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TnyoOs - Challenges

Pewer Efficiency.

Modularity:

s Diversity in Design and Usage

SEcurity.
s InsSecure wirelessi communication
s Negligible computation power for cryptography.
s Minimal overhead data

Process Management:
= Unacceptable context switch overhead
Time, Storage
= [hread driveni approach
Power intensive



Challenges Contd.

Limitedphysical parallelism

Datal Management

s Files

Conventional file systemsi— Unix etc
m Respurce consuming

s Databases
RDBMS, ?

Network: Management

= Sensor' nodesi- communication oriented

x Concurrency intensive

= No point to point routing = Multi hop netwoerks
= Minimal packet everhead

s [CP/IP will not suffice



nyoOsS - Features

Event-driven: architecture
s [Lower layer sends events tor higher layer
a [Low everhead — No busy-walit cycles

Interrupt drivenr = Twe Kinds off interrupt
= Clock
= Radio

Component driven programming moedel
s Sjze - 400 bytes
s Extremely flexible component graph

Single-shared stack



Features Contd.

Netwerk management - Active Messaging

NGO kernel, process mamnagement, virtual memory,
Filermanagement - Matchbex

2-level FIFOrseneduler — events anal tasks

Complete integration with hardware



Scheduler

nyOsS - Design

Components

A 4

Commands

A A 4 \ £ W /

Events
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A A

Events

Hardware components




Structure of a Component:

Command Handlers Set of Tasks
Event Handlers o Fram.e :
(containing state information)

TinyOS Component



Ad hoc Routing Application

o "

Active Messages

m N om B

Radio Packet Serial Packet Temperature

ART

I S

Sample Application shown with components




Programming Model : Review.

Component interface
Commands; accepted! (implemented)

|
: E\?g?;aggcsegieedd (Implemented) \/v v AAA

Events used Messaging Component T &

r L @3 ICTHEIRSIELE
Compoenent implementation
s Handlers ul
= Tasks

Component description
= Compenent graph



Component Interface

<CompName>.comp

JI0OS. MODULE <CompName>;
ACCEPTS {

[/ command_signatures
ji:
HANDLES {

[/ event_signatures
17
USES {

[/ command_signatures
i
SIGNALS {

[/ event_signatures

¥



Component Implementation

<CompName>.c

#define TOS_FRAME_TYPE
1105 FRAME_BEGIN(< CompName >_frame) {
// state declaration

i
TOS_FRAME_END(< CompName: >_fiame);

char TOS_COMMAND(<command_name)()
//-.command implementation

¥

char TOS_EVENT(<event_name>)(){
//- event implementation

¥



Component Description

<CompName>.desc

INCLUDE {
IVIATING
<ConmpName>;
<Comp_I>;
<Comp_J>;

¥i

/- Wiking

<CompName>.<command>  <Comp_I>.<command>

<CompName>.<event> <Comp_J>.<event>



TOS - Issues

Programming perspective

s NO memory. protection -> easy! to corrupt/crash the
System

s [Heavy Usel off macres

SySten PErSpecuve

s Simplistic FIFO scheduling -> no, real-time guarantees
s Bounded number off pending tasks

s NO “process” management -> resource allocation

s Software level “bit: manipulation™
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T0S — Scheduling

Scheduling

s 2-level scheduling (events and tasks)
s FIFOIscheduler — QUeue of size 7

Tasks

s Preempt able by events
s May call'commands, events
s Not: preempted by other tasks

Events

= Hardware interrupt supported lowest level events



The EIEO! Scheduler
LT T2 T T N

int Exec_Next_Task(){
if (TOS_sched_full == TOS_sched_free) return -1;
TOS_queue[TOS_sched_full].tp(); // execute the task
TOS_queue[TOS_sched_full]l.tp = 0; //remove the task

TOS_sched_full = (TOS_sched_full +1 == MAX_TASKS )?0:
TOS_sched_full +1; //increment TOS_sched_full

return 0; }



Prioritized scheduling) - Metivation

Senser Node! tasks

s Recelve packets for forwarding

s Send packetsireceived fox fiorwarding

sl Process locally’ sensed data and send it

llocal Precessing
s Raw! Data sent torBase Station
s Aggregation| of data done



Motivation; contd.

Raw! Datal sent te Base Station
» [ncreased Network traffic
= Rate of transmission >> NetWork capacity.

