Cryptography:
An Investigation of a New Algonthm vs. the RSA

Sarall Flannery, Blarncy, Co. Cork, Ireland

Contents
¢ Introduction 1
e Aim 1
s The RSA Algorithm 1
¢ The Caylev=Purser Algorithm 3

<

o Wherein lies the security of the Cavlev-Purser Algorithm?

o Some differences between the RSA and Cavlev-Purser Algorithms 8
e RSA vs. Cavlev-Purser — Empirical Tite Analysis g9,
e Graph: CP vs. RSA - Comparison of Enciphering Times 11
e Conclusions’ 12
e Post Script 12

¢ Appendix of Progranmmes

— Mathematica Code for RSA Algorithm - 14
— Mathematica Code for Caylev-Purser Algorithm 15

¢ Bibliography ' . | 17

Cryptography:
An Investigation of A New Algorithm. vs. the RSA

Introduction

As long us there are creatures endowed with language there will be the desire for confidential communication
- messages Intended for a limited audience. Governments, companies and individuals bave & need to send
or store information in such a way that only the intended recipient is uble to read it. Generals send
orders, bunks send fund transfers and indviduals make purchases using credit cards. Cryptography is the
study of methods to “disguise’ information so that only the intended reciepient can obtain knowledge of
its content. Public-Key Cryptography was first suggested in 1976 by Diffie and Hellman and a public-key
cryptosystem is one which has the property that someone who knows only how encipher (*disguise’) a
piece of information CANNOT use the enciphering key to find the deciphering key wothout 2 prohibitively.
lenghtly: computation. This means that the information necessary to send private or secret messages, the
enciphering algorithm ulong with the enciphering key. can be muade public-knowledge by submitting them
to a public directory. The first public-key cryptosystem, the RSA Algorithm, was developed by Ronald
Rivest, Adi Shamir and Leonsrd Adleman at MIT in 1977. This system, described below, hes stood the
test of time and is today recognised as a standard of encryption worldwide. ')

Aim

This project investigates a possible new public-key algorithm, entitled the Cuayley-Purser (CP) Algorirbm
and compares it to the celebrated RSA public-key slgorithm. It iz hoped to show that the CP Algorithm
is

e As secure as the RSA Algoiithm and

o FASTER than the RSA Algorithm.

Firstlv both algorithms ure presented and why they both work is illustrared. A mathematical investi-
gation into the security of the Cavley-Purser algorithm is discussed in the main body of the report. Som=
differences between the RSA und the CP algorithms are then set out. Both algorithms ure programmed us-
ing the mathematical package Aluthematice and the results of an empirical run-time analysis are presented
to illustrate the relative speed of the CP Algorithm.

RSA Public Key Cryptosystem

The RS'A scheme works as follows:

Start Up: [This need only be done once/]
. e Generate at random two prime numbers p and ¢ of 100 digits or more.
o Calculate n =pq and o(n) = (p—1)(g—1) =n—(p+4) +1.
« Generute at random # number ¢ < &(n) such that (e.d(n)) = 1.

e Calculate the multiplicative inverse, d, of ¢ (mod ¢(n)) using the Euclidean slgorithm.

Publish: Make public the enciphering key.
' Kg=(n.c)
Kecp Sccret: Conceal the deciphering key,
Ky = (n,d)
Enciphering: The enciphering transformation is.
C=f(P)=P* (modn)
Deciphering: The deciphering transformation is.

P=fYC)=C? (modn)

Why thc decipbering works:- The correctness of the deciphering algorithm is based on the following
result due to Euler. which is a generalization of what is known as Fermat's little theorem. This result
states that, ’

a®™ =1 (modn)

whenever (n.n) = 1, where o(n). Euler's-6 function, is the number of positive integers less than n which
are relatively prime to n. '

WVhen n = p, a prime, &(n) = p — 1. and we have Fermat's theorem:

a'=1 (medp) ; (a.p)=1
If plo thena? = a=0 (mod p), so that for any a,

a’ =a (mod p)

Now since d is the multiplicutive inverse of ¢, we huve

ecd=1 (mod é(n)) => ed=1l+kd(n), keZ
Now

FUF(PY) = (P! =P¥ (modn)
‘und A
pe = pttkeln (modn) (for some integer)
Now for P with (P.p) =1, we have
prlel (modp) => pre™il = P (modp) as p-—1lon).
This is trivially true when P =0 (mod p), so that for all P, we have,
) pl = pliken) = P (mod p)
Arguing similarily for . we have for all P,
p¥ = pli+e) = P (mod q)

Since p and g are relatively prime, together these equations imply that for all P,

p = p'tké() = P (mod n).

