore, the center 3 of g is different from {0}.

We proceed by induction in dimension of g. If g is abelian, the statement is
obvious. Assume that g is not abelian, and consider g/3. Clearly, dim(g/3) <
dim g. Moreover, for any « € g/3, adz is nilpotent. Therefore, by the induction
assumption, g/3 is nilpotent. This implies that CP(g/3) = {0} for some p € N. Tt
follows that CPg C 3. Hence, CP*1g = {0}, and g is nilpotent. O

The next result implies that all Lie algebras which satisfy the conditions of
1.5.3 are nilpotent.

1.5.5. COROLLARY. Let V be a finite-dimensional linear space. Let g be a
Lie subalgebra of L(V) consisting of nilpotent linear transformations. Then g is
nilpotent.

PRrROOF. Let T € g. Then, by 1.5.2, adT is nilpotent linear transformation
on L(V). Therefore, it is a nilpotent linear transformation on g. By 1.5.4, g is
nilpotent. (I

1.5.6. EXAMPLE. Let M, (k) be the Lie algebra of n x n matrices with entries
in k. Let n(n, k) be the Lie subalgebra of all upper triangular matrices in M, (k)
with zeros on the diagonal. Then n(n, k) is a nilpotent Lie algebra.

Let g be a nilpotent Lie algebra. In the proof of 1.5.4, we proved that there
exists a basis of g such that the matrices of adz, x € g, in this basis are upper
triangular and nilpotent. Therefore, for any x,y € g, the matrix of ad(z) ad(y) is
upper triangular and nilpotent. In particular B(z,y) = tr(ad(x)ad(y)) = 0. This
proves the following result.

1.5.7. LEMMA. Let g be a nilpotent Lie algebra. Then its Killing form B is
trivial.

1.6. Lie’s theorem. In this section we prove some basic properties of solvable
Lie algebras over an algebraically closed field k.

1.6.1. LEMMA. Let g be a Lie algebra over an algebraically closed field k and ¢
its radical. Let w be an irreducible representation of g on a linear space V' over k.
Then there exists a linear form \ on t such that w(x) = Mx)1ly for all x € t.

PROOF. Let a = m(g) and p = 7(r). Then a is a Lie subalgebra of £L(V') and p
is a solvable ideal in a.
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Fix p € Z4 such that b = DPp # 0, DP*lp = {0}. Clearly, b is an abelian char-
acteristic ideal in p. Therefore, it is an ideal in a. Since the field k is algebraically
closed, T' € b have a common eigenvector v € V', v # 0. Therefore,

Tv=XMT)v for all T € b.

Clearly, A is a linear form on b.

Let S € a. Since b is an ideal in a, we have [S,T] € b for all T € b. We claim
that A([S,T]) = 0.

Let V,, be the subspace of V spanned by v, Sv, ..., S™v. Clearly, we have

VoCViC---CV,C...

and this increasing sequence stabilizes since V is finite dimensional. Assume that
Vin—1 # Vin = Vipe1 = ... Then V,, is invariant for S. Moreover, v, Sv,...,S™v
form a basis of of V,,,, and dim V,,, = m + 1.
We claim that
TS5 — \NT)S™ € V,,—1
for all T € b and n € Z,. This is obvious for n = 0. We prove the statement by
induction in n. Since
TS" o — \(T)S" v = [T, S]S™v + STS"v — N(T)S™ v
= [T,S5]S™v + S(TS"™v — \N(T)S"v),

and [T, S] € b, by the induction assumption we have

[T, S])S™v — A([T, S])S™v € Vp—q1 and TS™w — A\(T)S™v € V1.
Therefore,

TSy — N(T)S" v € A([T, S])S™v 4 Vi1 + S(Vy_1) C V.
This proves the above statement.

It follows that V;, is invariant for T € b. Moreover, in the basis v, Sv, ..., S™v
of V,,,, T € b act by upper triangular matrices with A(T') on the diagonal. Therefore,
we have

tr (Ty,,) = (m+1A(T)
for any T € b. In particular, this holds for [T, S]. Therefore,
(m + DT, S]) = tr ([T}, S|v,,.) = tr ([Tv,, S|v,,]) = 0.
Hence, we have A([T, S]) = 0 as we claimed above.
Consider now the linear subspace
W={veV|Tv=XT)v,T € b}.
Then v € W and W # {0}. For any w € W and S € a, we have
TSw = [T, SJw+ STw = A([T, S))w + X\(T)Sw = \(T)Sw

for all T € b. Hence, Sw € W. Therefore, W is a-invariant. Since 7 is irreducible,
we must have W = V. Tt follows that T = \(T)1ly for any T € b. If p > 0, b
is spanned by commutators and the trace of any element of b must be zero. This
implies that A = 0 and b = {0}, contradicting the choice of p. Therefore, p = 0,
and b = p. (]

The following result is an immediate consequence of 1.6.1.
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1.6.2. COROLLARY. Let g be a solvable Lie algebra over an algebraically closed
field k. Then any irreducible representation of g on a linear space V over k is
one-dimensional.

1.6.3. THEOREM (Lie). Let g be a solvable Lie algebra over an algebraically
closed field k. Let w be a representation of g on a linear space V' over k. Then
there exist a basis of V' such that all matrices of w(x), x € g, are upper triangular.

PrOOF. We prove this statement by induction in dimV. If dimV = 1, the
statement is obvious.

Assume that dimV =n > 1. Let W be a minimal invariant subspace in V for
w. Then the representation of g on W is irreducible. By 1.6.2, dim W = 1. Let e;
be a nonzero vector in W. Clearly, 7 defines a representation o of g on V/W and
dim V/W = dim V — 1. Therefore, by the induction assumption, there exist vectors
€2,...,e, in V such that ex + W,... e, + W, form a basis of V/W such that o(z)
are upper triangular in that basis, i.e, the subspaces spanned by ea+W, ... e+ W,
2 < k < n, are o-invariant. This in turn implies that the subspaces spanned by
€1,.--,€k, 2 < k < n, are m-invariant, i.e., the matrices of 7(x), € g, are upper
triangular. O

2. Lie algebras and field extensions

2.1. k-structures on linear spaces. Let k be a field of characteristic 0. Let
K be an algebraically closed field containing k.

Let U be a linear space over k. Then K ®; U has a natural structure of a linear
space over K.

A k-structure on a linear space V over K is a k-linear subspace Vi, C V such
that the natural map

K@V —V

is an isomorphism. This means that Vi spans V over K and the elements of V},
linearly independent over k are also linearly independent over K.

We say that the elements of Vj, are rational over k.

Let V be a linear space over K and V) its k-structure. Let U be a linear
subspace of V. We put Uy = U NV},. We say that U is defined (or rational) over k
if Uy, is a k-structure on U. This is equivalent to Uy spanning U.

If W =V/U, we write Wy, for the projection of V}, into W. We say that W is
defined over k if Wy, is a k-structure on W.

2.1.1. LEMMA. Let U be a linear subspace of V and W = V/U. Then the
following conditions are equivalent:
(i) U is defined over k;
(il) W is defined over k.

ProOF. Consider the k-linear map Vi, — W induced by the natural projection
V — W. Then, its kernel is V, N U = Ug. Therefore, we have the short exact
sequence
0—>Uk—>Vk—>Wk—>0.

By tensoring it with K, we get the short exact sequence

0 — KUy — K Vi — K@i W — 0.
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This leads to the commutative diagram

0 —— KeplUy —%— K@y Vy —2— K@y Wy —— 0

g d d

0 —— U S V £, w — 0

of linear spaces over K. The rows in this diagram are exact and the middle vertical
arrow is an isomorphism. From the diagram it is evident that the first vertical
arrow must be an injection and the last vertical arrow must be a surjection.
We claim that the first arrow is surjective if and only if the last one is injective.
Assume first that « is an isomorphism. Let w € ker~y. Then, w = b(v) for
some v € K ®;, Vi and

B(B(v)) = 7(b(v)) = ~v(w) = 0.

Therefore, 5(v) € ker B. It follows that 5(v) = A(u) for some v € U. Since « is an
isomorphism, u = «(u’) for some v’ € K ®; U. Hence, we have

Bv) = A(u) = Ala(u')) = Bla(u)).
Since [ is an isomorphism, this implies that v = a(u’). Hence, w = b(v) =
b(a(u')) = 0. Tt follows that v is injective.
Consider now that 7 is an isomorphism. Let v € U. Then A(u) = §(v) for
some v € K @ V. It follows that

1(b(v)) = B(B(v)) = B(A(u)) = 0.
By our assumption, this implies that b(v) = 0, and v = a(u') for some v’ € K ®, Uy,
Hence, we have

A(u) = B(v) = Bla(u’)) = Ala(u)).

Since A is injective, it follows that u = «(u’), i.e., « is surjective. O

Let Auti(K) be the group of all k-linear automorphisms of K. Let o €
Autg(K). Then the k-linear map o : K — K defines a k-bilinear map K x Vj, —
V by (A, v) — o(A)v. This map defines a k-linear map of K ®y Vj, into V' by

oy (A®v) =a(A)v.

Since Vj is a k-structure of V, we can view oy as a k-linear automorphism of
V. Therefore, we get a homomorphism of Auty(K) into the group of all k-linear
automorphisms of V. We say that this action of Auty(K) corresponds to the k-
structure Vj.

2.1.2. LEMMA. The k-structure Vi, of V is the fized point set of the action of
Autg(K) on V.

PROOF. Let v € V. Then v = Zl Aiv; for some finite independent set of
vectors vi,va,..., v, in Vi and A\; € K. Therefore, oy (v) = >, o(A;)v; for any
o € Autg(K). It follows that v is fixed by oy if and only if A; are fixed by . By
Galois theory, A € K is fixed by all 0 € Auty(K) if and only if A € k. Therefore, v
is fixed by Auty(K) if and only if v € Vj,. O

Let v,w € V and A\, u € K. We can represent v and w as

V= E o;v; and w = E Bjw;
% J
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where «a;, 8; € K and v;, w; € Vi. Therefore, we have

ov (A + pw) = oy )\ZaierMZﬁjwj =ov Z)\aivi+ZNﬂjwj
i j i J

J 3

i J

= o(Nov (v) + o(w)ov (w),

= Z o(Aa;)v; + Z o(uBw; = o(\) > o(ai)vi + o) > (8w

It follows that for any K-linear subspace U of V, oy (U) is also a K-linear
subspace of V. Therefore, Auty(K) permutes K-linear subspaces of V.

Assume that the K-linear subspace U is defined over k. Then, any u € U can be
written as u = Y. Aju; for \; € K and u; € Uy. Hence, oy (u) = >, o(Xj)u; € U.

Therefore, oy (U) = U and U is invariant for the action of Auty(K).

2.1.3. LEMMA. IfU is a K-linear subspace of V' defined over k, U is stable for
the action of Auty(K).

Moreover, Auty(K) induces the action on U which corresponds to the k-
structure Uy.

Let W = V/U. Then the action of Auty(K) induces an action on W. if
p: V — W is the canonical projection,

ow (p(v)) = ow <Z AiP(%‘)) => o(\)p(w)

i

for A\; € K and v; € Vj. Therefore, the action of Auty(K) on W is corresponds to
the k-structure Wi.
Now we want to prove the converse of the above lemma.

2.1.4. PROPOSITION. Let U be a K-linear subspace of V' stable for the action
of Autg(K). Then U is defined over k.

PROOF. Let U, = U N V. Also, put U' = K ®, U, C V. Then U’ is defined
over k, and U’ C U.

Let V = V/U’ with the induced k-structure. The image U of U in V is Aut (K )-
invariant. Let 4 € U N Vi. Then @ = p(u) = p(v) for some u € U and v € Vj.
Hence, p(u —v) = 0, and u — v € U’. In particular, u — v € U. Hence, v € U,
and v € Uy. It follows that v € U’ and p(v) = 0. Therefore, 2 = 0. It follows
that U, = U NV, = {0}. To prove the claim, we have to show that U = {0}. This
immediately implies that U = U’, i.e., U is defined over k.

Therefore, we can assume from the beginning that Uy = {0}.

Assume that U # {0}. Let u € U, u # 0, be such that u = Y. | \;v; where
A € K and v; € Vi and n is smallest possible. Then, v, vs, ..., v, must be linearly
independent over K and all \; different from 0.

Then, multiplying by )\% we can assume that v € U has the form u = vy if
n=1or

n
U =1v] + E A\iV;.
=2
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In the first case, u € Vi and u € U NV, = Uy contradicting the assumption that
Ui = {0}. Hence, we must have n > 1. For any o € Aut(K), we have

n

ov(u) = vy + Z ()i

and
n

ov(u) —u=>Y (a(\)— A)vi.
i=2
Since oy (u) —u € U, and the sum on the right has n — 1 terms, we must have
ov(u)—u=0and o(\;) =\ for 2 <i<n.
Let A € K. By Galois theory, if o(\) = A for all 0 € Autg(K), A is in subfield
k. Therefore, we conclude that all A; € k. This implies that v € Vj, and again
u € UNV;, ={0}, contradicting our assumption. Therefore, U = {0}. O

2.2. k-structures on Lie algebras. Let k be a field of characteristic 0 and
K its algebraically closed extension. Let g be a Lie algebra over k. Then we can
define the commutator on gx = K ® g by

MA@z, p@yl=Au® [z,y]

for any z,y € g and A\, u € K. One can check that gx is a Lie algebra over K.

If ¢ : g — b is a morphism of Lie algebras over k, by linearity it extends to
the morphism ¢k : gx — bi.

In this way we construct an exact functor from the category of Lie algebras
over k in to the category of Lie algebras over K. This functor is called the functor
of extension of scalars.

If V is a linear space over k and Vg = K ®; V. One checks that L(V)g =
L(Vk).

Conversely, if g is a Lie algebra over K, a k-linear subspace gy of g is a k-
structure on Lie algebra g if

(i) gk is a k-structure on the linear space g;
(ii) gx is a Lie subalgebra of g considered as a Lie algebra over k.

Let gr be a k-structure on the Lie algebra g over K. Let z,y € g. Then
T= N, y= Zj w;y; for some z;,y; € gr and A, u; € K. Therefore,

o[z, y]) = g | Y Nislwiys) | =D ooy y;) = [og(x), o4(y)]
ij ij

for any 0 € Autg(K), i.e., Autgy(K) acts on g by k-linear automorphisms. This
implies that the action of Auty(K) on g permutes Lie subalgebras, resp. ideals, in
the Lie algebra g.

A Lie subalgebra § of g is defined over k, if by, = h N g is a k-structure on h as
a linear space.

Since h and gy are Lie subalgebras of g considered as a Lie algebra over k, by
is a Lie algebra over k. Therefore, by is k-structure on the Lie algebra b.

Let b be an ideal in g. Then b = h N g is an ideal in gg.

2.2.1. LEMMA. Let g be a Lie algebra over K with k-structure gr. If a and b
are two ideals of g defined over k, the ideal [a,b] is defined over k.
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PRrROOF. Since a and b are defined over k, they are invariant under the action
of Aut(K). By 2.1.4, this in turn implies that [a, b] is defined over k. O

This immediately implies the following result.

2.2.2. COROLLARY. Let g be a Lie algebra over k, and gx the Lie algebra
obtained by extension of scalars.
(i) DPax = (DP)x for all p € Zy;
(ii) CPgx = (CPg)Kk for allp € Zy.

Therefore, we have the following result.

2.2.3. THEOREM. Let g be a Lie algebra over k, and gx the Lie algebra obtained
by extension of scalars.

(i) g is solvable if and only if g is solvable.
(ii) g is nilpotent if and only if g is nilpotent.

Let g be a Lie algebra over K and gy, its k-structure. As we remarked Auty(K)
permutes ideals in g. Clearly, if a is a solvable ideal, o4(a) is also a solvable ideal.
Therefore, Auty(K) permutes solvable ideals. Since this action clearly preserves
the partial ordering given by inclusion, we conclude that the radical ¢ of g is fixed
by the action of Auty(K). Hence, by 2.1.4, ¢ is defined over k. This implies the
following result.

2.2.4. LEMMA. Let g be a Lie algebra over k, and gx the Lie algebra obtained
by extension of scalars. Let v be the radical of g. Then vk is the radical of gk .

This has the following immediate consequence.

2.2.5. THEOREM. Let g be a Lie algebra over k, and gx the Lie algebra obtained
by extension of scalars. Then g is semisimple if and only if g is semisimple.

The following observation follows immediately from the definitions.

2.2.6. LEMMA. Let g be a Lie algebra over k and gx the Lie algebra obtained
by extension of scalars. Then the Killing form By, of gk is the linear extension of
the Killing form By on g.

