
TinyTinyOSOS

Arvind Easwaran (arvinde@seas)Arvind Easwaran (arvinde@seas)

OutlineOutline

TOS ArchitectureTOS Architecture
ChallengesChallenges
FeaturesFeatures

SubsystemsSubsystems
SchedulerScheduler
Active MessagingActive Messaging
TinyDBTinyDB
Virtual Machine Virtual Machine –– Mate, BombillaMate, Bombilla
TinySECTinySEC

OutlineOutline

TOS ArchitectureTOS Architecture
ChallengesChallenges
FeaturesFeatures

SubsystemsSubsystems
SchedulerScheduler
Active MessagingActive Messaging
TinyDBTinyDB
Virtual Machine Virtual Machine –– Mate, BombillaMate, Bombilla

TinyOS TinyOS -- ChallengesChallenges
Power EfficiencyPower Efficiency

ModularityModularity
Diversity in Design and UsageDiversity in Design and Usage

SecuritySecurity
Insecure wireless communicationInsecure wireless communication
Negligible computation power for cryptographyNegligible computation power for cryptography
Minimal overhead dataMinimal overhead data

Process ManagementProcess Management
Unacceptable context switch overheadUnacceptable context switch overhead

Time, StorageTime, Storage
Thread driven approachThread driven approach

Power intensive Power intensive

Challenges Contd.Challenges Contd.
Limited physical parallelismLimited physical parallelism

Data ManagementData Management
FilesFiles

Conventional file systems Conventional file systems –– Unix etcUnix etc
Resource consumingResource consuming

DatabasesDatabases
RDBMS ?RDBMS ?

Network ManagementNetwork Management
Sensor nodes Sensor nodes -- communication orientedcommunication oriented
Concurrency intensiveConcurrency intensive
No point to point routing No point to point routing Multi hop networksMulti hop networks
Minimal packet overheadMinimal packet overhead
TCP/IP will not sufficeTCP/IP will not suffice

TinyOS TinyOS -- FeaturesFeatures
EventEvent--driven architecturedriven architecture

Lower layer sends events to higher layerLower layer sends events to higher layer
Low overhead Low overhead –– No busyNo busy--wait cycleswait cycles

Interrupt driven Interrupt driven Two kinds of interruptTwo kinds of interrupt
ClockClock
RadioRadio

Component driven programming modelComponent driven programming model
Size Size -- 400 bytes400 bytes
Extremely flexible component graphExtremely flexible component graph

SingleSingle--shared stackshared stack

Features Contd.Features Contd.

Network management Network management -- Active MessagingActive Messaging

No kernel, process management, virtual memoryNo kernel, process management, virtual memory

File management File management -- Matchbox Matchbox

22--level FIFO scheduler level FIFO scheduler –– events and tasksevents and tasks

Complete integration with hardwareComplete integration with hardware

TinyOS TinyOS -- DesignDesign

Scheduler

Components

Commands

Events

Events

Hardware components

Structure of a ComponentStructure of a Component

TinyOS Component

Command Handlers

Event Handlers

Set of Tasks

Frame
(containing state information)

Sample Application shown with components

Programming Model : ReviewProgramming Model : Review

Component interfaceComponent interface
Commands accepted (implemented)Commands accepted (implemented)
Commands usedCommands used
Events accepted (implemented)Events accepted (implemented)
Events usedEvents used

Component implementationComponent implementation
HandlersHandlers
TasksTasks

Component descriptionComponent description
Component graphComponent graph

Internal Tasks

Messaging Component

Internal State

Commands Events

Component InterfaceComponent Interface

<CompName><CompName>.comp.comp

TOS_MODULE <CompName>TOS_MODULE <CompName>;;
ACCEPTS {ACCEPTS {

// command_signatures// command_signatures
};};
HANDLES {HANDLES {

// event_signatures// event_signatures
};};
USES {USES {

// command_signatures// command_signatures
};};
SIGNALS {SIGNALS {

// event_signatures// event_signatures
};};

Component ImplementationComponent Implementation

<CompName><CompName>.c.c

#define TOS_FRAME_TYPE#define TOS_FRAME_TYPE
TOS_FRAME_BEGIN(< CompName >_frame) { TOS_FRAME_BEGIN(< CompName >_frame) {

// state declaration// state declaration
} }
TOS_FRAME_END(< CompName >_frame); TOS_FRAME_END(< CompName >_frame);

char TOS_COMMAND(<command_name)(){ char TOS_COMMAND(<command_name)(){
// command implementation// command implementation

