
Cognitive Modeling:
Knowledge, Reasoning and Planning for Intelligent Characters

John Funge
Intel Corporation

Xiaoyuan Tu ()
Intel Corporation

Demetri Terzopoulos
University of Toronto

Abstract

Recent work in behavioral animation has taken impressive steps to-
ward autonomous, self-animating characters for use in production
animation and interactive games. It remains difficult, however, to
direct autonomous characters to perform specific tasks. This paper
addresses the challenge by introducing cognitive modeling. Cogni-
tive models go beyond behavioral models in that they govern what
a character knows, how that knowledge is acquired, and how it can
be used to plan actions. To help build cognitive models, we de-
velop the cognitive modeling language CML. Using CML, we can
imbue a character with domain knowledge, elegantly specified in
terms of actions, their preconditions and their effects, and then di-
rect the character’s behavior in terms of goals. Our approach allows
behaviors to be specified more naturally and intuitively, more suc-
cinctly and at a much higher level of abstraction than would oth-
erwise be possible. With cognitively empowered characters, the
animator need only specify a behavior outline or “sketch plan” and,
through reasoning, the character will automatically work out a de-
tailed sequence of actions satisfying the specification. We exploit
interval methods to integrate sensing into our underlying theoretical
framework, thus enabling our autonomous characters to generate
action plans even in highly complex, dynamic virtual worlds. We
demonstrate cognitive modeling applications in advanced character
animation and automated cinematography.

Keywords: Computer Animation, Character Animation, In-
telligent Characters, Behavioral Animation, Cognitive Modeling,
Knowledge, Sensing, Action, Reasoning, Planning

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.2.4 [Artificial Intelli-
gence]: Knowledge Representation Formalisms and Methods—
Representation languages, Modal logic, Temporal logic, Predi-
cate logic; I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Graph and tree search strategies, Heuristic
methods; I.6.8 [Simulation and Modeling]: Types of Simulation—
Animation

0For contact information see www.cs.toronto.edu/∼{funge,tu,dt}.

Figure 1: Cognitive modeling is the new apex of the CG modeling
hierarchy.

1 Making Them Think

Modeling for computer animation addresses the challenge of au-
tomating a variety of difficult animation tasks. An early milestone
was the combination of geometric models and inverse kinematics
to simplify keyframing. Physical models for animating particles,
rigid bodies, deformable solids, fluids, and gases have offered the
means to generate copious quantities of realistic motion through
dynamic simulation. Biomechanical modeling employs simulated
physics to automate the lifelike animation of animals with inter-
nal muscle actuators. Research in behavioral modeling is making
progress towards self-animating characters that react appropriately
to perceived environmental stimuli. It has remained difficult, how-
ever, to direct these autonomous characters so that they satisfy the
animator’s goals. Hitherto absent in this context has been a sub-
stantive apex to the computer graphics modeling pyramid (Fig. 1),
which we identify as cognitive modeling.

This paper introduces and develops cognitive modeling for com-
puter animation and interactive games. Cognitive models go be-
yond behavioral models in that they govern what a character knows,
how that knowledge is acquired, and how it can be used to plan ac-
tions. Cognitive models are applicable to directing the new breed of
highly autonomous, quasi-intelligent characters that are beginning
to find use in production animation and interactive computer games.
Moreover, cognitive models can play subsidiary roles in controlling
cinematography and lighting.

We decompose cognitive modeling into two related sub-tasks:
domain knowledge specification and character direction. This is
reminiscent of the classic dictum from the field of artificial intelli-
gence (AI) that tries to promote modularity of design by separating
out knowledge from control. Domain (knowledge) specification in-
volves administering knowledge to the character about its world and
how that world can change. Character direction involves instruct-
ing the character to try to behave in a certain way within its world
in order to achieve specific goals. Like other advanced modeling
tasks, both of these steps can be fraught with difficulty unless ani-
mators are given the right tools for the job. To this end, we develop
the cognitive modeling language, CML.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIGGRAPH 99, Los Angeles, CA USA

Copyright ACM 1999 0-201-48560-5/99/08 . . . $5.00

29

1.1 CML: knowledge + directives = intelligent behavior

CML rests on a solid foundation grounded in theoretical AI. This
high-level language provides an intuitive way to give characters,
and also cameras and lights, knowledge about their domain in terms
of actions, their preconditions and their effects. We can also endow
characters with a certain amount of “common sense” within their
domain and we can even leave out tiresome details from the direc-
tives we give them. The missing details are automatically filled in
at run-time by the character’s reasoning engine which decides what
must be done to achieve the specified goal.

Traditional AI style planning [1] certainly falls under the broad
umbrella of this description, but the distinguishing features of
CML are the intuitive way domain knowledge can be specified and
how it affords an animator familiar control structures to focus the
power of the reasoning engine. This forms an important middle
ground between regular logic programming (as represented by Pro-
log) and traditional imperative programming (as typified by C).
Moreover, this middle ground turns out to be crucial for cognitive
modeling in animation and computer games. In one-off animation
production, reducing development time is, within reason, more im-
portant than fast execution. The animator may therefore choose to
rely more heavily on the reasoning engine. When run-time effi-
ciency is also important, our approach lends itself to an incremental
style of development. We can quickly create a working prototype.
If this prototype runs too slowly, it may be refined by including in-
creasingly detailed knowledge to narrow the focus of the reasoning
engine.

1.2 Related work
Tu and Terzopoulos [25, 24] have taken major strides towards cre-
ating realistic, self-animating graphical characters through biome-
chanical modeling and the principles of behavioral animation in-
troduced in the seminal work of Reynolds [21]. A criticism some-
times leveled at behavioral animation methods is that, robustness
and efficiency notwithstanding, the behavior controllers are hard-
wired into the code. Blumberg and Galyean [7] begin to address
such concerns by introducing mechanisms that give the animator
greater control over behavior, and Blumberg’s superb thesis consid-
ers interesting issues such as behavior learning [6]. While we share
similar motivations, our research takes a different route. One of its
unique features is the emphasis we place on investigating important
higher-level cognitive abilities, such as knowledge representation,
reasoning, and planning, which are the domain of AI. The research
teams led by Badler [3], Bates [4], Hayes-Roth [13], and the Thal-
manns [17] have applied AI techniques to produce inspiring results
with animated humans or cartoon characters.

