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Chapter 11

Tensor category theory of string-net
condensation

Extended objects, such as strings and membranes, have been studied for many years in the context of sta-
tistical physics. In these systems, quantum effects are typically negligible, and the extended objects can be
treated classically. Yet it is natural to wonder how strings and membranes behave in the quantum regime.
In this chapter, we will investigate the properties of one dimensional, string-like, objects with large quan-
tum fluctuations. Our motivation is both intellectual curiosity and (as we will see) the connection between
guantum strings and topological/quantum orders in condensed matter systems.

It is useful to organize our discussion using the analogy to the well understood theory of quantum par-
ticles. One of the most remarkable phenomena in quantum many-particle systems is particle condensation.
We can think of particle condensed states as special ground states where all the particles are described by the
same quantum wave function. In some sense, all the symmetry breaking phases examples of particle con-
densation: we can view the order parameter that characterizes a symmetry breaking phase as the condensed
wave function of certain “effective particles.” According to this point of view, Landau’s thgefyau (1937)]
for symmetry breaking phases is really a theory of “particle” condensation.

The theory of particle condensation is based on the physical concepts of long range order, symmetry
breaking, and order parameters, and the mathematical theory of groups. These tools allow us to solve two
important problems in the study of quantum many-particle systems. First, they lead to a classification of all
symmetry-breaking/particle-condensed states. For example, we know that there are only 230 different crys-
tal phases in three dimensions. Second, they provide insight into the quasiparticle excitation spectrum. The
collective excitations above the ground state are described by fluctuations of the amplitude of the condensed
“particles” (i.e. the fluctuations of the order parameter). In many cases, symmetry breaking allows us to
derive the quantum numbers of these collective excitations (or quasiparticles) and predict whether they are
gapped or gapless.

Given the importance of the concept of particle condensation, it is natural to consider the analogous
concept of “string condensation.” What do we mean by “string condensation™? A natural definition is that
a string condensed state is a ground state that (a) is formed by many large strings, whose sizes are of order
of the size of the system, and (b) is a superposition of many different large string configurations. In other
words, a string condensed state is a quantum liquid of large strings.

We would like to have a theory of string condensation which is as powerful as the analogous theory
of particle condensation. That is, we would like to have a general framework for (1) characterizing and
classifying different string condensed states, and (2) determining the physical properties of the collective
excitations of string condensed states.

Some progress has been made towards these goals. Much of this progress has occurred in three areas
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of research: (1) the study of topological phases in condensed matter systems such as FQHwysiems
Niu (1990); Blok and Wen (1990); Read (1990)pflich and Kerler (1991))quantum dimer modelgokhsar and Kivelson (1988); Read
and Chakraborty (1989); Moessner and Sondhi (2001); Ardehak(2004)], quantum spin mode|[8almeyer and Laughlin (1987); Wen

et al. (1989); Wen (1990); Read and Sachdev (1991); Wen (@9%enthil and Fisher (2000); Wen (2082 Sachdev and Park (2002); Balents
etal.(2002)}, Or even superconducting statesn (1991); Hanssoret al.(2004)], (2) the study of lattice gauge theory
[Wegner (1971); Bankst al. (1977); Kogut and Susskind (1975); Kogut (19798Nnd (3) the study of quantum computing by
anyongkitaev (2003); loffeet al. (2002); Freedmaet al. (2002)} The phenomenon of string condensation is important in
all of these fields, though the string picture is often de-emphasized.

Some of the early work in this area was in the study of topological order - a kind of order that can
occur in exotic condensed matter systemss (1995)] Ref.[wen (1990)] used ground state degeneracy, particle
statistics, and edge excitations to partially characterize topologically ordered states. LatgrerRedozb,
2003b)] attempted to characterize and classify quantum order — a generalization of topological order to gap-
less phases — using the projective symmetry group (PSG) formalism. String condensed states are typically
topologically ordered. So these results can be viewed as partial classifications of string condensations.

The collective fluctuations of string condensation have also been analyzed to some extent. Just as in
particle condensation, these fluctuations give rise to new emergent quasiparticle excitations. However, the
similarity ends here. The emergent quasiparticles in particle condensed states are always scalar bosons. In
contrast, the emergent particles in string condensed states are (deconfined) gaugsabesons1977);

Foersteret al. (1980); Wen (2004); Motrunich and Senthil (2002); Wen (2083 and fermiongevin and Wen (2003); Wen (2003.

Fermions can emerge as collective excitations of purely bosonic models! (The emergence of deconfined
fermions/anyons from purely bosonic models was first studied in 2+1 dimensional models al. (1984);

Kalmeyer and Laughlin (1987); Weet al. (1989); Read and Sachdev (1991); Wen (1®9Moessner and Sondhi (2001); Kitaev (2003)]n

2+1 dimension, one can understand the emergent fermions using a flux binding picture. However, beyond
2+1 dimension, one needs to use the string picture to understand the emergence of fermions. In fact, the
string picture works in any dimension.) As in the case of particle condensation, the PSG that characterizes
different string condensed states can also protect the gaplessness of the emergent gauge bosons and fermion:
[Wen (2002); Wen and Zee (2002)]

Lattice gauge theory has provided additional insights into string condensation. It is well known that
Abelian gauge theory has a dual description in terms of closed strings - each closed string corresponds
to an electric flux lingwegner (1971); Bankst al. (1977); Kogut (1979)] Ref. [Kogut and Susskind (1975)] showed that
non-Abelian lattice gauge theory also has a dual description. This description involves more general 1-
dimensional objects: strings with branching. We will refer to these networks of strings as “string-nets”.
Ref. [Kogut and Susskind (1975)] showed that the string-net condensed phase in the string model corresponded
to the deconfined phase of the gauge theory, while the normal phase in the string model corresponded to
the confining phase of the gauge theory. This suggests that string-nets are perhaps a more natural object to
study then closed strings.