}}

char TOS_EVENT(<event_name>)(){ char TOS_EVENT(<event_name>)(){
// event implementation// event implementation

}}

Component DescriptionComponent Description

<CompName><CompName>.desc.desc

INCLUDE {INCLUDE {
MAIN;MAIN;
<CompName>;<CompName>;
<Comp_I>;<Comp_I>;
<Comp_J>;<Comp_J>;
……

};};

// Wiring// Wiring
<CompName>.<command> <Comp_I>.<command><CompName>.<command> <Comp_I>.<command>
……
<CompName>.<event> <Comp_J>.<event><CompName>.<event> <Comp_J>.<event>

……

TOS TOS -- IssuesIssues

Programming perspective Programming perspective
No memory protection No memory protection --> easy to corrupt/crash the > easy to corrupt/crash the
systemsystem
Heavy use of macrosHeavy use of macros

System perspectiveSystem perspective
Simplistic FIFO scheduling Simplistic FIFO scheduling --> no real> no real--time guarantees time guarantees
Bounded number of pending tasksBounded number of pending tasks
No “process” management No “process” management --> resource allocation > resource allocation
Software level “bit manipulation”Software level “bit manipulation”

OutlineOutline

TOS ArchitectureTOS Architecture
ChallengesChallenges
FeaturesFeatures

SubsystemsSubsystems
SchedulerScheduler
Active MessagingActive Messaging
TinyDBTinyDB
Virtual Machine Virtual Machine –– Mate, BombillaMate, Bombilla

TOS TOS –– SchedulingScheduling

SchedulingScheduling
22--level scheduling (events and tasks)level scheduling (events and tasks)
FIFO scheduler FIFO scheduler –– Queue of size 7Queue of size 7

TasksTasks
Preempt able by eventsPreempt able by events
May call commands, eventsMay call commands, events
Not preempted by other tasksNot preempted by other tasks

EventsEvents
Hardware interrupt supported lowest level eventsHardware interrupt supported lowest level events

int Exec_Next_Task(){

if (TOS_sched_full == TOS_sched_free) return -1;

TOS_queue[TOS_sched_full].tp(); // execute the task

TOS_queue[TOS_sched_full].tp = 0; //remove the task

TOS_sched_full = (TOS_sched_full +1 == MAX_TASKS) ? 0 :
TOS_sched_full +1; //increment TOS_sched_full

return 0; }

NULLT4T3T2T1NULL

TOS_sched_full TOS_sched_free

0 MAX_SIZE-1

Cyclic Buffer

The FIFO SchedulerThe FIFO Scheduler

Prioritized scheduling Prioritized scheduling -- MotivationMotivation

Sensor Node tasksSensor Node tasks
Receive packets for forwardingReceive packets for forwarding
Send packets received for forwardingSend packets received for forwarding
Process locally sensed data and send itProcess locally sensed data and send it

Local ProcessingLocal Processing
Raw Data sent to Base StationRaw Data sent to Base Station
Aggregation of data doneAggregation of data done

Motivation contd.Motivation contd.

Raw Data sent to Base StationRaw Data sent to Base Station
Increased Network traffic Increased Network traffic
Rate of transmission >> network capacityRate of transmission >> network capacity

Aggregation of data doneAggregation of data done
Volume of data highVolume of data high
Not enough computational capabilityNot enough computational capability

Handling overload conditionsHandling overload conditions
Determine criticality of tasksDetermine criticality of tasks
Prioritize on criticalityPrioritize on criticality

Example Example –– Radio StackRadio Stack

Sequence of eventsSequence of events
Radio bits received by node Radio bits received by node -- RFMRFM
Radio bits converted to bytes Radio bits converted to bytes –– RadioByteRadioByte
Bytes to packets Bytes to packets –– RadioPacketRadioPacket
Packets to Messages Packets to Messages –– Active MessagesActive Messages

CPU involved in processing every interruptCPU involved in processing every interrupt
Every radio bit processed by CPUEvery radio bit processed by CPU
Lack of network interface processor Lack of network interface processor
2 MIPS 2 MIPS –– CPUCPU

Interrupts have higher priorityInterrupts have higher priority

Tasks preempted for every bit receivedTasks preempted for every bit received

High rate of radio bit interruptsHigh rate of radio bit interrupts
No tasks get executedNo tasks get executed
Receiver overload Receiver overload –– live locklive lock

Bit interrupts can post tasks Bit interrupts can post tasks ForwardingForwarding
Interrupts prevent tasks from executingInterrupts prevent tasks from executing
They also add tasks to the queueThey also add tasks to the queue
None get executed None get executed No forwarding !!No forwarding !!

