FROM PROTONS TO PENTAQUARKS:

()+

A BARYON WITH POSITIVE

STRANGENESS

Eberhard Klempt

Helmholtz-Institut für Strahlen- und Kernphysik Universität Bonn Nußallee 14-16, D-53115 Bonn, GERMANY e-mail: klempt@hiskp.uni-bonn.de

CLAS/Jlab

PENTAQUARK.

and it is called

and cannot be a three-quark (i.e. configuration is (ududs) state. Its minimum quark It has strangeness S = +1contains a s quark)

$\Theta^{+}(1540)$

at and Bonn/SAPHIR, the nance ITEP/DIANA, was baryon Spring8/LEPS, Jlab/CLAS observed

⋗

new

reso-

Introduction

The discovery was reported in newspapers, major journals, is hotly

debated, is a central issue at physics conferences.

Why is the $\Theta^+(1540)$ so important ?

and, if it is important,

What is the experimental evidence for it ?

and if it really exists,

What do we know about it ?

Quark models,

Baryons are described as states of three

constituent quarks bound by a (linear) confinement potential.

Successes

Ground state baryon masses, magnetic moments, shell structure, negative-parity resonances. spontaneous breaking of chiral symmetry-Constituent quarks arise naturally from

in baryons. Contact to deep inelastic scattering is lost.

Sea quarks play no dynamical role

··· and failures.

- : Found by V. E. Barnes et al. in 1964
- Ω^- : Predicted by Gell-Mann in 1964

Decuplet

The quark model ... versus chiral soliton models

Valence quarks

 m_q

Quarks and sea quarks are dynamically coupled. The equations of motion support soliton solutions which can be organised into multiplets. The lowest lying multiplets are 8 and 10 and $\overline{10}$.

For u and d quarks spin and isospin

are coupled:

 $-m_q$

\triangleright	Ζ
${f S}={f 3}/{f 2}$	${f S}=1/2$
I=3/2	$\mathbf{I}=\mathbf{1/2}$

 ~ 1700 S = 5/2 I = 5/2 fall-apart state.

Sea

quarks

- M. Gell-Mann, "A Schematic Model Of Baryons And Mesons," Phys. Lett. 8 (1964) 214
- V. E. Barnes et al., "Observation Of A Hyperon With Strangeness -3," Phys. Rev. Lett. 12 (1964) 204
- T. H. Skyrme, "A Nonlinear Field Theory," Proc. Roy. Soc. Lond. A 260 (1961) 127.
- E. Witten, "Global Aspects Of Current Algebra," Nucl. Phys. B 223 (1983) 422.
- M. Chemtob, "Skyrme Model Of Baryon Octet And Decuplet," Nucl. Phys. B 256 (1985) 600.
- H. Walliser, "The SU(N) Skyrme Model," Nucl. Phys. A 548 (1992) 649.
- D. Diakonov, V. Petrov and M. V. Polyakov, "Exotic anti-decuplet of

baryons: Prediction from chiral solitons," Z. Phys. A 359, 305 (1997).

LEPS/SPRING8:

- Spring8: syncroton radiation facilitiy
- tered off 8 GeV electrons Photons (\sim 3.5 eV, Ar 351 nm) backscatvertex detector

target

drift chambers

두 두

tagged γ 's beam, 1.5 to 2.4 GeV

dipol magnet

mT

Tagging by bending angle of scattered

electrons

Reaction studied:

 $\gamma^{12}\mathrm{C}
ightarrow \Theta^+ \ \mathrm{K}^-$ + X ; $\Theta^+
ightarrow \mathrm{n}\mathrm{K}^+$

- Charged particle tracking in magnetic field (0.7 T) Counts
- 3 silicon strip detectors, 3 drift chambers, $\sigma_{\rm p}$ =

6 Mev/c at 1 GeV/c

Particle identification by time-of-flight

Select events on scintillator

- Calculate mass of Θ^+ as missing mass in $\gamma n \to K^- \Theta^+_{\rm missing}$
- $MM^{corr}_{\gamma K^-} = MM_{\gamma K^-} MM_{\gamma K^+ K^-} + M_n$ **Method tested**
- Find 108 events and 36 Θ^+
- ${
 m M}_{\Theta}^+=1.54\pm0.01$ GeV, $\Gamma_{\Theta}^+=25\pm0.01$ MeV, $\sigma=4.6$ on $\gamma p \to K^+\Lambda$

DIANA/ITEP: Charge exchange expt.