The theoretical basis of our work is new to the graphics com-
munity and we consider some novel applications. We employ an
AI formalism known as the situation calculus. The version we
use is a recent product of the cognitive robotics community [15].
A noteworthy point of departure from existing work in cognitive
robotics is that we render the situation calculus amenable to anima-
tion within highly dynamic virtual worlds by introducing interval
valued fluents [10, 12, 11] to deal with sensing.

Perlin [19] describes fascinating work aimed at providing anima-
tors with useful behavior modeling tools. Our work on defining and
implementing the cognitive modeling language CML complements
these efforts by encapsulating some of the basic concepts and tech-
niques that may soon enough be incorporated into advanced tools
for animation. Autonomous camera control for animation is partic-
ularly well suited to our cognitive modeling approach because there
already exists a large body of widely accepted rules upon which we
can draw [2]. This fact has also been exploited by a recent paper
on the subject which implement hierarchical finite state machines
for camera control [14]. Our approach to camera control employs
CML.

1.3 Overview

The remainder of the paper is organized as follows. Section 2 cov-
ers the theoretical foundations of our research and presents our cog-
nitive modeling language CML. Section 3 presents our work on
automated cinematography, the first of three case studies. Here,
our primary aim is to show how separating out the control infor-
mation from the background domain knowledge makes it easier to
understand and maintain controllers. Our camera controller is os-
tensibly reactive, making minimal use of CML’s planning capabili-
ties, but it demonstrates that cognitive modeling subsumes conven-
tional behavioral modeling as a limiting case. Section 4 presents
two case studies in character animation that highlight the ability of
our approach to generate intelligent behavior consistent with goal-
directed specification by exploiting domain knowledge and reason-
ing. In a “prehistoric world” case study, we show how our tools can
simplify the development of cognitive characters that autonomously
generate knowledge-based, goal-directed behavior. In an “under-
sea world” case study, we produce an elaborate animation which
would overwhelm naive goal-directed specification approaches. We
demonstrate how cognitive modeling allows the animator to provide
a loose script for the characters to follow; some of the details of the
animation are provided by the animator while the rest are filled in
automatically by the character. Section 5 presents conclusions and
suggestions for future work.

2 Theoretical Background

The situation calculus is an AI formalism for describing changing
worlds using sorted first-order logic. Mathematical logic is some-
what of a departure from the repertoire of mathematical tools com-
monly used in computer graphics. We shall therefore overview in
this section the salient points of the situation calculus, whose details
are well-documented elsewhere (e.g., [10, 11, 15]). We emphasize
that from the user’s point of view the underlying theory is hidden.
In particular, a user is not required to type in axioms written in
first-order mathematical logic. Instead, we have developed an in-
tuitive high-level interaction language CML whose syntax employs
descriptive keywords, but which has a clear and precise mapping to
the underlying formalism.

2.1 Domain modeling

A situation is a “snapshot” of the state of the world. A domain-
independent constant S0 denotes the initial situation. Any property
of the world that can change over time is known as a fluent. A fluent
is a function, or relation, with a situation term (by convention) as its
last argument. For example Broken(x, s) is a fluent that keeps track
of whether an object x is broken in a situation s.

Primitive actions are the fundamental instrument of change in
our ontology. The sometimes counter-intuitive term “primitive”
serves only to distinguish certain atomic actions from the “com-
plex”, compound actions that we will define in Section 2.3. The
situation s′ resulting from doing action a in situation s is given by
the distinguished function do, so that s′ = do(a, s). The possi-
bility of performing action a in situation s is denoted by a distin-
guished predicate Poss (a, s). Sentences that specify what the state
of the world must be before performing some action are known
as precondition axioms. For example, it is possible to drop an
object x in a situation s if and only if a character is holding it,
Poss (drop(x), s) ⇔ Holding(x, s). In CML, this axiom can be ex-
pressed more intuitively without the need for logical connectives
and the explicit situation argument as follows:1

1To promote readability, all CML keywords will appear in bold type,
actions (complex and primitive) will be italicized, and fluents will be under-
lined. We will also use various other predicates and functions that are not

30

action drop(x) possible when Holding(x);

The effects of an action are given by effect axioms. They give
necessary conditions for a fluent to take on a given value after per-
forming an action. For example, the effect of dropping an object x
is that the character is no longer holding the object in the resulting
situation, and vice versa for picking up an object. This is stated in
CML as follows:

occurrence drop(x) results in !Holding(x); (“!” denotes negation)
occurrence pickup(x) results in Holding(x);

Surprisingly, a naive translation of the above statements into the
situation calculus does not give the expected results. In particular,
stating what does not change when an action is performed is prob-
lematic. This is called the “frame problem” in AI [18]. That is, a
character must consider whether dropping a cup, for instance, re-
sults in, say, a vase turning into a bird and flying about the room.
For mindless animated characters, this can all be taken care of im-
plicitly by the programmer’s common sense. We need to give our
thinking characters this same common sense. They need to be told
that they should assume things stay the same unless they know oth-
erwise. Once characters in virtual worlds start thinking for them-
selves, they too will have to tackle the frame problem. The frame
problem has been a major reason why approaches like ours have
not previously been used in computer animation or until recently
in robotics. Fortunately, the frame problem can be solved provided
characters represent their knowledge with the assumption that effect
axioms enumerate all the possible ways that the world can change.
This so-called closed world assumption provides the justification
for replacing the effect axioms with successor state axioms [20].2

2.2 Sensing
Artificial life in a complex, dynamic virtual world should appear
as thrilling and unpredictable to the character as it does to the hu-
man observer. Compare the excitement of watching a character run
for cover from a falling stack of bricks to one that accurately pre-
computes brick trajectories and, realizing that it is in no danger,
stands around nonchalantly while bricks crash down around it. On
a more practical note, the expense of performing multiple specu-
lative high fidelity forward simulations could easily be prohibitive.
Usually it makes far more sense for a character to decide what to
do using a simplified mental model of its world, sense the outcome,
and perform follow up actions if things don’t turn out as expected.