Agdregation of data dene
s Voelume off data high
x Not enough computational capability

IHandlingl everload conditions
s Determine criticality of tasks
s Prioritize on criticality



Example — Radio; Stack

Ad hoc Routing Application

oo i

Active Messages

e o H

Radio Packeat




Seguence of events

= Radio bits received by node - REM

= Radio bits converted te bytes — RadioByte
s Bytes to packets — RadioPacket

s Packets to Messages — Active Messages

CPU involved! in processing every: interrupt
s Every radio) bitiprocessed by CPU

s |.ack off network INterface pProcessor:

s 2 MIPS — CPU

Interrupts have Righer priority

Tasks preempted for every bit received



High! rate of radio bit interrupts
= No tasks get executed
s Receiver overioad — live lock

Bit interrupts cam post tasks = Forwarding
s Interrupts prevent tasks firom: executing

s [hey alse add tasks to the gueue

s None getiexecuted = Noifierwarding) !

llask queue s fullr(limiteadl size)

New: tasks (critical ??) ignored



Packet Send Protocol
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Packet Receive Protocol

Wireless Medium
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SpiByteFifo
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Prieritized scheduling

Each task given priority.
s [ncorperated in the pregramming model

Send/Receive, Encryption tasks given: higher
PIrIOKItY:

iHigher prierity task inserted ahead in the FIFO
dueue

Queue full = Lower priority: posted task dropped

Semantics of task pest modified



Threughput — FIFO scheduler

Packet throughput vs Local task execution time
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Threughput — Prioritized Send

Packet throughput vs Local task execution time - Sender

—e— Same priority send

—m—Higher priority send

8Hz send rate
8Hz local task
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Throughput — Prioritized Receive

Packet throughput vs local task execution time - Receiver

—e— Same priority receivey
—a—high priority receive

8Hz send rate
20Hz local task
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Active Messages : Motivation

Senser nodes — Communication reguirements

s Communication Intensive

s No point to peint routingl = Multi-hop: Aetworks
POWEer CONSernvation

s Minimal packet overhead
s Efficient in memory, PrOCESSOL, POWEN:

s [jolerant to highi level of' concurrency.



Motivation Contd.

Sensor nedes — Communication: requirements

s Realtime constiaints

s Almost noiphysical parallelisn available

s Dynamic deployment = ad Noc NEtWork ermation
s RF interfierence

x| Mobile = Node failures

= Highly medular communication: subsystem



Motivation Contd.

Conventional network protocols
s [[CP/IP, sockets, routing protocels

Bandwidthl intensive = Acknowledgements

High everhead per packet = Headers

Centered on stoprand wait™ semantics

Hight memory. reguirements/: Computational power demands

Sockets not suited to constrained TOS environment



Example; Sensor Network

..-—-"""@ — WiredLink

- ——- WirelessL ink,




Active Miessages

Simple, extensible paradigm
Widely used inf parallelfand distributed systems
Integrating communication: and computation

Distributed’ event model Where networked nodes; send
events



Active Messades : Basic structure

Light;weight architecture

Each Active IMessage;contains
s User-level handler to be inveked on arrival
s [Datal payload passedlastargument

EVent=centric nature

s Enables network communications tor overlap with
Sensor-Interaction



Active Messades : Basic structure

Handler funetions

s EXtract message quickly: frem netweork

s Provide datal for computation/ferwardl data
s Prevent network congestion

Minimal buiferngl = Pipeline analegy

s Quick execution of handlers prevents use of
send/receive bufifers



Ry Active, Messades

ihree basic sufficient primitives
a Best effortimessage transmission
s Addressingl > Addressi checking

s Dispatchl = Handler invecation

ComMpoRNENtSs; provide modularity.

» Applications cheose between types/levels, ofi error
Correction/detection

Consistent: interface tor communication primitives
s Portability to hardware platforms



Ry Active, Messades

Applications can have additional components
s FElow! control

s Encryption

s Packet fragmentation

Event based > lihreadead
s Simple > FIFO gueue

Use of buffers possible but noet mandatoery
s Applications can create; their own
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iny: Active Messages - Component

Accepts 110S commanads fem application
Fires eventsi to message; nandlers
Event tor signal’ completion; off transmission

Send command includes
s Desti. Adaress; Handler' 1D, Message body:

Address checking and dispatching

Relies on components for packet transmission



Example — Radio; Stack

Ad hoc Routing Application

oo i

Active Messages

e o H

Radio Packeat




Component functions

REM, RadioByte, RadioPacket
m Best effort transmission mechanism

Active IMessades) > ENffor Correction) Component

s Basic 2> None
s CRC > Error detection
s Error corrected packets = Correction and detection

IHost PC package
s Communicates torbase station threugh' serial port
s Simple bridge; to get data to the internet



Packet Format:
Byte 1 = Destination address (R_0)
Byte 2 = Message handler (H_0)

