TinyOS

Arvindl Easwaran; (@arnvinde@seas)

Outline

NIOS Architecture

s Challenges
s [Features

Subsystems

s Scheduler

s Activer Messadging

= [inyDB

s Virtual Machine — Mate, Bombilla
= [InySEC

Outline

TOS Architecture

= Challenges

» Features

Subsystems

s Scheduler

s Activer Messadging

s [inyDB

s Virtual Machine — Mate, Bombilla

TnyoOs - Challenges

Pewer Efficiency.

Modularity:

s Diversity in Design and Usage

SEcurity.
s InsSecure wirelessi communication
s Negligible computation power for cryptography.
s Minimal overhead data

Process Management:
= Unacceptable context switch overhead
Time, Storage
= [hread driveni approach
Power intensive

Challenges Contd.

Limitedphysical parallelism

Datal Management

s Files

Conventional file systemsi— Unix etc
m Respurce consuming

s Databases
RDBMS, ?

Network: Management

= Sensor' nodesi- communication oriented

x Concurrency intensive

= No point to point routing = Multi hop netwoerks
= Minimal packet everhead

s [CP/IP will not suffice

nyoOsS - Features

Event-driven: architecture
s [Lower layer sends events tor higher layer
a [Low everhead — No busy-walit cycles

Interrupt drivenr = Twe Kinds off interrupt
= Clock
= Radio

Component driven programming moedel
s Sjze - 400 bytes
s Extremely flexible component graph

Single-shared stack

Features Contd.

Netwerk management - Active Messaging

NGO kernel, process mamnagement, virtual memory,
Filermanagement - Matchbex

2-level FIFOrseneduler — events anal tasks

Complete integration with hardware

Scheduler

nyOsS - Design

Components

A 4

Commands

A A 4 \ £ W /

Events

A 4

A A

Events

Hardware components

Structure of a Component:

Command Handlers Set of Tasks
Event Handlers o Fram.e :
(containing state information)

TinyOS Component

Ad hoc Routing Application

o "

Active Messages

m N om B

Radio Packet Serial Packet Temperature

ART

I S

Sample Application shown with components

Programming Model : Review.

Component interface
Commands; accepted! (implemented)

|
: E\?g?;aggcsegieedd (Implemented) \/v v AAA

Events used Messaging Component T &

r L @3 ICTHEIRSIELE
Compoenent implementation
s Handlers ul
= Tasks

Component description
= Compenent graph

Component Interface

<CompName>.comp

JI0OS. MODULE <CompName>;
ACCEPTS {

[/ command_signatures
ji:
HANDLES {

[/ event_signatures
17
USES {

[/ command_signatures
i
SIGNALS {

[/ event_signatures

¥

Component Implementation

<CompName>.c

#define TOS_FRAME_TYPE
1105 FRAME_BEGIN(< CompName >_frame) {
// state declaration

i
TOS_FRAME_END(< CompName: >_fiame);

char TOS_COMMAND(<command_name)()
//-.command implementation

¥

char TOS_EVENT(<event_name>)(){
//- event implementation

¥

Component Description

<CompName>.desc

INCLUDE {
IVIATING
<ConmpName>;
<Comp_I>;
<Comp_J>;

¥i

/- Wiking

<CompName>.<command> <Comp_I>.<command>

<CompName>.<event> <Comp_J>.<event>

TOS - Issues

Programming perspective

s NO memory. protection -> easy! to corrupt/crash the
System

s [Heavy Usel off macres

SySten PErSpecuve

s Simplistic FIFO scheduling -> no, real-time guarantees
s Bounded number off pending tasks

s NO “process” management -> resource allocation

s Software level “bit: manipulation™

Outline

NIOS Architecture

s Challenges

s [Features

Subsystems

s Scheduler

s Activer Messadging

s [inyDB

s Virtual Machine — Mate, Bombilla

T0S — Scheduling

Scheduling

s 2-level scheduling (events and tasks)
s FIFOIscheduler — QUeue of size 7

Tasks

s Preempt able by events
s May call'commands, events
s Not: preempted by other tasks