Also, we can prove the following characterization of solvable Lie algebras.
2.2.7. PROPOSITION. Let g be a Lie algebra. Then the following conditions are
equivalent:
(i) g is solvable;
(ii) Dg is nilpotent.
PROOF. (ii)=-(i) The Lie algebra g is an extension of g/Dg by the ideal Dg.
Clearly, g/Dg is abelian. Hence, if Dg is nilpotent, g has to be solvable by 1.2.1.

(i)=(ii) Let K be the algebraic closure of k. Then gg is solvable by 2.2.3. By
1.6.3, there exists a basis of gx such that the matrices of adz, x € gk, are upper

triangular. Hence, the matrices of ad[z,y] = [ad x, ad y] are upper triangular with
zeros on the diagonal. It follows that adx, * € Dgy, are nilpotent. By 1.5.4, it
follows that Dgg is nilpotent. By 2.2.2 and 2.2.3, Dg is nilpotent. g

2.2.8. ExaMPLE. Let M, (k) be the Lie algebra of all n x n matrices with
entries in k. Denote by s(n, k) the Lie subalgebra of all upper triangular matrices
in M, (k). Then, as we remarked in 1.5.6, Ds(n, k) = n(n,k) is a nilpotent Lie
algebra. Therefore, s(n, k) is a solvable Lie algebra.
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3. Cartan’s criterion

3.1. Jordan decomposition. Let k be a field of characteristic 0 and K its
algebraic closure.

3.1.1. LEMMA. Let P € k[X] be a polynomial with simple zeros in K. Then P
and P’ are relatively prime, i.e, there exist S,T € k[X| such that SP+ TP’ = 1.

PROOF. By our assumption, P(X) = [[?_, (X —X\;) for \; € K,and \;, 1 <i <

n, are mutually different. Therefore, for any 1 <i <n, P(X) = (X —\;)Q(X) and
Q(N\;) # 0. Tt follows that P'(X) = Q(X)+ (X —X\)Q'(X) and P'(\;) = Q()\;) # 0.

Let I be the ideal generated by P and P’ in k[X]. Assume that I # k[X].
Since k[X] is a principal ideal domain, in this case I = (R) for some polynomial
R € k[X]. Therefore, a zero of R in K must be a common zero of P and P’ which
is impossible. It follows that I = k[X]. O

3.1.2. LEMMA. Let P € k[X] be a polynomial with simple zeros in K. Let
n € N. Assume that Q € k[X] is a polynomial such that P o @ is in the ideal
in k[X] generated by P™. Then there exists a polynomial A, € k[X] such that
Po(Q— A,P") is in the ideal generated by P,

PRroOF. By Taylor’s formula
P(X+Y)=PX)+ P (X)Y +Y?R(X,Y)
for some R € k[X,Y]. Therefore, for any polynomial A,, we have
Po(Q - A.P") = PoQ— (P oQ)A,P" + SP"!

where S € k[X]. By our assumption, P o Q = T'P" for some polynomial T € k[X].
By 3.1.1, there exists A, B € k[X] such that 1 = CP’ + DP. Therefore,

1=(AoQ)(P'oQ)+ (BoQ)(PoQ).
If we put A, =T(Ao Q), we get
Po(Q—A,P") = A, (P oQ)P" +T*(BoQ)P* — (P 0 Q)A,P" + SP"*!
=T%DoQ)P?" + SP™+i,
O
By induction, from this lemma we deduce the following result.

3.1.3. LEMMA. Let P € k[X] be a polynomial with simple zeros in K. Let
n € Z4. Then there exist polynomials Ag = 0, A1, ..., A, such that the polynomial

P (X -y Ai(X)P(Xy')
i=0
is in the ideal generated by P11,

ProOOF. If n =0, the statement is evident for Ag = 0.
Assume that the statement holds for n — 1. then there exist polynomials Ay =
0,A1,...,A,_1 such that

P (X — S Ai(X)P(X)i>
=0
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is in the ideal generated by P™. Put
n—1
Q=X-) A(X)P(X).
i=0

Then the existence of A,, follows from 3.1.2. O

Let V be a linear space over a field k. Let K be the algebraic closure of k. A
linear transformation S on V is semisimple if its minimal polynomial has simple
zeros in K.

3.1.4. THEOREM. Let T be a linear transformation on a linear space V' over k.
Then there exist unique linear transformations S and N on V such that
(i) S is semisimple and N is nilpotent;
(ii) S and N commute;
(iii) T=S+N.
Also, S = P(T) and N = Q(T) where P,Q € k[X] without constant term.

PROOF. Let K be the algebraic closure of k. Let \;;, 1 < i < n, be the
mutually different eigenvalues of T in K. Let P(X) = [[;_,(X — A;). Then, for
some p € N, the characteristic polynomial of T' divides PP and P(T)? = 0. By
3.1.3, for n = p — 1, we know that there exist polynomials A9 = 0, A41,..., 4,1

such that
p—1
P (T -y Ai(T)P(Ty') =0.
i=0
If we put
p—1
N =Y Ai(T)P(T)’
=0
and

S=T- pz_: A (T)P(T),
1=0

we immediately see that S is semisimple. On the other hand, since Ag = 0, we see
that N = P(T)Q(T) for some Q € k[X]. Therefore, NP = P(T)*Q(T)? =0 and N
is nilpotent. This proves the existence of S and N.

It remains to establish the uniqueness. Assume that S’, N’ is another pair of
linear transformations satisfying the above conditions. Since S’ and N’ commute,
they commute with T'= S’+ N’. On the other hand, S and N are polynomials in T,
and we conclude that S’ and N’ commute with S and N. This implies that S —.5’ is
a semisimple linear transformation and N — N’ is a nilpotent linear transformation.
On the other hand, S+ N =T = S’ + N’ implies S — S’ = N’ — N. Therefore,
S — 8" = N'— N =0. This proves the uniqueness of S and N. O

The linear transformation S is called the semisimple part of T and the linear
transformation N is called the nilpotent part of T. The decomposition T'= S + N
is called the Jordan decomposition of T'.

Let eq,ea,...,e, be a basis of V. Denote by E;; the linear transformations on
V such that Ejjer, = 0if j # k, and Ejje; = e;, for all 1 < 4,5,k < n. Then E;j,
1 <i,7 < n, form a basis of L(V).
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3.1.5. LEMMA. LetV be a linear space over an algebraically closed field k. Let
T be a linear transformation on'V and T = S+ N its Jordan decomposition. Then
adT =ad S+ ad N is the Jordan decomposition of adT'.

PRrROOF. Clearly, T = S+N implies ad T = ad S+ad N. Moreover, [ad S,ad N] =
ad[S, N] = 0. By 1.5.2, ad N is a nilpotent linear transformation. Hence, it remains
to show that ad .S is semisimple. Let eq,eq,..., e, be a basis of V' such that

Se; = N\je; for all 1 < i <n.
Then
adS(E”) = SEZ‘]‘ - ElS = ()\z - )\j)Eij for all 1 § i,j S n.
Hence, ad S is semisimple. O

Finally, we prove a result which will play the critical role in the next section.

3.1.6. LEMMA. Let V be a linear space over an algebraically closed field k. Let
U C W be two linear subspaces of L(V') and
S={TeL(V)|ad(T)(W)cCU}.
If A€ S and tr(AB) =0 for every B € S, then A is nilpotent.

PRrROOF. Let A € S such that ad(A)(W) C U and tr(AB) = 0 for all B € S.
Let A =S+ N be the Jordan decomposition of A. Fix a basis e1,es,...,e, of V
such that Se; = \je; for 1 < i < n.

Let L be the linear subspace of k over the rational numbers QQ spanned by
A, Ao,y . Let f @ L — Q be a Q-linear form on L. Let T be a linear
transformation on V' given by

Te; = f(N\)e; for 1 <i<n.
Then
ad(T)(E”) S (f(>\z) - f()\J))E” for all 1 < 7;7j <n.

The numbers A; — Aj, 1 < 4,5 < n, are in L. Moreover, \; — A\j = A, — Aq for

some 1 < 4,7, p,q <n, implies that
f()\z) - f(/\j) = f(Az - /\j) = f(/\p - )‘q) = fo‘p) - fo‘q)
In addition, if A; — A; = 0 for some 1 <¢,5 < n, we have
fO) = f(A) = f(Ai = Aj) =0.

Therefore, there exists a polynomial P € k[X] such that P(A\; —\;) = f(\:) — f(X;)
for all 1 < 4,5 < n, and P has no constant term. It follows that P(adS) = adT.
On the other hand, ad S = Q(ad A) for some polynomial @ with no constant term.

Hence, adT = (P o Q)(ad A). Since P o @) has no constant term, ad(T)(W) C U,
i.e, T € S. This implies that tr(AT) = 0. On the other hand

i=1
Hence, we have
0=7f (Z f(>\i)>\i> =3 FOW)*
i=1 i=1

Since f(\;) € Q, f(A\;)? > 0forall 1 < i < n. Therefore, we conclude that f(\;) = 0
for all 1 < i < n. It follows that f = 0. Since f is an arbitrary linear form on L,
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it follows that L = {0}. Therefore, \; =0 for all 1 < i < n. It follows that S =0
and A= N, i.e., A is nilpotent. O

3.2. Cartan’s criterion. In this section we prove the following solvability
criterion.

3.2.1. THEOREM (Cartan). Let V be a linear space over k. Let g be a Lie
subalgebra of L(V'). Define

B(T,S) =tx(TS), forT,S € g.

Then the following conditions are equivalent:

(i) g is solvable;
(ii) Dg is orthogonal to g with respect to [3.

ProOOF. Let K be the algebraic closure of k. By 2.2.3, the Lie algebra gx
obtained by extension of scalars is solvable if and only if g is solvable. On the other
hand, gk is a Lie subalgebra of £L(V)x = L(Vk). The bilinear form fg : (T, S) —
tr(T'S) for T,S € L(Vk) is obtained from § by linear extension. Therefore, it is
enough to prove the statements for Lie algebras over K.

(i)=(ii) By 1.6.3 we can find a basis of V' such that the matrices of all T' € g
are upper triangular. Then the matrices of Dg are upper triangular with zeros on
the diagonal. Therefore, it follows immediately that §(7,S) = 0 for T € g and
S € Dg.

(il)=(i) To prove this implication, by 2.2.7, it is enough to show that Dg is
nilpotent. By 1.5.5, Dg is nilpotent if all R € Dg are nilpotent. To prove this we
consider 3.1.6 for U = Dg and W = g. In this case we have

S={T e L(V)|ad(T)(g) C Dg}.
Clearly, g C S.
Let T'c S and A, B € g. Then [T, A] € Dg and
tr(T[A, B]) = tr(T[A, B]) = tr(TAB — TBA) = tr(TAB) — tr(TBA)
=tr(TAB) — tr(ATB) = tr([T, A|B) = B([T, A], B) =0
by the assumption. Hence, tr(T'R) = 0 for all R € Dg.

It follows that tr(RT) = 0 for all R € Dg and T € S. On the other hand, as
we remarked above, R € §. By 3.1.6, we see that R is nilpotent. O

3.3. Radical is a characteristic ideal. The main goal of this section is to
prove the following result.

3.3.1. THEOREM. Let g be a Lie algebra and v its radical. Then v is the orthog-
onal to Dg with respect to the Killing form of g.

3.3.2. COROLLARY. The radical v of a Lie algebra g is a characteristic ideal.

PRrROOF. Clearly, Dg is a characteristic ideal. Therefore, by 1.1.5, Dg' is a
characteristic ideal. By 3.3.1, v = (Dg)*. O

We first want to prove that the radical t is contained in the characteristic ideal
v = (Dg)*.
We first need a technical result.
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3.3.3. LEMMA. Let g be a Lie algebra and v the radical of g. Let ™ be a rep-
resentation of g on linear space V. Then tr(m(x)n(y)) = 0 for all x € Dg and
yer.

PROOF. Let K be the algebraic closure of k. Let Vx = K ®; V. Let mg
be the representation obtained by extension of scalars from 7. Then mg is the
representation of gx on Vx. By 2.2.4, tx is the radical of gx. The bilinear form
B(w,y) = tr(r(x)7(y)), =,y € g, extends by linearity to S (z,y) = tr(rx (z)7x (y))
for z,y € gix. Therefore, it is enough to prove that Sk (z,y) = 0 for x € (Dg)k
and y € tk.

Hence, we can assume from the beginning that k is algebraically closed. Assume
first that 7 is irreducible. By 1.6.1, there exists a linear form A on v such that
m(y) = My)1ly for all y € v. Therefore, B(z,y) = tr(n(z)m(y)) = A(y) tr(w(x)) for
all x € Dg and y € v. On the other hand, Dg is spanned by commutators, hence
the linear form x —— tr w(x) vanishes on Dg. It follows that 8(x,y) = 0 for x € Dg
and y € t.

Assume that 7 is reducible. Then we prove the statement by induction in
length of m. Let W be a minimal invariant subspace of V. then the representation
7' of g induced on W is irreducible. Let 7 be the representation of g induced on
V/W. Then

Bx,y) = tr(n(z)w(y)) = tr(x’ ()7’ (y)) + tr(z" (2)7" (y)) = tr(=" (2)7" (y))

’

for any € Dg and y € t. Clearly the length of 7" is less than the length of .
Hence, by the induction assumption, (z,y) = 0 for z € Dg and y € t. (]

Applying the lemma to the adjoint representation of g we see that v C t’.
It remains to show that v’ is a solvable ideal in g. We first need a result about
the Killing form.

3.3.4. LEMMA. Let g be a Lie algebra and § an ideal in g. Then the Killing
form By of b is the restriction of the Killing form By of g to h x b.

PROOF. Since b is an ideal in g, for any x € § we have ad z(g) C . Moreover,
ad(x)ad(y)(g) C b for z,y € h. Therefore,

By(x,y) = tr(ad(z) ad(y)) = tr(ady () ady (y)) = By (2,y)
for all x,y € b. (]
By 3.3.4, we have By = Byl x. Therefore, since t’ is orthogonal to Dg with
respect to By, we see that v/ is orthogonal to Dt for By. By 3.2.1, this implies

that ad ¢’ is a solvable Lie subalgebra of £(t'). On the other hand, if 3 is the center
of v/, we have the exact sequence

0—3—1t —adt — 0,

where 3 is abelian. Therefore, by 1.2.1, v/ is a solvable Lie algebra. Therefore, v/
is a solvable ideal in g. It follows that t' C . Hence, it follows that v = ¢/ which
completes the proof of 3.3.1.

4. Semisimple Lie algebras

In this section we generalize some results about Lie algebras of compact semisim-
ple Lie groups from 3.1.8.



114 4. BASIC LIE ALGEBRA THEORY

4.1. Killing form and semisimple Lie algebras. The following result gives
a new characterization of semisimple Lie algebras.

4.1.1. THEOREM. Let g be a Lie algebra. Then the following conditions are
equivalent:
(i) g is semisimple;
(ii) the Killing form B of g is nondegenerate.

If these conditions hold, g = Dyg.

PROOF. (i)=-(ii) Assume that g is semisimple. Then the radical ¢ of g is equal
to {0}. By 3.3.1, (Dg)* = {0}. Moreover, Dg C g implies g* C (Dg)*+ = {0}. It
follows that g+ = {0}, i.e., the Killing form B is nondegenerate.

In addition, in this situation g* = {0} = (Dg)* implies g = Dg.

(ii)=(i) Let a be an abelian ideal in g. Let 2 € g and y € a. Then ad(y)(g) C a,
and ad(z)ad(y)(g) C a. Therefore, (ad(z)ad(y))?(g) C ad(z)ad(y)(a) = {0}, and
ad(z) ad(y) is a nilpotent linear transformation on g. This implies that B(z,y) =
tr(ad(x) ad(y)) = 0. Hence, a C g*. Since B is nondegenerate, we see that a = {0}.
By 1.3.1, g is a semisimple Lie algebra. O

Let g be a semisimple Lie algebra. Let a be an ideal in g. Let a' be the
orthogonal to a with respect to the Killing form B of g. Then, by 1.1.5, a't is
an ideal in g. This implies that b = a N a* is an ideal in g. If 2,y € b, we have
B(x,y) = 0. By 3.2.1, we see that ad b is a solvable Lie algebra. Since ad is injective
by 1.3.2, we conclude that b is solvable. Therefore, b = {0} and ana® = {0}. Since
B is nondegenerate, dim a’- = dimg — dima, i.e., g = a®a’ as a linear space. This
in turn implies the following result.

4.1.2. LEMMA. Let g be a semisimple Lie algebra and a an ideal in g. Then
g=ad®al.
Moreover, a and a’ are semisimple ideals in g.

PRrROOF. It is enough to prove that a is semisimple. Let x € a be such that
Bq(z,y) = 0 for all y € a. Then, by 3.3.4, By(z,y) =0 for all y € a. This in turn
implies that By(z,y) = 0 for all y € g. Since By is nondegenerate, = 0. This
implies that B, is nondegenerate, and a is semisimple by 4.1.1. O

A Lie algebra is simple if it is not abelian and it has no nontrivial ideals. By
1.3.1, a simple Lie algebra is semisimple.