These results demonstrate that string (or string-net) condensation is associated with a host of interesting
physical phenomena — from anyons and fractionalization to emerging gapless gauge bosons and fermions.
However, they fail to provide a unified framework.

In this chapter, we will attempt to describe a unified theory for the simplest type of string-net condensed
phase — topological string-net phases with no broken or unbroken symmetry. We will present a general
theory of these topological string-net condensates that is analogous to the well known theory of particle
condensation. We will show that, just as the low energy effective theories for particle condensation are
Ginzburg-Landau theorigsinzburg and Landau (195Q)the effective theories for topological string-net conden-
sation are topological field theorigsiten (198%)]. Just as long range order is the basic physical concept
underlying particle condensation, topological orphen (1995)]is fundamental to topological string-net con-
densation. Furthermore, just as group theory is the mathematical framework behind particle condensation,
something called “tensor category theory” is the framework underlying topological string-net condensation.
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As in particle condensation, this framework will provide us with (1) a partial classification of the string
condensates and (2) a method for determining the physical properties (e.g. the statistics) of the collective
excitations.

Our approach, inspired by Refogut and Susskind (1975); Witten (1989a, 1990); Freedman et al. (2003b,a)], IS based
on the string-net wave function. We construct “fixed-point” wave functions for a large class of string con-
densed phases. The “fixed-point” wave functions are special string wave functions with the property that
they look the same at all length scales. We expect that if we could do an RG calculation for ground state
wave functions, then all the states in the string condensed phase would flow to the “fixed-point” wave func-
tion at long distances. Thus, we believe that the wave functions capture the universal properties of the
corresponding phases. Each “fixed point” wave function is associated with a solution to a complicated non-
linear equation. Hence, there is a one-to-one correspondence between string condensates and solutions to
this equation. (Solutions to this equation, in turn, correspond to “tensor categesies’(1995))

In addition to a wave function, our construction also yields an exactly soluble lattice Hamiltonian (with
the “fixed-point” wave function as its ground state) for each of the string condensed phases. Such an exactly
soluble lattice Hamiltonian can be viewed as the fixed point Hamiltonian at the end of the RG flow. Using
these Hamiltonians, we can find all the quasiparticle excitations and calculate their statistics. We find that
the low energy effective theories for these states are topological field theories. Hence, the results obtained
here can be viewed as a (partial) classification and analysis of topological field theories.

Our construction yields exactly soluble spin Hamiltonians for a large class of topological phases. These
Hamiltonians are a direct generalization of the exactly soluble lattice gauge theory Hamiltonians discussed
in [Wegner (1971); Kitaev (2003)] In addition to gauge theories, our models describe many other topological field
theories, including all doubled Chern-Simons theories (Abelian and non-Abelian), the gauge theories with
emergent fermions.

11.1 Particle condensation

To describe the logic of our construction in simple setting, let us consider particle condensation first. A
simple example of particle condensation is given by the transverse-field Ising model

Hying =hY 07—ty ojoy. (11.1.1)
1 ij

The model has tw@ = 0 phases. Wheh >> t, the model is in the state with all spins pointing down. As
we decreasé /¢, the model experiences a symmetry breaking transition. Wihiér= 0, the model is the
spin with all spins pointing in:-direction or—z-direction. The state with all spins pointing indirection

is given by|®) = ®;(| 1)s + | 1)s). Note that it has the same amplitude for ariyspin configurations.

We may view the spin-1/2 system as a hardcore boson systénis viewed as an empty site and)
an occupied site. In the boson pictud, represents the energy cost to create a bosort éthe boson
hopping amplitude. Wheh >> t, it costs a lot of energy to create a boson and the ground state of the system
contains few fluctuating bosons (note that the boson number is not conserved.)t \Bhénthe hopping
term dominates. The system prefer to create bosons and form superpositions between states connected by
the hopping term to lower its energy. So the ground state is filled with bosons. &yhen 0, the ground
state|®) can be described by a boson wave functigfa,, ..., 2y) =constant, where,, are coordinates of
the bosons (or the up-spins). Sinkghas the same amplitude for any boson configurations in real space, it
is a boson condensed state. Thus we can say that the ground sthtg oTorresponds to a condensation
of o#-spin if t > h. We note that the ideal boson condensed wave funebi@n, ...,4y) =constant is
topological. The amplitude of a boson configuratian, ..., <5} does not depend on the size and shape of
the boson configuration.
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We can use local rules to describe the above topological wave function fofthigin condensed state.
The local rules specify the relation between the amplitudes of different spin configurations in the ground
state. Let us us@(a;a;...) to describe the amplitude for a spin configuration with spjion sites and spin
a; on sitej wherea =7 or |. Here, we have used.” to represent the spins on other sites. The local rules
that describe the topological wave function are given by

(1] ...) =0(|1 ...), (11 ...) =0(|] ...). (11.1.2)

for any pairs of nearest neighbor sitteend j. The above condition on the spin wave function can be
represented by a projector. Defifg; by

1
P;j|®) = |D), Pij = 5(1 +0707)

ThenP;; projects into the subspace of the wave functions that satisfy the local rules (11.1.2).

Here we would like to introduce two concepts: self-consistency and completeness of local rules. A set
of local roles is self-consistent if there is at least one wave function that satisfies the local rules. A set of
local rules is complete if there are only a finite number of linearly independent wave functions that satisfy
the local rules. Because of the close relation between local rules and projectors, a set of self-consistent and
complete of the local rules can be represented by a set of projeétotisat satisfy

[Pij, Pra) =0, T[] Pij = finite
(i3)

The rules (11.1.2) are indeed self consistent and complete. This is because the state with all spins in the
o”®-direction satisfies the two local rules. On any connected lattice, there are only two states that satisfy the
local rules. One state has an even number of up-spins and the other has an odd number of up-spins.