Task queue is full (limited size)Task queue is full (limited size)

New tasks (critical ??) ignored New tasks (critical ??) ignored

Packet Send ProtocolPacket Send Protocol

Packet Receive ProtocolPacket Receive Protocol

Prioritized schedulingPrioritized scheduling

Each task given priorityEach task given priority
Incorporated in the programming modelIncorporated in the programming model

Send/Receive, Encryption tasks given higher Send/Receive, Encryption tasks given higher
prioritypriority

Higher priority task inserted ahead in the FIFO Higher priority task inserted ahead in the FIFO
queuequeue

Queue full Queue full Lower priority posted task droppedLower priority posted task dropped

Semantics of task post modifiedSemantics of task post modified

Throughput Throughput –– FIFO schedulerFIFO scheduler

Throughput Throughput –– Prioritized SendPrioritized Send

Throughput Throughput –– Prioritized ReceivePrioritized Receive

OutlineOutline

TOS ArchitectureTOS Architecture
ChallengesChallenges
FeaturesFeatures

SubsystemsSubsystems
SchedulerScheduler
Active MessagingActive Messaging
TinyDBTinyDB
Virtual Machine Virtual Machine –– Mate, BombillaMate, Bombilla

Active Messages : MotivationActive Messages : Motivation
Sensor nodes Sensor nodes –– Communication requirementsCommunication requirements

Communication intensiveCommunication intensive

No point to point routing No point to point routing Multi hop networksMulti hop networks
Power conservationPower conservation

Minimal packet overheadMinimal packet overhead

Efficient in memory, processor, powerEfficient in memory, processor, power

Tolerant to high level of concurrencyTolerant to high level of concurrency

Motivation Contd.Motivation Contd.
Sensor nodes Sensor nodes –– Communication requirementsCommunication requirements

Real time constraintsReal time constraints

Almost no physical parallelism availableAlmost no physical parallelism available

Dynamic deployment Dynamic deployment ad hoc network formationad hoc network formation

RF interferenceRF interference

Mobile Mobile Node failuresNode failures

Highly modular communication subsystemHighly modular communication subsystem

Motivation Contd.Motivation Contd.

Conventional network protocols Conventional network protocols
TCP/IP, sockets, routing protocolsTCP/IP, sockets, routing protocols

Bandwidth intensive Bandwidth intensive AcknowledgementsAcknowledgements

High overhead per packet High overhead per packet HeadersHeaders

Centered on “stop and wait” semanticsCentered on “stop and wait” semantics

High memory requirements/ Computational power demandsHigh memory requirements/ Computational power demands

Sockets not suited to constrained TOS environmentSockets not suited to constrained TOS environment

Example Sensor NetworkExample Sensor Network

Active MessagesActive Messages

Simple, extensible paradigmSimple, extensible paradigm

Widely used in parallel and distributed systemsWidely used in parallel and distributed systems

Integrating communication and computationIntegrating communication and computation

Distributed event model where networked nodes send Distributed event model where networked nodes send
eventsevents

Active Messages : Basic structureActive Messages : Basic structure

Light weight architectureLight weight architecture

Each Active Message contains Each Active Message contains
UserUser--level handler to be invoked on arrivallevel handler to be invoked on arrival
Data payload passed as argumentData payload passed as argument

EventEvent--centric naturecentric nature
Enables network communication to overlap with Enables network communication to overlap with
sensorsensor--interactioninteraction

Active Messages : Basic structureActive Messages : Basic structure

Handler functionsHandler functions
Extract message quickly from networkExtract message quickly from network
Provide data for computation/forward dataProvide data for computation/forward data
Prevent network congestionPrevent network congestion

Minimal buffering Minimal buffering Pipeline analogyPipeline analogy
Quick execution of handlers prevents use of Quick execution of handlers prevents use of
send/receive bufferssend/receive buffers

Tiny Active MessagesTiny Active Messages

Three basic sufficient primitivesThree basic sufficient primitives
Best effort message transmissionBest effort message transmission
Addressing Addressing Address checkingAddress checking
Dispatch Dispatch Handler invocationHandler invocation

Components provide modularityComponents provide modularity
Applications choose between types/levels of error Applications choose between types/levels of error
correction/detectioncorrection/detection

Consistent interface to communication primitivesConsistent interface to communication primitives
Portability to hardware platformsPortability to hardware platforms