A minimal ideal a in a semisimple Lie algebra cannot be abelian by 1.3.1. On
the other hand, by 4.1.2, any ideal in a is an ideal in g. Hence, by minimality, a
has to be simple. Therefore any semisimple Lie algebra contains a simple ideal.

4.1.3. LEMMA. Let g be a semisimple Lie algebra and w a representation of g
on a linear space V.. Then 7(g) is contained in the Lie algebra sl(V') of all traceless
linear transformations on V.

PROOF. Let z,y € g. Then
tr(m([z,y])) = tr([w(z), 7(y)]) = tr(7(z)n(y)) — te(w(y)7(z)) = 0.

Therefore, the linear form z —— trn(z) vanishes on Dg. By 4.1.1, it vanishes on
g. O
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4.2. Derivations are inner. The next result is a generalization of the result
about the nondegeneracy of the Killing form.

4.2.1. LEMMA. Let g be a semisimple Lie algebra and 7 a faithful representation
of g. Then the bilinear form (z,y) — B(z,y) = tr(n(z)n(y)) is nondegenerate on

g.
PROOF. Let
s={xeg|fBz,y)=0forall yeg}
Let z € s and y € g. Then

B(ly, 2], 2) = tr(w([y, )7 (2)) = tr(w(y)m(2)7(2)) — tr(x(z)7(y)7(2))
= tr(m(2)m([y, 2])) =0,

for all z € g. Therefore, [y, z] € s for all y € g. Hence, s is an ideal in g. Moreover,
s is orthogonal onto itself with respect to 3. By 3.2.1, this implies that m(s) is
solvable. Since the 7 is faithful, this implies that s is solvable. Hence, s = {0}.
This implies that § is nondegenerate. O

This has the following consequence which generalizes 4.1.2.

4.2.2. LEMMA. Let g be a Lie algebra and B its Killing form. Let a be a
semisimple Lie subalgebra of g. Then the orthogonal h = a* of a is a direct com-
plement to a in g and ad(z)(h) C b for all x € a.

If a is an ideal in g, b is an ideal in g and

b={z €gladx)(a) ={0}}.
In particular, g = a x b.

PROOF. Since a is semisimple, its center is equal to {0} and adg : a — L(g)
is faithful. Hence, by 4.2.1, Bglaxq is nondegenerate. Therefore, a N h = {0}.
Moreover, we have dimh = dimg — dima, and g = a @ b as a linear space. In
addition, for x € a and y € b, we have B([z,y],z) = —B(y, [z,z]) = 0 for all z € a.
Hence [z,y] € h. It follows that b is invariant for all adz, z € a.

If a is an ideal, b is an ideal by 1.1.5. Hence, g = a x h, and since a has trivial
center, the rest of the statement follows. O

The next result says that all derivations of a semisimple Lie algebra are inner.

4.2.3. PROPOSITION. Let g be a semisimple Lie algebra. Then ad : g — Der(g)
is an isomorphism of Lie algebras.

PROOF. Since the center of g is {0}, ad is injective and g is isomorphic to the
ideal ad g of inner derivations in Der(g) by 1.1.3.
By 4.2.2, Der(g) = ad g x b, where

h={D € Der(g) | [D,adz] =0 for all z € g}.

Let D € fj. Then, by 1.1.2, we have ad(Dx) = [D,ad z] = 0 for all z € g. Since ad
is injective, Dz = 0 for all x € g, and D = 0. Hence, h = {0}. O
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4.3. Decomposition into product of simple ideals. Let g be a semisimple
Lie algebra and a an ideal in g. Then a is semisimple by 4.1.2. Assume that b is
another ideal in g such that anb = {0}. Let « € a and y € b. Then, ad(y)(g) C b
and

(ad(z) ad(y))(g) = ad(z)(ad(y)(g)) C ad(z)(b) C anb = {0}.
Therefore, ad(z)ad(y) = 0 and B(z,y) = tr(ad(z)ad(y)) = 0. It follows that
bCat.

In particular, if b is a direct complement of a, we must have b = a*. Therefore,
the complementary ideal is unique.

The set of all ideals in g is ordered by inclusion. Let m be a minimal ideal in
g. As we remarked in the preceding section m is a simple ideal.

Let a be another ideal in g. Then aNm is an ideal in g. By the minimality of
m, we have either m C a or anm = {0}. By the above discussion, the latter implies
that a C m™, i.e., a is perpendicular to m.

Let my, my, ..., m, be a family of mutually different minimal ideals in g. By the
above discussion m; is perpendicular to m; for ¢ # j, 1 <+4,5 < p. Hence, p has to be
smaller than dim g. Assume that p is maximal possible. Then a = m; ®&my®---Gm,
is an ideal in g. Assume that a # g. Then g = a @ a®. Let m,;1 be a minimal
ideal in at. Then mp41 is a minimal ideal in g different from m;, 1 < 7 < p,
contradicting the maximality of p. It follows that g=m; @ my @ --- ©m,, i.e., we
have the following result.

4.3.1. THEOREM. The Lie algebra g is the direct product of its minimal ideals.
These ideals are simple Lie algebras.

In particular, a semisimple Lie algebra is a product of simple Lie algebras.

4.4. Jordan decomposition in semisimple Lie algebras. In this section
we prove a version of Jordan decomposition for semisimple Lie algebras.
Let g be a Lie algebra and a a Lie subalgebra of g. Let

n={z €g|ad(z)(a) Ca}.
Clearly, n is a Lie subalgebra of g and a is an ideal in n. This Lie algebra is called

the normalizer of a in g. Clearly, the normalizer is the largest Lie subalgebra of g
which contains a as an ideal.

4.4.1. THEOREM. Let g be a semisimple Lie algebra. Let x € g. Then there
exist unique elements s,n € g such that
(i) ads is semisimple and adn is nilpotent;
(i) [s,n] =0;
(iii) x =s+n.

The element s is the semisimple part of x and n is the nilpotent part of x. The
decomposition x = s + n is called the Jordan decomposition of x in g.

PrOOF. Assume first that k is algebraically closed. Since the center of g is
equal to zero, the adjoint representation ad : g — L(g) is injective. Therefore, we
can view g as the ideal ad g in £(g).

Let n be the normalizer of g in L(g), i.e.,

n={T € L(g) |ad(T)(adg) C ad g}.
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Clearly, n is a Lie subalgebra of £(g), and adg is an ideal in n. Let T' € n. Let
T = S+ N be the Jordan decomposition of the linear transformation 7'. Then, by
3.1.5, adT = ad S + ad N. Moreover, by 3.1.4, ad S and ad N are polynomials in
adT. Hence, S, N € n.

By 4.2.2, we have n = a x g, where

a={T en|ad(T)(adg) = {0}}.

Let
n' ={T en|T(h) Ch for any ideal b of g}.
Since ad g C n’, we have
n = (ann’) xg,
ie,n =da xgwhered =ann’.

Let T € v and let T = S + N be its Jordan decomposition. As we already
remarked, S, N € n. Moreover, by 3.1.4, S and N are polynomials in T', so S(§) C b
and N(h) C b for all ideals h C g. It follows that S, N € n’.

Let g = m; x mg X --- X m;, be the decomposition of g into a product of simple
ideals. Then for T' € a’ we have T'(m;) C m; for 1 < i < p. On the other hand, T
commutes with adx for any x € g. Let 1 < i < p and \; be an eigenvalue of the
restriction of T' to m;. Let y € ker(T'— A\;I) Nm,;. Then

(T = Xil)([z,y]) = (T — Ail) ad(z)y = ad(z)(T — Ail)y = 0

for any = € g. Hence, [x,y] € ker(T — \;I) Nm; for any x € g, i.e., ker(T — \; 1) Nmy
is an ideal in m;. Since m; is minimal, ker(T — \;I) D my, i.e., T|m, is multiplication
by A;. This implies that T is semisimple.

Let N be a nilpotent linear transformation in n’. Then N = P + Q for P € o
and @ € adg. By the above argument, P is semisimple. Since m; are invariant for
N, P Q for all 1 <7 < p, we have

N|mi = P|m1 + Q|m1
for all 1 <4 <p. Since N is nilpotent, N|n, is nilpotent and
0 =tr(Nlm,) = tr(Plm,;) + tr(Qlm,)-

The ideal m; is invariant for the adjoint representation of g. Hence, by 4.1.3, we
have tr(Q|m;) = 0. This in turn implies that tr(P|y,) = 0. On the other hand, the
above argument shows that P|y, is a multiple of the identity. Hence, P|y, = 0 for
all 1 <1 <p. It follows that P =0, and N € adg.

Let z € g and let adz = S + N be the Jordan decomposition of adz in £(g).
By the above remarks, S and N are in n’. By the above argument, N = adn for
some n € g. This implies that s =2 —n € g and

ads=adzr—adn=adxz—N=2S5

is semisimple. Finally,
ad[s,n] = [ad s,adn] = [S,N] =0

and [s,n] = 0. This proves the existence of the decomposition.

Assume that s',n’ € g satisfy x = ¢/ +n/, [¢/,n'] =0 and ad s’ is semisimple
and adn’ is nilpotent. Then adz = ads’ + adn’ is the Jordan decomposition of
adx in £(g). Therefore, by the uniqueness of that decomposition, ad s’ = S = ad s
and adn’ = N = adn. This in turn implies that s’ = s and n’ = n.
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Finally, assume that k is not algebraically closed. Let K be the algebraic closure
of k. Let gx be the algebra obtained from g by the extension of the field of scalars.
Then gy is semisimple by 2.2.5. Let x € g C gx. Let x = s + n be the Jordan
decomposition of = in gg. Since x is stable under the action of Auty(K), for any
S Autk(K)a we have x = Ogx (S) + Ogx (n)7 [UEK (S)7UQK (n)] = UQK([S’n]) =0,
ad oy, (s) is semisimple and ad oy, (n) is nilpotent. Therefore, by the uniqueness
of the Jordan decomposition, we have o4, (s) = s and g, (n) = n for any o €
Auty(K). Therefore, s and n are in g. O

4.5. Lie algebra sl(n, k). Let V be a linear space over the field k and V* its
linear dual. We can define a bilinear map ¢ : V x V* — L(V) by ¢(v, f)(w) =
fw)v for any v,w € V and f € V*. This map defines the linear map ® : V ®y
V* — L(V) such that ®(v ® f)(w) = f(w)v for any v,w € V and f € V*.

4.5.1. LEMMA. The linear map ® : V@, V* — L(V) is a linear isomorphism.

PRrOOF. Clearly, we have
dim(V ®@ V*) = dim V dim V* = (dim V)? = dim £(V).

Therefore, it is enough to show that ® is injective. Let vy, vs,...,v, be a basis of
V and f1, fa,...,v, the dual basis of V*. Then v; ® f;, 1 <4,j < n, is a basis of
V @k V*. Let ®(2) = 0 for some 2z = ZZJ‘:1 a;jv; ® f; € V@i V*. Then

n

0=>(2)(vg) =P Z a;;0; @ fi | (v) = Z oy fi(vg)vs = Zaikvi
i=1

i,j=1 =1
for any 1 < k < n. Therefore, a;; =0 for all 1 <4,7 < n. (|
Let V and W be two linear spaces over k. Let S € £L(V) and T € L(W). Then

they define a bilinear map (v,w) — Sv ® Tw from V x W into V ®; W. This
bilinear map induces a linear endomorphism S ® T of V ®; W given by

(SRT)(v@w)=5Sv®Tw

forany v € V and w € W.
Let T be a linear transformation on V. Then T acts on £(V') by left (resp. right)
multiplication. Then we have the following commutative diagram

vev: L&, vevr

®| |o

L) —— £v)

o—

Te(w e f)(w) =T (f(w)v) = f(w)Tv=2Tve f)(w) = 2(T e )(ve f))(w)

for all v,w € V and f € V*. Also, we have the following commutative diagram
vev: 2, vy

»| o

LV) —— L)

—O0
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since
(v @ [T (w) = f(Tw)y = (T"f)w)v = (0@ T" f)(w) = (I @ T7)(v @ [))(w)
for all v,w € V and f € V*.

Therefore, we finally conclude that the we have the commutative diagram

Ve TRI-IQT* Ve

q{ }p
LV)  —— L)

Therefore, the adjoint representation of £(V) is equivalent to the representation
T—TRI—-1T*onV ®;, V*.

4.5.2. LEMMA. Let V and W be two linear spaces over k. Let S € L(V) and
T e L(W). Then
tr(T ® S) = tr(T) tr(5).
PROOF. Let v1,v9,...v, be a basis of V and wy,ws,...,w, a basis of W.
Then v; @w;, 1 <i<n,1<j<m,is a basis of V& W. If a;; and 8,4 are the
matrix entries of these transformations in these bases, we have

n

(ST (v @w;) = Sv; ® Tw; = Zzamﬂqﬂp ® Wy

p=1g=1
Therefore,

tr(SeT) = Z Zamﬂjj = tr(S) tr (7).

i=1 j=1

If n = dim V, this implies that the Killing form on £(V) is given by

B(S,T) =tr(ad(T)ad(9)) =tr((S@I-I®S")(TRI-IxT"))
=tr(STRI) —tr(SQRT*) —tr(T ® S*) + tr(I @ S*T*)
= ntr(ST) —tr(S) tr(T*) — tr(T) tr(S™) + ntr(S*T*) = 2n tr(ST) — 2 tr(S) tr(T)
for S, T € L(V).

On the other hand, let sl[(V) be the ideal of £(V) consisting of all traceless
linear transformations on V. Then, by 3.3.4, we have the following result.

4.5.3. LEMMA. Let V be a n-dimensional linear space over k. The Killing form
on the algebra s((V') is given by B(S,T) = 2n tr(ST) for S,T € s((V).

This has the following direct consequence.

4.5.4. PROPOSITION. Let n > 2. The Lie algebra sl(n, k) of all n x n traceless
matrices is semisimple.

PROOF. By 4.1.1, it is enough to show that the Killing form is nondegenerate
on sl(n, k).

Let T € sl(n, k) be such that B(T,S) = 0 for all S € sl(n,k). Let E;; be the
matrix with all entries equal to zero except the entry in i** row and j* column.

Then E;;, ¢ # j, are in sl(n, k). Moreover, if we denote by t;; the matrix entries of
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T, we have 0 = B(T, E;;) = 2nt;;. Hence, T;; = 0. Hence, T' must be diagonal. On
the other hand E;; — Ej; € sl(n, k) for 1 < 4,5 <n. Also, 0 = B(T,E;; — Ej;) =
2n(ty; —t;;) for all 1 < 4,5 < n. Hence T is a multiple of the identity matrix. Since
tr(T) = 0, we must have T = 0. It follows that B is nondegenerate. O

4.6. Three-dimensional Lie algebras. In this section we want to classify
all three dimensional Lie algebras over an algebraically closed field k. We start with
the following observation.

4.6.1. LEMMA. Let g be a three-dimensional Lie algebra. Then g is either
solvable or simple Lie algebra.

PRrROOF. Assume that g is not solvable. Let t be the radical of g. Then t # g.
Therefore, g/t is a Lie algebra of dimension 1, 2 or 3. By 1.3.3, g/t is semisim-
ple. Since all Lie algebras of dimension 1 and 2 are solvable, g/t must be three-
dimensional, i.e., v = {0}. Let h be a nonzero ideal in g. Then its dimension is
either 1, 2 or 3. Since the ideals of dimension 1 or 2 have to be solvable, this
contradicts the fact that g is semisimple. Therefore, h = g, i.e., g is simple. O

We are going to classify the three-dimensional Lie algebras by discussing the
possible cases of dim Dg.

First, if Dg = {0}, g is abelian.

Consider now the case dimDg = 1. Let 3 be the center of g. Then there are
two subcases.

First, assume that Dg C 3. Then, we can pick e € Dg, e # 0, which spans Dg.
Since e € 3, there are f, g € g such that (e, f, g) is a basis of g and [e, f] = [e,g] = 0.
Finally, [f,g] = Ae with A € k. The number A must be different from 0 since g
is not abelian. By replacing f with %f, we get that [f,g] = e. Therefore, there
exists at most one three-dimensional Lie algebra with the above properties. On the
other hand, Let g = n(3, k) be the Lie algebra upper triangular nilpotent matrices
in M5(k). Then g is three-dimensional, and its basis

00 1 01 0 000
e={0 0 0|, f=(0 0 of,g=(0 0 1],
000 00 0 000

satisfies the above commutation relations. This shows the existence of the above
Lie algebra. By 1.5.6, this is a nilpotent Lie algebra.