Using the projector#’;;, we can construct an exactly soluble Hamiltonian

I:IIsing = Z(l - P’L_’])
(27)
whose ground state has a condensatiomeépin. Since the local rules are self-consistent, there is at
least one state that has zero energy. Such states are the ground states. Since the local rules are complete, the

ground state degeneracy is finite even when the lattice size approaches infinite. The constructed Hamiltonian
Higing is essentially the Hamiltonian of the Ising modél;,,; .

To summarize, we can use a set of local rules to descrivespin condensed state. Using the local
rules and the associated projectors, we can construct a Hamiltonian whose ground states satisfy the local
rules and have a*-spin condensation, provided that the local rules are self consistent and complete. In the
following, we will use a similar approach to study string-net condensation.

11.2 Picture of string-net condensation

To understand string-net condensation, let us consider a string-net model whose Hilbert space is made up
of linear superpositions of “string-net configurations.” String-net configurations are collections of curves in
space which may contain ends and branches (see Fig. 1Th& curves represent strings, and typically

they are labeled to indicate what type of string they are. For simplicity, we will focus on the case where at
most three curves (or strings) are allowed to meet at a point.

!Since open strings are allowed, we will see later that, on a lattice, the string-net model is just an ordinary spin model, and any
spin model can be regarded as a string-net model.
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Figure 11.1: A schematic phase diagram for the generic string-net Hamiltonian (11.2.1) Xkhesmall,
the system is in the normal phase. The ground state is essentially a state with a few small string-nets. When
t/his large, the string-nets condense and large fluctuating string-nets fill all of space.

The string-net Hamiltonian can be any local operator which acts on quantum string states. Typically, the
Hamiltonian can be divided into potential and kinetic energy pieces:

H = UHy + hH), + tHj. (11.2.1)

The constraint ternd/ Hy; with large U makes the ends of string to cost a lot of energy. So only closed
strings exist at low energies. The kinetic enef@yterm describes the hopping (or the shape changing) of

the closed string-nets, while the potential eneffjyis typically some kind of string tension. The string-net
Hamiltonian (11.2.1), like the Ising model (11.1.1), may contain two phases. Wien, the string tension
dominates and we expect the ground state to be a state with a few small strings. On the other hand, when
t > h, the kinetic energy dominates, and we expect the ground state is filled by many large fluctuating
strings (see Fig. 11.1). This state is likely to be a string-net condensed state. This is why we expect a phase
transition between the string-net condensed state and normal state &t/soomethe order of unity.

11.3 Topologically invariant string-net wave functions

Before constructing a Hamiltonian that has a string-net condensed ground state, we will first looking for a
concrete description of the sting-net condensed state.

Let us try to visualize the wave function of a string-net condensed state. Recall that, according to our
definition, the typical size of the string-nets in a string-net condensed state is on the order of the system
size. (The motivation for this definition is that we want to distinguish string condensation from particle
condensation. Indeed, if the string-nets were small compared with the system size, then in the long distance
limit, we could effectively treat the strings as particles). The universal features of a string-net condensed
phase are contained in the long distance character of the wave functions. Typically, two different string-net
condensed states that belong to the same quantum phase will have different wave functions. However, by the
standard RG reasoning, we expect that the two wave functions will look the same at long distances. That is,
the string-net wave function for stings that only differ in short distance details, like those shown in Fig. 11.2,
should be the same (or related). If we ignore those short-distance details, some long distance features of the
wave functions are universal. It is these long distance features that describe different string-net condensed
phases. Thus the key to understanding string-net condensed phases is to capture these universal long distance
features.

Our approach for capturing the long distance universal properties of string-net states is to construct
“fixed-point” wave functions that look the same at all length scales. If we could do an RG analysis on
ground state wave functions, we would expect that all the states in a string condensed phase would flow
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Figure 11.2: At long distances, a loop at the end, a bubble in a string, and a complicated branching are
unobservable. So the amplitude for the corresponding string-net configurations are related.

Figure 11.3: A schematic RG flow diagram for a string-net model with a few string-net condensed phases
a, b, ¢, andd. All the states in each phase flow to fixed-points in the long distance limit. The corresponding
fixed-point wave function®,,, ®;, ., and®,; capture the universal long distance features of the associated
guantum phases.

to the fixed point state (see Fig. 11.3). Thus, these wave functions are in one-to-one correspondence with
string-net condensed phases.

Here we will restrict our attention to “fixed-point” wave functions that are topologically invariant. Those
wave functions have the property that string-net configurations have the same amplitude if they can be
continuously deformed into one another. Clearly the topologically invariant wave functions only depend on
how the strings are connected and how they wrap around each other. The wave functions are invariant under
the scaling transformation. These topologically invariant wave functions correspond to string-net condensed
phases.

11.4 Describing 2D string-net condensation through local rules

One way to describe a string-net condensed wave function is to specify an amplitude for every string-net
configuration. But a generic string-net condensed wave function is too complicated to be described this
way. So instead, we will describe these topologically invariant wave functions indirectly — through local
rules. The local rules are linear equations that relate the amplitudes of few string-net configurations which
only differ locally from each other. We can then construct the string-net wave functions that satisfy these
relations. If the local rules are complete enough, their uniquely determine a topological string-net wave
function. So a topologically invariant string-net wave function can be specified by a proper set of local
rules.