AM component
= Address match
s Handler invocation

= Remaining 28 bytes > Message boedy passed as
argument tor handler

Dispatch routine for handlers statically’ linkea



Active Messading| - Example

Ad hoec networkingl application
Collectsi information: fiom nodes randomly distributed

Routing| topolegy: explored using Active Message
PrIMItIVEs

Automatic re-configuration with: new: routing topolegy

Application closely: mirrors, real World Sensor:
applications

DSDV algerithm used



Multi-Hop Packet Format

8 N N1 8 G5 3 GN G I Y Y

- Next Hop

- Next Handler
- Number of Hops
- Destination Handler
. R . R5 . R, - Route Hops
- Sending Node
. D, ... - Payload

4-hiop) communication = 7 extra bytes

H OsettoO

At each hep routing handler

s Decrements hop count
Rotates next hop, pushes current address to end

If next hop:is final destination (N = 1)
s H_FmovedtoH_0O



Route DISCoVerY.

Broadcast address

s Useful for route discovery.

s Application sends'a 2-hep: packet to) broadcast:
address fiollowed by self-address

s Returned: packet: contains address of neighbors

s Efficient communication with neighibors



Routing Topology: Discovery.

Base station periodically broadcasts! its identity
Shortest path discovery: done; firom every: nede to BS
Cycles prevented Using| Epochs

Identity’ off reute stored in packet
s [0 generate statistics

Messade types

s Routing message, > Update message handler
s Forwarding message > Datal messade handler
s Clock event = Sensing and sending data



Evaluation

Round Trip Time

RTT (msec)




Evaluation

POWEN CORsUmption

[dle State 5 (tAmps
Peak 5 mAmps
Energy per bit | 1 plJoule

TABLE I
POWER AND ENERGY CONSUMPTION MEASUREMENTS.
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TnybDB: - Motivation

Traditional query: processingl systems

= RDBMS

s Passive systems
ASSUME a Priori existence ofi data

Woe selutions

s Power' constrainedtversion of RIDBMS
Datal aggregation, filtering technigues

s Acquisitionall Query: Processor - AQP



AQP

Sampling — Where, Whenrand How: oiten
[FOCUS 0N Iecation and' cost off acquiring data
RedUCtions Infpower ConsUmpLions

Simple; extensions te SOL
» Controls data acquisition

s Achieves guery optimization, dissemination and
execution



AQP - Chiaracteristics

Query Optimization
= Significant cost offsampling
s Prioritizing sampling attrbutes) impoertant
= Done at base station

Query: Dissemination
= Query nodes which have data
s Done at eachi node

Query Execution
= \When te sample
= Which samples tor process
= Done at nodes where query: disseminates



TinyDEB, Features

Distributed AQP
s RURNS on each sensor node

Ability: to select; join, project andlaggregate

Acduisitional technigues to: redluce power
consumption

Interleaving query: processingl with'local
computations

Quantitative analysis fior' datal aggregation



Basic Architecture

Result

] OPS

1

2

3

SELECT nodeid, light
FROM SENSORS

Query PC

? FIELDS .
nodeid Mote

light

MNILILL

Result
2 55




Acquisitional guery: language
SELECT-FROM-WHERE Clatise
SUppoerts join, projection and agdgregation

EXplicit suppoertfer sampling intervals,
Windowing

Sensor data
= Single table with one column: per Sensor type



Specifying sampling interval

SELLECII nedeid, light, temp
FROM sensors
SAMPLE INTERVAL 1s FOR 10s

“ sensors ' > Virtual table
Results stream te base station: using multi-hop: topology.

Output consists off ever grewing sequence; ofi tuples
= Streaming data
= [imestamp with each tuple



" sensors " table

Virtual Unbounded table
ContinUous data stream off Valles

Blecking operations not allowead
s Sorting, Symmetric Joini etc
s Unless window is  specified

Query: ID; associated with: every query.
s Used to stop running queries



Window:! creation

Window,

s Fixed size materialization peintsiover stream

CREATE

STORAGE POINT recentlight: SIZE 8

AS (SELECIT nodeid, light FROM| sensors
SAMPLE INTERVAL 10s )

recentlight: = Shared lecalllocation
s [Local to nede

Joins allowed between
= [Wo Sstorage points on same node
= Storage point and “sensors”



Adgdredate fUnctions

SELECT COUNT(*)

FROM sensors AS s, recentlight as ri

WHERE rl.nedeid = s.nedeid and
s.light < ri.light

SAMPLE INTERVAL 10s

SELLECT WINAVG (velume, 30s, 5S)
EROM sensors
SAMPLE INTERVAL 1s

QUErY reports average; volume
s Over last 30 seconds
= Once every 5 seconds

Sliding window: guery.