Events

= Hardware interrupt supported lowest level events

The EIEO! Scheduler
LT T2 T T N

int Exec_Next_Task(){
if (TOS_sched_full == TOS_sched_free) return -1;
TOS_queue[TOS_sched_full].tp(); // execute the task
TOS_queue[TOS_sched_full]l.tp = 0; //remove the task

TOS_sched_full = (TOS_sched_full +1 == MAX_TASKS)?0:
TOS_sched_full +1; //increment TOS_sched_full

return 0; }

Prioritized scheduling) - Metivation

Senser Node! tasks

s Recelve packets for forwarding

s Send packetsireceived fox fiorwarding

sl Process locally’ sensed data and send it

llocal Precessing
s Raw! Data sent torBase Station
s Aggregation| of data done

Motivation; contd.

Raw! Datal sent te Base Station
» [ncreased Network traffic
= Rate of transmission >> NetWork capacity.

Agdregation of data dene
s Voelume off data high
x Not enough computational capability

IHandlingl everload conditions
s Determine criticality of tasks
s Prioritize on criticality

Example — Radio; Stack

Ad hoc Routing Application

oo i

Active Messages

e o H

Radio Packeat

Seguence of events

= Radio bits received by node - REM

= Radio bits converted te bytes — RadioByte
s Bytes to packets — RadioPacket

s Packets to Messages — Active Messages

CPU involved! in processing every: interrupt
s Every radio) bitiprocessed by CPU

s |.ack off network INterface pProcessor:

s 2 MIPS — CPU

Interrupts have Righer priority

Tasks preempted for every bit received

High! rate of radio bit interrupts
= No tasks get executed
s Receiver overioad — live lock

Bit interrupts cam post tasks = Forwarding
s Interrupts prevent tasks firom: executing

s [hey alse add tasks to the gueue

s None getiexecuted = Noifierwarding) !

llask queue s fullr(limiteadl size)

New: tasks (critical ??) ignored

Packet Send Protocol

1

daEa F{e:ady

'send enc-odezzl byvte-3n

dataReadyvy

send byte-3n

-

ChannelMonitor MicaHighSpeedRadio SECDedEncoding SpiByteFifo VW/ireless Medium
1 I L] I i
1 idle detect] - | I

| |
| I 1 | I
' I I l
! idle detected ._: 1 I :
1 1 encode bvte-1 b: 1 I
I] : I
! ! i, savode . !
| | byte to 3 : |
: :,. encodeDone(parity) bytes] I
|
: l‘ encodeDone(high) : :
1 |
I Lg—cncodeDone(low) 1 :
I] — : I
I I : | i
1 1 5 5 i i
| | encode byte-n g, I I
I I - - I :
) ! S I l
] I send encoded byte-1 ’I :
| L send byte-1 #
: 1
1 |
I |
I 1 :
: - -
' >
I I
|
|
[

1
< sendDone to App layer >post packetSent

Packet Receive Protocol

Wireless Medium

ChannelMaonitor

MicaHighSpeedRadio

SECDedEncoding

SpiByteFifo

preamble detected

startSymDetecte

———— e e

receive to App layer

T
|
|
|
I
|
(LI startReadBytes
|
k dataReadyvy
: decode
|
g dataReady
I decode
k dataReady
: decode
! decodeDone
(>

1

«

buffer byte

post packetRecvd

SRRV . A0 . A5 I, SV PR P

I S N— . S———

Prieritized scheduling

Each task given priority.
s [ncorperated in the pregramming model

Send/Receive, Encryption tasks given: higher
PIrIOKItY:

iHigher prierity task inserted ahead in the FIFO
dueue

Queue full = Lower priority: posted task dropped

Semantics of task pest modified

Threughput — FIFO scheduler

Packet throughput vs Local task execution time

8Hz send rate
8Hz local task

of packets sent/sec

8
7
6
5
4
3
2
1
0

7 14 21 28 35 42 45

Task period (msec)