(3]

The Cayley-Purser Algorithm

Introduction

Since this algorithm uses 2 x 2 matrices and ideas due to Purser it is called the Caylcy-Purscr Algorithin.
The matrices used are chosen from the multiplicative group G = GL(2.%,). The modulus n = pq. where
p and ¢ are both primes of 100 digits or more. is mude public along with cerrain other purameters which
will be described presently. Since

[GL(2,Za)i = no(n)*(p+1) (g +1)

we note that the order of G cannot be determined from a knowledge of n alone.

Plaintext message blocks are assigned numerical equivalents as in the RSA and placed four at a time in
the four positions (ordered on the first index) of a 2 x 2 matrix . This message matrix is then transformed
into o cipher matrix by the algorithm and the corresponding ciphertext is then extracted by reversing the
assignment procedures used in encipherment.

Because this algorithm uses nothing more than matrix multiplication (modulo 1) and not modular
exponentiation as required by the RSA it might be expected to encipher and decipher considerably faster
than the RSA.. This question was investigated, using the mathematical packsge Mathematica, by ap-
plying both algorithms to large bodies of text (see Tables I - IX) and it was found that the Cayley-Purser
algorithm was approximately twenty - two times faster the RSA with respect to a 200 — digit modulus.

Needless to say if it could be shown that this algorithm is us secure us the RSA then it would recommend
Itself on speed grounds alone. The question of the security of this algorithm is discussed after we huve
described it and explained why it works.

The CP Algorithm

. Starl': Up procedure to be followed by B (the receiver):

e Generate two large primes p and g.

¢ Calculate the modulus 1 = pq.

s Determine x and a € GL(2.2Z,) such that xa™' # ayx-
e Chlculate 3=1\"la"ly.

e Calculate y=1\" ; reN.

Publish: The modulus nn and the parameters o, 3,and ¥

Start Up procedure to be followed by A (the sender):

In order to encipher the matrix i corresponding io u plaintext message unit for sending to B. person A
maust consult the parameters made public by B and do the following:

¢ Generate a random s € N
o Calculate § = +*
e Calculate ¢ = 6~'aé

e Calculate x = 67156

Enciphering Procedurc When the above parameters are calculated, A c-'nciphers M via
1 = KUK
and sends " and ¢ to B

Deciphering Procedurc When A receives p * and ¢ (s)he does the following:
Calculates

A= ,\'-'s \
and deciphers p via .
p=A'A
‘Why the deciphcring works.
The declpherin'g works since
A= ylex
= y\"HéLab)x
= &Yy"lay)s : (6. being spower of x. commutes with y)
- é-—-l(’\.—l a_—l .\')-|6
= &1 : (recall that 8= x"'a"'y)
= (6-'36)
= x-! (B's enciphering key)

so that
AlA = A(rps)Ar
= («) p (s

= WU

Wherein lies the security of the Cayley-Purser Algorithm ?

To find the secret matrix Y, known to B alone, ane might attempt to solve either the equation

A= '\-I O—l x
or
y=2x"
In the first of these equations the matrix 3 is public end the marrix o~! can be computed since both the
matrix a snd the modulus » are public.

In the second equation only the matrix v is known and it is required to solve for both the exponent + and
the base matrix x. Assuming that one knew r, solving this equation would involve extracting the PAL
roots of » matrix modulo the composite integer n. Even in the slmplest case, where r = 2. extracting the
square root of a 2 x 2 matrix modulo requires that one be able to solve the ordinary quadrutic conruence

rP=a (modn).

when # = py. It is known that the ability to solve this “square root’ problem is equivalent to being able
to factor n. Thus we may regard an attack on y via the public parameter 7 as being computationally-
prohibitive.
Solving the equation

A=1\"'a7lx
would appeuar the easier option for an attack on the private matrix \ as it only involies solving the set of
linear equations given by

xB=a"ly

However the number of possible solutions to this equation is given by the order of C'(a). the ceutraliser of o
in GL(2,Z,,). By ensuring that the order of this group is extremely large one can make it computationally
prohibitive to search for . '

To see why this is the case suppose that

Ad=y"la7'x and 3= ,\Tla_’.\']

Then
ylamlx=17"e"
- if and only if '
a7ty =wi'a
if and only if
xxpleCa)
if and only if

x € Cla v
Thus the number of distinct solutions of the equation is given by C'(a)| as C{a™!) = C(a).