Event based gueries - Triggers

EVents initiaterdatal acquisition
= Event generated either' by TIOS or another guery.

ON EVENIF bird-detect (1oc)

SELECT AVG(light), AVG(temp), event.loc
FROM sensorsi AS| s

WHERE dist(s.loc, event.loc) < 10m
SAMPLE INTERVAL 2s FOR 30s

Events| triggered! only on' local nede
s Queries can be distributed for execution

Avoids| polling| or blocking



liriggers — POwWer Savings

Time v. Current Draw

KA TANaWS

Event Based Trigger

Current (mA)

Polling Based Trigger |

Current (mA)

10 15 20 25 30 35 40
Time (s)



Lifetime Based Queries

SELECH noedeid, accel
FROMI sensers
LIEETIME 30! days

Much more inthitive to reasen about pewer
consumption

[hiietime estimation: performed: by inybDB
s Compute a sampling and' transmission rate
= Given energy remaining



Estimation : Individual Node

SELECT aji, ... r QnumSensors
FROM sensors
WHERE p
LIFETIME [ hours

Parameter Description Units
Query lifetime goal hours

Remaining Battery Capacity Joules

Energy to sample sensor n Joules

Joules
Joules

o numSensors o T _ \ , _
s ( Z H E 5) + ( E"i'"f-“-'?--‘ + Ef 'r"'a.--n.S) X C + Ef rans X O

s=()




Estimation - Network

DECIding NetwWork transmission rate

s Sleep-WWakeup cycles are co-cooerdinated

= Maximum rate of network
T ransmission rate of root

s Slower transmission
Tiransmit at integral multipless ofi root rate

= Parent includes rate in queries forwarded: to children



Query: Optimization

Done by Base Station

PUrpese > 10 CheOSE COorect Ordering fior
sampling, selection and joins

Simple; cost based optimizer
a Reduces pewer consumption
a Precessing cost andl transmission cost

Cost dominated: by,
s Sampling off physical Sensors
s [ransmission costs



Meta Data

Maintained at éach node

Enlists

s [Locall attributes
Semantic preperties; > Used in dissemination

m Events
s User defined flinctions

s Costi of precessing and! delivering data
Query: lifetime estimation

Periodically’ copied! to root



Metadata - Types

Event metadata
= Name, Signature, freguency. estimate

User defined functions metadata
s Name, signature and selectivity estimate

Attribute metadata

Metadat
Cost to sample this attribute (in J)

Sample Time Time to sample this attribute (in s)

Is this attribute constant-valued (e.g. id)?

Rate of Change How fast the attribute changes (units/s)

Range What range of values can this attribute take on (pair of units)




Predicate Ordering

Sampling = Very: expensive in terms off power
s Selection and Join “FREE™ inj comparison

SELLECT accel, mag
FROM sensers
WHERE accel > a
AND mag > m
SAMPLE INTERVAL 1s

Order o magnitude cost difference in sampling accel and mag

Tihree plans
s Sample bothi before either selection
= Sample mag, apply: selection, sample accel, apply: selection
= Sample accel, apply’ selection, sample mag, apply: selection



rigger Batching

ON"EVENHIF e(nodeid)
SELECT a

FROMI sensers AS' s

WHERE s.nodeidl = e.nodeid
SAMPLE INTERVAL df FOR k

Query: samples' every dl Seconds for Kk Seconds

Event e > Instance of query executed
= Multiple instances| running simultaneously.



QUery rewriting
External eventsi(e) converted to data stieam

Query: rewrittens ass sliding windew: join: of event and
SENSOKS Sthieams

SELECT s.a

FROM sensors AS s, events AS e
WHERE s.nodeid ='e.nodeid
AND e.type = e

AND s.time - e.time <=k

AND: s.time > e.time

SAMPLE INTERVAL d

Only single query executing

Disadvantage > Reverting back to pelling



Power Consumption - Rewriting

Event Rate v. Power Consumption
(8 Samples/S)
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Query: Dissemination

DECIdING WhHEre al duery. shouldlexecute
s Limiting the scope of queries

Constant valuead attributes with selection
predicate

= hodeid

» lLocation > Eixed! location network

Solution = Semantic Routing Trable (SR)



SRT - Features

ROULING tree

s Efficiently’ determines; children whoi can execute
gueries

Construction

s PICk parent with
Highest link guality.
Semantic properties

An Index over attribute A
s Each node stores interval for range off A values
= Range includes range ofi children