Threughput — Prioritized Send

Packet throughput vs Local task execution time - Sender

—e— Same priority send

—m—Higher priority send

8Hz send rate
8Hz local task

Q
@
L
—
o
c
@
n
)
e
@
=
Q
)
o
L
(o]
+

21 28 35 42 45

Task execution time (msec)

Throughput — Prioritized Receive

Packet throughput vs local task execution time - Receiver

—e— Same priority receivey
—a—high priority receive

8Hz send rate
20Hz local task

9

8

7 -
6 -
5 |
4 4
3
9 4
1 -
0

Q
Q
o
—
f:
2
Q
Q
g
77}
et
Q
4
Q
)
o
L)
o
**

14 21 28 35 42

)

Task execution time (msec)

Outline

NIOS Architecture

s Challenges

a [Features

Subsystems

s Scheduler

= Active Messaging

= [inyDB

s Virtual Machine — Mate, Bombilla

Active Messages : Motivation

Senser nodes — Communication reguirements

s Communication Intensive

s No point to peint routingl = Multi-hop: Aetworks
POWEer CONSernvation

s Minimal packet overhead
s Efficient in memory, PrOCESSOL, POWEN:

s [jolerant to highi level of' concurrency.

Motivation Contd.

Sensor nedes — Communication: requirements

s Realtime constiaints

s Almost noiphysical parallelisn available

s Dynamic deployment = ad Noc NEtWork ermation
s RF interfierence

x| Mobile = Node failures

= Highly medular communication: subsystem

Motivation Contd.

Conventional network protocols
s [[CP/IP, sockets, routing protocels

Bandwidthl intensive = Acknowledgements

High everhead per packet = Headers

Centered on stoprand wait™ semantics

Hight memory. reguirements/: Computational power demands

Sockets not suited to constrained TOS environment

Example; Sensor Network

..-—-"""@ — WiredLink

- ——- WirelessL ink,

Active Miessages

Simple, extensible paradigm
Widely used inf parallelfand distributed systems
Integrating communication: and computation

Distributed’ event model Where networked nodes; send
events

Active Messades : Basic structure

Light;weight architecture

Each Active IMessage;contains
s User-level handler to be inveked on arrival
s [Datal payload passedlastargument

EVent=centric nature

s Enables network communications tor overlap with
Sensor-Interaction

Active Messades : Basic structure

Handler funetions

s EXtract message quickly: frem netweork

s Provide datal for computation/ferwardl data
s Prevent network congestion

Minimal buiferngl = Pipeline analegy

s Quick execution of handlers prevents use of
send/receive bufifers

Ry Active, Messades

ihree basic sufficient primitives
a Best effortimessage transmission
s Addressingl > Addressi checking

s Dispatchl = Handler invecation

ComMpoRNENtSs; provide modularity.

» Applications cheose between types/levels, ofi error
Correction/detection

Consistent: interface tor communication primitives
s Portability to hardware platforms

Ry Active, Messades

Applications can have additional components
s FElow! control

s Encryption

s Packet fragmentation

Event based > lihreadead
s Simple > FIFO gueue

Use of buffers possible but noet mandatoery
s Applications can create; their own

..... i A\ (Jgynq)
§520005 JoUop puas Fsuy % 4 uop Joyed Xy
ppuasTBsut % ¢ "\ avopyond
|||||| : = ($5200mS)
npn ¢ AT A
% (e3ep “adAy)oar st R
=
£S5 E
7)) 7
<&, :
> 7
O ;
= -
._a (eyep'adiyappe) /v oc o
< Sarpuos |[] & nn_. (Jngayoed ™y |
O
> N @ 8
= (apowpiomod P % Q0 ———>
_“ v o £ | (powpanod
NS
| P 20 —>
7 o

iny: Active Messages - Component

Accepts 110S commanads fem application
Fires eventsi to message; nandlers
Event tor signal’ completion; off transmission

Send command includes
s Desti. Adaress; Handler' 1D, Message body:

Address checking and dispatching

Relies on components for packet transmission

Example — Radio; Stack

Ad hoc Routing Application

oo i

Active Messages

e o H

Radio Packeat

Component functions

REM, RadioByte, RadioPacket
m Best effort transmission mechanism

Active IMessades) > ENffor Correction) Component

s Basic 2> None
s CRC > Error detection
s Error corrected packets = Correction and detection

IHost PC package
s Communicates torbase station threugh' serial port
s Simple bridge; to get data to the internet

Packet Format:
Byte 1 = Destination address (R_0)
Byte 2 = Message handler (H_0)

AM component
= Address match
s Handler invocation

= Remaining 28 bytes > Message boedy passed as
argument tor handler

Dispatch routine for handlers statically’ linkea

Active Messading| - Example

Ad hoec networkingl application
Collectsi information: fiom nodes randomly distributed

Routing| topolegy: explored using Active Message
PrIMItIVEs

Automatic re-configuration with: new: routing topolegy

Application closely: mirrors, real World Sensor:
applications

DSDV algerithm used

Multi-Hop Packet Format

8 N N1 8 G5 3 GN G I Y Y

- Next Hop

- Next Handler
- Number of Hops
- Destination Handler
. R . R5 . R, - Route Hops
- Sending Node
. D, ... - Payload

4-hiop) communication = 7 extra bytes

H OsettoO

At each hep routing handler

s Decrements hop count
Rotates next hop, pushes current address to end

If next hop:is final destination (N = 1)
s H_FmovedtoH_0O

Route DISCoVerY.

Broadcast address

s Useful for route discovery.

s Application sends'a 2-hep: packet to) broadcast:
address fiollowed by self-address

s Returned: packet: contains address of neighbors

s Efficient communication with neighibors

Routing Topology: Discovery.

Base station periodically broadcasts! its identity
Shortest path discovery: done; firom every: nede to BS
Cycles prevented Using| Epochs

Identity’ off reute stored in packet
s [0 generate statistics

Messade types

s Routing message, > Update message handler
s Forwarding message > Datal messade handler
s Clock event = Sensing and sending data

Evaluation

Round Trip Time

RTT (msec)

Evaluation

POWEN CORsUmption

[dle State 5 (tAmps
Peak 5 mAmps
Energy per bit | 1 plJoule

TABLE I
POWER AND ENERGY CONSUMPTION MEASUREMENTS.

Outline

NIOS Architecture

s Challenges

s [Features

Subsystems

s Scheduler

s Activer Messadging

N TiﬂYDB

s Virtual Machine — Mate, Bombilla

TnybDB: - Motivation

Traditional query: processingl systems

= RDBMS

s Passive systems
ASSUME a Priori existence ofi data

Woe selutions

s Power' constrainedtversion of RIDBMS
Datal aggregation, filtering technigues

s Acquisitionall Query: Processor - AQP

AQP

Sampling — Where, Whenrand How: oiten
[FOCUS 0N Iecation and' cost off acquiring data
RedUCtions Infpower ConsUmpLions

Simple; extensions te SOL
» Controls data acquisition

s Achieves guery optimization, dissemination and
execution

AQP - Chiaracteristics

Query Optimization
= Significant cost offsampling
s Prioritizing sampling attrbutes) impoertant
= Done at base station

Query: Dissemination
= Query nodes which have data
s Done at eachi node

Query Execution
= \When te sample
= Which samples tor process
= Done at nodes where query: disseminates

TinyDEB, Features

Distributed AQP
s RURNS on each sensor node

Ability: to select; join, project andlaggregate

Acduisitional technigues to: redluce power
consumption

Interleaving query: processingl with'local
computations

Quantitative analysis fior' datal aggregation

Basic Architecture

Result

] OPS

1

2

3

SELECT nodeid, light
FROM SENSORS

Query PC

? FIELDS .
nodeid Mote

light

MNILILL

Result
2 55

Acquisitional guery: language
SELECT-FROM-WHERE Clatise
SUppoerts join, projection and agdgregation

EXplicit suppoertfer sampling intervals,
Windowing

Sensor data
= Single table with one column: per Sensor type

Specifying sampling interval

SELLECII nedeid, light, temp
FROM sensors
SAMPLE INTERVAL 1s FOR 10s

“ sensors ' > Virtual table
Results stream te base station: using multi-hop: topology.