Now C'(a) will have a large order if the matrix elemdent a has a large order.

By choosing our primes p and g to be of the form

p= 2p1 +1
and

g=2¢"+1.

where p' and ¢! are themselves prime, we can show that it is almost certainly the cuse that an element a
chosen at random from GL(2.Z,) has & large order.

To see why. we begin by considering the homomorphism & of GL(2.Z,) onto Z, defined by sending &
matrix into its determinant. The order of & matrix in GL(2.Zn) is ut least that of the order of its image
in Z, since ... :

If r is the order of A in GL(2,Z,) and ¢(A) = u then A" =1I with
1= (1) = 6(A") = S(A) =u"
shows that m divides r where m is the order of « in Zy.

Thus the order of 4 in G'L(2,Z,) is st least m. In fact

‘.;’(Am) - 6(.4)7" = "m = 1
shows that A™ lies in SL(2,Z,) so the matrix A will have order y iff A” =I in SL(2.Zx).
Ve note also that since the maximum achievable order of an element in Zj, is

p-1lg-1< 0’-1)2(«-1) =°‘2'"

(as (p— 1.q — 1) > 2) and since the order of SL(2.Z,) is no(n)(p+ 1)(q + 1) the maximum achievable
order of a matrix in GL(2,Z,) is

lp—1.g=1no(n)(p+1)g+1) < n6{n)2(p+ 1My +1)/2= GL(2.Z,)|/2.

Thus if we can show that the probability of an element having & :mall order in Z,is negligibly small then
we will have shown that the order of an element chosen at random from GL(2.Z,) is almost certainly of
*high order.’

If
r=2p' +1
and
q=2¢"+1
then
é(n) = 6(pg) = (p— 1)(q — 1) = 2p'2" = 4p'y/’
with

In- 1. q-1 =0 2¢']= @'y = o(n)/2

Now the possible orders of the elements in Z, are divisars of o{n) 2= 2p'y! and so are

1,2, 9. ¢ 2, 24 p'd'. 2p'd’
and all of these orders are achieved by some elements. In fact by counting exactly how many elements
correspond to each order we show that the probability of finding a unit in Zn of order less than p'q' is
negligibly small.

Recall that if a in Z,, has order k and b in Z, has order [then the order of c in Z, wWhere
c=a (modp)

and
c=b (mod g)

is [k. /], the least common multiple of A and L.
Now the possible orders of @ und b in Z, und Z, are divisors of

i og—1=2¢"

tespectively.

The following table lists the possible orders along with the number of elements of each order.

z' Z*q
Possible | No. of elements | Possible | No. of elements
Orders | of that order | Orders | of that order
1 1 1 1
2 1 2 1
pl pl -1 ql ql —1
2p! p —1 2q' g —1

By lifting elements in pairs via the CRT we obtain the elements corresponding to the different orders in
Z, slong with number of elements of each order. :

Order Number Reason

1 1 L.1=1

2 | 3) [l.2]=2.1 =[22]=2

P r -1 p'. 1) =p

7 g —1 Lygl=q

2p' | 3p' -3 7. 1) =[p'. 2] =[2p'. 2] = 2p
2q 3! —3 L2 =R 4= 2¢T=27"
7 P —p - +1 T gl =p'q"
20q" [3p'q —3p =3 +3 | 2" T=[r". 24 =2 247] =2p'¢

. Note that if we sum all the individual counts we get exactly 4p'q' which is the number of elements of Z,.