We would therefore like characters that can realize when they
have some outdated information and can then perform a sensing
action to get more current information so that they can replan a new
course of action. A simple way to sidestep the issue of when to
sense is to have characters replan periodically. One problem with
this is that it is wasteful when there is no real need to replan. Even
worse a character might not be replanning enough at certain critical
times. Consequently, we would like characters that can replan only
when necessary.

To this end, we must come up with a way for a character to repre-
sent its uncertainty about aspects of the world. Previous approaches
to the problem in AI used modal logic to represent what a char-
acter knows and doesn’t know. The so-called epistemic K-fluent

fluents. These will not be underlined and will have names to indicate their
intended meaning. The convention in CML is that fluents to the right of the
when keyword refer to the current situation.

2For example, the CML statements given above can now be effectively
translated into the following successor state axiom that CML uses internally
to represent how the character’s world can change. The axiom states that,
provided the action is possible, then a character is holding an object x if and
only if it just picked up the object or it was holding the object before and it
did not just drop the object: Poss (a, s) ⇒ [Holding(x, do(a, s)) ⇔ a =
pickup(x) ∨ (a �= drop(x) ∧ Holding(x, s))].

Time

Speed

Actual speed values

speedI

Sensing action

Interval values

Figure 2: Sensing narrows IVE fluents bounding the actual value.

allows us, at least in principle, to express an agent’s uncertainty
about the value of a fluent in its world [22]. Unfortunately, the re-
sult is primarily of theoretical interest as there are as yet no clear
ideas regarding its practical implementation.3 Next, we shall in-
stead propose the practicable concept of interval-valued epistemic
fluents [10, 12, 11].

2.2.1 Interval-valued epistemic (IVE) fluents

Interval arithmetic is relatively well-known to the graphics commu-
nity [23, 26]. It can be used to express uncertainty about a quantity
in a way that circumvents the problem of using a finite represen-
tation for an uncountable number of possibilities. It is, therefore,
natural to ask whether we can also use intervals to replace the trou-
blesome epistemic K-fluent. The answer, as we show in [10, 12, 11],
is affirmative. In particular, for each sensory fluent f , we introduce
an interval-valued epistemic (IVE) fluent If . The IVE fluent If is
used to represent an agent’s uncertainty about the value of f . Sens-
ing now corresponds to making intervals narrower.4

Let us introduce the notion of exogenous actions (or events) that
are generated by the environment and not the character. For ex-
ample, we can introduce an action setSpeed that is generated by
the underlying virtual world simulator and simply sets the value of
a fluent speed that tracks an object’s speed. We can introduce an
IVE fluent Ispeed that takes on values in IR�+, which denotes the
set of pairs 〈u, v〉 such that u, v ∈ R

�+ (the extended positive real
numbers) and u 6 v). Intuitively, we can now use the interval
Ispeed(S0) = 〈10, 50〉 to state that the object’s speed is initially
known to be between 10 and 50 m/sec. Now, as long as we have
a bound on how fast the speed can change, we can always write
down logically true statements about the world. Moreover, we can
always bound the rate of change. That is, in the worst case we
can choose our rate of change as infinite so that, except after sens-
ing, the character is completely ignorant of the object’s speed in the
current situation: Ispeed(s) = 〈0,∞〉. Figure 2 depicts the usual
case when we do have a reasonable bound. The solid line is the
actual speed speed and the shaded region is the interval guaranteed
to bound the object’s speed. Notice that the character’s uncertainty
about the object’s speed increases over time (i.e., the intervals grow
wider) until a sensing action causes the interval to once again col-

3Potential implementations of the epistemic K-fluent are plagued by
combinatorial explosion. In general, if we have n relational fluents whose
values may be learned through sensing, then we must list potentially 2n ini-
tial possible worlds. Things get even worse with functional fluents whose
range is the real numbers R, since we cannot list out the uncountably many
possible worlds associated with uncertainty about their value.

4IVE fluents represent uncertainty intervals about time-dependent vari-
ables. They do not represent and are unrelated to time intervals of the sort
that have been used in the underlying semantics of various temporal logics
(for example see [16]).

31

)),

Path of breath-first search

Path of depth-first search

Goal situation

, do(!Poss(

Pruned by the complex action: *))

Pruned by the precondition:

Situation tree after pruning

)) (; ((* ; (;

S0

S0

0 aa 1

2a0a

2a

21a1a0a a12a0a a 2a

a n-1a1a0

dir()= N

runAway

turn

hide

!Hidden()
FarAway()

S

S0

0

S0

0S

(a) (b)

Figure 3: The situation tree (a). Pruning the tree (b).

lapse to its actual value (assuming noise-free sensing). Whenever
the interval is less than a certain width, we say that the character
“knows” the property in question. We can then write precondition
axioms based not only upon the state of the world, but also on the
state of the character’s knowledge of its world. For example, we
can state that a character cannot calculate its travel time unless it
knows its speed. So, if a character wishes to know when it will
arrive somewhere, but does not know its speed (i.e., Ispeed(s) is
too wide), then it can infer that it must perform a sensing action. In
[10, 12, 11] we prove several theorems that allow us to justify for-
mally our IVE fluent as a replacement for the troublesome K-fluent.

2.3 Complex actions

The actions, effect axioms and preconditions we have described so
far can be thought of as a tree (Fig. 3(a)). The nodes of the tree
represent situations. Effect axioms describe the characteristics of
each situation. At the root of the tree is the initial situation and each
path through the tree represents a possible sequence of actions. The
precondition axioms mean that some sequences of actions are not
possible. This is represented in the picture by the black portion of
the tree. If some situations are desired “goals” then we can use a
conventional logic programming approach to automatically search
the tree for a sequence of actions that takes us to the goal. The
green nodes in the figure represent goal situations and we can use
various search strategies to come up with an appropriate sequence
of actions to perform. The red path shows the sequence of actions
that result from a breadth-first search of the tree, and the magenta
path from depth-first search.

The problem with the exhaustive search approach is that the
search space is exponential in the length of the plan. Much of the
planning literature has sought to address this problem with more
sophisticated search algorithms, such as the well known A� algo-
rithm, or stochastic planning techniques. We shall introduce a dif-
ferent approach. In particular, we shall be looking at how to speed
up planning by “pruning” the search space. How we choose to
search the remaining space is an important but independent problem
for which all the previous work on planning is equally applicable.