- $\mathrm{K^{+}n} \rightarrow \Theta^{+}(1540) \rightarrow \mathrm{pK_s^0}$
- 'quasifree' in Xe bubble chamber
- $K^+Xe \rightarrow Xe'pK_s^0$
- ullet ${
 m K}^+$ momentum from range in Xe

CLAS/Jlab:

- Torus magnet with 6 superconducting coils
- Liquid H₂/D₂ target, trigger counters
- Drift chambers with 35,000 cells
- TOF system
- Electromagentic Pb/sci sandwich calorimeter
- Gas Cerenkov counters, e/π
- separation

- **Reactions studied:**
- $\gamma d \to K^- p(K^+ n_{miss})$ $\gamma p \to K^- \pi^+ (K^+ n_{miss})$
- $\gamma p \to K^- \pi^+ (K^+ n_{miss})$ $\gamma p \to K^0_s (K^+ n_{miss})$

Study of the reaction $\gamma d \rightarrow pnK^+K^-$

- Detected: K^+, K^-, p , hence
- "no spectator" nucleon
- TOF for particle identification
- Missing mass calculated and neutron reconstructed
- Proposed reaction mecha-

 \varkappa_{+}

Study of the reaction $\gamma p \rightarrow n K^+ K^- \pi^+$

σ

1

- Detected: K^+, K^-, π^+
- TOF for particle identification
- Missing neutron reconstructed from

kinematics

n

$\Theta^+(1540)$ search in $\gamma p \rightarrow K^0_s nK^+$

Events

- Tracking in drift chamber in \sim 0.18 T field
- TOF with limited resolution
- Well suited for forward angles down to 0°
- Reaction studied: $\gamma p \rightarrow$ $\Theta^+ K^0_s \rightarrow (nK^+)K^0_s$ likely via K^* exchange

SAPHIR event

$${f n}{f K}^0_{s}$$
 mass with $\pi^+\pi^-={f K}^0_{s}$

mass(nπ⁺π⁻)/GeV

 $\mathbf{n}\mathbf{K}^+$ mass for $\pi^+\pi^-=\mathbf{K}^0_{\mathbf{s}}$ - sidebin Side bin subtracted distributions nK_s^0 mass for $nK^+=\Theta^+$ - sidebin

 $\cos artheta_{\mathrm{K_s^0}} > 0.5$ cut.

A new pentaquark E

NA49 experiment at CERN 158 GeV protons on LH₂ Tracks, dE/dx from multiple TDC's Secondary vertices to Λ $\Lambda\pi^-$ to form Ξ^-

Pentaquark searches

Exclusive reactions

- CLAS, SPRING8, Crystal-Barrel: photo-production
- COSY: pp $ightarrow \Theta^+(1540)\Sigma^+$
- Inclusive reactions
- CERN, Fermilab: $\nu A \to p K^0_s$
- Hermes, Zeus, Compass: e (μ) + A $ightarrow \mathrm{pK}^0_\mathrm{s}\mathrm{X}$
- RHIC: A + A $\rightarrow \, p K^0_s X$

CERN: WA21 WA25 WA59 FNAL: E180 E632

The ⊖⁺ from the HERMES experiment

- Quasi real photons from 27.6 GeV positron beam of the HERA storage ring at DESY.
- D₂ target.
- Integrated luminosity of 250 pb^{-1} .
- $\Theta^+ \to pK^0_S \to p\pi^+\pi^-$ decay chain.

The Θ^+ at IHEP, Protvino:

8

and COSY

in the reaction $pA o pK_s^0 + X$. reaction $\mathrm{pp} o \Sigma^+\mathrm{K}_\mathrm{s}^0\mathrm{p}$ at COSY. The dashed histogram represents back-The (pK_s^0) invariant mass spectrum The $m pK_s^0$ invariant mass distribution from the

ground obtained from simulations.