Explanation: To see how the number of elements corresponding to an order is obtained consider the
last entry in the above array. An element of order 2p'y' in Z, can be obtained in 3 different ways by lifting
pairs of elements from Zp, and Z,;: One way is lifting the pair (a. b) where a has order 2p! and b has order
q!; another by lifting the pair (a,b) where a has order p' and b has order 2¢' and another by lifting the
pair (1.b) where a has order 2p! and b has order 2¢'.

Regarding elements of order less than p'y' as elements of *low order’ we obtain the probability of choosing
an element of order less than pl¢' to be

ip' +dg' — 4
FPSPAS
This is equivalent to
1 1 1
e T

In the cuse where p and ¢ are both of order of magnitude 10'™ this probability is approximately
2_10—“){)

which, by any standards, is negligibly small.

Some Differences between the RSAand Cayley-Purser Algorithms

1. The most significant difference between the RSA and the Cayley-Purser algorithm is the fact that
the C'ayley-Purser algorithm uses only modular matrix multiplication to ‘encipher plaintext messages
whereas the RSA uses modular exponentiation which requires a considerably longer computation
time. Even with the powerful Mathematics function PowerdMod the RSA a\ppea.rs (see Tables I - IX)
to be over 20 times slower thun the Cayley-Purser Algorithm.

2. In the RSA the parameters needed to encipher - (n. e} - are published for the whole world to see
and anvone who wishes to send a message to Bob raises their messages' numerical equivalents to
the power of e modulo n. However in the Cayley-Purser algorithm the enciphering key is not made
public | Only the parameters for calculating one’s own key are published. This means that every
sender in this system also enjoys & certuin measure of secrecy with regard to their own messages. One
consequence of this is that the Cayvley-Purser algorithm is not susceptible to a repeated encryption
attack because the sender, Alice, is the only one who knows the encryption kev she used to encipher.
In the RSA. however if the order of & can be found then an eavesdropper can decipher messages.

3. Alice can choose to use a pew enciphering key every time she wishes to write to Bob.' In the unlikely
event that an eav eadropper, Eve, should find an enciphering key. she gains information about only
one message and no information about the secret matrix c. By contrast, if a piece of intercepted RSA
ciphertext leads to Eve being able to decipher (through repeated encryption etc.), then she would be
able to decipher all intercepted messages which were enciphered using the public exponent e.

4. In the Cayley-Purser algorithm the sender, Alice, has the ability to decipher the ciphertext which she
generates using Bob's public parumeters even if she loses the original message (because she knows
d and therefore can get the deciphering key, & =1 e= Al} Contrast this to the RSA - Alice cannot
decipher her own message once she has enciphered it using Bob’s public key parametets. There is
a possible advantagé in this for Alice in that she could store encrypted messages on her computer
ready for sending to Bob.

-~

RSA vs. Cayley-Purser

Empirical Time-Analysis

The times taken by the Cayley-Purser and RSA algorithms (using & modulus n of the order 10%%) to
encipher single und multiple copies of the Desiderata (1769 characters) by Max Ehrman are given in the
following tables alopg with the times taken by both algorithms to decipher the corresponding ciphertext.

Table I

Running Time (Seconds)

Message = 1769 characters
Trial No. 1 2 3 Avcrage
RSA enciphér | 41.94| 421 | 41.78 | 41.94
RSA. decipher | 40.99 | 41.009 | 41.019 | 41.009
C-P encipher | 1.893 | 1.872 | 1.893 | 1.886
C-P decipher |1.502 | 1.492 | 1.492 | 1.4953

Table II

Running Time (Seconds)

Message = 2 * 1769 = 3538 clLiaracters
Trial No. 1 2 3 Average
RSA encipher | 72.364 | 72.2741 72.364 | 72.334
RSA decipher | 70.942 | 70.952 | 72.144 | 71.346
C-P encipher | 3.305 | 3.305 | 3.325 | 3.3016
C-P dccipher | 2.734 | 2.864 | 2.864 | 2.8206 |

" Table III

Running Time (Seconds)
Message = 3 x 1769 = 5307 characters
Trial No. 1 2 . 3 Average
RSA encipher | 103.078 | 102.808 | 103.489 | 103.125
RSA deécipher | 101,246 | 101.076 | 104.06 | 102.1273
C-P encipher | 4.757 4737 4.747 4.747
C-P decipher | 3.976 | 4.086 | 1.066 | 4.0426