It is interesting to note that conventional imperative style pro-
gramming can be regarded as a way to prune the tree down to a
single path. That is, there is no “searching” and the programmer
bears the sole responsibility for coming up with a program that
generates the desired sequence of actions. However, by defining
what we refer to as “complex actions” we can prune part of the
search tree. Figure 3(b) represents the complex action (a0	 o

9 a2
o
9

(a0|a1|a2))|(a1
o
9 (a1|a2)) and its corresponding effect of reduc-

ing the search space to the blue region of the tree. In what follows

we shall see more examples of complex actions and their defini-
tions. For now, it is important to understand that the purpose of
complex actions is to give us a convenient tool for encoding any
heuristic knowledge we have about the problem. In general, the
search space will still be exponential, but reducing the search space
can make the difference between a character that can tractably plan
only 5 steps ahead and one that can plan 15 steps ahead. That is,
we can get characters that appear a lot more intelligent!

The theory underlying complex actions is described in [15].
Complex actions consist of a set of recursively defined operators.
Any primitive action is also a complex action. Other complex ac-
tions are composed using various control structures. As a familiar
artifice to aid memorization, the control structure syntax of CML is
designed to resemble C. Fig. 4 gives the complete list of operators
for specifying complex actions. Together, these operators define the
instruction language we use to issue direction to characters.

Although the syntax of CML is similar to a conventional pro-
gramming language, CML is a strict superset in terms of function-
ality. The user can give characters instructions based on behavior
outlines, or “sketch plans”. In particular, a behavior outline can
be nondeterministic. By this we mean that we can cover multi-
ple possibilities in one instruction, not that the behavior is random.
As we shall explain, this added freedom allows many behaviors to
be specified more naturally, more simply, more succinctly and at a
much higher level of abstraction than would otherwise be possible.
Using its background knowledge, the character can decide for itself
how to fill in the necessary missing details.

As a first serious example of a powerful complex action, the one
to the left below,5 with its corresponding CML code on the right,
defines a depth-bounded (to n steps) depth-first planner:

proc planner(n)

goal? |
[(n > 0)? o

9

(� a)(primitiveAction(a)? o
9 a) o

9

planner(n − 1)]

end

proc planner(n) {
choose test(goal);

or {
test(n > 0);

pick(a) {
primitiveAction(a);

do(a); }
planner(n − 1); }}

We have written a Java application, complete with documenta-
tion, that is publicly available to further assist the interested reader
in mastering this novel language [8].

5Adopted from R. Reiter’s forthcoming book “Knowledge in Action”.

32

(Primitive Action)
If α is a primitive action then, provided the precondition axiom states it is possible, do
the action.
[same syntax in CML i.e. <ACTION>; except we must use an explicit do when the
action is a variable.]

(Sequence)
α o

9 β means do action α, followed by action β.
[<ACTION> ; <ACTION> ; (note the semi-colon is used as a statement terminator
to mimic C)]

(Test)
p? succeeds if p is true, otherwise it fails.
[test(<EXPRESSION>)]

(Nondeterministic choice of actions)
α | β means do action α or action β.
[choose <ACTION> or <ACTION>]

(Conditionals)
if p α else β fi, is just shorthand for p? o

9 α | (¬ p)? o
9 β.

[if (<EXPRESSION>) <ACTION> else <ACTION>]

(Non-deterministic iteration)
α �, means do α zero or more times.
[star <ACTION>]

(Iteration)
while p do α od is just shorthand for p? α �.
[while (<EXPRESSION>) <ACTION>]

(Nondeterministic choice of arguments)
(π x) α means pick some argument x and perform the action α(x).
[pick(<EXPRESSION>) <ACTION>]

(Procedures)
proc P (x1, . . . , xn) α end declares a procedure that can be called as
P (x1, . . . , xn).
[void P (<ARGLIST>) <ACTION>]

Figure 4: Complex action operators. Following each definition, the
equivalent CML syntax is given in square brackets. The mathemat-
ical definitions for these operators are given in [15]. It is straight-
forward to modify the complex action definitions to include a check
for any exogenous actions and, if necessary, include them in the se-
quence of resulting actions (see [10, 11] for more details).

3 Automated Cinematography

At first it might seem strange to advocate building a cognitive model
for a camera. We soon realize, however, that it is natural to capture
in a cognitive model the knowledge of the director and camerap-
erson who control the camera. In effect, we want to treat all the
elements of a scene, be they lights, cameras, or characters as “ac-
tors”. CML is ideally suited to realizing this approach.

To appreciate what follows, the reader may benefit from a rudi-
mentary knowledge of cinematography. The exposition on princi-
ples of cinematography given in Section 2.3 of [14] is an excellent
starting point. In [14], the authors discuss one particular formula for
filming two characters conversing. The idea is to flip between “ex-
ternal” shots of each character, focusing on the character doing the
talking (Fig. 5). To break the monotony, the shots are interspersed
with reaction shots of the other character. In [14], the formula is
encoded as a finite state machine. We will show how elegantly
we can capture the formula using the instruction facilities of CML.
First, however, we need to specify the domain. For conciseness,
we restrict ourselves to explaining only the principal aspects of the
specification (see [10, 9, 11] for the details).

The Line

ExternalExternal

Apex

Parallel

A

Parallel

Internal

B

Figure 5: Common camera placements relative to characters A, B.

3.1 Camera domain

Assuming that the motion of all the objects in the scene has been
computed, our task is to decide the vantage point from which each
frame is to be rendered. The fluent frame keeps track of the current
frame number, and a tick action causes it to be incremented. The
precomputed scene is represented as a lookup function scene which
completely specifies the position, orientation, and shape of each
object in each frame.

The most common camera placements used in cinematography
will be modeled in our formalization as primitive actions. These
actions are referred to in [14] as “camera modules”. This is a good
example where the term “primitive” is misleading. As described in
[5], low-level camera placement is a complex and challenging task
in its own right. Here we shall make some simplifications to clarify
our exposition. More realistic equations are easily substituted, but
the principles remain the same. For now, we specify the camera
with two fluents lookFrom, and lookAt. Let us assume that up remains
constant and also make the simplifying assumption that the viewing
frustrum is fixed. Despite our simplifications, we still have a great
deal of flexibility in our specifications. We will now give examples
of effect axioms for some of the primitive actions in our ontology.