In the second subcase, we assume that DgNj = {0}. Let e € Dg, e # 0. Since
e is not in the center, there exists f € g such that [e, f] = Ae with A # 0. By
replacing f with %f, we can assume that [e, f] = e. Therefore, the Lie algebra b
spanned by e, f is the two-dimensional nonabelian Lie algebra from 1.2.2. Since
Dg C b, b is an ideal in g.

Let g € g be a vector outside . Then [g, €] = ae and [g, f] = be. This in turn
implies that

[g+ Ae + uf,e] = ae — pe = (a — w)e and [g+ Ae + uf, f] = be + Ae = (b+ N)e.

Hence, if we put A = —b and g = a, and replace g with g + Ae + uf, we see
that [e,g] = [f,g] = 0. Therefore, g spans an abelian ideal complementary to
h. Therefore, g is the product of h and a one-dimensional abelian Lie algebra.
Therefore, this is a solvable Lie algebra, which is not nilpotent.
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Now we want to study the case of dim Dg = 2. There are two subcases, the
two-dimensional Lie subalgebra h = Dg can be isomorphic to the two-dimensional
nonabelian Lie algebra from 1.2.2, or it can be abelian.

Assume first that Dg is not abelian. We need a simple observation.

4.6.2. LEMMA. All derivations of the two-dimensional nonabelian solvable Lie
algebra are inner.

PROOF. Let (e, f) be a basis of b such that [e, f] = e. Since Dg is a character-
istic ideal spanned by e, De = Ae with A € k for any derivation D € Der(h). By
replacing D with D + Aad f we can assume that De = 0. Let Df = ae + bf for
some a,b € k. Then we have

OZDe:D([e’f]): [De’f]—I_[e?Df]:b[evf]:be

and b = 0. It follows that Df = ae. Now, (aade)(f) = ae and (aade)(e) = 0.
Hence, D = aade. O

Now we return to the study of the Lie algebra g. Let g € g, g ¢ h. Then
ad gy is a derivation of g. By 4.6.2, there exists x € h such that ad g|y = ad z|y.
Hence, by replacing g by g — z, we can assume that [e,g] = [f,g] = 0. This is
impossible, since this would imply that Dg = Db is one-dimensional contrary to
our assumption.

Therefore, in this case h has to be abelian. Let (e, f) be a basis of fj, and g a
vector outside . Then b is spanned by ad g(e) and ad g(f), i.e., A = adgl|y is a
linear automorphism of . If we replace g with ag+be+cf, the linear transformation
A is replaced by aA. Therefore, the quotient of the eigenvalues of A is unchanged
and independent of the choice of g. There are two options:

(1) the matrix A is semisimple;

(2) the matrix A is not semisimple.
In the first case, we can pick e and f to be the eigenvectors of A. Also, we can
assume that the eigenvalue of A corresponding to e is equal to 1. We denote by «
the other eigenvalue of A. Clearly o € k*. In this case, we have

[e,f]:O, [gve] =6, [gaﬁ =af.

Let
0 0 1 0 0 0 1 0 0
e=10 0 0}, f=10 0 1],9g=10 a O
0 0 O 0 0 0 0 0 O

—+

Then these three matrices span the Lie algebra isomorphic
existence of g.

If we switch the order of eigenvalues the quotient é is replaced by «. In this
case, switching e and f and replacing g by ag establishes the isomorphism of the
corresponding Lie algebras. Therefore, the Lie algebras parametrized by «, o € k*
are isomorphic if and only if « = o/ or a = 5 This gives an infinite family of
solvable Lie algebras. They are not nilpotent, since CPg = § for p > 1.

If A is not semisimple, its eigenvalues are equal, by changing g we can assume
that they are equal to 1. Therefore, we can assume that A is given by the matrix

=)

o g. This proves the
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in the basis (e, f). Hence, we have

[eaf]:O’ [gve]:e’ [g,f]=e+f.

Let
0 0 1 0 0 O 1 10
e=10 0 O, f=(0 0 1],9g=1]10 1 0
0 0O 0 0 O 0 0O

Then these three matrices span the Lie algebra isomorphic to g. This proves the
existence of g. This Lie algebra is solvable, but not nilpotent.

Finally, consider the case of dim Dg = 3. In this case, g = Dg, and g cannot
be solvable. By 4.6.1, g is simple.

By 1.5.4, there exists x € g which is not nilpotent. Hence, it has a nonzero
eigenvalue A € k. By multiplying it with %, we get an element h € g such that
ad h has eigenvalue 2. Since ad h(h) = 0, 0 is also an eigenvalue of ad h. Since
g is three-dimensional, ad h has at most three eigenvalues. Moreover, by 4.1.3,
trad h = 0. Therefore, —2 is also an eigenvalue of ad h. This in turn implies that
the corresponding eigenspaces must be one-dimensional. Therefore, we can find
e, f € g such that (e, f,h) is a basis of g and

[h, €] = 2e, [h, f] = —2f.
In addition, we have

ad h([e, f]) = [ad h(e), f] + [e,ad h(f)] = 2[e, f] — 2[e, /] =0
and [e, f] is proportional to h. Clearly, Dg is spanned by [h, €], [h, f] and [e, f].
Hence, [e, f] # 0. It follows that [e, f] = Ah with A # 0. By replacing e by +e we
see that there exists a basis (e, f, h) such that

[h,e] = 2e, [h, f] = =2f, [e, f] = h.

Therefore, there exists at most one three-dimensional simple Lie algebra over k. If
g =sl(2,k), and we put

0 1 0 0 10
<o) =0 o) =6 %)

we easily check that the above relations hold. Therefore, in the only three-dimensional
simple Lie algebra is s[(2, k).

4.6.3. REMARK. Let g be the Lie algebra sl(2,C) with the basis (e, f, h) we
described above. It has the obvious R-structure s[(2,R) which is spanned over R
by (e, f,h). This real Lie algebra is the Lie algebra of the Lie group SL(2,R). On
the other hand, in 1.8, we considered the Lie algebra of the group SU(2) which is
spanned by another three linearly independent traceless 2 x 2 matrices. Therefore,
the complexification of this Lie algebra is again g. In other words, the Lie algebra
of SU(2) is another R-structure of g. This shows that a complex Lie algebra can
have several different R-structures which correspond to quite different Lie groups.

4.7. Irreducible finite-dimensional representations of sl((2, k). Let k be
an algebraically closed field and g = sl(2, k). As before, we chose the basis of g
given by the matrices

=8 =00 =6 %)
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Then we have, as we already remarked,
[hve] = 267 [haf] = _2f7 [evf] = h.

Let V be a finite-dimensional linear space over k and 7 : g — L(V') a repre-
sentation of g. Let v € V', v # 0, be an eigenvector of 7(h) for an eigenvalue A € k,
i.e. m(h)v = Av. Then

m(h)w(e)v = w([h,e])v + w(e)m(h)v = (A + 2)7(e)v.

Hence, either w(e)v = 0 or m(e)v is an eigenvector of 7(h) with the eigenvalue
A+ 2. By induction, either 7(e)*v, k € Z,, are nonzero eigenvectors of 7 (h) with
eigenvalues \ + 2k, or m(e)*v # 0 and 7(e)*T1v = 0 for some k € Z,. In the first
case, since 7(e)*v correspond to different eigenvalues of 7(h), these vectors must be
linearly independent. This leads to a contradiction with dim V' < co. Hence, there
exists k € Z, such that u = 7(e)¥v # 0 is an eigenvector of 7(h) for the eigenvalue
A+ 2k and 7(e)u = m(e)*+1v = 0. Therefore, we proved the following result.

4.7.1. LEMMA. Let (m,V) be a finite-dimensional representation of g. Then
there exists a vector v € V., v # 0, such that w(e)v = 0 and w(h)v = Mv for some
Aek.

The vector v is called the primitive vector of weight \.
Let v9 € V be a primitive vector of the representation 7 of weight A. We put
vp = m(f)"vo for n € Zy. We claim that

m(h)v, = (A —2n)v,, n € Zy.

This is true for n = 0. Assume that it holds for m € Zy. Then, by the induction
assumption, we have

T(h)vmy1 = w(R)7(f)vm = 7([h, fI)om +7(f)m(h)vm
= =27(f)om + (A = 2m)m(flom = (A = 2m = 2)7(f)om = (A = 2(m + 1))vm 1.
Therefore, the assertion holds by induction in m.
We also claim that
m(e)v, =n(A—n+ v,

for all n € Zy. This is true for n = 0. Assume that it holds for n = m. Then we
have

m(e)vmir = w(e)m(fvm = 7(le, f)vm + 7(f)m(€)vm
= w(h)vp+mA—m+1)7(f)vm-1 = A=2m+m(A—m+1))v,, = (m+1)(A—m)vy,,

and the above statement follows by induction in m.

Now v, # 0 for all n € Z, would contradict the finitedimensionality of V,
hence there exists m € Zy such that v, # 0 and v,,+1 = 0. This in turn implies
that m(e)vm+1 = (m + 1)(A — m)v,, = 0. Therefore, we must have A = m, i.e., the
weight A must be a nonnegative integer.

Therefore, we established the following addition to 4.7.1.

4.7.2. LEMMA. Let (7, V) be a finite-dimensional representation of g and v a
primitive vector in V. Then then the weight of v is a nonnegative integer.
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Let A = m be the weight of vg. Then
m(h)v, = (m —2n)v,, 7(e)v, =n(m —n+ Dv,—1, 7(f)vn = Vnt1

foralln =0,1,...,m. Also, 7(f)vy, = 0. Therefore, the linear span of vy, v1, . .., vy,
is a (m + 1)-dimensional linear subspace invariant for .

If 7 is irreducible, this invariant subspace must be equal to V. This proves the
exhaustion part of the following result.

4.7.3. THEOREM. Letn € Z4, and V,, be the (n + 1)-dimensional linear space
with the basis eg,e1,...,e,. Define
mn(h)er = (n — 2k)ey,
mn(e)exr = (n—k+ 1)ex_1
m(f)exr = (K + 1)ext1

for 0 <k <mn. Then (7, Vy) is an irreducible representation of g.
All irreducible finite-dimensional representations of g are isomorphic to one of
these representations.

PROOF. It remains to check that m,, are representations. We have

[n (h), mn(€)]er = mn(h)mn(e)er — mn(e)mn(h)ek
=n—k+ Dmr,(h)ex—1 — (n — 2k)m,(e)ex
=((n—k+1)(n—2k+2)—(n—2k)(n—k+1))ex_1
=2(n—k+1)ex_1 = 2m,(e)ex
for all 0 < k < n, i.e., [my(h), m(€e)] = 2m,(e). Also, we have

(M (h), T (f)lex = mn (R (f)er — mn(f)mn(h)ek
= (k+ Dmp(h)ext1 — (n —2k)m,(f)ex
=((k+1)(n—2k—2)— (n—2k)(k+1))egt+1
= 2(k+ 1)exr1 = —2m,(f)ex
for all 0 < k < n, i.e., [my(h), 7 (f)] = —2m,(f). Finally, we have

[mn(€)s mn(f)ler = mnle)mn(fer — mn(f)mnle)er
=(k+ Dmp(e)exr1 — (mn—k+ D) (f)er—1
=((k+1)(n—k) —(n—k+ Dk)eg
= (n —2k)ey, = m(h)eg
for all 0 < k <, i.e., [mp(e), m(f)] = mn(h). Therefore, 7, is a representation. O
Fix n € Z,. From above formulas we see that the kernel of 7, (e) is spanned by
eo and the kernel of 7, (f) is spanned by e,,. Moreover, for any 0 < k < [%}, ey is
an eigenvector of 7, (h) with eigenvalue n — 2k > 0. By induction in p, this implies

that 7(f)Pey is a vector proportional to eg4, and nonzero for 0 < p < n — 2k.
Therefore, we have

Wn(f)n72kek #0

for any 0 < k < [%]
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Analogously, for any [%] < k <n, ey is an eigenvector of 7, (h) with eigenvalue
n — 2k < 0. By induction in p, this implies that 7(e)Pey, is a vector proportional to
ek—p and nonzero for 0 < p < —(n — 2k). Therefore, we have
Tn(e)~("2K ey £ 0
for any [%} <k<n.
This implies the following result.

4.7.4. COROLLARY. Let (m,V) be a finite-dimensional representation of g. Let
v € V be a nonzero vector such that w(h)v = pv for some p € k. Then p € Z, and

(i) if p>0, w(f)Pv # 0;
(ii) if p <0, w(e) Pv # 0.
PROOF. Let
{0t =VpcWViCc---CVp1 CVy =V

be a maximal flag of subspaces in V invariant under 7. Then there exists 1 < i < n
such that v € V;, v ¢ V;_;. The quotient representation p on W = V;/V;_1 must be
an irreducible representation of g. Therefore, it must be isomorphic to one of 7,
n € Zy. The image w of v in W is an eigenvector of p(h) for the eigenvalue p. By
4.7.3, p must be an integer, and if p = n—2k, w corresponds to a vector proportional
to ex. From the above discussion, we see that, if p is positive, p(f)Pw # 0 and, if p
is negative, p(e) "Pw # 0. This immediately implies our assertion. O

5. Cartan subalgebras

5.1. Regular elements. Let g be a Lie algebra over an algebraically closed
field k. For h € g and X € k we put

g(h,A\) ={z €g| (adh — AI)’z = 0 for some p € N}.

Then g(h, A) # {0} if and only if A is an eigenvalue of ad h. Also, since ad h(h) = 0,
we see that g(h,0) # {0}. Moreover, by the Jordan decomposition of ad h we know
that

p
g=EPsarN)
1=0

where Ao = 0, A1,..., A\, are distinct eigenvalues of ad h.
For two linear subspaces a and b in g, we denote by [a, b] the linear span of
[z,y], x €a, y €b.

5.1.1. LEMMA. Let h € g. Then

[a(h, A), (hy )] € g(h, A+ 1)
for any A\, p € k.

PROOF. Let = € g(h,A), y € g(h, ). Then we have
(adh — (A + p)D)[z,y] = [ad h(z),y] + [x,ad h(y)] — (A + p)[z, y]
= [(adh = AD)z,y] + [z, (ad h — ul)y],
and by induction in m, we get

(adh = O+ )" g) = Y (’;) (ad B — ATYiz, (ad —uT)™ 7y

Jj=0
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for any m € N. Therefore, if (adh — A[)Px = 0 and (adh — )%y = 0, we have
(adh — (A + m)[)P+[z, ] = 0. 0

In particular, we have the following result.

5.1.2. COROLLARY. The linear subspace g(h,0) is a nonzero Lie subalgebra of

Let
P (M) = det(A] — ad h)
be the characteristic polynomial of ad h. Then, if n = dim g, we have

Pu(d) =Y _ai(h)X
i=0
where a1, as, ..., a, are polynomial functions on g. Since 0 is an eigenvalue of ad h,
0 is a zero of P, and ag(h) = 0. In addition, a,, = 1. Let
¢=min{i € Zy | a; # 0}.
The number ¢ is called the rank of g. Clearly, 0 < £ < n, i.e.,

0 <rankg < dimg.

Moreover, rank g = dim g if and only if all ad z, = € g, are nilpotent. Therefore, by
1.5.4, we have the following result.

5.1.3. LEMMA. A Lie algebra g is nilpotent if and only if rank g = dim g.

An element h € g is called regular if ags(h) # 0. Regular elements form a
nonempty Zariski open set in g.
Let ¢ be an automorphism of g. Then we have

ad(p(h)) = ¢ ad(h) ™"
Therefore, it follows that
P,ny(A) = det(M — ad(p(h))) = det(M — p adho™")
=det(p (M —adh) p™t) = P,(\).

Hence, as(p(h)) = as(h) for all h € g. It follows that the set of all regular elements
is invariant under the action of Aut(g).

5.1.4. LEMMA. The set of regular elements in g is a dense Zariski open set in
g, stable under the action of the group Aut(g) of automorphisms of g.

Since the multiplicity of 0 as a zero of P}, is equal to dim g(h,0), we see that
dim g(h,0) > rank g
and the equality is attained for regular h € g.

5.1.5. EXAMPLE. Let g = s((2, k). Fix the standard basis e, f, h with commu-
tation relations

[h,6]=267 [haf]:_2f7 [evf] =h.

Then
0 0 -2 0 0 O 2 0 0
ade=[0 0 O ),adf=]10 0 2|,adh=[0 -2 0
01 0 -1 0 0 0 0 O
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xr =
c —a
the characteristic polynomial of ad x is equal to

A—2a 0 2b
PN =] 0 X422 —2¢| =X\ —4a?) — 4cb\ = A(\? + 4det z).
c —b A

Therefore, a1 (z) = 4det(z) for all x € g. It follows that rank g = 1. Moreover, x is
regular if and only if det(x) # 0. Since tr(z) = 0, this implies that x is regular if
and only if it is not nilpotent. A regular = has two different nonzero eigenvalues p
and —p, and therefore is a semisimple matrix.