Output consists off ever grewing sequence; ofi tuples
= Streaming data
= [imestamp with each tuple

" sensors " table

Virtual Unbounded table
ContinUous data stream off Valles

Blecking operations not allowead
s Sorting, Symmetric Joini etc
s Unless window is specified

Query: ID; associated with: every query.
s Used to stop running queries

Window:! creation

Window,

s Fixed size materialization peintsiover stream

CREATE

STORAGE POINT recentlight: SIZE 8

AS (SELECIT nodeid, light FROM| sensors
SAMPLE INTERVAL 10s)

recentlight: = Shared lecalllocation
s [Local to nede

Joins allowed between
= [Wo Sstorage points on same node
= Storage point and “sensors”

Adgdredate fUnctions

SELECT COUNT(*)

FROM sensors AS s, recentlight as ri

WHERE rl.nedeid = s.nedeid and
s.light < ri.light

SAMPLE INTERVAL 10s

SELLECT WINAVG (velume, 30s, 5S)
EROM sensors
SAMPLE INTERVAL 1s

QUErY reports average; volume
s Over last 30 seconds
= Once every 5 seconds

Sliding window: guery.

Event based gueries - Triggers

EVents initiaterdatal acquisition
= Event generated either' by TIOS or another guery.

ON EVENIF bird-detect (1oc)

SELECT AVG(light), AVG(temp), event.loc
FROM sensorsi AS| s

WHERE dist(s.loc, event.loc) < 10m
SAMPLE INTERVAL 2s FOR 30s

Events| triggered! only on' local nede
s Queries can be distributed for execution

Avoids| polling| or blocking

liriggers — POwWer Savings

Time v. Current Draw

KA TANaWS

Event Based Trigger

Current (mA)

Polling Based Trigger |

Current (mA)

10 15 20 25 30 35 40
Time (s)

Lifetime Based Queries

SELECH noedeid, accel
FROMI sensers
LIEETIME 30! days

Much more inthitive to reasen about pewer
consumption

[hiietime estimation: performed: by inybDB
s Compute a sampling and' transmission rate
= Given energy remaining

Estimation : Individual Node

SELECT aji, ... r QnumSensors
FROM sensors
WHERE p
LIFETIME [hours

Parameter Description Units
Query lifetime goal hours

Remaining Battery Capacity Joules

Energy to sample sensor n Joules

Joules
Joules

o numSensors o T _ \ , _
s (Z H E 5) + (E"i'"f-“-'?--‘ + Ef 'r"'a.--n.S) X C + Ef rans X O

s=()

Estimation - Network

DECIding NetwWork transmission rate

s Sleep-WWakeup cycles are co-cooerdinated

= Maximum rate of network
T ransmission rate of root

s Slower transmission
Tiransmit at integral multipless ofi root rate

= Parent includes rate in queries forwarded: to children

Query: Optimization

Done by Base Station

PUrpese > 10 CheOSE COorect Ordering fior
sampling, selection and joins

Simple; cost based optimizer
a Reduces pewer consumption
a Precessing cost andl transmission cost

Cost dominated: by,
s Sampling off physical Sensors
s [ransmission costs

Meta Data

Maintained at éach node

Enlists

s [Locall attributes
Semantic preperties; > Used in dissemination

m Events
s User defined flinctions

s Costi of precessing and! delivering data
Query: lifetime estimation

Periodically’ copied! to root

Metadata - Types

Event metadata
= Name, Signature, freguency. estimate

User defined functions metadata
s Name, signature and selectivity estimate

Attribute metadata

Metadat
Cost to sample this attribute (in J)

Sample Time Time to sample this attribute (in s)

Is this attribute constant-valued (e.g. id)?