In the following, we will restrict ourselves to string-net condensations in two dimensions. To describe
a set of local rules for 2D topological string-net wave functions, we need a set of data. Let us first describe

I I*

Figure 11.43 and:* label strings with opposite orientations.
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Figure 11.5: The orientation convention for the branching rules.
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Figure 11.6: (a) If{4, 7, k} is an allowed branching, after rotating bg0°, we see tha{k, i, j} is also an
allowed branching. (b) The shaded area represents some arbitrary string-net configurétighk}fis an
allowed branching, then after squeezing the rest of string-net into a small area and looking from far away,
we see thafi*, k*, j*} is also an allowed branching.

such set of data. Motivated by the fusion algebra in the conformal field tiv@emyand seiberg (1989)WWe may
choose the following set of data to describe a set of local rules:

1. Types of strings An integer N describing the number of different types of strings. The different
types of strings will be labeled biy= 1, ..., N. In later discussions, we find that it is convenient to
includei = 0 which corresponds to no-string (or a null string). We will call string labeled type-+
string. Every labet has its dual label*, which satisfiegi*)* = i and0* = 0. ¢ andi* label strings
with opposite orientations (see Fig. 11.4)i1f= i, then we say the string is non-oriented.

2. Branching rules: A collection of triplets{{i, j, k},{l,m,n}...}. These triplets correspond to the
allowed branchings in the string-net theory. That is the amplitude of a string-net is non-zero in the
string-net condensed state, if the string-net satisfies the branching rule. On the other hand, the am-
plitude of a string-net is zero in the string-net condensed state, if one of the branching points in the
string-net does not satisfy the branching rule. The orientation convention for the branching rules is
shown in Fig. 11.5. The set of the triplets has the property thét, if, £} is in the set of allowed
branching, thed k, 4, j} and{i*, k*, j*} are also in the set (see Fig. 11.6). AlSai,j} is in the
set if and only ifi = j*. This insures that a typéestring with no branching is an allowed string-net
configuration. Sinc®* = 0, so the{0,0,0} is always an allowed branching. Using the branching
rules, we can define a functiap;;: d;;, = 1if {4, j, k} satisfies the branching rule (i.e. is in the set)
andd;;, = 0 otherwise.

3. 6j symbols A rank-6 complex tensaF;;".

The data specify the following set of local rules:
iml Y ijm i T
® >J<_k< =D E'e(l ok (11.4.1)
n=0
® < ) = djdue® < ) (11.4.2)

0, (11.4.3)

:q>< O > (11.4.4)




whered; = 1/F]Jj8 i, j, k etc label the different strings (including the null-string) and the shaded areas
represent some arbitrary string-net configurations. Note that we have already assumed that the string-net
wave function is topologically invariant. So we do not care about the sizes and the shapes of the string-
net. We only care how strings are connected and how they wind around each other. Since there is no scale
dependence, the local rules describe a scale invariant string-net wave function. These scale invariant string-
net wave functions are ideal representatives of different quantum phases of string-net condensed states.
The universal features of the string-net condensed states are embedded in the local rules. We also like to
remark that the branchds, j, m}, {m*, [, k}, ... in eqn (11.4.1) are arbitrary and do not have to satisfy the

branching rule.

The local moves in eqns eqn (11.4.1) — egn (11.4.4) can connect any two string-nets, which in turn relate
the amplitudes of the two string-nets. Thus the local rules eqns (11.4.1) — (11.4.4) are complete which allows
us to determine the whole string-net wave function.

The rule (11.4.2) witlyj = 0 tells us that open strings are not allowed (i.e. a string-net configuration has
a vanishing amplitude if the strings have open ends). Whgr0, the string-net in egn (11.4.2) can still be
regarded as containing an open end from long distance point of view. Thus the string-net is not allowed even
whenj # 0. The rule (11.4.3) tells us that the switching between different types of strings are not allowed.
If such switching is allowed, then the strings in the wave function only appear in certain mixed form. In this
case, we should relabel such mixed string as our basic string type. The rule (11.4.4) indicates that we can
freely add null strings to a string-net without changing its amplitude.

The possibilities fo;3" are highly restricted. An arbitrary choice Bf’* does not lead to a single val-
ued string-net wave function. This is because two string-nets may be connected by two different sequences
of local moves. We need to choose the tensdf4 , carefully so that different sequences of local moves
produce the same results. Finding those tensors is the topic of tensor categorythaonyosay It was
shown that only thosé&}]" that satisfy the pentagon identity

DR A A o A S ol (11.4.5)
n

describe single valued string-net wave function. Thus finding different solutions to the pentagon identity

is equivalent to finding different “fixed point” string-net condensed states or different phases of string-

net condensed states. This leads to a classification of the phases of string-net condensed states. Just like

symmetry groups classify different particle condensed phases (i.e. different symmetry breaking phases), the

solutions of eqn (11.4.5) classify different string-net condensed states.

It is a highly non-trivial exercise to find a set of self consistent local rules (i.e. solutions to the pentagon
identity). It turns out that if we regard the indéxhat labels different types of the string as the index that
labels different types of representations of a gréyphen thetj symbol of the grougs provides a solution
of the pentagon identity (after a proper rescaling). The low energy effective theory of the corresponding
string-net condensed state turns out to be a gauge theonGhdth the gauge group. Thus, gauge bosons
and gauge group emerge from string-net condensation in a very natural way.

The string-net picture of the gauge theory allows us to understand why the low energy effective theories
of certain systems are gauge theories, and why the system chooses a particular group as its gauge group.
By changing the coupling constants of the system, the system may choose a different string-net condensed
state described by a differefit symbol as its ground state. The differéritsymbol will result in a different
gauge group. This results in a phase transition that changes the gauge group of the low energy effective
theory.

In 2+1 dimensions, some solutions of the pentagon identity do not correspond Gg fyenbols of
groups, but rather th&j symbols of quantum groups. In these cases, the low energy effective theories of the
corresponding string-net condensed states are Chern-Simons gauge theories.

2This result is highly non-trivial. It is discussed in tensor category thgfmaev (1994)]
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Figure 11.7: The local rules (11.4.1) are implemented by switching the legs according to the arrows. The
operations (a)-~ (b) — (c) are done according to the solid arrows. The operations+{(&)) — (e) — (c)

are done according to the dashed arrows. The two sequences of the operation should lead to the same linear
relations between the string-net configurations (a) and (c).