SRT - Construction

WO pliase process

s Phase I
SRT build request flooded
Reguest includes name of attribute A

= Phase I

Node has no children
s Chose a parent p, report rande > Parent selection

Nede has children
= Propagate build reguest to children, wait
s Record ranges with children’s id
= Report to parent with complete range



SRT — Parent Selection

Parent Selectiont Algorithm
= Random

s Closest Parent
Parent reports Its range

s Clustered approeach
SNEEP: SIbIING'S parent selection’ packet

AdVantadges

s Network topoelogy: correlation with geography.
exploited



Query Execution

-2 = SENSOr NeCE awake; time

Nodes forced o' drep: or combine tuples
= Small T,/
s Very small sample interval

Solution

= [Data Aggregation
Partiall state record



Tiuple Aggregation

Query results en gueued onto radio quele
s [fuples for fiorwarding
s Limitedi quetie size; > Datal aggregation

Addregation method
NS
s WINAVG

s Delta
Involves updating on every: transmission
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TThe Origin of MATE

Mate(imartay) s Avteanliize
PEVErAEE constmeEr maimiyAin
Argentinay Uktigliay, Paradiiay.

aharseUthERRNERaZIl:



Why Do We Need VM ?

Seme; nodes will fail during operation
= Change in network topelegy/parameters

Almoest impossible tor manually: recollect ana
feprogram
s Adaptive guery processing, data aggregation

Significant energy: cost in reprogramming

Incrementall code generation tsing XML
s Memory intensive

Need for viral programming



System Reguirements

Small (16KB installation mempory, 1KB RAM)
Expressive - versatile

Concise > limited memory: & bandwidth
Resilience 2> robustness

Efficient > energy consumption / transmission

Taillor able = specialized operations



Mate in a Nutshell

TRy communjication centric virtual machine
Byte code interpreter running omn motes
Single TOS component

Code broken into 24 instruction capsules
Concise, high levell programming

Safe execution environment
= [Implied user/kernel boundary:



Mate in a Nutshell

Stack Architecture
s Operand stack
s Return address stack

Three concurrent execution contexts

= Timer > Persistent operand stack
= Send
m Receive

Execution triggered by predefined events
TRy code capsules > self-propagate into network

Built in ad-hoc routing / Customized routing
s send / sendr



Mate Architecture

\_J

Subroutines Events

gets/sets

Operand
> Stack

_} Return

Stack




Send

Mate calls command IR routing component

Suspends; context untilf send complete
Event

No need tor manage message: buiifers

s Capsule suspended till network component
sends packet

Synchronous model off communication
= Application programming made simple



Instruction Set

basic 00iiiiii i = instruction
s-type 0liiixxx x = argument
x-type 1ixxxxxx

Three instruction classes

. basic: arithmetic, LED operation
. S-type: messaging system

. X-type: pushc, blez

8 instructions reserved for users to define
=Default no-ops
=Useful for creating domain specific instructions



I—l

Code Exampie

« Display Counter to LED

gets # Push heap variable on stack

pushc 1 # Push 1 on stack

add # Pop twice, add, push result

copy # Copy top of stack

sets # Pop, set heap

pushc 7 # Push 0x0007 onto stack

and # Take bottom 3 bits of value

putled # Pop, set LEDs to bit pattern
halt i



Code Capsules

One; capsule = 24 instructions
s Each instruction is 1 byte long
s |Larger proegrams - Multiple capsules / subroutines

Fits into single TOS packet

ALOMIC FECEPLIoN

Code, Capsule
s [Ype and Version iniormation
s [ype: send, receive, timer, subroutine

Each instruction executed as TOS task



Capsule forwarding

Capsule transmission = rforw.
Forwardingl other installed capsule; = forwo

Mate checks on version nNUmbEer on reception ofi a
capsule

s If it is newer, install it
\/ersioning > 32bit counter

Easily disseminates new code over the network



Bombilla

Next version off Mate?

Mote IDJ) Program Text
Capsule Yersion|O

Capsule Type Capsule Options
i Subroutine 0 ) Forwarding

) Subroutine 1

) Subroutine 2

) Subroutine 3

) Clock

" Send

_J Receive

% Once




Bombilla Architecture

Bombilla

Operand

Stmck Bombilla
Return Context

Lhiack

= Once context
= 16 word heap sharing among the context
= Buffer holds up to ten values




Bombilla Instruction Set

basic 1 = Instruction
m-class | 010iixxx | i = instruction, argument
v-class | Ollixxxx | i = instruction, argument

j-class | 10ixxxxx | 1 = instruction, argument

x-class | 11xxxxxx | i ? argument

= M-class: access message header
= v-class: 16 word heap access

= j-class: two jump instructions

= X-class: pushc
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