Therefore, for

Let hg be a regular element in g. Put
b = g(ho,0).
5.1.6. LEMMA. The Lie algebra b is nilpotent.
PROOF. Let A\g = 0, A1, ..., A\, be the distinct eigenvalues of ad(hg). Put

p
g1 = P alho, N).
i=1

Then, by 5.1.1, we have [h,g1] C g1. Hence the restriction of the adjoint repre-
sentation of g to h induces a representation p of h on g;. Consider the function
h +— d(h) = det p(h) on h. This is clearly a polynomial function on h. Also, if
q; = dimg(ho, \;), we have d(ho) = A\{'A% ... A" # 0. Hence, d # 0. It follows
that there exist a dense Zariski open set in § on which d is nonzero.

Let h € b be such that d(h) # 0. The the eigenvalues of p(h) are all nonzero.
Hence g(h,0) C b. Since ho is regular, the dimension of dimbh = rankg, and
dim g(h,0) > rankg. Hence, we see that g(h,0) = h. This implies that ady h is
nilpotent. Therefore, (ady h)? = 0 for ¢ > rankg. Clearly, the matrix entries of
(ady h)? are polynomial functions on . Therefore, by Zariski continuity, we must
have (ady h)? = 0 for all h € h. This implies that all ady i, h € b, are nilpotent.
By 1.5.4, b is a nilpotent Lie algebra. U

5.1.7. LEMMA. The Lie algebra b is equal to its normalizer.

PROOF. Let n be the normalizer of h and 2 € n. Then [hg,x] € . Since h =
g(ho,0), we see that there exists p € Z such that ad(ho)?([ho,x]) = ad(ho)P ™tz =
0. This in turn implies that = € h. Therefore, n = h. O

5.2. Cartan subalgebras. Let g be a Lie algebra. A Lie subalgebra h of g is
a Cartan subalgebra of g if
(i) b is a nilpotent Lie algebra;
(ii) b is equal to its own normalizer.

5.2.1. PROPOSITION. Let b be a Cartan subalgebra in g. Then b is a maximal
nilpotent Lie subalgebra of g.

PROOF. Let n be a nilpotent Lie algebra containing h. Assume that n # b.
Then the adjoint representation of n restricted to h defines a representation o of b
on n/h. By 1.5.4, this is a representation of § by nilpotent linear transformations.
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By 1.5.3, there exists a nonzero vector v € n/h such that o(z)v = 0 for all x € b.
Let y € n be a representative of the coset v. Then [z,y] = ad(z)y € b for all z € b.
Therefore, y is in the normalizer of h. Since h is a Cartan subalgebra, this implies
that y € b, i.e., v = 0 and we have a contradiction. Therefore, n = b, i.e., his a
maximal nilpotent Lie subalgebra of g. U

5.2.2. EXAMPLE. There exist maximal nilpotent Lie subalgebras which are
not Cartan subalgebras. For example, let g = sl(2,k). Then the the abelian Lie
subalgebra spanned by e is maximal nilpotent. To show this, assume that n is a
nilpotent Lie subalgebra containing e. Then dimn must be < 2. Hence, it must be
abelian. Let g = ae + Bf 4+ vh be an element of n. Then

0=le,g] = Bh — 2ve.
Therefore 5 =« = 0, and g is proportional to e. It follows that n is spanned by
e. On the other hand, the Lie subalgebra of all upper triangular matrices in g
normalizes n, so n is not a Cartan subalgebra.

5.2.3. THEOREM. Let g be a Lie algebra over k. Then g contains a Cartan
subalgebra.

Assume first that k is algebraically closed. Let h € g be a regular element.
Then, by 5.1.6 and 5.1.7, g(h,0) is a Cartan subalgebra in g.

Assume now that k& is not algebraically closed. Let K the algebraic closure of
k.

5.2.4. LEMMA. Let g be a Lie algebra and gi the Lie algebra obtained from g
by extension of the field of scalars.

Let b be a Lie subalgebra of g and b the Lie subalgebra of gx spanned by b
over K. Then the following conditions are equivalent:

(i) b is a Cartan subalgebra of g;
(ii) b is a Cartan subalgebra of gx .

PrOOF. By 2.2.3, b is nilpotent if and only if hx is nilpotent.

Let n be the normalizer of hg. If © € n then (adz)(h) C h. Since b is defined
over k, it is invariant under the action of the Galois group Auty(K) on gx. This
implies that (ad og, (z))(h) C h for any o € Auty(K). Therefore, n is stable for the
action of Auty(K). By 2.1.4, n is defined over k.

Assume that b is a Cartan subalgebra of g. Then b is nilpotent. By the above
remark, hy is also nilpotent. Let n be the normalizer of h . Then it is defined over
k. Hence, it is spanned by elements in g which normalize §. Since b is equal to its
normalizer in g, it follows that n = hx. Therefore, hx is a Cartan subalgebra in
9K

Assume that hg is a Cartan subalgebra in gx. Then § is nilpotent. Moreover,
for any = € g such that (adz)(h) C b, by linearity we have (adz)(hx) C hx. Since
hx is equal to its normalizer, this implies that € hx and finally « € . Therefore,
the normalizer of h is equal to h and b is a Cartan subalgebra in g. ]

Therefore, to prove the existence of a Cartan subalgebra in g it is enough to
show that there exists a Cartan subalgebra of gy defined over k. Assume that there
exists a regular element h of gx which is rational over k. Then h is fixed by the
action of the Galois group Aut(K). This in turn implies that h = g(h,0) is stable
under the action Auty(K). By 2.1.4, b is defined over k.
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Therefore, it is enough to show that there exists a regular element of gx rational
over k. This is a consequence of the following lemma.

5.2.5. LEMMA. Let P € K[X1,Xs,...,X,] be a polynomial such that
P(A1, A2, -5 A0) =0 for all Ay, A, ..., A\, € k.
Then P = 0.

PROOF. We prove the statement by induction in n. If n = 1, the statement is
obvious since k is infinite. Assume that n > 1. Then we have

q
P(X1,Xa,..., Xp) =Y _ Pu(X1,Xa,... X 1)X;,
s=0

for some P; € K[X1, Xa,..., Xp_1]. Fix A1, A2, ..., A\p—1 € k. Then
q
0=PA1 A2, An) = > PAr, Ao, Ans1) A
s=0

for all A, € k. By the first part of the proof, it follows that Pj(Ai, X2,... A_1) =
0 for all 0 < j < q. Since A1, Ag,...\,—1 € k are arbitrary, by the induction
assumption P; =0 for 0 < j < ¢, and P = 0. O

By the preceding lemma, ay cannot vanish identically on g. Therefore, a regular
element rational over k£ must exist in gg. This completes the proof of 5.2.3.

We now prove a weak converse of the above results. Let g be a Lie algebra
over an algebraically closed field k. Let h be a Cartan subalgebra of g. Since § is
nilpotent, for any h € b, ad h|y, = ady h is a nilpotent linear transformation by 1.5.4.
Therefore, § C g(h,0). Clearly, the adjoint action of § defines a representation p of
b on g/h. Moreover, h = g(h,0) if and only if p(h) is a linear automorphism of g/b.

5.2.6. LEMMA. Let g be a Lie algebra over an algebraically closed field k. Let
b be a Cartan subalgebra of g. Then there exists h € g such that ) = g(h,0).

Later, in 5.5.1, we are going to see that h has to be regular.

PROOF. As we remarked above, we have to show that there exists h € h such
that p(h) is a linear automorphism of g/b.
Since b is nilpotent, by 1.6.3, there is a flag

{0}=VocVvic---CV,=g/h

of invariant subspaces for p such that dimV; = ¢ for 0 < i < m. Moreover, there
exist linear forms aq, as, ..., a,, on b such that

p(x)v — ai(z)v € Vj_q for any v € V;

for 1 <i < m. Hence, a1(z),az(x),...,an(z) are the eigenvalues of p(x).

We claim that none of linear forms o, as, . .., a,, is equal to zero. Assume the
opposite. Let 1 < k < m be such that a1 # 0,9 # 0, ..., a1 # 0, = 0. Since
k is infinite, there exists x € b such that aj(x) # 0,a2(z) # 0,...,a5_1(x) # 0.
Then p(z)|v,_, is a linear automorphism of V,_1, and p(z)|v, is not. It follows that
Vie = Vk—1 @ V' where V’ is the one-dimensional kernel of p(z)]y, .

Let ' € V', v' # 0. We claim that p(y)v’ =0 for all y € .

To show this we first claim that

p(z)?p(y)v’ = p((ad z)"y)v’ for all y € b,
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for any p € Z,. The relation is obvious for p = 0. For p = 1, we have

p(x)py)v" = p(x)py)v" — p(y)p(z)v" = p([z,y])v’".

Therefore, by the induction assumption, we have

p(@)?p(y)v' = p(@)P " p([z,y)v" = p((ad 2)P " [z, y])v" = p((adz)Py)v’,

and the above assertion follows.

Since b is nilpotent, we have (ad z)%y = 0 for all y € b for sufficiently large q.
Therefore,

p(x)ip(y)v’ =0 for all y € b

for sufficiently large q. Therefore, p(y)v’ is in the nilspace of p(x). Since p(x)|v,_,
is regular, we see that p(y)v” € V'. On the other hand, since ay = 0, we have
p(y)Vx C Vi—1. This finally implies that p(y)v’ =0 for all y € b.

Let z € g be a representative of the coset v’ € g/h. Then the above result
implies that [y, z] € b for all y € h. Therefore, z is in the normalizer of . Since b
is a Cartan subalgebra, z € h and v’ = 0. Therefore, we have a contradiction.

It follows that all a1, as, . . ., a;, are nonzero. Therefore, there exists an element
h € b such that oy (h) #0,a2(h) #0,...,am(h) #0, ie., p(h) is regular. O

5.2.7. COROLLARY. Let g be a Lie algebra. Let by be a Cartan subalgebra of g.
Then dimbh > rank g.

PROOF. Assume first that g is a Lie algebra over an algebraically closed field.
Then by 5.2.6, g(h,0) for some h € fj. Therefore, dim b > rank g.
The general case follows from 5.2.4. g

Later, in 5.5.3, we are going to see that the inequality in the above result is
actually an equality.

5.3. Cartan subalgebras in semisimple Lie algebras. In this section we
specialize the discussion to semisimple Lie algebras.

5.3.1. LEMMA. Let g be a semisimple Lie algebra and by a Cartan subalgebra of
g. Then b is abelian.

PROOF. Assume first that k is algebraically closed. By 5.2.6, hg € b be such
that b = g(hg,0). Let A # 0 and = € g(ho, A). Then, for h € b, we have

ad(z) ad(h)(g(ho, 1)) C ad(z)(g(ho, 1)) C g(ho, pu + ).

If we choose a basis of g corresponding to the decomposition g = @!_, g(ho, \i),
where Ag = 0, \1,..., A, are distinct eigenvalues of ad(hg), we see that the corre-
sponding block matrix of ad(x)ad(h) has zero blocks on the diagonal. Therefore,
B(z,h) = tr(ad(z) ad(h)) = 0. Hence, it follows that b is orthogonal to g(ho, A\;)
for any 1 <7 < p.

Since § is nilpotent, it is also solvable. By 3.2.1, it follows that § is orthogonal to
Dy. This implies that Db is orthogonal to g. Since the Killing form is nondegenerate
on g by 4.1.1, it follows that Dy = {0}, i.e., b is abelian.

The general case follows from 5.2.4. g

Since Cartan subalgebras are maximal nilpotent by 5.2.1, this implies the fol-
lowing result.



5. CARTAN SUBALGEBRAS 131

5.3.2. COROLLARY. Cartan subalgebras in a semisimple Lie algebra are maxi-
mal abelian Lie subalgebras.

5.3.3. LEMMA. Let g be a semisimple Lie algebra over an algebraically closed
field k. Let b be a Cartan subalgebra of g. Then all h € b are semisimple.

PROOF. By 5.3.2, b is an abelian Lie subalgebra. Let h € h. Let h = s+ n
be its Jordan decomposition. Clearly, adh|, = 0. Since ads and adn are the
semisimple and nilpotent part of ad h, they are polynomials without constant term
in ad h by 3.1.4. Therefore (ad s)(h) = (adn)(h) = {0}. Since b is maximal abelian,
we conclude that s,n € §.

By 5.2.6, b = g(ho,0) for some element hg € . As in the proof of 5.3.1, we see
that b is orthogonal to g(ho, ) for eigenvalues A # 0.

Let y € h. Then y and n commute. Hence ady and adn commute and
ad(y) ad(n) is a nilpotent linear transformation. This in turn implies that B(y,n) =
0. Therefore, n is orthogonal to h. This implies that n is orthogonal to g. Since
the Killing form is nondegenerate, n = 0. Therefore h = s is semisimple. U

By 5.2.6, this has the following immediate consequence.

5.3.4. COROLLARY. Let g be a semisimple Lie algebra over an algebraically
closed field k. Then all regular elements in g are semisimple.

PROOF. Let h be a regular element in g. By 5.1.6 and 5.1.7, g(h, 0) is a Cartan
subalgebra of g. By 5.3.3, h must be semisimple. O

5.4. Elementary automorphisms. Let V be a linear space over the field k.
Let T € L(V) be a nilpotent linear transformation. Then
1
€T = —'Tp
p=0 "

oo

is a well defined linear transformation on V.

5.4.1. LEMMA. Let T be a nilpotent linear transformation on V. Then the map
AT s a homomorphism of the additive group k into GL(V).

A—e

PROOF. First, if A\, u € k, we have

<1 < 1 o
o =S Lo =3 L (P
=0 P p=0j=0 " \J
== & 1 -
i D WTE
i=op= T =0y P )
— i i L/\p Jp+i — S i)\pr i l pp | — AT kT
it P s |
7=0 p=0 p=0 p=0
Therefore, the inverse of 7 is e=7 and e? € GL(V). Moreover, A — e’ is a group
homomorphism of the additive group k into GL(V'). O

5.4.2. LEMMA. Let g be a Lie algebra. Let D be a nilpotent derivation of g.
Then eP is an automorphism of g.
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PRrOOF. Clearly, by 5.4.1, e is an automorphism of the linear space g. On the
other hand, by induction one can easily establish that

DP([z,y]) = jz: <§’) [DP~iz, Diy).

Hence, we have

= == =)t
o0 o0 1
S L o = 35 e ) = e
j=0p=j P T I)J =op=0?
D

for any x,y € g. Therefore e” is an automorphism of g.

Let Aut(g) be the group of all automorphisms of g. Let = € g be such that ad
is nilpotent. Then €*d® is an automorphism of g. Denote by Aut.(g) the subgroup
of Aut(g) generated by the automorphisms of this form. The elements of Aut.(G)
are called elementary automorphisms.

5.4.3. LEMMA. The subgroup Aut.(g) is normal in Aut(g).

PrROOF. Let ¢ be an automorphism of g. Let x € g be such that adzx is
nilpotent. Then ad(¢(z)) = ¢ adz ¢~ is also nilpotent. Therefore,

oo oo

a T 1 1 - adT =
P =} adlp(@)” = 3 S (ada) ¢! = ettty

p=0 p: p=0

is an elementary automorphism of g. Hence ¢ Aut.(g)p~! C Aut.(g), i.e., Aut.(g)
is a normal subgroup of Aut(g). a

5.5. Conjugacy theorem. Let g be a Lie algebra over an algebraically closed
field k. Let b be a Cartan subalgebra in g. Then by 5.2.6, there exists an element
ho € b such that h = g(ho,0). First we want to prove a stronger form of this result.

5.5.1. LEMMA. Let g be a Lie algebra over an algebraically closed field k. Let
h be a Cartan subalgebra of g. Then there exists a reqular element h € g such that

To prove this, it is enough to show that hg is regular. Consider the decompo-

sition
p
g= @ g(h(), A
i=0

where A\g =0, A1,..., A, are mutually different eigenvalues of ad hg. By 5.1.1, ad z;
is nilpotent for any z; € g(ho,\;), 1 < i < p. Therefore, e*d%: are elementary
automorphisms of g. It follows that we can define a map
F: b xg(ho, M) x g(ho, A2) X -+ x g(ho, Ap) — @
by
F(h,xy,29,...,1,) = e*d@readrz  gadtrp
for x; € glho, \i), 1 <i<p,heb.
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This is clearly a polynomial map from b x g(ho, A1) X g(ho, A2) X -+ X g(ho, Ap)
into g.
Let T(,,0,0,...,0)(F') be the differential of this map at (ho,0,0,...,0).