In general, different string-net condensed states correspond to states with different topological order.
The corresponding low energy effective theories are different topological field theories. The classification of
string-net condensation leads to a classification of topological field theories and classification of topological
orders.

11.5 The pentagon identity

In the following, we will derive the the pentagon identity using a graphic method. We start with the string-
net wave function described by a set of local rules (11.4.1) — (11.4.4). We assume that a stAnhgsliet
have a non-zero amplitud&(X) # 0, if all the branchings inX are allowed branchings. Rotating the
string-net in eqn (11.4.1) by80°, we see thaf,;”" must satisfies

igm __ pklm*
Fon = Fijn= -

Also settingi =1 =n =0, j = k*, andm = k in egn (11.4.1), we find

FOEk — (11.5.1)

The 65 symboIF”'C also satisfies other conditions. If we apply the local rules (11.4.1) twice on the

Imn

string-net configuratioh\;’)ﬁ/ as showninFig. 11.7a, Fig. 11.7b, and Fig. 11.7c, we find that the amplitude

f\»)\/ is related to the amplitude éf%rsv

A
() el

_ZFW Fre o (\%f >

*kr* " mls*

We can find another relation between the amplltudek\fgﬁ/ and\r/{Y by applying the local rules three
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times as shown in Fig. 11.7a, Fig. 11.7d, Fig. 11.7e, and Fig. 11.7c:
@(\p%)) Zleq(I)<\J\ ‘k I)
imm n prn i; P im
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o i
’ k
. . . j £ [
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n,r,s

ik
The two sequences of the local moves must result in the same relation between the ampw./l%f/of

i kK i ..
and the amplitude oﬁf@?. Thus in order for the local rules to be self consistdfif" must satisfy the
pentagon identity (11.4.5). It turns out that eqn (11.4.5) is not only the necessary condition for the self
consistent local rules, after supplemented with with a few minor conditions (see eqns (11.6.11), (11.6.12),

and (11.6.14)), the pentagon identity (or its variant form (11.6.14)) is also the sufficient condition.

11.6 Properties of self consistent local rules

11.6.1 Simple properties off77*

The local rules (11.4.1) — (11.4.4) allow us to obtain the relation between the amplitudes of string-net
configurations. For example

() (W5 e (B30
- l.g.i:g@( i) @>

where we have used eqn (11.4.2Z)%.0 is an important quantity. 1) = 0, from the above calculation,
we see that the typéestring will not be allowed (i.e. any string-net containing the tygring will have an
vanishing amplitude). Thus we can assulig| # 0 andd; = 1/FZ.? that we introduced in eqn (11.4.2)
always exist. We note that = 1. Similarly, we can find

3 ( E@O = Fi o ( >O@>
— FIF® ( i) @) — 4 FIE 0 ( ]) (11.6.1)

11.6.2 Rescaling of’*

The solution of the pentagon identity is not uniqueF[ﬁL describes a self consistent local rule, we may

obtain some other self consisteﬂfﬂ; by rescaling the wave function of the string-net. The rescaling is
done by multiplying to the string-net wave function a facfet, j, k) for each vertexs, j, k} in the string-
net. Heref (i, j, k) satisfiesf (i, j, k) = f(j,k,i) and f(0,4,7*) = 1. For example, under the rescaling,
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P ( >Jmk< ) is changed tg (i, j, m)f(k,l,m*)(...)@( >J‘”lk< ),Where(...) represents factors gf
for the branching points in the string-net represented by the shaded area. The rescaling will cause a change
in F:
ijm ijm ijm f(n,l,’b)f(j,k,n*)
FI" — F9™ = FY —
kin kin kin f(Z, 7, m)f(k:, l’ m*)

If F7' a solution of the pentigon identity (11.4.5), then the rescdifld], is also self consistent. Since
the wave function and the rescaled wave function are related through a smooth deformation, the two wave
functions describe quantum states in the same phase. For this reason, we&regdi to be equivalent.

(11.6.2)

Some combinations Qﬂ’gﬁl are invariant under the rescaling transformation. Those invariant combina-

tions will characterize the different equivalent classes of the self consistent local rules, or in another word,

different phases of string-net condensed states. The simplest invariant combinﬂgfg?@jsHhsg defined

below o

Fg*gsh Fs*slf*o
175*50

s*s0

= dg F99 0 phss (11.6.3)

hsg —
H = s*sh * s*h*0

are also invariant combinations Bf’* . In general, any relations between different string-net configurations
that contain no branching points are invariant under the rescaling transformétiéhis one such relation
(see (11.9.7)).

11.6.3 Tetrahedral symmetry and symmetricsj symbol Gi*

Imn

F,z{;” has(N + 1)% components, which is a large number. However, as a solution of the pentagon identity,
many of those components are not independent. To see the relation between those components, let us

consider
n | . E;.n,;|
? =rgre |

k

=F4m T g & 7'
~Vkin Tkn*0 Ok n\

=Fm Ep T En ! dyddy @ (0) (11.6.4)

where we have used eqn (11.6.17) in the first line. We define the above combination in the @it a$:
Gim = B Foned Fig ™ diddy, (11.6.5)
Clearlyé*%” can be represented by a tetrahedron (see Fig. 11.8a).
é;jl:’: have the following properties:

1. G;jl’;f = 0 unless all the branchings in the tetrahedron correspondirdg @i, j, m}, {i*,1*,n*},
{j*,n, k*}, {k,l,m*}), satisfy the branching rule. (See Fig. 11.8a).