Tiny Active MessagesTiny Active Messages

Applications can have additional componentsApplications can have additional components
Flow controlFlow control
EncryptionEncryption
Packet fragmentationPacket fragmentation

Event based Event based ThreadedThreaded
Simple Simple FIFO queueFIFO queue

Use of buffers possible but not mandatoryUse of buffers possible but not mandatory
Applications can create their ownApplications can create their own

Tiny Active MessagesTiny Active Messages

Tiny Active Messages Tiny Active Messages -- ComponentComponent
Accepts TOS commands from applicationAccepts TOS commands from application

Fires events to message handlersFires events to message handlers

Event to signal completion of transmissionEvent to signal completion of transmission

Send command includesSend command includes
Dest. Address, Handler ID, Message bodyDest. Address, Handler ID, Message body

Address checking and dispatchingAddress checking and dispatching

Relies on components for packet transmissionRelies on components for packet transmission

Example Example –– Radio StackRadio Stack

Component functionsComponent functions

RFM, RadioByte, RadioPacketRFM, RadioByte, RadioPacket
Best effort transmission mechanismBest effort transmission mechanism

Active Messages Active Messages Error correction componentError correction component
Basic Basic NoneNone
CRC CRC Error detectionError detection
Error corrected packets Error corrected packets Correction and detectionCorrection and detection

Host PC packageHost PC package
Communicates to base station through serial Communicates to base station through serial portport
Simple bridge to get data to the internetSimple bridge to get data to the internet

Packet FormatPacket Format

Byte 1 Byte 1 Destination address (R_0)Destination address (R_0)

Byte 2 Byte 2 Message handler (H_0)Message handler (H_0)

AM componentAM component
Address matchAddress match
Handler invocationHandler invocation
Remaining 28 bytes Remaining 28 bytes Message body passed as Message body passed as
argument to handlerargument to handler

Dispatch routine for handlers statically linkedDispatch routine for handlers statically linked

Active Messaging Active Messaging -- ExampleExample
Ad hoc networking applicationAd hoc networking application

Collects information from nodes randomly distributedCollects information from nodes randomly distributed

Routing topology explored using Active Message Routing topology explored using Active Message
primitivesprimitives

Automatic reAutomatic re--configuration with new routing topologyconfiguration with new routing topology

Application closely mirrors real world sensor Application closely mirrors real world sensor
applicationsapplications

DSDV algorithm usedDSDV algorithm used

MultiMulti--Hop Packet FormatHop Packet Format

44--hop communication hop communication 7 extra bytes7 extra bytes

H_0 set to 0H_0 set to 0

At each hop routing handlerAt each hop routing handler
Decrements hop countDecrements hop count
Rotates next hop, pushes current address to endRotates next hop, pushes current address to end

If next hop is final destination (N = 1)If next hop is final destination (N = 1)
H_F moved to H_0H_F moved to H_0

Route DiscoveryRoute Discovery

Broadcast addressBroadcast address

Useful for route discoveryUseful for route discovery

Application sends a 2Application sends a 2--hop packet to broadcast hop packet to broadcast
address followed by selfaddress followed by self--addressaddress

Returned packet contains address of neighborsReturned packet contains address of neighbors

Efficient communication with neighborsEfficient communication with neighbors

Routing Topology DiscoveryRouting Topology Discovery
Base station periodically broadcasts its identityBase station periodically broadcasts its identity

Shortest path discovery done from every node to BSShortest path discovery done from every node to BS

Cycles prevented using epochsCycles prevented using epochs

Identity of route stored in packetIdentity of route stored in packet
To generate statisticsTo generate statistics

Message typesMessage types
Routing message Routing message Update message handlerUpdate message handler
Forwarding message Forwarding message Data message handlerData message handler
Clock event Clock event Sensing and sending dataSensing and sending data

EvaluationEvaluation

Round Trip TimeRound Trip Time

EvaluationEvaluation

Power consumptionPower consumption

OutlineOutline

TOS ArchitectureTOS Architecture
ChallengesChallenges
FeaturesFeatures

SubsystemsSubsystems
SchedulerScheduler
Active MessagingActive Messaging
TinyDBTinyDB
Virtual Machine Virtual Machine –– Mate, BombillaMate, Bombilla

TinyDB TinyDB -- MotivationMotivation

Traditional query processing systemsTraditional query processing systems
RDBMSRDBMS
Passive systemsPassive systems

Assume a priori existence of dataAssume a priori existence of data

Two solutionsTwo solutions
Power constrained version of RDBMS Power constrained version of RDBMS