5.5.2. LEMMA. The linear map T(pq.0.0,...,0)(F) : b x g(ho, A1) X g(ho, A2) X - -+ ¥
9(ho, A\p) — g is surjective.

PrOOF. We have
F(h,0,...,0) = h and F(ho,0,...,0,2;,0,...,0) = e*dih,
for any 1 < ¢ < p. Hence, we have
T(ho,o,o,...,o)(F)(hv 0,...,0)=nh

for any h € h. Therefore, the differential of T}, 0.0.....0) (F) is an isomorphism of
hx {0} x -+ x {0} onto h C g. Moreover, for 1 < i < p, we have

F(ho,0,...,0,2;,0,...,0) = €% (hg)
for any x; € g(ho, Ai). Therefore, we have
T(ho,O,O,...,O) (F)(O, . 70, i, 07 “eey 0) = ad xz(h()) = — ad(ho)l‘z

for any 1 <4 < p. It follows that the differential of T{},,0,0,..0)(F) is an isomor-
phism of {0} x -+ x {0} x g(ho,A;) X {0} x -+ x {0} onto g(ho,\;) C g for any
1 <4 < p. This clearly implies that the differential T{y, 0,0,...,0)(F) is surjective. [

At this point we need a polynomial analogue of 1.1.3.5 which is proved in 5.6.2
in the next section. By this result, F' is a dominant morphism. Hence, the image of
F is dense in g. In particular, the set Aut.(g)-h is dense in g. By 5.1.4, the set of all
regular elements is also a dense Zariski open set in g. Therefore, these two sets have
nonempty intersection. This implies that there is a h € h and ¢ € Aut.(g) such
that ¢(h) is regular. Since the set of all regular elements is invariant under Aut(g),
it follows that A is also regular. Therefore, g(h,0) is a Cartan subalgebra of g by
5.1.6 and 5.1.7. On the other hand, since § is nilpotent, ady h is a nilpotent linear
transformation. Hence, h C g(h,0). Since b is a maximal nilpotent Lie subalgebra
by 5.2.1, it follows that h = g(h,0). Therefore, dim h = rank g. This in turn implies
that hg is regular. This completes the proof of 5.5.1.

In addition we see that the following result holds.

5.5.3. PROPOSITION. The dimension of all Cartan subalgebras in g is equal to
rank g.

ProoF. This statement follows from 5.5.1 for Lie algebras over algebraically
closed fields.
In general case, it follows from 5.2.4. g

Finally, we have the following conjugacy result.

5.5.4. THEOREM. Let g be a Lie algebra over an algebraically closed field k.
The the group Aut.(g) acts transitively on the set of all Cartan subalgebras of g.

PROOF. Let h be a Cartan subalgebra in g. Then, by 5.5.1, h = g(ho,0) for
some regular element hg € h. Let

F:hxg(ho, A1) x g(ho, X2) x -+ x g(ho, A\p) — @
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be the map given by

F(h,z1,20,...,3,) = *dT1e2de2  cadepp
) ) ) y D

Then, as we remarked in the proof of 5.5.1, the polynomial map F is dominant.
By 77, the image of F' contains a dense Zariski open set in g. Therefore, the set
Aut.(g) - b contains a dense Zariski open set in g.

Let b and b’ be two Cartan subalgebras of g. Then, the sets Aut.(g) - h and
Aut.(g)-b’ contain dense Zariski open sets in g. Therefore, they contain a common
regular element h. This implies that there exists a regular element h € b, a regular
element 4’ € b’ and an elementary automorphism ¢ such that p(h) = h'. As we
remarked in the proof of 5.5.1, h = g(h,0) and b’ = g(h’,0). This in turn implies
that

e(h) = ¢(a(h,0)) = g(p(h),0) = g(h',0) =b".
([l

5.6. Dominant polynomial maps. Let V' and W be two linear spaces over
an algebraically closed field k. we denote by R(V) and R(W) the rings of polyno-
mials with coefficients in k on V, resp. W.

A map F : V — W is a polynomial map if Po F € R(V) for any P € R(W).
If F: V — W is a polynomial map, it induces a k-algebra homomorphism F* :
R(W) — R(V) given by F*(P) = Po F for any P € R(W).

We say that a polynomial map F : V. — W is dominant if F* : R(W) —
R(V) is injective.

5.6.1. LEMMA. A polynomial map F :V — W is dominant if and only if the
image of F is Zariski dense in W.

PROOF. Let U be a nonempty open set in W. Then there exists a polynomial
P on W such that Wp = {w € W | P(w) # 0} C U. If F is dominant, Po F # 0.
Therefore, Wp Nim F # (). Therefore, U Nim F' is nonempty, i.e., im F' is dense in
w.

If im F is dense in W, for any nonzero polynomial P on W we have WpNim F' #
(). Therefore, there exists v € V such that P(F(v)) # 0, i.e., F*(P) # 0. It follows
that F* is injective. O

Let v € V. We can consider the polynomial map G : h — F(v+ h) — F(v).
Clearly, G(0) = 0, so the constant term of G is equal to 0. Let m be the maximal
ideal in R(V) consisting of all polynomials vanishing at 0. Then, there exists a
unique linear map T,(F) : V. — W such that

F(v+h)— F(v) —T,(F)(h) e m* @ W.

This linear map is the differential of the polynomial map F'.
We need the following version of 1.1.3.5.

5.6.2. PROPOSITION. Let F' : V. — W be a polynomial map and v € V.
Assume that T,(F) : V — W is a surjective linear map for some v € V. Then F
is dominant.

PrOOF. By an affine change of coordinates, we can assume that v = 0 and
F(v) = 0. Therefore, we have F\(h) — To(F)(h) € m®> @ W.

Let P be a nonzero polynomial on W. Then we can write P = 220:0 P,, where
P, are homogeneous polynomials of degree q. Assume that P, = 0 for ¢ < ¢
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and Py, # 0. Then F*(P) is a polynomial on V and F*(P) = 2210 Qq, where
(0, are homogeneous polynomials of degree q. Clearly, @, = 0 for ¢ < ¢o and
Qqo = Py, o To(F'). Since Tp(F') is a surjective linear map and Py, # 0, we have
Qg # 0. This in turn implies that F*(P) # 0, and F* is injective. O

Finally, we need the following basic result about dominant polynomial maps.

5.6.3. THEOREM. Let F : V — W be a dominant polynomial map. Then the
image of F contains a nonempty Zariski open set in W.

The proof of this result is based on some basic results from commutative alge-
bra.

Since k is algebraically closed, by the Hilbert Nullstellensatz, the points in V'
and W are in bijection with the maximal ideals in rings of regular functions R(V')
and R(W), respectively. Let w € W, and N,, the maximal ideal of all polynomials
on W vanishing in w. Then F*(N,,) C R(V). If the ideal generated by F™*(N,)
is different from R(V'), there exists a maximal ideal M, in R(V') corresponding to
v € V, such that F*(N,,) C M,. Hence, for any Q € N,,, we have F*(Q) = Qo F €
M,,ie., Q(F(v)) = 0. This in turn implies that F'(v) = w. Conversely, if F'(v) = w
for some v € V and w € W, we have F*(N,,) C M,, and the ideal generated by
F*(N,) is different from R(V'). Therefore, the image of F' is characterized as the
set of all w € W such that the ideal generated by F*(N,,) is different from R(V).

Therefore, it is enough to find a nonzero polynomial @ € R(W) such that
Q(w) # 0 implies that F*(N,,) doesn’t generate R(V). In other words, for any
maximal ideal N in R(W) such that @ ¢ N, the ideal generated by F*(N) doesn’t
contain 1.

We are going to prove a slightly stronger statement: Let A = R(V) and B
a subalgebra of R(V'). Then, for any nonzero polynomial P € A, there exists a
nonzero polynomial R € B such that for any maximal ideal N in B not contianing
R, the ideal generated by N in A doesn’t contain P. The above statement follows
immediately if we put B = F*(R(W)), R=Qo F and P = 1.

Clearly, A is a finitely generated algebra over B. Assume that x1,zo, ..., 2, are
generators of A over B. Let By be the algebra generated over B by z;, 1 <i < k.
Then By = B and B, = A. We are going to show that there exists a family
of nonzero polynomials R, = P, R,_1,...,Ri, Ry such that any maximal ideal in
B;_1 not containing R;_1 generates an ideal in B; which doesn’t contain R; for any
1 <i<p. Then R = Ry satisfies the above statement.

To prove this statement, put C = B;_1 and y = x;. Then D = B; is the algebra
generated by y over C. Consider the natural algebra homomorphism of C[Y] into
D which maps Y into y.

From the above discussion, to prove 5.6.3 it is enough to prove the following
result.

5.6.4. LEMMA. Let S be a nonzero polynomial in D. Then there exist a nonzero
polynomial T € C such that for any mazimal ideal M in C' which doesn’t contain
T, the ideal in D generated by M doesn’t contain S.

PRrROOF. There are two possibilities: either the homomorphism of C[Y] into D
is an isomorphism, or it has a nontrivial kernel.

Assume first that this homomorphism is an isomorphism. Then S € D is a
nonzero polynomial in y. Then § = Zj ajy’ where a; € C. Let jo be such that
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T =aj, # 0. If N is a maximal ideal in C it generates an ideal in D which consists
of all polynomials in y with coefficients in N. Therefore, if N doesn’t contain T, S
is not in this ideal.

Assume now that the homomorphism from C[Y] into D has nonzero kernel.
Let U be a nonzero polynomial in C[Y] which is in the kernel of the natural homo-
morphism of C[Y] into D. We can assume that the degree of U is minimal possible.
Let U =>"" ,b;Y and b, # 0. O



CHAPTER 5

Structure of semisimple Lie algebras

1. Root systems

1.1. Reflections. Let V be a finite dimensional linear space over a field k of
characteristic 0. Let a € V. A linear automorphism s € £(V) is a reflection with
respect to « if:

(i) s(a) = —a;
(i) H={h €V | s(h) = h} satisfies dim H = dimV — 1.

Clearly, s> = I and s is completely determined by o and H. The linear subspace
H is called the reflection hyperplane of s.
Let V* be the linear dual of V. As we remarked in 4.4.5, we have a linear
isomorphism ¢ : V* ® V. — L(V') defined by
o(f @w)(v) = f(v)w for f € V* v,we V.

Consider «, 8 € V and f,g € V*. Then we have

(I +e(feoa) +e(geB)(v) =T +e(f ®@a))(v+g(v)d)
=v+ f(v)at+g)B+ f(B)gv)a=I+e(f@a)+p(ge )+ f(B)plgea))(v)

for any v € V, i.e.,
T+o(fea)I+egep))=I1+¢(f®a)+elg®p)+ f(B)elg®a).

1.1.1. LEMMA. Let s € L(V). Then the following assertions are equivalent:

(i) s is a reflection with respect to a;
(ii) s =1—p(a* ®@a) for some a* € V* with a*(a) = 2;
(iii) s> =1 and im(I —s) =ka.

If these conditions are satisfied, o™ is uniquely determined by s.

PRrROOF. (i)=-(ii) Let s be a reflection with respect to «, and H its reflection
hyperplane. Then there exists a unique o* € V* such that H = ker o* and o*(a) =
2. In addition, we have

(I -—pla*®a)(a)=a—-a"(a)a=a—2a=—a.
and
(I—pla*®@a))(h)=h—a"(h)a=h

for any h € H. Therefore, we have s = I — p(a* ® a).
(ii)=>(iii) We have I —s = p(a* ® ). Therefore, im(I — s) = k a since a* # 0.
In addition,
s =1-2p(c*®a)+a*(a)pl@* ®a)=1.

137
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(iii)=-(i) For any v € V, we have (I — s)(v) = f(v)«a for some nonzero f € V*.
Therefore, we have s(v) = (I —¢(f ® a))(v). It follows that
I=s"=I-p(foa)’=1-20(f®a)+fla)o(f®a) =T+ (f(a)-2)e(f®a).

Since f is nonzero, ¢(f ® o) # 0, and it follows that f(o) = 2. Let H = ker f.
Then dim H = dim V — 1 and s(h) = h for any h € H. On the other hand, we have

s(@) = -p(f®a))(a) =a-fl@)a=-a

and s is a reflection with respect to «. O

1.1.2. LEMMA. Let « be a nonzero vector in V. Let R be a finite set of vectors
in V which spans V. Then there exists at most one reflection s with respect to o
such that s(R) C R.

PROOF. Let s and s’ be two reflections satisfying the conditions of the lemma.
Let t = ss’. Then ¢ is a linear automorphism of V' which maps R into itself. Since
R is finite, t : R — R is a bijection. Hence, ¢t induces a permutation of R. Again,
since R is finite, " : R — R is the identity map for sufficiently large n € Z..
Since R spans V, this implies that t"™ = I.

Assume that

s=I—-¢(fea)and s =T — p(f' @)
with f(a) = f'(a) = 2. Then we have

t=ss=I-p(fea)=p(f'®@a)+ fla)p(f ®a)=T-o((f - [f)©a).
If we put ¢ = f' — f, we see that t = I + ¢(g ® ). Moreover, we have g(a) =

f(@) = fla) =0.
We claim that t? = I + pp(g ® «) for any p € N. Clearly, this is true for p = 1.
Assume that it holds for p = m. Then, by the induction assumption, we have

" = (I +mep(g @ a))(I + ¢(g ® @)
=T+me(g®a)+olg®a)+mg(@)p(g@a) =1+ (m+1p(g® a).
This proves the claim.
It follows that
I=t"=T+np(g®a)

for sufficiently large n. This in turn implies that p(g®«) = 0 and g = 0. Therefore,
t=1,and s = s O

1.2. Root systems. Let V' be a finite dimensional linear space over a field k
of characteristic 0. A finite subset R of V is a root system in V if:
(i) 0is not in R;
(ii) R spans V;
(iii) for any o € R there exists a reflection s, with respect to « such that
(iv) for arbitrary «, 3 € R we have

sa(B) = B+ na

where n € Z.
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The elements of R are called roots of V' with respect to R.

Clearly, by 1.1.2, the reflection s, is unique. We call it the reflection with
respect to root .

The dimension of V is called the rank of R and denoted by rank R.

For any o € R we have

So =1 —p(a* ® a)

for a unique a* € V*. The vector a* is called the dual root of .
The property (iv) is equivalent with

(iv)’ for any a, 8 € R we have a*(3) € Z.

We define n(8, a) = o*(8).
Clearly, @ € R implies that —a = s,(a) € R.

1.2.1. LEMMA. Let R be a root system in'V and o and 8 two proportional roots.
Then 8 = to where t € {1, 41, £2}.

PrROOF. Let B be a root proportional to a. Then g = ta for some ¢t € k*.
Moreover, a* () = ta*(«) = 2t € Z. Therefore, t € %Z. By replacing 8 with —f
we can assume that ¢ > 0.

Let v = sa, s € Q, be a root such that s is maximal possible. By the above
discussion, wee have s € 1N and s > 1. Then, 7*(a) = 19*(7) = 2 is an integer.
Therefore, s is eiter 1 or 2. It follows that v = « or v = 2.

In the first case, t < 1 and t = {%, 1}. In the second, we can replace a with

and conclude that 8 = %’y =qor =7v=2a. O

Hence, for any root «, the set of all roots proportional to « is either {a, —a},
{a, %a, —%a, —a} or {2a, a, —a, —2a}.

A root « is indivisible if %oz ¢ R. A root system R is reduced if all its roots are
indivisible.

Let « be an indivisible root such that 2o € R. Then s, is a reflection which
maps 2« into —2«. By 1.1.2, we see that s, = sa,. Therefore,

Sa = S20 =1 —o((20)" ®2a) =1 — p(2(20)" @ )

and (20)* = a*.

An automorphism of R is a linear automorphism ¢ of V' such that ¢(R) = R.
All automorphisms of R form a subgroup of GL(V') which we denote by Aut(R).
For a € R, s, is an automorphism of R. The subgroup of Aut(R) generated by s,
a € R, is called the Weyl group of R and denoted by W (R).

Let t € Aut(R). Then ts, ¢! is in Aut(R), i.e., (tsot~1)(R) = R. Moreover,

(tsat V) (ta) = —ta

and (t s, t~1)(th) = th for any h € H. Hence, t s, t~! fixes the hyperplane tH. It
follows that t s, t~! is a reflection with respect to root to. By 1.1.2, we have

tSq t=1 = Sta-

1.2.2. LEMMA. Let « be a root in R and t € Aut(R). Then

(i) tsat™! = sta;
(ii) the dual root (ta)* of ta is equal to (t~1)*a*.
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Proor. By (i), we have

$1a(V) = (tsa t () = t{t7 v — a* (1))
=v—ao*(t7)ta = (I -t ) a®ta))(v)
for any v € V. (]

1.2.3. PROPOSITION. (i) Aut(R) and W(R) are finite groups.
(ii) W(R) is a normal subgroup of Aut(R).

PROOF. Any element of Aut(R) induces a permutation of R. Moreover, since
R spans V, this map is an injective homomorphism of Aut(R) into the group of
permutations of R. Therefore, Aut(R) is finite.