2. Putting the tetrahedron shaped string-net on a sphere, we find that the am@li(u) has the
k

tetrahedral symmetry. Therefo also has the tetrahedral symmetry. The tetrahedral symmetry is
generated by two transformations (from Fig. 11.8a to Fig. 11.8b and Fig. 11.8a to Fig. 11.8c) and
leads to: - -

G = Gijnt = G-
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@ (b) ©

Figure 11.8: The three tetrahedrons are related by the tetrahedral symmetry. (a) The tetrahedron that repre-
sentsG}" (or Gj"). (b) The tetrahedron obtained by rotating (a) around the axis connecting the centers
of the link m andn by 180°. Compare to (a) the orientation of the link andn are reversed. Thus the

tetrahedron (b) correspond ¢ ]l,’f (c) The tetrahedron obtained by rotating (a) around the cent&23y
The orientations on the links are preserved. Thus the tetrahedron (c) corresp(iljz(;iéllo

3. From the graphic representation(aff, we also see that

~i3*0 ~000

4. F™ can be expressed in terms@f,":

Fyy' = e i (11.6.6)

Gkn*O GinO

To show (11.6.6), we first set= 0, = i*, andj = k* in (11.6.5):
Gt = Fig" Fio “ Figo didido = Fiieg" dyd;

where we have used eqgn (11.5.1). Expresii}jﬁg” in terms ofG, we can obtain (11.6.6) from (11.6.5).
Eqn (11.6.6) allows us to see the relation between many componehtthadugh the tetrahedral symmetry
of G.

11.6.4 The complete self consistent equations

We have mentioned that in order féf?" to describes a string-net condensed staf¢: must satisfy the
pentagon identity (11.4.5) and be consistent with the local rules (11.4.1) — (11.4.4). In the following, we
would like to show that such}%ﬁ can be determined by a set of pure algebraic equations

ik _ Yk o
Fj*i*O - ’UZ"UJ' 6Z]k7
ijm __ pklm* _ pmij UmUn
Fkln - Fijn* - Fnk*l* vivy
7Vl
mlq jip js*n __ jip rig*
DD U Y M A (11.6.7)
n

By putting a single loop of typé-string on a sphere, we can continuously change it into a loop of the
type-<* string. This allows us to show thd} = d;~. Thus we can introduce the weights of strings,that
satisfy

V2

;o =di, v = v

This defines the;'s in egn (11.6.7).

We note that eqn (11.6.7) contaifi¥ +1)3 +2(N +1)° 4+ (N 4-1)® equations. Many of those equations
are not independent. But there are enough independent equations to determivertheé® components in
Fiik

Imn”
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Under the rescaling transformation (11.6.@)({@) is changed tof (i, 7, k) f (¢*, k*, 7%)® <€Jlk}>
Let us choose

(11.6.8)

for allowed branchinggi, j, k}. We note thatf (i, j, k) defined in (11.6.8) satisfief(i,i*,0) = 1 and
f@i,4,k) = f(J, k,1). Such a rescaling transformation will make

o <g}k}) L)

This implies that

and o
. ngm
Fymt = —kin__ (11.6.10)
VUV
It is more convenient to introduce symmetsit symbol
Gim — G
kin = ViV Up U U Up,
which have the same tetrahedral symmetr@%ﬁ:
Gom = Gim” = il (11.6.11)
In terms ofG, (11.6.9) becomes the 1G relation
. Sin - Sin
@0 _ Tijk Gquk _ Zijk 11.6.12
k*kj Uivk’ 7*1*0 V;V; ( =Y. )
and (11.6.10) becomes - -
Fign = Gl vmn (11.6.13)

We see that thé; symbol F' can be expressed in terms of the the symméfisymbol G and the weights

v;. The above relation and the graphic representatic@i}ﬁi‘fn in eqn (11.6.4) allow us to show thﬁf#ﬁl is
non-zero only if{i, j,m}, {m*, k, 1}, {i,!*,n*}, and{j, n, k*} satisfy the branching rule. Eqns (11.6.12)

and (11.6.6) allow us to obtain the first line of eqn (11.6.7) and egns (11.6.11) and (11.6.6) allow us to obtain
the second line of egn (11.6.7).

The pentagon identity (11.4.5) becomes
S A, G GIE Gl = GIE LG (11.6.14)
n
when written in terms of7. Settingr = 0, s = [, andj = k*, we obtain a simpler 2G relation

Soap Ghmtd, = 2Ot (11.6.15)

Using eqn (11.6.12) and eqgn (11.6.13), we can also show that

FIER RS odje = Ogji (11.6.16)
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Problem 11.6.1;
Show that

d O~ =0, ifi#j (11.6.17)

Problem 11.6.2:
Show eqn (11.6.16).

11.7 Some simple examples of string-net condensed states

In this section, we will construct a few simple solutions of egns. (11.6.11), (11.6.12) and (11.6.14) (which
are equivalent to egn (11.6.7)). As discuss above, each solution gives us a string-net condensed state.

11.7.1 TheN =1 closed-string condensed states

The simplest string-net condensed states are described by the following set of data:

1. Types of strings: There is only one type of stringy = 1. The string is not orienteti = 1.

2. Branching rules: The allowed branches af®, 0,0}, {1,1,0}, {1,0,1}, and{0, 1,1}. The branch-
ing rules determines the functiap.

Since no branching is allowed, the above data desc¥ibe 1 closed-string condensed state. Tkie= 1
string is alway non-oriented.

The solution of of egns. (11.6.11), (11.6.12) and (11.6.@4%2, can be found through the following
steps:

1. From the branching rules, we find that only the foIIowiﬁ@{nn's are non-zero. Those non-zero
G}/ 's are related by the tetrahedral symmetry:
G,
G — chit - o i
GllO - GlOl GOII'
2. From (11 6.12), we find
Giono =
1
G = Géé‘f Gloo = Golo =
G116 = Gio1 = Golt = 33-

3. Settingm =l=k=p=1 andz = ¢ = 0in (11.6.15), we findy_,, G112G11%d,do = d0061100101
or GHIGHS = 1. SinceGi = 2, we findv; can take one of the four valués—1, i, and—i.