Rate of Change How fast the attribute changes (units/s)

Range What range of values can this attribute take on (pair of units)

Predicate Ordering

Sampling = Very: expensive in terms off power
s Selection and Join “FREE™ inj comparison

SELLECT accel, mag
FROM sensers
WHERE accel > a
AND mag > m
SAMPLE INTERVAL 1s

Order o magnitude cost difference in sampling accel and mag

Tihree plans
s Sample bothi before either selection
= Sample mag, apply: selection, sample accel, apply: selection
= Sample accel, apply’ selection, sample mag, apply: selection

rigger Batching

ON"EVENHIF e(nodeid)
SELECT a

FROMI sensers AS' s

WHERE s.nodeidl = e.nodeid
SAMPLE INTERVAL df FOR k

Query: samples' every dl Seconds for Kk Seconds

Event e > Instance of query executed
= Multiple instances| running simultaneously.

QUery rewriting
External eventsi(e) converted to data stieam

Query: rewrittens ass sliding windew: join: of event and
SENSOKS Sthieams

SELECT s.a

FROM sensors AS s, events AS e
WHERE s.nodeid ='e.nodeid
AND e.type = e

AND s.time - e.time <=k

AND: s.time > e.time

SAMPLE INTERVAL d

Only single query executing

Disadvantage > Reverting back to pelling

Power Consumption - Rewriting

Event Rate v. Power Consumption
(8 Samples/S)

1 I I I [| I I I I
Stream Join -———+-— .
09 L Async Events, Event Dur = 1s ——#-— e
Async Events, Event Dur = 3s ---8---
08 Lk Async Events, Event Dur = 55 —-#-- e |
s
s 07 . 1
=4 ..
-% 06 . e
= . P -4
2 05 . s -
E ey
o 04 - . . e & i
o ¥ -
% 03 . e = -
o “"" = T e u
02+ . FF,,B* P . T
. - ~ e
0.1 Lol gmm el B i
O T | | | | | | | | |

Events Per Second

Query: Dissemination

DECIdING WhHEre al duery. shouldlexecute
s Limiting the scope of queries

Constant valuead attributes with selection
predicate

= hodeid

» lLocation > Eixed! location network

Solution = Semantic Routing Trable (SR)

SRT - Features

ROULING tree

s Efficiently’ determines; children whoi can execute
gueries

Construction

s PICk parent with
Highest link guality.
Semantic properties

An Index over attribute A
s Each node stores interval for range off A values
= Range includes range ofi children

SRT - Construction

WO pliase process

s Phase I
SRT build request flooded
Reguest includes name of attribute A

= Phase I

Node has no children
s Chose a parent p, report rande > Parent selection

Nede has children
= Propagate build reguest to children, wait
s Record ranges with children’s id
= Report to parent with complete range

SRT — Parent Selection

Parent Selectiont Algorithm
= Random

s Closest Parent
Parent reports Its range

s Clustered approeach
SNEEP: SIbIING'S parent selection’ packet

AdVantadges

s Network topoelogy: correlation with geography.
exploited

Query Execution

-2 = SENSOr NeCE awake; time

Nodes forced o' drep: or combine tuples
= Small T,/
s Very small sample interval

Solution

= [Data Aggregation
Partiall state record

Tiuple Aggregation

Query results en gueued onto radio quele
s [fuples for fiorwarding
s Limitedi quetie size; > Datal aggregation

Addregation method
NS
s WINAVG

s Delta
Involves updating on every: transmission

Outline

NIOS Architecture

s Challenges

s Featlres

Subsystems

s Scheduler

s Active Messading

s [inyDB

= Virtual Machine — Mate, Bombilla

TThe Origin of MATE

Mate(imartay) s Avteanliize
PEVErAEE constmeEr maimiyAin
Argentinay Uktigliay, Paradiiay.

aharseUthERRNERaZIl:

Why Do We Need VM ?