By 1.2.2, for any o € R and t € Aut(R) we have t s, ¢t~ = s4,. Therefore, the
conjugation by ¢ maps the generators of W(R) into generators of W(R). Hence,
tW(R)t~! Cc W(R) for any t € Aut(R) and W (R) is a normal subgroup of Aut(R).

([l

We define on V an bilinear form
(o) = a*(v)a* (v)).
a€ER
This bilinear form is Aut(R)-invariant. In fact, if ¢ € Aut(R), by 1.2.2, we have

(to|tv”) = Z a*(tv)a™ (tv') = Z(t*oz*)(v)(t*oz*)(v’)

aER aER

= Sy @) ) W) = Y 0t w)a () = (o)
aER aER
We need now a simple result in the representation theory of finite groups.

1.2.4. THEOREM. Let G be a finite group and 7 its representation on a finite-
dimensional linear space V' over the field k. Let U be an invariant subspace for .
Then there is a direct complement U’ of U which is also invariant under .

PrROOF. Let P be a projection of V onto U. Put
CardG Z ”

Clearly, for any v € V, ﬂ(g_l)Pﬂ(g)v € U for any ¢ € G. Hence, Qu € U.
Moreover, we have

m(g~Pr(g)u=m(g” " )m(g)u =u
for any u € U. Therefore, it follows that

1
Card G Z )Pr(gu =u

for any u € U, and @ is a projection onto U. Clearly, we get

1 _
Qr(9) GG 2 Tk Pa(h) = ()

YpPr(hg) =

Card G

by replacing h with hg’l, for any g € G. Therefore, ker@ and U = im @ are
invariant under 7. Hence, the assertion follows for U’ = ker ). O
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1.2.5. LEMMA. The invariant bilinear form (v,v") — (v[v') on V is nonde-
generate.

PROOF. Let U be the orthogonal to V' with respect to this bilinear form. Then
U is invariant under the action of Aut(R). Since Aut(R) is a finite group by 1.2.3,
by 1.2.4 there exist an Aut(R)-invariant direct complement U’ of U.

Let « € R. Then U and U’ are invariant subspaces for s,. Therefore, the
one-dimensional eigenspace of s, for eigenvalue —1 must be either in U or in U’.
This implies that either a € U or @ € U’. On the other hand, we have

(alo) =Y p* (@) =4+ Y B(@)?>0
BER BeR—{a}
since the terms in the last sum are nonnegative integers. Hence, o ¢ U. It follows
that o« € U’.
Since R spans V, U’ = V and U = {0}. Therefore, the bilinear form is
nondegenerate. U

Let o € R. Let H = kero®. Then for u € H we have
(alu) = (alsqu) = (sac|u) = —(alu),

i.e., H is orthogonal to the line spanned by root . Since the form is nondegenerate,
H is the orthogonal complement to «. In particular, as we already have seen in
the above proof, we have (aja) # 0. It follows that H = {v € V | (a|v) = 0}.
Therefore, the linear map given by

s(v) =v—

for v € V, is the identity on H and s(a) = —a. Therefore, so = s.

The nondegenerate bulinear form (v, v") — (v|v') induces an isomorphism of
V with V*. Under this isomorphism the vector ﬁa corresponds to a* for any
root o € R.

2(alv)
(ale)

1.2.6. PROPOSITION. (i) The set R* of all dual roots of R is a root system
n V*.
(ii) For any root o € R, we have sqo+ = s},.
(iii) The map t — (t=1)* is a group isomorphism of Aut(R) onto Aut(R*).
This isomorphism maps W(R) onto W (R*).
(iv) For any « € R, the dual root of a* is equal to .

PROOF. Since under the above natural isomorphism of V' and V* the vector
ﬁa corresponds to the dual root a*, we see that R* spans V*.
Let o € R. Then

(saf)(v) = f(sav) = f(v =" (v)a) = f(v) —a™(v)f(a) = (f = fl@)a")(v)
forany v € V and f € V*. Let ¢ : V®V* — L(V*) be the natural linear
isomorphism given by (v ® f)(g9) = g(v)f for any v € V and f,g € V*. Then
st =T —v¢(a®a*). By 1.1.1, it follows that s¥ is a reflection with respect to a*.

On the other hand, for any ¢ € Aut(R) and root o € R, by 1.2.2, we have
t*a* = (t7'a)*. Therefore, t*(R*) = R*. In particular, s (R*) = R* for any
a € R. By 1.1.2, so« = s} is the unique reflection with respect to a* which
permutes the elements of R*.
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Finally,
sa+(07) = (I =Y(a®a”))(f") = 6" — 57 (a)a”.

Since 8* (@) € Z for any o*, 3* € R*, it follows that R* is a root system in V*.
This in turn implies that the dual root of a* is equal to « for any a* € R*.
Moreover, we see that for any ¢ € Aut(R), t* € Aut(R*). Therefore, t —

(t71)* is a group homomorphism. Since R** = R, it must be an isomorphism. In

addition, this isomorphism maps s, into s, for any root @ € R, hence it must map

W(R) onto W(R*). O

We say that R* is the dual root system of R.

1.2.7. LEMMA. Let R be a root system and R* the dual root system. The
following conditions are equivalent:

(i) The root system R is reduced.
(ii) The root system R* is reduced.

PROOF. As we remarked before, if o, 2a € R, we have a*, %a* € R*. Therefore,
R* is not reduced. (I

Let K be a field extension of k. Then Vg = K ®; V is a K-linear space, and
we have the obvious inclusion map V' — Vi mapping v € V into 1 ® v. This
identifies the root system R of V' with a subset in V. Clearly, R spans Vi. Also,
the reflections s, extend by linearity to V. So, R defines a root system in V. We
say that this root system is obtained by extension of scalars from the original one.

Let Vi be the linear subspace of V' spanned by the roots in R over the field of
rational numbers Q.

1.2.8. LEMMA.
dimQ VQ = dimk V.

PrOOF. Let S be a subset of R. If S is linearly independent over k, it is
obviously linearly independent over Q. We claim that the converse also holds. Let
S be linearly independent over Q. Assume that S is linearly dependent over k.
Then we would have a nozero element (to;a € S) of k¥ such that > cgtac = 0.
This would imply that

D taf(@) =0

a€cs
for all § € R. Hence, the rank of the matrix (8*(a);a € S, € R) is < Card S.
Since the matrix (6*(a); « € S, 8 € R) has integral coefficients, this clearly implies
that the above system has a nonzero solution (g.;« € S) with g, € Q. Hence, we

have

Z g () = 0.

aesS
for all 3* € R*. Since R* is a root system in V*, this implies that ) ¢ gac =0,
contradicting our assumption. O

Therefore, the k-linear map k ®g Vo — V defined by t ® v — tv is an
isomorphism of k-linear spaces. By the construction, R is in V. For any a € R,
the reflection s, permutes the elements of R. Therefore, s, maps Vg into itself.
Let a* be the dual root of a. Then o*(3) € Z for any root 8 € R, and o takes
rational values on Vg. Therefore, its restriction to Vg can be viewed as a linear
form on V. Moreover, sqo(v) = v — o*(v)a for v € Vo, i.e., the restriction of s,
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to Vg is a reflection by 1.1.1. It follows that R can be viewed as a root system in
V. Therefore, the root system R in V' can be viewed as obtained by extension of
scalars from the root system R in Vg.

This reduces the study of root systems over arbitrary field k to root systems
over Q. On the other hand, we can consider the field extension from Q to the field
of real numbers R. Clearly, the study of root systems in linear spaces over Q is
equivalent to the study of root systems in linear spaces over R. The latter can be
studied by more geometric methods.

1.3. Strings. Let R be a root system in V. Following the discussion at the
end of preceding section, we can assume that V is a real linear space.

1.3.1. LEMMA. Let R be a root system in V. Then
(vjw) = Y a*(v)a*(w)
acR
is an Aut(R)-invariant inner product on V.

PROOF. The form (v, w) — (v|w) is bilinear and symmetric. Moreover, we

have
(v]o) =) a*(v)* > 0.
a€ER
In addition, (v|v) = 0 implies that o*(v) = 0 for all «* € R*. Since roots in R*
span V*, this in turn implies that v = 0. Since elements of Aut(R) permute roots
in R, their adjoints permute dual roots in R*. This immediately implies that the
above form is Aut(R)-invariant. O

In the following we assume that V is equipped with this inner product.With
respect to it, Aut(R) C O(V). In particular, s, are orthogonal reflections. Hence,
for any o € R, the reflection hyperplane H is orthogonal to a, i.e., H = {v € V|
(alv) = 0}. This implies that
2ol

(alo)
for any v € V. The inner product on V defines a natural isomorphism of V with
V*. Under this isomorphism, the dual root a* corresponds to ﬁa for any root
o € R.
For any two roots a, 3 in R we put

n(a, 3) = f*(a) =2

Clearly, we have the following result.

Sa(v) =

(alF)
(818)

1.3.2. LEMMA. The following conditions are equivalent:
(i) The roots a and [ are orthogonal;

(ii) n(a, B) = 0;
(iii) n(B,a) = 0.

Hence, if a and 3 are not orthogonal,

5 2
0 # n(a, B)n(B, o) = 4% =4cos*(a, B) € Z,

where («, ) is the angle between roots a and . This implies the following result.
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1.3.3. LEMMA. n(«, B)n(8,a) € {0,1,2,3,4}.
In addition, is « and @ are not orthogonal, we have

n(g,a) _ 182
n(a,B) el
We can assume that « is the shorter root, i.e., ||| < [|3]|. Then, we must have
In(a, B)| < [n(B, a)|.
Assume first that o and § are neither orthogonal nor proportional. Therefore,

0 < cos?(a, 8) < 1. Tt follows that n(a, 3)n(B,a) € {1,2,3}. This leads to the
following table.

n(a, 8) | n(B, ) | (a,B)
1 L3 1BIF= el
-1 =1 F ] Bl =l
1 21 & |18l = V2|l
-1 =2 I8l =v2llal
1 31§ |18l = V3]l
-1 =3 T |IBl=v3llal

If o and 3 are proportional, cos?(a, 8) = 1 and n(a, 3) n(3, ) = 4. Therefore,
we have the following table.

n(e, 8) | n(B, @)
2 2| B=«
-2 2| f=—«
1 4| B=2a«
-1 —4 | f=-2a

The following result follows immediately from the above tables.

1.3.4. LEMMA. Let « and 3 be two non-proportional roots in R such that ||| <
I8Il. Then, n(co, B) € {—1,0,1}.
1.3.5. THEOREM. Let o, 8 € R.
(i) If (o, B) >0 and o # 3, then a — 3 is a root.
(ii) If n(a, B) < 0 and oo # —p3, then o+ 3 is a root.

PROOF. By changing (3 into —( we see that (i) and (ii) are equivalent. Hence,

it is enough to prove (i). Let n(a, 3) > 0 and « # 3. Then, we see from the tables
that either n(a, 8) =1 or n(8,a) = 1.

In the first case, we have
sgla) =a—n(a,f)f=a—pF €R.

In the second case, we have

sa(f) =B —n(B,a)a=F—-a€cR

Thsi result has the following obvious reinterpretation.

1.3.6. COROLLARY. Let o, 3 € R.
(1) If (a|B) > 0 and o # B, then oo — [ is a T00t.
(i) If (¢|B) <0 and a # —0, then a + § is a root.
(ili) If a — B,a + B ¢ RU{0}, then « is orthogonal to (3.
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If ,0 € Rand a — B,a+ 3 ¢ RU{0} we say that a and 3 are strongly
orthogonal. By the above corollary, strongly orthogonal roots are orthogonal.
1.3.7. PROPOSITION. Let a, B be two roots not proportional to each other. Then:
(i) The set of integers I = {j € Z | B+ ja € R} is an interval [—q,p] in Z
which contains 0.
(ii) Let S={B+ja|jeI}. Then s4(S) =S and so(0+ pa) = — qa.
(i) p—q=—n(B,q).
ProoF. Clearly 0 € I. Let p, resp. —q, be the largest, resp. smallest, element
in I. Assume that the assertion doesn’t hold. Then there would exist r, s € [—q, p],
r,s € I such that s >r+1landr+k ¢ Ifor1 <k <s—r—1. Since 5+ ra would
be a root and 8+ (r 4+ 1)a would not be a root, we would have («, 8 + ra) > 0 by
1.3.6. Also, 8 + sa would be a root and 3 + (s — 1)a would not be a root, hence
we would have (a|8 + sa) < 0 by 1.3.6. On the other hand, we would have

0> (o] + sa) = (a|B) + s(a|a) > (o] 8) + r(a]a) = (a8 +ra) >0

what is clearly impossible. Therefore, we have a contradiction and (i) holds.
Clearly,

sa(B+ja) =0+ ja—a*(fla—2ja=0—(j+n(Ba)a
for any j € Z. Therefore, s,(S) = S. The function j — j—n(f, ) is a decreasing

bijection of I onto I. Therefore, —p — n(8,a) = —q and p — ¢ = —n(B, ). This
proves (iii). In addition, we have

sa(B+pa) =0 —(p+n(B,a)a=05-qa
and (ii) holds. O

The set S is called the a-string determined by 3. The root 8 — qa is the start
and 0 + pa is the end of the a-string S. The integer p + g is the length of the
a-string S and denoted by £(.5).

2. Root system of a semisimple Lie algebra

2.1. Roots. Let g be a semisimple Lie algebra over an algebraically closed
field k. Let h be a Cartan subalgebra of g. By 4.5.3.1 and 4.5.3.3, b is a maximal
abelian Lie subalgebra consisting of semisimple elements.

For any linear form a € h*, we put

9o ={x €g]|[h,z] =alh)z,h € bh}.

Clearly, g, is a linear subspace of g. Moreover, we have the following result.

2.1.1. LEMMA. Let o, € b*. Then

(80, 85] C Ga+s-
PrOOF. Let x € g and y € gg. Then, for any H € h we have
(ad H)([z,y]) = [(ad H)z,y] + [z, (ad H)y]
= o(H)[z,y] + B(H)[z, y] = (a + B)(H)[z,y].

Hence, we have [x,y] € ga+35- O

2.1.2. LEMMA. go = b.
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PRrOOF. By 4.5.5.1, there exists a regular element hg € h such that b = g(0, ho).
Since hyg is semisimple by 4.5.3.4, we see that

h={zegllhoz] =0}

Therefore, go C h. On the other hand, since b is abelian, for any H, H' € b, we
have [H,H'] = 0 and ad(H)(H') = 0. Hence H' € go. It follows that h =go. O

If & # 0 and g, # {0}, « is a root of g with respect to h. We denote by R the
set of all roots of g with respect to b.

g:b®@ga-

PRrROOF. O

2.1.3. LEMMA.

In particular, the set R is finite.

2.1.4. LEMMA. (i) Let o, € RU{0} such that a4+ 3 # 0. Then g, is
orthogonal to gg with respect to the Killing form.
The restriction of the Killing form to go X g—o induces a nondegen-
erate pairing.
The restriction of the Killing form to h X b is nondegenerate.
(ii) Let x € g, Yy € g—o and h € h. Then [z,y] € b and

B(h, [z,y]) = a(h) B(,y).
PROOF. (i) Let = € g and y € gg. Then, for any v € RU {0}, we have

(ad(z) ad(y))(gy) C y+ats-
It follows that the block diagonal matrix of ad(x) ad(y) with respect to the decom-
position g = h & @761% g+ has zero blocks on the diagonal. Therefore, B(z,y) =
tr(ad(z) ad(y)) = 0.

This implies that gg is orthogonal to g, for all 3 # —a. Since the Killing
form is nondegenerate on g by 4.4.1.1, it follows that the pairing of g, with g_, is
nonedgenerate for all & € RU {0}.

(ii) Clearly, we have [z,y] € [ga,8-a] C g0 = b. Therefore, it follows that

B(h, [z,y]) = =B([z, h],y) = B([h, x],y) = a(h)B(z,y).

2.1.5. PROPOSITION. Let o € R. Then:
(i) dimga = 1.

(ii) The space ho = [gas8—a] C b is one-dimensional. There exists a unique
H, € b, such that o(H,) = 2.

(iii) The subspace

Sa = ba@ga@g—a
is a Lie subalgebra of g.