Table IV

Ruuning Time (Scconds)
Message = 4 x 1769 = 7076 characters
Trial No. 1 2 3 Average
RSA encipher | 134.434 | 134.323 | 134.333 | 134.363
RSA decipher | 131.128 | 134.734 | 134.734 | 133.532
C-P encipher | 6.159 | 6.048 | 6.109 | 6.1053
C-P decipher | 5.227 | 4.967 | 4.967 | 5.05536
Table V

Ruuning Time (Seconds)
Message = 12 x 1769 = 21228 characters

RSA enc | RSA dec | C-P enc: | C-P dec
| Time Taken 378.078 | 371.254 | 17.435 | 14.371

Table VI

Running Time (Seconds)
Message = 24 * 1769 = 42456 characters

. RSA enc | RSA dec | C-P enc | C-P dec
Time Taken | 509.523 | 511.455 | 22.583 18.767
Table VII

Ruuning Time (Seconds)
Message = 48 * 1769 = 84912 characters

F
i
'
I
{
|
1

RSA enc | RSA dec | C-P enc | C-P dec
Time Taken 1010.24 | 1023.95 | 44.894 | 36.823
Table VIII

Running Time (Seconds)
Message = 144 * 1769 = 254730 characters

RSA enc

RSA dec

C-P enc

C-P dec

MTime Taken

3154.21

3036.24 |

142.775

129.416

With respect to a 133MHz machine the Cayley-Purser Algorithm is on average approximately 22 times
faster than the RSA where in each case the modulus 7. is of the order 107,

10

Table IX . : '
The following table illustrates the time taken for the RSA and CP Algorithms to encipher a piege of text
(7076 characters in length) with varying size moduli. The ratio of the enciphering speeds is also given.

Running Time (Seconds)
Message p containing 7076 characters
Modulus | RSA | CP Ratio
1222 digits | 84.641 [3.916 | 21.6:1
242 digits | 104.71 [4.036| 25.9:1
262 digits | 118.841 [4.276 | 27.8:1
282 digits | 131.739 | 4.326 | 30.5:1
302 digits | 145.689 | 4.487 | 32.5:1

Note: . The difference in times taken to encipher and decipher in the RSA depends on the binary weight
of the exponents e and d.

Graph 1: Comparison Of Enciphering Times - Cayley-Purser vs. RSA

Time (secs)

140} RSA
120}
100}
80
60
40}

20 : Cayley Purser

2&0 — 26\'.\ R 1 422‘20 . 360 Moduhxs(No.ofDigjts?

Number of Desiderata Enciphered

The piece of text used (Desiderats) contains 1769 characters.

11

Conclusions
This project
s (a) Shows mathematically that the CP Algorithm is as secure as the RSA Algorithm.

s (b) Illustrates through un empirical run-time analysis that the CP Algorithm is FASTER to imple
ment than the RSA Algorithm: the speed factor increasing with modulus size as shown by following
table: -

Runuing Time (Seconds)
Message = 4 * 1769 = 7076 characters
Modulus RSA cr Ratio
222 digits | 84.641 | 3.916 | 21.6:1
242 digits | 104.71 (4.036 | 25.9:1
262 digits | 118.841 | 4.276 | 27.8:1
282 digits | 131.739 | 4.326 | 30.5:1
302 digits | 145.689 | 4.487 | 32.5:1

Post Script: An Attack on the CP algorithm. -

We describe an attuck on the Cayvley-Purser algorithm which shows that anyone with & knowledge of the
public parameters a,3 and v can form a multiple 3’ of x. This matrix x’ can then be used in conjunction
with ¢ to form A = »~! which is the deciphering key. Thus the system as originally set out is “broken’.

If x" = v\ for some constant v and if € is known to an adversary then the calculation

Ylex = (vix " e(vy) = x7Mex = &1

vields the deciphering key ~~! . Thus any mulriple of x can be used to decipher.