Data aggregation, filtering techniquesData aggregation, filtering techniques

AcquisitionalAcquisitional Query Processor Query Processor -- AQPAQP

AQPAQP
Sampling Sampling –– Where, When and How oftenWhere, When and How often

Focus on location and cost of acquiring dataFocus on location and cost of acquiring data

Reductions in power consumptionsReductions in power consumptions

Simple extensions to SQLSimple extensions to SQL
Controls data acquisitionControls data acquisition
Achieves query optimization, dissemination and Achieves query optimization, dissemination and
executionexecution

AQP AQP -- CharacteristicsCharacteristics

Query Optimization Query Optimization
Significant cost of samplingSignificant cost of sampling
Prioritizing sampling attributes importantPrioritizing sampling attributes important
Done at base stationDone at base station

Query DisseminationQuery Dissemination
Query nodes which have dataQuery nodes which have data
Done at each nodeDone at each node

Query ExecutionQuery Execution
When to sampleWhen to sample
Which samples to process Which samples to process
Done at nodes where query disseminatesDone at nodes where query disseminates

TinyDB FeaturesTinyDB Features

Distributed AQPDistributed AQP
Runs on each sensor nodeRuns on each sensor node

Ability to select, join, project and aggregateAbility to select, join, project and aggregate

Acquisitional techniques to reduce power Acquisitional techniques to reduce power
consumptionconsumption

Interleaving query processing with local Interleaving query processing with local
computationscomputations

Quantitative analysis for data aggregationQuantitative analysis for data aggregation

Basic ArchitectureBasic Architecture

Acquisitional query languageAcquisitional query language

SELECTSELECT--FROMFROM--WHERE ClauseWHERE Clause

Supports join, projection and aggregationSupports join, projection and aggregation

Explicit support for sampling intervals, Explicit support for sampling intervals,
windowingwindowing

Sensor data Sensor data
Single table with one column per sensor typeSingle table with one column per sensor type

Specifying sampling intervalSpecifying sampling interval

SELECT nodeid, light, tempSELECT nodeid, light, temp
FROM sensorsFROM sensors
SAMPLE INTERVAL 1s FOR 10sSAMPLE INTERVAL 1s FOR 10s

“ sensors “ “ sensors “ Virtual tableVirtual table

Results stream to base station using multiResults stream to base station using multi--hop topologyhop topology

Output consists of ever growing sequence of tuplesOutput consists of ever growing sequence of tuples
Streaming dataStreaming data
Timestamp with each tupleTimestamp with each tuple

““ sensors ” tablesensors ” table

Virtual unbounded tableVirtual unbounded table

Continuous data stream of valuesContinuous data stream of values

Blocking operations not allowedBlocking operations not allowed
Sorting, Symmetric Join etcSorting, Symmetric Join etc
Unless window is specifiedUnless window is specified

Query ID associated with every queryQuery ID associated with every query
Used to stop running queriesUsed to stop running queries

Window creationWindow creation

WindowWindow
Fixed size materialization points over streamFixed size materialization points over stream

CREATE CREATE
STORAGE POINT recentlight SIZE 8STORAGE POINT recentlight SIZE 8
AS (SELECT nodeid, light FROM sensorsAS (SELECT nodeid, light FROM sensors

SAMPLE INTERVAL 10s)SAMPLE INTERVAL 10s)

recentlight recentlight Shared local locationShared local location
Local to node Local to node

Joins allowed between Joins allowed between
Two storage points on same nodeTwo storage points on same node
Storage point and Storage point and ““sensorssensors””

Aggregate functionsAggregate functions

SELECT COUNT(*)SELECT COUNT(*)
FROM sensors AS s, recentlight as r1FROM sensors AS s, recentlight as r1
WHERE r1.nodeid = s.nodeid andWHERE r1.nodeid = s.nodeid and

s.light < r1.lights.light < r1.light
SAMPLE INTERVAL 10sSAMPLE INTERVAL 10s

SELECT WINAVG (volume, 30s, 5s)SELECT WINAVG (volume, 30s, 5s)
FROM sensorsFROM sensors
SAMPLE INTERVAL 1sSAMPLE INTERVAL 1s

Query reports average volume Query reports average volume
Over last 30 secondsOver last 30 seconds
Once every 5 secondsOnce every 5 seconds

Sliding window query Sliding window query

Event based queries Event based queries -- TriggersTriggers

Events initiate data acquisitionEvents initiate data acquisition
Event generated either by TOS or another queryEvent generated either by TOS or another query