The fixed action is used to specify explicitly a particular camera
configuration. We can, for example, use it to provide an overview
shot of the scene:

occurrence fixed(e,c) results in lookFrom = e && lookAt = c;

A more complicated action is external. It takes two arguments, char-
acter A, and character B and places the camera so that A is seen
over the shoulder of B. One effect of this action, therefore, is that
the camera is looking at character A:

occurrence external(A,B) results in lookAt = p when
scene(A(upperbody,centroid)) = p;

The other effect is that the camera is located above character B’s
shoulder. This could be done with an effect axiom such as:

occurrence external(A,B) results in
lookFrom = p + k2 ∗ up + k3 ∗ normalize(p − c) when
scene(B(shoulder,centroid)) = p && scene(A(upperbody,centroid)) = c;

where k2 and k3 are some suitable constants. There are many other
possible camera placement actions. Some of them are listed in [14],
and others may be found in [2].

The remaining fluents are concerned with more esoteric aspects
of the scene, but some of their effect axioms are mundane and so we
shall only explain them in English. For example, the fluent Talking
(A,B) (meaning A is talking to B) becomes true after a startTalk

33

(A,B) action, and false after a stopTalking (A,B) action. Since we
are currently only concerning ourselves with camera placement, it
is the responsibility of the application that generates the scene de-
scriptions to produce the start and stop talking actions (i.e., the start
and stop talking actions are represented as exogenous actions within
the underlying formal semantics).

A more interesting fluent is silenceCount, which keeps count of
how long it has been since a character spoke:

occurrence tick results in silenceCount = n − 1
when silenceCount = n && !Talking(A,B);

occurrence stopTalk(A,B) results in silenceCount = ka;
occurrence setCount results in silenceCount = ka;

Note that ka is a constant (ka = 10 in [14]), such that the counter
will be negative after ka ticks of no-one speaking. A similar fluent
filmCount keeps track of how long the camera has been pointing at
the same character:

occurrence setCount || external(A,B) results in filmCount = kb

when Talking(A,B);
occurrence setCount || external(A,B) results in filmCount = kc

when !Talking(A,B);
occurrence tick results in filmCount = n − 1 when filmCount = n;

where kb and kc are constants (kb = 30 and kc = 15 in [14]) that
state how long we can continue the same shot before the counter
becomes negative. Note that the constants for the case of looking
at a non-speaking character are lower. We will keep track of which
constant we are using with the fluent tooLong.

For convenience, we now introduce two defined fluents that ex-
press when a shot has become boring because it has gone on too
long, and when a shot has not gone on long enough. We need the
notion of a minimum time for each shot to avoid annoying flitter
between shots:6

defined Boring := filmCount < 0;
defined TooFast := tooLong - ks 6 filmCount; (where ks is a constant)

Finally, we introduce a fluent Filming to keep track of the character
at whom the camera is pointing.

Until now we have not mentioned any preconditions for our ac-
tions. Unless stated otherwise, we assume that actions are always
possible. In contrast, the precondition axiom for the external camera
action states that we only want to point the camera at character A
if we are already filming A and it has not yet gotten boring, or if
we are not filming A, and A is talking, and we have stayed with the
current shot long enough:

action external(A,B) possible when (!Boring && Filming(A)) ||
(Talking(A,B) && !Filming(A) && !TooFast);

We are now in a position to define the controller that will move
our “cognitive camera” to shoot the character doing the talking,
with occasional respites to focus on the other character’s reactions:

setCount;
while (0 < silenceCount) {

pick(A,B) external(A,B);
tick; }
This specification makes heavy use of the ability to nondetermin-

istically choose arguments. The reader can contrast our specifica-
tion with the encoding given in [14] to achieve the same result.

6A defined fluent is defined in terms of other fluents, and therefore, its
value changes implicitly as the fluents on which it depends change. The user
must be careful to avoid any circular definitions when using defined fluents.
A defined fluent is indicated with the keyword “defined” and symbol “:=”.

Figure 6: The “Cinemasaurus” autonomous camera animation.
(top) External shot of the T-Rex. (center) Internal shot of the Rap-
tor. (bottom) Apex shot of the actors.

4 Character Animation

We now turn our attention to the main application of our work,
character animation. Our first example is a prehistoric world and
the second is an undersea world. The two worlds are differentiated
by the complexity of their underlying models, the undersea world
model being significantly more complex.

4.1 Prehistoric world
The prehistoric world, comprising a volcanic territory and a jun-
gle territory, is inhabited by a Tyrannosaurus Rex (T-Rex) and Ve-
lociprators (Raptors). It is implemented as a game engine API
which runs in real-time any modern PC. The dinosaur characters
are animated by keyframed footprints and inverse kinematics to
position the legs onto the ground. To add some physical realism,
the body is modeled as a point mass that moves dynamically in re-
sponse to the leg movements.

We interfaced the game engine to a reasoning engine imple-
mented in C++.7 The performance of the cognitive modeling aug-

7We first tried compiling our CML specifications into Prolog using our

34

mented prehistoric world remains real-time on average, but we see
occasional pauses when the reasoning engine takes longer than
usual to plan a suitable behavior. We will present two cognitive
modeling animations. The first one demonstrates our approach to
camera control and the second demonstrates plan-based territorial
behavior.

The action in the camera control demonstration consists of a T-
Rex and a Raptor “conversing” by roaring at each other. The camera
always films the dinosaur that is roaring unless it roars for too long,
in which case it will get a reaction shot from the other dinosaur.
The T-Rex has an additional behavior—if it gets bored listening to
a yapping Raptor, it will attack! The camera will automatically
track moving creatures. Sample frames from the resulting anima-
tion “Cinemasaurus”, which was filmed automatically in the jungle
territory by our cognitive camera, are shown in figure 6. The cog-
nitive camera uses essentially the same CML code as the example
in Section 3, although some of the camera angles are programmed
a bit differently.

In the territorial T-Rex animation our challenge is to admin-
ister enough knowledge to the T-Rex about its world, especially
about the reactive behavior of the Raptors (which behave not unlike
Reynold’s “boids” [21]), so that the T-Rex knows enough to auto-
matically formulate plans for expelling Raptors out of its volcanic
territory and into the neighboring jungle territory. To this end, the
T-Rex must herd Raptors through a narrow passage that connects
the two territories. The passage is marked by a stone arch at the
northwest corner of the volcanic territory.