 12 C– 12 C scattering. The $m pK_s^0$ invariant mass distribution from tween $0.35~\leq~p~\leq~0.9$ GeV/c 2 or $p~\geq$ $1.7 GeV/c^2$.

The Θ^+ in Mongolia and at Erivan

Data are from a 2m propane bubble chamber experiment at Dubna.

The ⊖⁺ at HERA

Invariant-mass spectrum for the $K^0_{\rm s} p$ and $K^0_{\rm s} \bar p$ channel for $Q^2>20\,{\rm GeV}^2$ at HERA.

- Solid line is result of a fit (threeparameter background)
- Histogram shows the prediction of the ARIADNE MC normalised to the data in the mass region above 1650 MeV.
- Inset shows the $K^0_s p$ (open circles) and the $K^0_s \bar{p}$ (black dots) candidates.

Cross section $\sim 100 \mu b \longrightarrow$ Normal hadronic cross section

The Θ^+ at CERN: ${
m K^+p}
ightarrow {
m K_s^0} p \pi^+$ at 1.69 GeV/c

 $M(D^*p)$ distribution from opposite-charge D^*p combinations in deep inelastic scattering of electrons off protons. The solid line represents a fit with a Gaussian peak plus a two-parameter background, the dashed line a fit background only.

Entries per 10 MeV

The charming pentaquark from DESY

CLAS	$\gamma p \rightarrow nK^+K^-\pi^+$	$\sim 4.0\sigma$	41	< 26	$1555\pm1\pm10$
CERN, FNAL	<i>ν</i> −induced	$\sim 4.0\sigma$	27	< 20	${\bf 1533}\pm{\bf 5}(\pm{\bf 3})$
SAPHIR	$\gamma { m p} ightarrow { m nK^+K_s^0}$	4.8σ	63 ± 13	~ 25	${\bf 1540}\pm{\bf 4}(\pm{\bf 3})$
CLAS	$\gamma d ightarrow pnK^+K^-$	$\sim 3.5\sigma$	43	< 21	$1542 \pm 2 \pm 5$
DIANA	$\gamma p \rightarrow n K^+ K_s^0$	$\sim 3.0\sigma$	29	< 9	$1539 \pm 2 \pm 2$
LEPS	$\gamma C \rightarrow C' K^+ K^-$	$\sim 2.7\sigma$	19 ± 2.8	~ 25	$1540\pm10\pm5$
					$\Theta^+(1540)$
		signif.		(MeV)	(MeV)
Experiment	Reaction	Statist.	N_{event}	Width	Mass
		mall.	<u>v</u>		
ted to be	rs but were estima	the pape	t quoted in	s are no	in parentheses
rrors given	. The systematic er	itaquarks	ents of per	asurem	Summary of me

HERA	γ^* –induced	5 .4σ			$3099 \pm 3 \pm 5$
					$\Theta_{c}(3099)$
NA49	u-induced	4.6σ		< 21	1862
					Ξ(1862)
ZEUS	Fragmentation	4.6σ	221	6 >	$1521.5 \pm 1.5^{+2.8}_{-1.7}$
Mongolia	A-A reaction	$\sim 4.6\sigma$	~ 70	< 26	${\bf 1532}\pm 6$
YEREVAN	p-A reaction	$\sim 4\sigma$	~ 100	∧ 35	1545 ± 12
COSY	p-p reaction	3.7σ		< 18	1530 ± 5
SVD-2	p-p reaction	3.5 σ	50	< 24	$1526\pm3\pm3$
HERMES	γ^* –induced	$\sim 4\sigma$	∼ 60	< 19	1528 ± 4
		signif.		(MeV)	(MeV)
Experiment	Reaction	Statist.	N_{event}	Width	Mass