ON EVENT birdON EVENT bird--detect (loc)detect (loc)
SELECT AVG(light), AVG(temp), event.locSELECT AVG(light), AVG(temp), event.loc
FROM sensors AS sFROM sensors AS s
WHERE dist(s.loc, event.loc) < 10mWHERE dist(s.loc, event.loc) < 10m
SAMPLE INTERVAL 2s FOR 30sSAMPLE INTERVAL 2s FOR 30s

Events triggered only on local nodeEvents triggered only on local node
Queries can be distributed for executionQueries can be distributed for execution

Avoids polling or blockingAvoids polling or blocking

Triggers Triggers –– Power SavingsPower Savings

Lifetime Based QueriesLifetime Based Queries

SELECT nodeid, accelSELECT nodeid, accel
FROM sensorsFROM sensors
LIFETIME 30 daysLIFETIME 30 days

Much more intuitive to reason about power Much more intuitive to reason about power
consumptionconsumption

Lifetime estimation performed by TinyDBLifetime estimation performed by TinyDB
Compute a sampling and transmission rateCompute a sampling and transmission rate
Given energy remainingGiven energy remaining

Estimation : Individual NodeEstimation : Individual Node

Estimation Estimation -- NetworkNetwork

Deciding network transmission rateDeciding network transmission rate

SleepSleep--Wakeup cycles are coWakeup cycles are co--coordinatedcoordinated

Maximum rate of networkMaximum rate of network
Transmission rate of rootTransmission rate of root

Slower transmissionSlower transmission
Transmit at integral multiples of root rateTransmit at integral multiples of root rate

Parent includes rate in queries forwarded to childrenParent includes rate in queries forwarded to children

Query OptimizationQuery Optimization

Done by Base StationDone by Base Station

Purpose Purpose To choose correct ordering for To choose correct ordering for
sampling, selection and joinssampling, selection and joins

Simple cost based optimizer Simple cost based optimizer
Reduces power consumptionReduces power consumption
Processing cost and transmission costProcessing cost and transmission cost

Cost dominated by Cost dominated by
Sampling of physical sensorsSampling of physical sensors
Transmission costsTransmission costs

Meta Data Meta Data

Maintained at each nodeMaintained at each node

EnlistsEnlists
Local attributesLocal attributes

Semantic properties Semantic properties Used in disseminationUsed in dissemination

EventsEvents
User defined functionsUser defined functions
Cost of processing and delivering dataCost of processing and delivering data

Query lifetime estimationQuery lifetime estimation

Periodically copied to rootPeriodically copied to root

Metadata Metadata -- TypesTypes

Event metadataEvent metadata
Name, Signature, frequency estimateName, Signature, frequency estimate

User defined functions metadataUser defined functions metadata
Name, signature and selectivity estimateName, signature and selectivity estimate

Attribute metadataAttribute metadata

Predicate OrderingPredicate Ordering

Sampling Sampling VerVery expensive in terms of powery expensive in terms of power
Selection and Join “FREE” in comparisonSelection and Join “FREE” in comparison

SELECT accel, magSELECT accel, mag
FROM sensorsFROM sensors
WHERE accel > aWHERE accel > a
AND mag > mAND mag > m
SAMPLE INTERVAL 1sSAMPLE INTERVAL 1s

Order of magnitude cost difference in sampling accel and magOrder of magnitude cost difference in sampling accel and mag

Three plansThree plans
Sample both before either selectionSample both before either selection
Sample mag, apply selection, sample accel, apply selectionSample mag, apply selection, sample accel, apply selection
Sample accel, apply selection, sample mag, apply selectionSample accel, apply selection, sample mag, apply selection

Trigger BatchingTrigger Batching

ON EVENT e(nodeid)ON EVENT e(nodeid)
SELECT aSELECT a
FROM sensors AS sFROM sensors AS s
WHERE s.nodeid = e.nodeidWHERE s.nodeid = e.nodeid
SAMPLE INTERVAL d FOR kSAMPLE INTERVAL d FOR k

Query samples every d seconds for k secondsQuery samples every d seconds for k seconds

Event e Event e Instance of query executedInstance of query executed
Multiple instances running simultaneouslyMultiple instances running simultaneously

Query rewritingQuery rewriting
External events (e) converted to data streamExternal events (e) converted to data stream

Query rewritten as sliding window join of event and Query rewritten as sliding window join of event and
sensors streamssensors streams