The Raptors have good reason to fear the larger, stronger and
highly vicious T-Rex should it come close. The following code
shows how we use CML to instruct the T-Rex that the Raptors will
become frightened when it approaches them:

occurrence move(direction) results in Frightened(Raptor(i))
when position(T-Rex) = p && position(Raptor(i)) = q &&

|q − adjacent(p, direction)| 6 ∆;

The code we used in the demonstration was slightly more com-
plicated in that we also instructed the T-Rex that even less proxi-
mal Raptors would also become frightened if it roared. A second
CML expression tells the T-Rex that frightened Raptors will run
away from it:

defined heading(Raptor(i)) = direction

where (Frightened(Raptor(i)) &&
direction = opposite(directionT-Rex)) ||
(!Frightened(Raptor(i)) && direction = directionOld)

when relativeDirectionOfT-Rex (Raptor(i)) = directionT-Rex &&
heading(Raptor(i)) = directionOld;

Here, relativeDirectionOfT-Rex is a fluent that is easily defined in terms
of the relative positions of the T-Rex and Raptor i.

With a third CML expression, we instruct the T-Rex to plan
paths that avoid obstacles:8

action move(direction) possible
when position(T-Rex) = p && Free(adjacent(p, direction));

Given enough patience, skill and ingenuity, it is conceivable
that one could successfully program herding behavior using sets
of stimulus-response rules. Using CML, we can do the same thing

online Java applet [8] and then linking the compiled Prolog code with the
API using Quintus Prolog’s ability to link with Visual C++. Although con-
venient, this approach adversely affected the real-time performance, so we
abandoned it in favor of a complete C++ implementation of the reasoning
engine.

8In fact, the T-Rex autonomously maps out all the obstacles by exploring
its world in a preprocessing step. When it encounters an obstacle, the T-Rex
remembers the location of the obstacle in a mental map of its world.

with relative ease through much higher-level, goal-directed specifi-
cation. Suppose we want to get some Raptors heading in a partic-
ular direction. Then, we simply give the T-Rex the goal of getting
more Raptors heading in the right direction than are initially head-
ing that way. Here is how this goal is specified in CML:

defined goal := NumRaptorsInRightDirection = n && n > n0 + k
when initially n0 = NumRaptorsInRightDirection;

This goal along with our previous instructions enable the T-Rex
to plan its actions like a smart sheepdog. It autonomously plans
collision-free paths to maneuver in and around groups of Raptors
in order to frighten them in the desired direction.

The T-Rex plans up to 6 moves ahead of its current position.
Longer duration plans degrade real-time performance. They are
also rarely useful in a highly kinetic world about which the T-Rex
has only partial knowledge. A better strategy is adaptive herding
through periodic re-planning. To speed things up we also defined
undesirable situations using the fluent Undesirable. These are the
antithesis of goals in that they represent situations that, although not
illegal, are undesirable. For example, if the Raptors are too far away
there is no point in roaring as it will have no effect. Therefore a
situation in which the T-Rex roars without anticipating any Raptors
changing direction is useless, hence undesirable:

defined Undesirable after roar := NumRaptorsInRightDirection = n
when NumRaptorsInRightDirection = n0 && n0 > n;

The T-Rex need not consider this or its subsequent situations when
searching for appropriate behavior.

The pack of reactive Raptors prefer to stay away from the pas-
sage under the arch, but the smarter, cognitively empowered T-Rex
succeeds in expelling this unruly mob from its territory.9 Some
frames from the corresponding animation are shown in figure 7.

4.2 Undersea world
Our undersea world is entirely physics-based. It is inhabited by
mermen, fabled creatures of the sea with the head and upper body
of a man and the tail of a fish. Its other inhabitants are predator
sharks. An artificial life simulator implements the virtual creatures
as fully functional (pre-cognitive) autonomous agents. The mod-
eling is similar to that in [25, 24]. It provides a graphical display
model that captures the form and appearance of our characters, a
biomechanical model that captures their anatomical structure, in-
cluding internal muscle actuators, and simulates the deformation
and physical dynamics of the character’s body, and a behavioral
control model that implements the character’s brain and is respon-
sible for motor, perception and low-level behavior control. A mer-
man’s reactive behavior system interprets his intentions and gen-
erates coordinated muscle actions. These effect locomotion by de-
forming the body to generate propulsion-inducing forces against the
virtual water. The sharks are animated likewise.

Our goal is to equip the mermen with a cognitive model that
enables them to reason about their world based on acquired knowl-
edge, thus enabling them to interpret high-level direction from the
animator. Fig. 8 depicts the relationship between the user, the rea-
soning system and the reactive system.

The simulated dynamics makes it hard for a merman to reason
precisely about his world because, as is the case in the real world,
it is possible to predict only approximately the ultimate effect of
one’s actions. However, the reactive behavior model helps by me-
diating between the reasoning engine and the physics-based envi-
ronment. Thus at the higher level we need only consider actions

9Note that all a “reactive T-Rex” (i.e. a cognitive T-Rex allowed to plan
only a single move ahead) can do is aimlessly chase the agile Raptors
around. Only by sheer luck can it eventually chase a few Raptors through
the narrow passage under the arch and out of its territory.

35

Figure 7: The “Territorial T-Rex” animation. A cognitively empowered T-Rex herds Raptors like a smart sheepdog.

REASONING
ENGINE

Sensory

Low-level commands

Behavior
specification

information

Domain
specification

USER

Cognitive Model

about
virtual world

Information

REACTIVE
SYSTEM

1) Preconditions for performing an action

3) The initial state of the virtual world

2) The effect that performing an action
would have on the virtual world

Figure 8: Interaction between cognitive model, user and low-level
reactive behavior system.

such as “swim forward” and “turn left”. The reactive system trans-
lates these commands down to the necessary detailed muscle ac-
tions. It also includes sensorimotor control loops that enable the
agent to approximately satisfy commands, such as “go to a given
position”. The reactive system furthermore acts as a fail-safe should
the reasoning system temporarily fall through. In the event that the
character cannot decide upon an intelligent course of action in a
reasonable amount of time, the reactive layer continually tries to
prevent the character from doing anything stupid, such as bashing
into obstacles. Typical default reactive behaviors are “turn right”,
“avoid collision” and “swim for your life”.