In the CP system the matrix v is made to commute with x so as to enable the deciphering process. This
is done using the construction « =)" for some r und herein lies the weakness of the slgorithm. Were »
to be generated more efficiently using a linear combination of x and the identity matrix I (higher order
polynomials in x reduce via the Cayley-Hamilton theorem to linear expressions in y) the system is still
comprorised. -

If the matrix 4 is non-derogatory (i.e. when < is reduced mod p snd mod ¢ neither of the two mutrices
obtained are scalar multiples of the identity) then

x=ul+vy -
(Il the matrix « is derogatory then n can be factorised by calculating GCD (=1 — “2a. 12- 721 n))
rd
Now since <y is non-derogotary (v,11) =1 and
){=v—l x=vlul4+y=dI+q

for some d € Z,,.

Since

A = .\.—la—l‘\,

= ux"lo."v"x

= (u_‘\')"la_l(y"l_\)
=3 = x'—"q_lx'

—1.7

=3 = a 'y
Substituting I 4 - for x’ in this lust equation gives

(X+~]3 a"l[dI +]

I

=di+q8 = da~' +aty

=d[3-a7"] = [a=ts - ~3]

Since o # -1 these matrices differ in at least one position. For argument’s sake let o, # Bl'l' . €ompuring
the (1,1) entries in the above matrix identity gives

d(B —a1))=e (modn) : €€Z,

If (o — ﬁﬁ')" exists mod 1 the above linear congruence is uniquely solvable for d. If not a factorisation
of n. is abtained.

Roroark 1:- This attack shows that anvone with a knowledge of the public parameters a..J and § can
form a multiple \’ of x. “This matrix x’ can then be used to form A = K~V provided € is known. If ¢
is transmitted securely on a once off busis then knowledge of u \’ on its own is not enough to break the
system, though then the Cayley-Purser Algorithm would no longer be public-kev in nature.)

Romark 2: The fuct that a derogotary - leads to a factorisation of the modulus 17 was further investigated
on the ssumption that knowledge of n might not severely compromise the sysrem. However in this cuse
also a multiple of \ is obtalnable.

Rcmark 3: An analysis of the CP algorithm based on 3 x 3 matrices, though slightly more~involved in
its details. leads to conclusions similar to the ones just described.)

Romark 4: For the sake of efficiency & should be calculated as é =a - + b rather thun as § ="

13

- W MALAEMALILA @at(z Jor RSA 4 &P A’lgaritf»ms

Firs tPrimAbove[n’_Integer] :
(Clear(k]; k =n; While[! PrimeQ[k], kek +1]; k)

ConvertString[str_String] :=
Fold[Plus[256 #1, #21&, 0, ToCharacterCade[str]]

StringToList{text string]l := Module[{dblocklength =
Floor[N[Log[256, n]]], strLength = Stringlengthltext]},
ConvertString /8 Table[StringTake[text,{i, Min[strLength, i +
blockLength -~ 1]11,{i, 1, strLength, blockLength}]]

:COnvertNmber [mm Integer] i=
FromCha.racterCoda / @: Intaga:D:Lgits [num,256]

ListToString[l List] := StringToin[ConvertNumber /@ 1]

W Mathematica Code for RSA A'lgaritﬁm

GenerataPQNED[digits Integer] := (p= FirstPrimehAbaove[
prep = Random(Integer, {105t 1o4stee_1}7];
Catch|[Do[preq = Randm[Integar, {10~ (digits~-1), 10~digits -1}];
If [preq !{= prep, Throw[q= E‘J.rstPrimeRbove[preq]]] {100}1]
n=pqg;e= Randam[n_ﬂ_:eqer. {p, n31; °
While[GCD[e, (P-1) (g-1)] i= 1,
e = R.andom[Integer, {pl n}]], a;
d = PowerMod[e, -1, (p-1) (a-1)]:)

RSAencNumber [mxn_Int.eger] := PowerMod[num, e, n]

RSAdecNunber [num_Inteder] := FPowerdod(nwm, d, n]

RSAanc[text | string] :=
REAencNumber [#]& 7@ StringTOIiSt[taxt]

RSAdec[cipher List]:=ListToString[RsAdecNumber [#]&/@cipher]

’

W Mathematica Code for Cayley Purser Algorithm

StringToMatrices[text String]:= Partition[Partition[Flatten
[Append([StringTolist[text], {32,32,32}]1,2],2]

MatricesToString[l List] :=
StringJoin [ConvertNumber /€ Flattan[l]]