Where	Reaction	Mass interval	Limit	Comment
BES	e⁺e⁻→J/ψ → KNX	1520-1560	<10-⁵ (branching)	Azimov: * 10-5
HERA-B	pA→ K⁰p X	15	N/A	vs NA49,SVD
PHENIX	dAu→ K⁺n X	1500-1600	N/A	vs STAR, Dubna
CDF	pp →Z→ K⁰p X	1525-1545	<87(79) events	vs ZEUS, STAR
ALEPH	e⁺e⁻→Z→ K⁰p X	1525-1545	<.003 (events)	No D-events (K-L)
DELPHI	e⁺e⁻→Z→ K⁰p X	1500-1750	<.006(events)	No D-events (K-L)
ZEUS	ep→ Ξ π X	1840-1880	N/A	vs NA49
CDF	pp→ Ξ π X	1840-1880	126/?	vs NA49
Focus	yA → Dp X	N/A	N/A	vs H1
WA89	Σ -A \rightarrow $\Xi \pi$ X	1840-1880	N/A	vs NA49

- T. Nakano et al. [LEPS Collaboration], "Evidence for a narrow S = +1 baryon resonance in photoproduction from the neutron," Phys. Rev. Lett. 91 (2003) 012002.
- V. V. Barmin et al. [DIANA Collaboration], "Observation of a baryon resonance with positive strangeness in ${f K}^+$ collisions with Xe nuclei," arXiv:hep-ex/0304040.
- S. Stepanyan *et al.* [CLAS Collaboration], "Observation of an exotic S = +1 baryon in exclusive photoproduction from the deuteron," arXiv:hep-ex/0307018
- J. Barth et al. [SAPHIR Collaboration], "Observation of the positive-strangeness pentaquark Θ^+ in photoproduction with SAPHIR at ELSA," arXiv:hep-ex/0307083.
- A. E. Asratyan, A. G. Dolgolenko and M. A. Kubantsev, "Evidence for formation of a narrow ${f K}^{m u}_{f s}{f p}$ resonance near 1533 MeV in u interactions," arXiv:hep-ex/0309042.
- W. Lorenzon, "The Θ^+ pentaquark search at HERMES", Penta-Quark 2003 Workshop, Jefferson Lab, Newport News, Virginia 23606 November 6-8, 2003
- A. R. Dzierba, D. Krop, M. Swat, A. P. Szczepaniak and S. Teige, "The evidence for a pentaquark signal and kinematic reflections," arXiv:hep-ph/0311125.
- A. Berthon *et al.*, "Properties of the inelastic $\mathbf{K}^+\mathbf{p}$ reactions betwen 1.2 and 1.7 GeV/c", Nucl. Phys. B 63 (1973) 54
- A. Airapetian *et al.* [HERMES Collaboration], "Evidence for a narrow |S| = 1 baryon state at a mass of 1528-MeV in quasi-real photoproduction," arXiv:hep-ex/0312044.

- A. Aleev et al. [SVD Collaboration], "Observation of narrow baryon resonance arXiv:hep-ex/0401024. decaying into $m pK_s^0$ in p A interactions at 70-GeV/c with SVD-2 setup,"
- M. Abdel-Bary et al. [COSY-TOF Collaboration], "Evidence for a narrow resonance at experiment," arXiv:hep-ex/0403011. 1530-MeV/c 2 in the ${
 m K}^0{
 m p}$ system of the reaction ${
 m pp} o \Sigma^+ {
 m K}^0{
 m p}$ from the COSY-TOF
- P. Z. Aslanyan, V. N. Emelyanenko and G. G. Rikhkvitzkaya, "Observation of S=+1 arXiv:hep-ex/0403044 narrow resonances in the system $K_s^{0}p$ from p+ C_3H_8 collision at 10 GeV/c,"
- R. Togoo et al., Proc. Acad. Mongolian Science 4 (2003) 2.
- ZEUS Collaboration, "Evidence for a narrow baryonic state decaying to $\mathrm{K_s^op}$ and $K^{\mathrm{u}}_{s}ar{p}$ in deep inelastic scattering at HERA," arXiv:hep-ex/0403051
- J. J. Engelen et al., "Multichannel analysis of the reaction $K^-p \rightarrow K^0 \pi^- p$ at 4.2 GeV/c," Nucl. Phys. B 167 (1980) 61.
- K. T. Knöpfle, M. Zavertyaev and T. Zivko [HERA-B Collaboration], "Search for Θ^+ and $\Xi_{(3/2)}$ -pentaquarks in HERA-B," arXiv:hep-ex/0403020.
- J. Z. Bai *et al.* [BES Collaboration], "Search for the pentaquark state in $\psi(2S)$ and J/ ψ decays to $m K^{0}_{s}
 m pK^{-}ar{n}$ and $m K^{0}_{s}ar{p}K^{+}n$," arXiv:hep-ex/0402012.