Even so, short of performing precise multiple forward simula-
tions, it is impossible for his reasoning system to predict the ex-
act position that a merman will end up after he executes a plan of
action. A typical solution would be to re-initialize the reasoning
engine every time it is called, but this makes it difficult to pursue
long term goals as we are tossing out all the character’s knowledge

instead of just the outdated knowledge. The solution is for the char-
acters to represent positions using the IVE fluents that we described
in Section 2.2.1. After sensing, the positions of all the visible ob-
jects are known. The merman can then use this knowledge to replan
his course of action, possibly according to some long-term strategy.
Regular fluents are used to model the merman’s internal state, such
as his goal position, fear level, etc.

4.2.1 Undersea animations
The undersea animations revolve around pursuit and evasion be-
haviors. The hungry sharks try to catch and eat the mermen and
the mermen try to use their superior reasoning abilities to avoid this
grisly fate. For the most part, the sharks are instructed to chase
mermen they see. If they cannot see any mermen, they go to where
they last saw one. If all else fails, they start to forage systematically.
Figure 9 shows selected frames from two animations.

The first animation verifies that because the shark is a larger and
faster swimmer, it has little trouble catching merman prey in open
water. In the second animation, we introduce some large rocks in
the underwater scene and things get a lot more interesting. Now,
when a merman is in trouble, cognitive modeling enables him to
come up with short term plans to take advantage of the rocks and
frequently evade capture. He can hide behind the rocks and hug
them closely so that a shark has difficulty seeing or reaching him.

We were able to use the control structures of CML to encode a
great deal of heuristic knowledge. For example, consider the prob-
lem of trying to come up with a plan to hide from the predator. A
traditional planning approach will be able to perform a search of
various paths according to criteria such as whether the path routes
through hidden positions, or leads far from a predator, etc. Unfortu-
nately, this kind of planning is prohibitively expensive. By contrast,
the control structures of CML allow us to encode heuristic knowl-
edge to help overcome this limitation. For example, we can specify
a procedure that encodes the following heuristic: If the current po-
sition is good enough then stay where you are, else search the area
around you (the expensive planning part); otherwise, check out the
obstacles (hidden positions are more likely near obstacles); finally,

36

Figure 9: The undersea animations. Duffy the merman cleverly evades a predator shark.

if all else fails and danger looms, panic and flee in a random direc-
tion. With a suitable precondition for pickGoal, which prevents the
merman selecting a goal until it meets certain minimum criteria,
the following CML procedure implements the above heuristic for
character i:

proc evade(i) {
choose testCurrPosn(i);
or search(i);
or testObstacles(i);
or panic(i); }
In turn, the above procedure can be part of a larger program that

directs a merman to hide from sharks while, say, trying to visit the
other rocks in the scene whenever it is safe to do so. Of course,
planning is not always a necessary, appropriate or possible way to
generate every aspect of an animation. This is especially so if an
animator has something highly specific in mind. In this regard, it is
important to remember that CML can also support detailed behav-
ioral programming because it offers a full range of control struc-
tures that are customary in regular programming languages.

We used CML’s control structures to make the animation “The
Great Escape”. This was done by simply instructing the merman to
avoid being eaten, and whenever it appears reasonably safe to do
so, to make a break for a large rock in the scene. The particular
rock to which we want to get the merman to go proffers a narrow

crack through which the merman, but not the larger-bodied shark,
can pass. We wanted an exciting animation in which the merman
eventually gets to that special rock with the shark in hot pursuit. The
merman’s evade procedure should then swing into action, hopefully
enabling him to evade capture by finding and slipping through the
crack. Although we do not specify exactly how or when, we have a
mechanism to heavily stack the deck toward getting the desired an-
imation. As it turns out, we got what we wanted on our first attempt
(after debugging). However, if the animation that we desired re-
mained elusive, we can use CML to further constrain what happens
all the way down to scripting an entire sequence if necessary.

As an extension to behavioral animation, our approach enables
us to linearly scale our cognitive modeling efforts for a single char-
acter in order to create multiple similarly-behaved characters. Each
character will behave autonomously according to its own unique
perspective of its world. In a third animation, we demonstrate that
numerous cognitive characters may also cooperate with one another
to try to survive in shark infested waters. We have specified that
some mermen are brave and others are timid. When the timid ones
are in danger of becoming shark food, they cry for help (telepathi-
cally for now) and the brave ones come to their rescue provided it
isn’t too dangerous for them. Once a brave rescuer has managed
to attract a shark’s attention away from a targeted victim, the hero
tries to escape.

37

5 Conclusion
We have introduced the idea of cognitive modeling as a substan-
tive new apex to the computer graphics modeling pyramid. Unlike
behavioral models, which are reactive, cognitive models are delib-
erative. They enable an autonomous character to exploit acquired
knowledge to formulate appropriate plans of action. To assist the
animator or game developer in implementing cognitive models, we
have created the cognitive modeling language CML. This powerful
language gives us an intuitive way to afford a character knowledge
about its world in terms of actions, their preconditions and their
effects. When we provide a high-level description of the desired
goal of the character’s behavior, CML offers a general, automatic
mechanism for the character to search for suitable action sequences.
At the other extreme, CML can also serve like a conventional pro-
gramming language, allowing us to express precisely how we want
the character to act. We can employ a combination of the two ex-
tremes and the whole gamut in between to build different parts of a
cognitive model. This combination of convenience and automation
makes our cognitive modeling approach in general, and CML in
particular, a potentially powerful tool for animators and game de-
velopers.

5.1 Future work
Cognitive modeling opens up numerous opportunities for future
work. For example, we could incorporate a mechanism to learn
reactive rules that mimic the behavior observed from the reason-
ing engine. Other important issues arise in the user interface. As it
stands CML is a good choice as the underlying representation that a
developer might want to use to build a cognitive model. An anima-
tor or other end users, however, would probably prefer a graphical
user interface front-end. In order to make such an interface easy to
use, we might limit possible interactions to supplying parameters
to predefined cognitive models, or perhaps we could use a visual
programming metaphor to specify the complex actions.