(iv) Let Xy € ga, Xo # 0. Then there exists a unique element X_, € g_,
such that [Xo, X_o] = Hy. Let ¢ :5l(2,k) — g be the linear map defined
by

ple) = Xa, ¢(f)=X_a, ¢(h)=Ha.
Then ¢ is a Lie algebra isomorphism of sI(2,k) onto s,.
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PROOF. Since the restriction of the Killing form B to h x b is nondegenerate
by 2.1.4, there exists h, € § such that

B(ho,H) =a(H) for all H € 5.
Let z € g, and y € g_,. Then, [z,y] € h and
B(H,[z,y]) = a(H)B(x,y) = B(H, B(x,y)ha)

by 2.1.4.(ii). Therefore, by nondegeneracy of the Killing form on b x b, it follows
that
[z,y] = B(z,y)ha-

Hence, b, is at most one-dimensional. On the other hand, since the Killing form
induces a nondegenerate pairing of g, with g_, by 2.1.4.(i), we conclude that for any
Z € ga, x # 0, there exists y € g_,, such that B(x,y) # 0. This in turn implies that
[z,y] # 0. Therefore, [gq, g—q] is different from zero, and [gq, §—a] = kha = ba-

Clearly, we can choose z and y so that B(z,y) = 1. Then [z, y] = h,. Moreover,
we have

[has 2] = a(ha)z,  [ha,y] = —a(ha)y.

Then, the subspace n spanned by x, y and h, is a Lie subalgebra of g. Assume
that a(hy,) = 0. Then Cl(n) = kh, and C?(n) = 0. Hence, n is nilpotent. In
particular, it is solvable and by 4.1.6.3, there exists a basis in which ad z, z € n, are
represented by upper triangular matrices. In addition, in this basis, all matrices of
ad z, z € C!(n), are nilpotent. In particular ad h, is nilpotent. This contradict the
fact that h,, is semisimple. Therefore, a(hq) # 0.

It follows that we can find H, € b, such that a(H,) = 2. Moreover, it is clear
that for any X, € go, Xo # 0, one can find X_, € g_, such that

[Xo, X_o] = Hq.
Then we have
[Ha, Xo] = a(Ho)Xa = 2X0  [Ha, X—o] = —a(Ha)X—a = —2X_q.
Therefore, the linear map ¢ : sl(2, k) — g defined by

@(e) = Xa, Qp(f) =X_q, @(h) = Hq
is an isomorphism of s[(2, k) onto the Lie subalgebra s, spanned by X,, X_, and
H,.

Assume that dimg, > 1. Let y € g_o, y # 0. Then 2 — B(x,y) is a linear
form on g, and there exists X, € ga, Xo # 0, such that B(X,,y) = 0. We pick
an X_, € g_, which satisfies the above conditions. then, the composition of ¢
with the adjoint representation defines a representation p of sl(2, k) on g. Also, by
the preceding discussion, we have

p(e)y = [Xa,y] = B(Xa,y)ha =0
and
p(h)y = [Ha,y] = —20(Ha) = —2y.
It follows that y is a primitive vector of weight —2 for p. Since p is obviously

finite-dimensional, this contradicts 4.4.7.2. Hence, dimg, = 1.
Since dim g_,, = 1, the vector X_, such that [X,, X_o] = Hy is unique. O

This result has the following consequences.
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2.1.6. COROLLARY.
dim g = rank g + Card(R).
2.1.7. COROLLARY. For any H,H' € b, we have
B(H,H') =Y o(H)a(H').
a€R
PRrROOF. Clearly, g, @ € RU {0}, are invariant for ad(H). Moreover, since h

is abelian, ad(H) induces 0 on . Moreover, it induces multiplication by a(H) on
ga, @ € R. Since dim g, = 1, the assertion follows. O

2.1.8. COROLLARY. The set R spans bh*.

PrOOF. Let H € h be such that a(H) = 0 for all &« € R. Then we have
ad H = 0 and, by 4.1.3.2, this implies that H = 0. This clearly implies that R
spans h*. [l

2.1.9. LEMMA. Let o, 8 € R. Then

(i) B(Ha) € Z;
(i) B(Ha.,H;s) € Z.

PROOF. Let ¢ : sl(2,k) — g be the Lie algebra morphism satisfying

ple) = Xa, @(f) =X 0, @)= Ha,

which constructed in the proof of 2.1.5. Since the composition p of ¢ with the
adjoint representation is a representation of sl(2,k), the eigenvalues of p(h) are
integers by 4.4.7.4. Therefore, 3(H,) € Z for all § € R. This proves (i).

(ii) follows from 2.1.7. O

2.1.10. THEOREM. Let g be a semisimple Lie algebra over k and § a Cartan
subalgebra in g. Let R be the set of all roots of (g,h). Then:

(i) R is a reduced root system in b*;
(ii) the dual root system R* of R is equal to {Hy; o0 € R}.

ProOOF. By 2.1.8 we know that R spans h*. Also, by 2.1.9, we know that
B(H,) are integers for any «, 8 € R.

Fix o, f € R. We claim that 5 — (H, ) is also a root. Let y € gg, y # 0, and
p= B(H,). Let ¢ :sl(2,k) — g be the Lie algebra morphism satisfying

(,0(6) :XOU Qo(f) :X—OM (p(h) :HOM
which constructed in the proof of 2.1.5. Since The composition p of ¢ with the
adjoint representation is a representation of s((2, k), and
p(h)y = [Ha,y] = B(Ha)y = py.

By 4.4.7.4, we have z = p(f)Py # 0 if p > 0; and z = p(e) Py # 0 if p < 0. In both
cases, z € gg—pq. Hence, f —pa € R.

Since a(Hy) = 2, by 1.1.1, the linear map so = I — p(Hy ® @) is a reflection
with respect to a. Also, by the above discussion,

sa(B8) =0 —pB(Hy)a € R.

It follows that s, (R) C R. Hence, R is a root system. Also, H, is the dual root of
« for any a € R.
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It remains to prove that R is reduced. Assume that o € R is such that 2a € R.
Let y € g2q, y # 0. If we consider the above representation p of s[(2,k) on g, we
see that

p(h)y = [Ha,y] = 20(Ho)y = 4y.
Also,
p(e)y = [Xa,y] C [ga,92a] C g3a =0,

since R is a root system. It follows that y is a primitive vector for p. On the other
hand, we have

4y = p(h)y = p([e, f)y = ple)p(f)y = [Xa, [X—a,y]l.
Since [X_q,y] is in [g—qa,824) C ga, it must be proportional to X,. Hence, the
above commutator is zero, i.e., 4y = 0 and y = 0 contradicting our assumption. It
follows that R is reduced. O

Let @« € R. Then g, and g_, are one-dimensional. Moreover, we can find
Xa € go and X_, € g_,, such that [X,, X_,] = Hy. As we already remarked,
the subspace 54 = ga ® g—a D [ga, 9—a) is a Lie subalgebra of g and the linear
map ¢ : sl(2,k) — 54 given by @(h) = H,, ¢(e) = X, and ¢(f) = X_,, is an
isomorphism of Lie algebras.

2.1.11. PROPOSITION. (i) Let o, € R be two non-proportional roots.
Let S be the a-string determined by B and

gs = @ 9.
YES

Then gg is an irreducible s,-submodule.
(ii) If o, 8 € R are such that o+ 3 € R, then

(9o, 98] = Batp-

PROOF. (i) Clearly, by 2.1.5, dimgg = ¢(S) + 1.
Let p be the composition of ¢ with the adjoint representation. Let v € S.
Then, we have

p(h)(gy) C [h,84] = 8+, p(€)(g) C [8a: 84] = Gary, P(f)(8) C [8-a:84] = g—aty-
Therefore, gg is invariant for p.

By 1.3.7, there exist p,q € Z such that I = {j € Z | 8+ ja € S} = [—q,p].
This implies that £(S) = P+¢q and dimgs = p+ ¢+ 1. For any nonzero y € gg+pa,
we have

p(e)y = [Xouy] € 98+(p+1)a = {0}7
since B+ (p+ 1)a ¢ R. Also, by 1.3.7, we have

p(h)y = [Ha,y] = (B + pa)(Ha)y = (o (8) + 2p)y = (n(B,a) + 2p)y = (p + @)y
Hence, y is a primitive vector of weight p + ¢.
Let
{0}=VocViC...Vo1 C Vi =gs

be a maximal flag of invariant subspaces for the representation p. Then, there exists
1 < p < n,suchthat y € V,, and y ¢ V,_1. Hence, the projection g of y into the
quotient module V,,/V,_; is a primitive vector of weight p + ¢. Since this module
is irreducible, by 4.4.7.3, its dimension is equal to p + ¢ + 1. Hence, it is equal to
the dimension of gg. It follows that p = n =1 and gg is irreducible.
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(ii) Assume that that o, 5 € R and a+ 3 € R. Since R is reduced, o and 3 are
not proportional. Moreover, if S is the a-string determined by 3, § — qa its start
and 3 + pa its end, we see that p > 1. Let v = 84 joa € S. Then for any y € g,,
we have

p(h)y = [Ha,y] = v(Ha)y = (B(Ha) + 2j)y = (n(B, @) + 25)y = (¢ — p + 25)y.

Since gg is irredicuble by (i), by 4.4.7.3, the only primitive vectors in it have weight
p+gq, i.e., correspond to j = p. Therefore, gg doesn’t contain any primitive vectors
and [ga,83] = p(e)(gg) # 0. On the other hand, [g.,gg] is contained in the one-
dimensional subspace gq+g. Therefore, we have [ga, 93] = ga+s- O

3. Compact forms

3.1. Real forms. In this section we specalize the results of 4.2 to the case of
the field R of real numbers imbedded into the filed C of complex numbers.

Let g be a complex Lie algebra. A R-structure on g is called a real form of g.
If go is a real Lie algebra, the Lie algebra g = C ®g gg is called the complexification
of gg. Clearly, gg is a real form of g.

The Galois group Autg(C) of all R-linear automorphisms of C consists of two
elements: the identity and the complex conjugation z — z. If g is a complex Lie
algebra and go its real form, the Galois group Autg(C) acts naturally on g and g is
the set of all fixed points of this action. We denote by o the action of the complex
conjugation in Autg(C) on g. Clearly, o satisfies the following properties:

(i) o is R-linear map;
(ii) o(A\z) = Ao(z) for any A € C and z € g;

(iii) o([z,y]) = [o(x),o(y)] for any z,y € g;

(iv) o2 = 1,.

Such map is called a conjugation of g.

On the other hand, if ¢ is a conjugation of g, then the set of its fixed points is a
R-linear subspace gg of g. By (ii), go is a real Lie subalgebra of go. Let € g. Then
z1 = 3(z+0(x)) and 22 = S (x —o(x)) are in go, and @ = 1 +iza. Therefore, the
complex linear map C ®g go — ¢ is surjective. On the other hand, if z = 2’ + iz”
for 2/,2" € go, we have z + o(z) = 22’ = 221 and = — o(x) = 2ix" = 2ix,, ie.,
2’ = z1 and " = xo. Hence, it follows that the map C®g go — g is also injective,
i.e., go is a real form of g. Moreover, the conjugation o is equal to the action of the
nontrivial element of the Galois group with respect to this real form. Therefore,
the study of real forms of g is equivalent to the study of conjugations of g.

Let K be a connected semisimple Lie group. Then by 3.1.8.9, K is a compact
group if and only if the Killing form on £ is negative definite.

We say that a real semisimple Lie algebra is compact, if its Killing form is
negative definite.

If g is a complex semisimple Lie algebra and gg its real form, we say that gg is
a compact real form if the Killing form is negative definite on gy. We say that the
corresponding conjugation of g is a compact conjugation of g.

3.1.1. LEMMA. Let o be a conjugation on a complex semisimple Lie algebra g.
Then, the following statements are equivalent:

(i) the conjugation o is compact;
(ii) the form (x,y) — —B(x,0(y)) is an inner product on g.
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PRrOOF. By the construction, the form (z,y) — —B(x,0(y)) is linear in the
first and antilinear in the second variable.

If it is an inner product, its restriction to gg X go is obviously positive definite
and also equal to the Killing form of go. Therefore, g¢ is a compact form.

Conversely, if gg is a compact form and x € g, * = x1 + ixo with x1, x5 € go.
Therefore,

— B(z,0(x)) = —B(x1 + ixe, x1 — ix2)
= —B(wx1,21) + iB(x1,22) — B(xa,x2) — B(x2,21)
= —(B(z1,21) + b(z2,22)) > 0
since the Killing form is negative definite on gg X go. Moreover, B(z,o(x)) =

0 implies B(z1,71) = B(x2,22) = 0 and 1 = x2 = 0. Therefore, (z,y) —
—B(z,0(y)) is positive definite. O

Let o be a conjugation of g and ¢ an automorphism of g. Then p oo o~ is

a conjugation of g. Therefore, the automorphism group Aut(g) acto on the set of
all conjugations of g.

Assume that the Lie algebra g is semisimple. Since the Killing form is invariant
under the action of the automorphisms of g, this action of Aut(g) on the set of all
conjugations of g preserves the subset of compact conjugations.

3.2. Existence of compact forms.

3.3. Uniqueness of compact forms. In this section we prove the uniqueness
of compact forms of complex semisimple Lie algebras (up to conjugacy by inner
automorphisms). This proof doesn’t depend on the structure theory of semisimple
Lie algebras like the existence result proved in the last section.

3.3.1. THEOREM. Let T be a compact conjugation of a complex semisimple Lie
algebra g and o an arbitrary conjugation of g. Then there exists ¢ € Aut(g) such
that p o T o @™ and o commute.

PROOF. Define an inner product on g by
(z|y) = —B(z,1y)

for x,y € g. Let A = o7. Then A is an automorphism of g. Hence it leaves the
Killing form invariant, and we have

(Azly) = —B(o7z,1y) = —B(x, (07) " '1y) = —B(x, T07Yy) = —B(x,TAYy) = (2| Ay)

for any x,y € g. Hence, A is a selfadjoint linear operator on g. Let X1, Xo,..., X,
be an orthonormal basis of g in which A is represented by a diagonal matrix, i.e.,

for 1 <i<nand ) € R. Put C = A2. Then C is a positive selfadjoint operator
and
CX; =N/ X,
for 1 <i<mn. Let t € R. Then we put
C'X; = (\)X;
forl1 <i<n.
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Let cijr € C, 1 <14,5,k < n, be the structure constants of g, i.e.,
X77 X Z czijk

for 1 <i.j < n. Clearly, a linear automorphlsm S of g is an automorphism of the
Lie algebra g if and only if

[SXi, SX;] Z Cijr S X
for any 1 <4,j < k. Since A is an automorphlsm of g, it follows that

)\i)\j Z Cz’ijk = /\7/\1 [Xi, Xj] = [AX“ AXJ] = Z CijkAXk = Z Cijk/\ka
k=1 = =
for 1 <4.j <n. This in turn implies that
()\i)\j - )\k)cijk =0
for 1 <4,j,k < n. In other words, if ¢;jr # 0, we must have A;A; = Ag. This in
turn implies that
DD = ()

for any ¢t € R. Hence, we have

[C* X5, C* X = (WD) () [Xi, Xj] = (AD) (D)"Y cagnn X
k=1

n

Zcmk()\k Xk = Zczjkc Xk
k=1

k=1

for any 1 < ,j < n; and C? is an automorphism of g for any ¢ € R.
This clearly implies that

T=CtoroC™?
is a compact conjugation of g. Now, we have
ToAor=7(0T)T =70 = A"
Hence, it follows that
ToCor=70A%07=(ToAor)o(roAor)=(A"1H2 =C"1.
This finally implies that
T0oC=C"1
It follows that
CTH(rX;) =7CX; = N/ 7X;
for 1 <4 < n. Hence 7X; is an eigenvector of C~! for the eigenvalue )\12. Hence,
we have
C7'rXi = (\)'7X; =7C'X
for 1 <i<m;i.e.,
ToClor=C""
for any ¢t € R. This implies that
o' =0(Ctor0C ) =(o7)o(roClor)oC™" = AC™?
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and
ro = (or')"! = (AC™2)"1 = 02t AL,
Itt= %, we have
ot = AC™2
and
To=CrAL

This in turn implies that

or' X; = ACTEX; = M(A2) 72X, = sgn(\) X,
and

ToX; =C3AT X, = (A2)TA7X, = sgn(\) X
for 1 < i < n. It follows that

This result has a simple consequence.

3.3.2. COROLLARY. Let 7 and 7' be two compact conjugations of a complex
semisimple Lie algebra g. Then there exists ¢ € Aut(g) such that 7/ = poTop™t.

PROOF. From the preceding theorem, we can find ¢ € Aut(g) such that 7"/ =
pot’ o~ commutes with 7. As in the proof of the preceding theorem, we can view
g as an inner product space equipped with the inner product (z | y) = —B(z, 7(y))
Let A = 7”7. Then, as we established there, A is a selfadjoint linear transformation.
Moroever, since 7’ and 7 commute,

Al =" =" =7"1=A
and A% = I. Therefore, the eigenvalues of A are 1 and —1. On the other hand,
(Az | y) = (z | Ay) = —B(x,77"1y) = —B(x,7"y)

and (z,y) — (Az | y) is another inner product on g. Therefore, A has to be
a positive selfadjoint operator, i.e., —1 cannot be its eigenvalue. It follows that
A=1I1e,7 =1. O

Therefore, the compact conjugations form a single orbit of Aut(g) in the set of
all conjugations of g.