- C. Alt *et al.* [NA49 Collaboration], "Observation of an exotic S = -2, Q = -2 baryon resonance in proton proton collisions at the CERN SPS," arXiv:hep-ex/0310014.
- H1 Collaboration, "Evidence for a narrow anti-charmed baryon state," arXiv:hep-ex/0403017.

POSTDICTIONS:

Molecular NK state in S-wave ? Parity negative.

Too narrow, should be 500 MeV

The Θ^+ has isospin I=2 and negative parity.

(I=0 or 1) Narrow because it decays via an isopin violating amplitude into p+K

 Θ^{+++} predicted, decays only by weak interaction !

Parity of Θ^+ is negative.

Lattice QCD

Evidence for Θ^+ claimed, parity negative.

→ Diquarks are bosons Diquark – antidiquark wave function: $\left[QQ\right]^{3}c^{3}r^{0}s} \left[QQ\right]^{3}c^{3}r^{0}s}$ → Two identical diquarks: Two identical diquarks: Mathematical diquarks: $P^{4}\overline{Q}$ positive parity. $P^{4}\overline{Q}$ positive parity	$[QQ]^{\bar{3}_{color}\bar{3}_{flavor}0_{spin}} [QQ]^{\bar{3}_{color}\bar{3}_{flavor}0_{spin}} [\bar{Q}]^{\bar{3}_{flavor}} \supset [Q^4\bar{Q}]^{\bar{10}_{flavor}}$	• Diquark model: $[QQ]^{\overline{3}_{color}\overline{3}_{flavor}0_{spin}}$ is energetically favored.
--	---	---

- S. Nussinov, "Some comments on the putative Theta+ (1543) exotic state," arXiv:hep-ph/0307357.
- R. N. Cahn and G. H. Trilling, "Experimental limits on the width of the reported $\Theta^+(1540),$ " arXiv:hep-ph/0311245.
- F. J. Llanes-Estrada, E. Oset and V. Mateu, "On the possible nature of the Θ^+ as a ${
 m K}\pi{
 m N}$ bound state," arXiv:nucl-th/0311020.
- F. Stancu and D. O. Riska, "Stable $uudd\overline{s}$ pentaquarks in the constituent quark model," arXiv:hep-ph/0307010.
- S. Capstick, P. R. Page and W. Roberts, "Interpretation of the Θ^+ as an isotensor resonance with weakly decaying partners," Phys. Lett. B 570 (2003) 185.
- R. L. Jaffe and F. Wilczek, "Diquarks and exotic spectroscopy," arXiv:hep-ph/0307341.
- N. Itzhaki, I. R. Klebanov, P. Ouyang and L. Rastelli, "Is $\Theta^+(1540)$ a Kaon–Skyrmion Resonance?," arXiv:hep-ph/0309305
- B. Wu and B. Q. Ma, "Parity of anti-decuplet baryons revisited from chiral soliton models," arXiv:hep-ph/0311331.
- S. Sasaki, "Lattice study of exotic S = +1 baryon," arXiv:hep-lat/0310014.

Θ^+ summary

- There is evidence for a narrow positive–strangeness baryon resonance Θ^+ from several sources
- All experiment have statistical significance of $\sim 5\sigma$
- No absolutely conclusive evidence, but agreement is impressive
- Produced by photon interactions (and hadronically in DIANA)
- Production mechanism partly controversial
- Spin and parity unknown
- Predicted by chiral soliton model
- ullet should have $J^P=1/2^+$ and
- be member of an (anti–) decuplet with 3 exotic states (Ξ^{--} and Ξ^+)
- Production and decay predictions for non-strange member