Now the values of all the components@f” are determined. We can check that the above symmigfric

symbol does satisfy the full pentagon identity (11.6.14).
From eqn (11.6.13), we find that the above four solutlorﬁlg’;f only give us two dIStInCF”k

000 011 110 101
FOOO _FOH _FOOI _FOIO -

Figl = Fii = Figg =1,
Y =d! (11.7.2)
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with d; = v? = =1, which describe two closed-string condensed states. The local rules (11.4.1) and

(11.4.2) become
@( o):m@< ), ¢(>< ):df@(:::), (11.7.2)

The local rules are so simple that we can calculate the corresponding closed-string wave functions explicitly.
We find
(I)(X) - dJIVlv
whereN; is the number of the closed loops in the closed-string configuraiors we will see later that
the above two closed-string condensed states correspondt@auge theory and &(1) x U(1) Chern-
2 0

Simons theory with d&-matrix K = (0 9

) . (TheZ; gauge theory can also be viewed d$@) x U(1)

Chern-Simons theory with &-matrix K = (g 3))

11.7.2 TheN = 1 string-net condensed states

The next simplest string-net condensed states are described by

1. Types of strings: There is only one type of stringy = 1. The string is not orientetf = 1.
2. Branching rules: The allowed branches afe, 0,0}, {1,1,0}, {1,0,1}, {0,1,1}, and{1,1,1}.

Since branching is allowed, the above data deschibe 1 string-net condensed state. Again, fiie= 1
string is alway non-oriented.

The solution of of egns. (11.6.11), (11.6.12) and (11.6.03@1)',21, can be found through the following
steps:

1. From the branching rules, we find that only the foIIowiﬁtjfm's are non-zero. Those non-zero
GY* s are related by the tetrahedral symmetry:

006"
Ly
G _ om0 _ cou _
e e
I TG T o g
Giii = Gii1 = Gi1 = Gio = Gion = Gonr-
2. From the 1G relations (11.6.12), we find
000 __
i Z G — o = o = 1
G111 = Gooi = Gioo = Goio =
110 _ ~101 _ ~011 _ ~110 _ 101 011 _ ~111 _ ~111 111
GllO - Gl()l G()ll Glll Glll Glll GllO - GlOl GUll - T
3. One of the 2G relations (11 6.15);, GHEGHEd,dy = 600, requires thaG HIGH) + GHIGHLd, =
1. SinceG11j) = Gilj = -, we findv, satisfies
1
v} —v? —1=0. (11.7.3)

Thuswv; can only take one of the following four values
VE+1 [VE-1
5 v = 1 5

Another 2G relationy ", GH¥GHEd,dy = 610, requires thaG1H9G1L + GiHGilldy = 0. We find
Gl =~
1

v =
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Figure 11.93 on a link andi* on the reverse link label the same spin state in the spin model.

Just like theV = 1 closed-string model, the 1G relations and the 2G relations again completely determine
the values of the weights and the6;j symbolG#* . We can check that the fo6yj symbolG}ffn obtained

Imn-”

this way are four solutions of the pentagon identity (11.6.14).
From eqn (11.6.13), we find that the above four solution§gfgive us four distinc?" 's:

000 _ 7000 _ 7110 _ 7101 _ 70011
FOOO — 4111 _F001 — +£010 — +100 —

101 _ 7011 _ 7111 _ 79011 _ 111 . 70101
Fl(]l _FOH _F011 _Flll _F101 _Flll -

1
110 _ 7plll _
Fiiy = Fiig =
U1

FllO _ 111

10 = 111 = (11.7.4)

[~
—io| T

We note that for the abo@,ﬁ{f‘, the rescaling transformation (11.6.2) can change the sign eff — —wv1,
if we choosef(1,1,1) = i (note f(1,1,0) = f(0,0,0) = 1). Thus theF,]™’s obtained fromv; with
different signs lead to equivalent string-net condensed states.v] s only two inequivalent choices

[V +1 V5 -1
v = B N V1 =1 9 .

The local rules (11.4.1) and (11.4.2) become
@ ([ 0)=a-2(F)
<I>< > < ):dfl-q)( [ )+v;1-¢>( 1 )
o((T)=rto (0 Q) —at-o(0 L1 (11.7.5)

Unlike the previous case, there is no closed form expression for the wave function amplitude.

11.8 Lattice “spin” models with string-net condensation

After constructed various string-net condensed wave functions, we would like to construct exactly solu-
ble Hamiltonians such that the constructed string-net condensed wave functions are the ground state wave
functions. In this case, we may say that the the systems described by the constructed Hamiltonians have
string-net condensation.

However, to obtain a well behaved Hamiltonian, we need put the string-nets on a lattice. So in this
section we will define a 2D lattice model that contain string-nets.

Our model is just the usual “spin” models with one spin on each link of a honeycomb lattice. Each spin
hasN + 1 states labeled by= 0,1, ..., N. We will uses, j, ... to label different links (or different spins)
andlI, J, ... to label different vertices of the honeycomb lattice.

We assign each link an arbitrary direction (see Fig. 11.10). If the spin on a link are in a state labeled
by i, then we say there is a typestring in the link. The orientation of the string is in the direction of the
link. Clearly, if we reverse the direction of the link, the labaVill be change to label* in the model (see
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Figure 11.10: The honeycomb lattice with one site per link. A typsed string. In the single-spin model,
B, acts on the 12 sites represented by the solid circles around the hegagonacts on the three sites
represented by the solid circles around the veltex

Fig. 11.9). The typé) string is regarded as null string (i.e. no string on the link). A string-net configuration
is formed by the non-trivial strings on the links. According to this definition, any spin configuration will
correspond to a string-net configuration (see Fig. 11.10).

Now the question is that how to construct a Hamiltonian whose ground state is the string-net condensed
state described in the last a few sections. We have seen that a string-net condensed state is described by a se
of data: the branching rulg,;, and the; symbol 7" . So it is natural to expect that we can use the same
set of data to construct a Hamiltonian whose ground state is the above string-net condensed state.