CPpgn[digits Integer] :=Module[{

Pl = FirstPrimeAhove[Random[Integer,

{104 (Floox[digits /2] -1), 10~ (Floor[digits/2]) ~1}]],
ql = FirstPrimeAbove[Random[Integer,

{10~ (Floor[digits /2] -1), 10* (Floor[digits/2]) -1}11},

While[PrimeQ[p = 2pl +1], pl = FirstPrimeAbove[pl + 111, p;

While[PrimeQ[g=2ql +1], gl = FirstPrimeAbove[gl +1]]’
ginspq;] '

randmatrix := (Caéch[.
Do[m = Table[Random[Integer, {0, n}], {4, 1, 2}, {3, 1, 2}];
TE£[{GCD [Mod[Det[m], n], n] ==1, Throw[m}], {1000}]1)

inv[a_-] e (d=!'4od.[Det[a], n]; i =‘Povermd.[d., -1, nl;
{{Mod{i«a[[2, 2]), n], Mod[-4+a[[1, 2]]), n]},
{Mcd[-i*a[[2, 1]]; n], Mod[i* a[tll 1]]: n]}})

mmully _, k_] := Mod[,
{{Mod[3[[1, 1] xk[[1, 211, n] +Mod[j[[1, 2]] ~k[[2, 1]], n],
Mod(3{[1, 111 +k[[1, 2]1], n] +Mod[3[[1, 2]] «Xk[[2, 2]], n}}.
{(Mod[3[[2, 1]] +k[(1, 111, n] +Mod[j[[2, 2]] »x[([2, 1]]. n],
Mod[jl[[2, 111 +k[[1, 2]], o] +Mod[3[(2, 2]]1 +k[[2, 2]]1, n]}},
n]

 Mathematica Cole for Cayley Purser iy orithm contd-

CPparameters := (identity = {{1, 0}, {0, 1}};
alpha = randmatrix; Catch[Do [chi = randmatrix;
If [mmul [chi, alpha] !=mmul[alpha, chi],
Throw[chi]], {10000000}]11;
chiinv s inv[chi]; alphainv = inv[alpha] :
Catch[Da[a = Randam[Integer, {2, 50}];
_gamma = Mod [MatrixPower{chi, s8], n];
If [gamma != identity, Throw[gamma]], {10000000}]1:
Catch([Do[delta = Mod [Mod [Random[Integer, {1, n-1}] gammna, n]
+Mod [Random[Integer, {1, n-1}] identity, n], nl
If[delta l= identity &&
mmul [delta, alpha] !=mmul[alpha, delta], Throw [d.elta]] r
{10000000}] 1:
beta = mmul [mmul | [chiinv, alphainv], chi];
deltainv = inv[delta];
epsilon = mmul{miul {deltainv, alphal, deltal];
kappa = mmul [mmul [deltainv, bata], delta].
lgmbda- = mmul [mwul [chiinv, epsilon], chi])

CPenc[plain String] := CPEncNum [StringToMatrices[plain]]

cmecmmu List] :
Table[m:l[ml[lamhda, 1([4]]1], lambda}, {1, Leagth{1]1}]

CPEncNum[l List] :
mame[mul[mul[kappa, 1r{411], kappa], {xrl»engthlll}]

crdec[ecipher List] := MatricesToString[CPDecNum [cipher]]

Bibliography:-

Higgins. J and Cambell. D Mathemautica) Certificates. Math. Mag 67, (1994). 21-28
Mackiw. George: Finite Groups of 2 x 2 Integer Matrices. Math. Mag 69 (1990). 356-301
Meijer. A.R.: Groups. Fuctoring and Cryptography. Math. Mag 69. (1996). 103-109
‘:\Ienczes. van Oorschot. Vanstone: Handbook of Applied Cryptography, CRC Press 1996
Sulomaa. Avto: Public-Key Cryptography (2 ed.). Springer Verlug 1996

Schneier, Bruce: Appliet:l Cryptography. Wiley 1996

_ Stangl. Walter D.: Counring Squares in 0. Math. Mag 69 (1996). 285-289

Sullivan. Donald: Square Roors of 2 x 2 Matrices. Muth. Mag 66 (1993). 314-316