SELECT s.aSELECT s.a
FROM sensors AS s, events AS eFROM sensors AS s, events AS e
WHERE s.nodeid = e.nodeidWHERE s.nodeid = e.nodeid
AND e.type = eAND e.type = e
AND s.time AND s.time -- e.time <= k e.time <= k
AND s.time > e.timeAND s.time > e.time
SAMPLE INTERVAL dSAMPLE INTERVAL d

Only single query executingOnly single query executing

Disadvantage Disadvantage Reverting back to pollingReverting back to polling

Power Consumption Power Consumption -- RewritingRewriting

Query DisseminationQuery Dissemination

Deciding where a query should executeDeciding where a query should execute
Limiting the scope of queriesLimiting the scope of queries

Constant valued attributes with selection Constant valued attributes with selection
predicatepredicate

nodeidnodeid
Location Location Fixed location networkFixed location network

Solution Solution Semantic Routing Table (SRT)Semantic Routing Table (SRT)

SRT SRT -- FeaturesFeatures

Routing treeRouting tree
Efficiently determines children who can execute Efficiently determines children who can execute
queriesqueries

ConstructionConstruction
Pick parent with Pick parent with

Highest link qualityHighest link quality
Semantic propertiesSemantic properties

An index over attribute AAn index over attribute A
Each node stores interval for range of A valuesEach node stores interval for range of A values
Range includes range of childrenRange includes range of children

SRT SRT -- ConstructionConstruction

Two phase processTwo phase process
Phase IPhase I

SRT build request floodedSRT build request flooded
Request includes name of attribute ARequest includes name of attribute A

Phase IIPhase II
Node has no childrenNode has no children

Chose a parent p, report range Chose a parent p, report range Parent selectionParent selection

Node has childrenNode has children
Propagate build request to children, waitPropagate build request to children, wait
Record ranges with children’s idRecord ranges with children’s id
Report to parent with complete rangeReport to parent with complete range

SRT SRT –– Parent SelectionParent Selection

Parent Selection AlgorithmParent Selection Algorithm
RandomRandom
Closest ParentClosest Parent

Parent reports its rangeParent reports its range

Clustered approachClustered approach
Snoop sibling’s parent selection packetSnoop sibling’s parent selection packet

AdvantagesAdvantages
Network topology correlation with geography Network topology correlation with geography
exploitedexploited

Query ExecutionQuery Execution

TTawake awake = Sensor node awake time= Sensor node awake time

Nodes forced to drop or combine tuplesNodes forced to drop or combine tuples
Small TSmall Tawakeawake

Very small sample intervalVery small sample interval

SolutionSolution
Data AggregationData Aggregation

Partial state recordPartial state record

Tuple AggregationTuple Aggregation

Query results en queued onto radio queueQuery results en queued onto radio queue
Tuples for forwardingTuples for forwarding
Limited queue size Limited queue size Data aggregationData aggregation

Aggregation methodAggregation method
NaiveNaive
WinAVGWinAVG
DeltaDelta

Involves updating on every transmissionInvolves updating on every transmission

OutlineOutline

TOS ArchitectureTOS Architecture
ChallengesChallenges
FeaturesFeatures

SubsystemsSubsystems
SchedulerScheduler
Active MessagingActive Messaging
TinyDBTinyDB
Virtual Machine Virtual Machine –– Mate, BombillaMate, Bombilla

The Origin of MATEThe Origin of MATE

Mate(mahMate(mah--tay): A tea like tay): A tea like
beverage consumed mainly in beverage consumed mainly in
Argentina, Uruguay, Paraguay Argentina, Uruguay, Paraguay

and southern Braziland southern Brazil……

Why Do We Need VM ?Why Do We Need VM ?

Some nodes will fail during operationSome nodes will fail during operation
Change in network topology/parametersChange in network topology/parameters

Almost impossible to manually recollect and Almost impossible to manually recollect and
reprogramreprogram

Adaptive query processing, data aggregationAdaptive query processing, data aggregation

Significant energy cost in reprogrammingSignificant energy cost in reprogramming

Incremental code generation using XMLIncremental code generation using XML
Memory intensiveMemory intensive

Need for viral programmingNeed for viral programming

System RequirementsSystem Requirements

Small (16KB installation memory, 1KB RAM)Small (16KB installation memory, 1KB RAM)

Expressive Expressive versatileversatile

Concise Concise limited memory & bandwidthlimited memory & bandwidth

Resilience Resilience robustnessrobustness

Efficient Efficient energy consumption / transmissionenergy consumption / transmission