Cognitive modeling is a potentially vast topic whose riches we
have only just begun to explore. In our prehistoric world, for in-
stance, we concentrated on endowing the T-Rex with CML-based
cognition. There is no reason why we could not similarly endow
the Raptors as well. This would allow the animation of much more
complex dinosaur behavior.10 A lone Raptor is no match for the T-
Rex, but imagine the following scenario in which a pack of cunning
Raptors conspire to fell their large opponent. Through cognitive
modeling, the Raptors hatch a strategic plan—the ambush! Based
on their domain knowledge, the Raptors have inferred that the T-
Rex’s size, his big asset in open terrain, would hamper his maneu-
verability within the narrow passage under the arch. The leader of
the pack plays the decoy, luring their unsuspecting opponent into
the narrow passage. Her pack mates, who have assumed their po-
sitions near both ends of the passage, rush into it on command.
Some Raptors jump on the T-Rex and chomp down on his back
while others bite into his legs. Thus the pack overcomes the brute
through strategic planning, cooperation, and sheer number. Coordi-
nating multiple Raptors in this way would significantly increase the
branching factor in the situation trees of the cognitive models. A so-
lution would be to control them as intelligent subgroups. We could
also exploit complex actions to provide a loose script that would
specify some key intermediate goals, such as the decoy stratagem.

Acknowledgments
We would like to thank Eugene Fiume for many helpful comments
and for originally suggesting the application of CML to cinematog-
raphy, Steve Rotenberg and Andy Styles at Angel Studios (Carls-
bad, CA) and Steve Hunt for developing the low-level “Demosaurus

10See Robert T. Bakker’s captivating novel Raptor Red (Bantam, 1996).

Rex” API, Steven Shapiro and Hector Levesque for technical as-
sistance on the situation calculus, and Jeffrey Tupper for technical
assistance on interval arithmetic. JF thanks Ramesh Subramonian
for his benevolent support during the final stages of this work.

References

[1] J. Allen, J. Hendler, and A. Tate, editors. Readings in Planning. Morgan Kauf-
mann, 1990.

[2] D. Arijon. Grammar of the Film Language. Communication Arts Books, Hast-
ings House Publishers, New York, 1976.

[3] N. I. Badler, C. Phillips, and D. Zeltzer. Simulating Humans. Oxford University
Press, 1993.

[4] J. Bates. The Role of Emotion in Believable Agents. Communications of the
ACM, 37(7), 1994, 122–125.

[5] J. Blinn. Where am I? What am I looking at? IEEE Computer Graphics and
Applications, 8(4), 1988, 76–81.

[6] B. Blumberg. Old Tricks, New Dogs: Ethology and Interactive Creatures. PhD
thesis, MIT Media Lab, MIT, Cambridge, MA, 1996.

[7] B. M. Blumberg and T. A. Galyean. Multi-level direction of autonomous crea-
tures for real-time environments. Proceedings of SIGGRAPH 95, Aug. 1995,
47–54.

[8] J. Funge. CML compiler. www.cs.toronto.edu/˜funge/cml, 1997.
[9] J. Funge. Lifelike characters behind the camera. Lifelike Computer Characters

’98 Snowbird, UT, Oct. 1998.
[10] J. Funge. Making Them Behave: Cognitive Models for Computer Animation.

PhD Thesis, Department of Computer Science, University of Toronto, Toronto,
Canada, 1998. Reprinted in SIGGRAPH 98 Course Notes #10, Orlando, Florida.

[11] J. Funge. AI for Games and Animation: A Cognitive Modeling Approach.
A.K. Peters, 1999.

[12] J. Funge. Representing knowledge within the situation calculus using interval-
valued epistemic fluents. Journal of Reliable Computing, 5(1), 1999.

[13] B. Hayes-Roth, R. v. Gent, and D. Huber. Acting in character. In R. Trappl and
P. Petta, editors, Creating Personalities for Synthetic Actors. Lecture Notes in CS
No. 1195. Springer-Verlag: Berlin, 1997.

[14] L. He, M. F. Cohen, and D. Salesin. The virtual cinematographer: A paradigm
for automatic real-time camera control and directing. Proceedings of SIGGRAPH
96, Aug. 1996, 217–224.

[15] H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. Golog: A logic
programming language for dynamic domains. Journal of Logic Programming,
31, 1997, 59–84.

[16] C. Pinhanez, K. Mase, and A. Bobick. Interval scripts: A design paradigm for
story-based interactive systems Proceedings of CHI’97, Mar. 1997.

[17] N. Magnenat-Thalmann and D. Thalmann. Synthetic Actors in Computer-
Generated Films. Springer-Verlag: Berlin, 1990.

[18] J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence
4, pages 463–502. Edinburgh University Press, Edinburgh, 1969.

[19] K. Perlin and A. Goldberg. IMPROV: A system for scripting interactive actors
in virtual worlds. Proceedings of SIGGRAPH 96, Aug. 1996, 205–216.

[20] R. Reiter. The frame problem in the situation calculus: A simple solution (some-
times) and a completeness result for goal regression. In V. Lifschitz, editor, Ar-
tificial Intelligence and Mathematical Theory of Computation. Academic Press,
1991.

[21] C. W. Reynolds. Flocks, herds, and schools: A distributed behavioral model.
Proceedings of SIGGRAPH 87, Jul. 1987, 25–34.

[22] R. Scherl and H. Levesque. The frame problem and knowledge-producing ac-
tions. Proceedings of AAAI-93, AAAI Press, Menlo Park, CA, 1993.

[23] J. Snyder. Interval analysis for computer graphics. Proceedings of SIGGRAPH
92, Jul. 1992, 121–130.

[24] X. Tu. Artificial animals for computer animation: Biomechanics, locomotion,
perception and behavior. ACM Distinguished Dissertation Series, Springer-
Verlag, Berlin, 1999.

[25] X. Tu and D. Terzopoulos. Artificial fishes: Physics, locomotion, perception,
behavior. Proceedings of SIGGRAPH 94, Jul. 1994, 24–29.

[26] J. Tupper. Graphing Equations with Generalized Interval Arithmetic. MSc The-
sis, Department of Computer Science, University of Toronto, Toronto, Canada,
1996. See also GRAFEQ from Pedagoguery Software www.peda.com.

38