Seme; nodes will fail during operation
= Change in network topelegy/parameters

Almoest impossible tor manually: recollect ana
feprogram
s Adaptive guery processing, data aggregation

Significant energy: cost in reprogramming

Incrementall code generation tsing XML
s Memory intensive

Need for viral programming

System Reguirements

Small (16KB installation mempory, 1KB RAM)
Expressive - versatile

Concise > limited memory: & bandwidth
Resilience 2> robustness

Efficient > energy consumption / transmission

Taillor able = specialized operations

Mate in a Nutshell

TRy communjication centric virtual machine
Byte code interpreter running omn motes
Single TOS component

Code broken into 24 instruction capsules
Concise, high levell programming

Safe execution environment
= [Implied user/kernel boundary:

Mate in a Nutshell

Stack Architecture
s Operand stack
s Return address stack

Three concurrent execution contexts

= Timer > Persistent operand stack
= Send
m Receive

Execution triggered by predefined events
TRy code capsules > self-propagate into network

Built in ad-hoc routing / Customized routing
s send / sendr

Mate Architecture

_J

Subroutines Events

gets/sets

Operand
> Stack

_} Return

Stack

Send

Mate calls command IR routing component

Suspends; context untilf send complete
Event

No need tor manage message: buiifers

s Capsule suspended till network component
sends packet

Synchronous model off communication
= Application programming made simple

Instruction Set

basic 00iiiiii i = instruction
s-type 0liiixxx x = argument
x-type 1ixxxxxx

Three instruction classes

. basic: arithmetic, LED operation
. S-type: messaging system

. X-type: pushc, blez

8 instructions reserved for users to define
=Default no-ops
=Useful for creating domain specific instructions

I—l

Code Exampie

« Display Counter to LED

gets # Push heap variable on stack

pushc 1 # Push 1 on stack

add # Pop twice, add, push result

copy # Copy top of stack

sets # Pop, set heap

pushc 7 # Push 0x0007 onto stack

and # Take bottom 3 bits of value

putled # Pop, set LEDs to bit pattern
halt i

Code Capsules

One; capsule = 24 instructions
s Each instruction is 1 byte long
s |Larger proegrams - Multiple capsules / subroutines

Fits into single TOS packet

ALOMIC FECEPLIoN

Code, Capsule
s [Ype and Version iniormation
s [ype: send, receive, timer, subroutine

Each instruction executed as TOS task

Capsule forwarding

Capsule transmission = rforw.
Forwardingl other installed capsule; = forwo

Mate checks on version nNUmbEer on reception ofi a
capsule

s If it is newer, install it
\/ersioning > 32bit counter

Easily disseminates new code over the network

Bombilla

Next version off Mate?

Mote IDJ) Program Text
Capsule Yersion|O

Capsule Type Capsule Options
i Subroutine 0) Forwarding

) Subroutine 1

) Subroutine 2

) Subroutine 3

) Clock

" Send

_J Receive

% Once

Bombilla Architecture

Bombilla

Operand

Stmck Bombilla
Return Context

Lhiack

= Once context
= 16 word heap sharing among the context
= Buffer holds up to ten values

Bombilla Instruction Set

basic 1 = Instruction
m-class | 010iixxx | i = instruction, argument
v-class | Ollixxxx | i = instruction, argument

j-class | 10ixxxxx | 1 = instruction, argument

x-class | 11xxxxxx | i ? argument

= M-class: access message header
= v-class: 16 word heap access

= j-class: two jump instructions

= X-class: pushc

References

TinyOS - Architecture
= System Architecture Directions for Networked Sensors

Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David C,Kristofer P
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Active Messages
= Active Message Communication for Tiny Networked Sensors

Philip Buonadonna, Jason Hill, David Culler
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

= Active Messages: a Mechanism for Integrated Communication and
Computation

Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, Klaus Erik
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

References

Scheduling
= Priority Scheduling in TinyOS - A Case Study

Venkita Subramonian, Huang-Ming Huang, Seema Datar, Chenyang Lu
Department of Computer Science, Washington University

Virtual Machine
= Mate: A Tiny Virtual Machine for Sensor Networks

Philip Levis and David Culler
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

TinyDB
= The Design of an Acquisitional Query Processor For Sensor Networks
Samuel Madden, Michael J. Franklin, and Joseph M. Hellerstein Wei Hong
UC Berkeley Intel Research, Berkeley