Tailor able Tailor able specialized operationsspecialized operations

Mate in a NutshellMate in a Nutshell

Tiny communication centric virtual machineTiny communication centric virtual machine

Byte code interpreter running on motesByte code interpreter running on motes

Single TOS componentSingle TOS component

Code broken into 24 instruction capsulesCode broken into 24 instruction capsules

Concise, high level programmingConcise, high level programming

Safe execution environmentSafe execution environment
Implied user/kernel boundaryImplied user/kernel boundary

Mate in a NutshellMate in a Nutshell
Stack ArchitectureStack Architecture

Operand stackOperand stack
Return address stackReturn address stack

Three concurrent execution contextsThree concurrent execution contexts
Timer Timer Persistent operand stackPersistent operand stack
SendSend
ReceiveReceive

Execution triggered by predefined eventsExecution triggered by predefined events

Tiny code capsules Tiny code capsules selfself--propagate into networkpropagate into network

Built in adBuilt in ad--hoc routing / Customized routinghoc routing / Customized routing
send / sendrsend / sendr

Mate ArchitectureMate Architecture

0 1 2 3

Subroutines

C
lock

Send

R
eceive

Events

gets/sets

0 1 2 3

Subroutines

C
lock

Send

R
eceive

Events

gets/sets

C
ode

Operand
Stack

Return
Stack

PC C
ode

Operand
Stack

Return
Stack

PC

SendSend

Mate calls command in routing componentMate calls command in routing component

Suspends context until send complete Suspends context until send complete
eventevent

No need to manage message buffersNo need to manage message buffers
Capsule suspended till network component Capsule suspended till network component
sends packetsends packet

Synchronous model of communicationSynchronous model of communication
Application programming made simpleApplication programming made simple

Instruction SetInstruction Set

Three instruction classes
• basic: arithmetic, LED operation
• s-type: messaging system
• x-type: pushc, blez

8 instructions reserved for users to define
Default no-ops
Useful for creating domain specific instructions

Code ExampleCode Example

Display Counter to LEDDisplay Counter to LED

gets # Push heap variable on stack
pushc 1 # Push 1 on stack
add # Pop twice, add, push result
copy # Copy top of stack
sets # Pop, set heap
pushc 7 # Push 0x0007 onto stack
and # Take bottom 3 bits of value
putled # Pop, set LEDs to bit pattern
halt #

Code CapsulesCode Capsules
One capsule = 24 instructionsOne capsule = 24 instructions

Each instruction is 1 byte longEach instruction is 1 byte long
Larger programs Larger programs Multiple capsules / subroutinesMultiple capsules / subroutines

Fits into single TOS packetFits into single TOS packet

Atomic receptionAtomic reception

Code CapsuleCode Capsule
Type and version informationType and version information
Type: send, receive, timer, subroutineType: send, receive, timer, subroutine

Each instruction executed as TOS taskEach instruction executed as TOS task

Capsule forwardingCapsule forwarding

Capsule transmission Capsule transmission forwforw

Forwarding other installed capsule Forwarding other installed capsule forwoforwo

Mate checks on version number on reception of a Mate checks on version number on reception of a
capsulecapsule

If it is newer, install itIf it is newer, install it

Versioning Versioning 32bit counter32bit counter

Easily disseminates new code over the networkEasily disseminates new code over the network

BombillaBombilla

Next version of Mate?Next version of Mate?

Bombilla ArchitectureBombilla Architecture

Once context
16 word heap sharing among the context
Buffer holds up to ten values

Bombilla Instruction SetBombilla Instruction Set

m-class: access message header
v-class: 16 word heap access
j-class: two jump instructions
x-class: pushc

ReferencesReferences

TinyOS - Architecture
System Architecture Directions for Networked Sensors

Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David C,Kristofer P
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Active Messages
Active Message Communication for Tiny Networked Sensors

Philip Buonadonna, Jason Hill, David Culler
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Active Messages: a Mechanism for Integrated Communication and
Computation

Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, Klaus Erik
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

ReferencesReferences

Scheduling
Priority Scheduling in TinyOS - A Case Study

Venkita Subramonian, Huang-Ming Huang, Seema Datar, Chenyang Lu
Department of Computer Science, Washington University

Virtual Machine
Mate: A Tiny Virtual Machine for Sensor Networks

Philip Levis and David Culler
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

TinyDB
The Design of an Acquisitional Query Processor For Sensor Networks

Samuel Madden, Michael J. Franklin, and Joseph M. Hellerstein Wei Hong
UC Berkeley Intel Research, Berkeley