Although the string-net obtained from a generic spin configuration may not satisfies the branching rule,
the string-nets in the string-net condensed state always satisfy the branching rule. So we want to construct
a Hamiltonian whose ground state is formed by the string-nets that satisfy the branching rule. This can be

achieved by including a term
U> (1-Ey)
I

in the spin Hamiltonian. The operatély is an operator that only act on the 3 sites that are next to the vertex

I. ltis given by
oio> = b oio> (11.8.1)

b ab

Ex

wheredq. is thed-symbol that describes the branching rule. Cledtlyandl — E; are projectors. When

U is very large, the string-nets that do not satisfy the branching rule will have a energy of order &t.least

In this case, the ground state (and other low energy excitations) with energies close to zero are only formed
by string-nets that satisfy the branching rule. This way we implemented the branching rule in the ground
state.

If the Hamiltonian only contain thé& term, any string-net that satisfies the branching rule will be a
ground state. In this case, a string-net cannot move and has no dynamics. Since there are many string-nets
that satisfy the branching rule, the ground states are highly degenerate. We need to add additional terms to
lift the degeneracy. The additional term will allow string-nets to fluctuate which will make the ground state
to be a proper superposition of all string-nets that satisfy the branching rule. The desired Hamiltonian has a
form

N
Hsmet=9» (1= Bp)+U» (1—Er), Bp=) a.Bj} (11.8.2)
P I s=0

where}_ , sum over all the hexagons of the honeycomb lattice ahdsum over all the vertices of the
honeycomb lattice.
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Let us explain the terms iflsime: The hexagon operators,, only act on the twelve spins on the six
edges of the hexaggnand on the six legs of the hexagprfsee Fig. 11.10). Therefor&,, correspond to a
(N +1)12 x (N +1)'2 matrix in the spin model. It turns out that the actiong)f does not change the spin
states on the legs of the hexagenThus the abovéN + 1)!? x (N + 1)2 matrix is block diagonalized.
So at the endB;, can be described bV + 1)° matrices. Each matrix is@ + 1)° x (N + 1)¢ matrix.

Let us useBg 9N (abedef), with a, ...,r = 0,1, ..., N, to denote the matrix elements of tha9é + 1)6
matrices. We have

b%h4C b>_h4c
s,ghi g
<a“<| 4| By = Z By abcdef)< . d (11.8.3)
f*k*e fyk.<e

Note the choice of the directions of the links which is different from that in Fig. 1]Bﬁﬁn;{,’ﬁﬁ (abcdef)

ik
can be expressed in term of thgsymbol £/ :

s,ghijkl al bg*h h* di ej*k k*l
Bp,zlhqi’j/kll'(adeef) *l/g Fsgg/*h/FC*h/Z* /FS ’L/Z‘]/Fsgjl*k/Ff;‘k/*l/ (1184)

We note that the resulting states after the actioBphave branching$b, g™, b’} etc. Slncerfhf‘ e =

0if {b, g™, h'} does not satisfies the branching rule, so the actioR;palways results in string- net states
that satisfy the branching rule. Also if a state contain a branching{isay, i}, that does not satisfy the
branching rule, then the action & will make such a state vanishes, sid@@*g,* = 0 if {b,¢*, h} does
not satisfies the branching rule. Therefore,

B3 = E1BSEr. (11.8.5)

and B;, commute withEy for anyp andI.

In the next section, we will show that thig,,’s and E;’s all commute with each other. Thus our model
Hgner (11.8.2) is exactly soluble. If we also choaseto be

= b (11.8.6)

N )
Zz’:O d22
then
1. The Bp'sin eqn (11.8.2) are projector®?, = Bj,.
2. The ground state afsimetsatisfiesB, = 1 for all hexagong and £y = 1 for all verticesl.

3. The ground state is a string-net condensed state described by the set of local rules (11.4.1) — (11.4.4).

Since(Byp, Er) is a set of commuting operators, we can choose the basis of the spin Hilbert space as the
common eigenstates &f, andEy:

Bplbp, er, ) = bplbp, er, ), Erlbp,er,a) = erlbp, er, @),

whereey = 0, 1 andb, = by, b1, ..., byr—1 are eigenvalues db,. The indexx labels the possible degenerate
statesiy = 1,2, ..., max. In generabimaxis a function of{ b, er }. We can always choosg to be the largest
eigenvalue and rescalg to makeby = 1. Since the Hamiltoniafsimetis a sum ofB,,’s andEy’s, the state
bp, e1, ) is an energy eigenstate with ener@gy) ;(1 —er) + g>_,(1 — bp). In particular, the ground
state|®) has zero energy and satisfieg|®) = Bp|P) = |P).
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|:> 8
(@) (b)

Figure 11.11: The fattened honeycomb lattice. The strings are forbidden in the shaded region. A string state
in the fattened honeycomb lattice (a) can be viewed as a superposition of the string states on the links (b).

It is interesting to note that ifinax = 1, The exact soluble modéfs,netcan be mapped into a simple
spin model with one spin-1/2 spin on each vertex and one @gin- 1)/2 spin on each hexagon. The
Hamiltonian of the dual spin model is

Hyua=U Y (1+07)+g Y (1+Sp)
T P

whereS,, is anM x M diagonal matrix with eigenvalués, ..., bys—1 which acts on the spin state on the
hexagorp.

11.9 Understanding lattice results using continuum string-nets

The above results look complicated and mysterious. One may wonder, how can one guess such complicated
results. It turns out that there is a simple way to understand that above results. The string-net picture for two
dimensional continuous space and the associated local rules (11.4.1) — (11.4.4) play a key role here.

We start with the 2D honeycomb lattice. We fatten the links into stripes of finite width (see Fig. 11.11).
The key point here is that any continuum string-net state on the fattened honeycomb lattice (see Fig. 11.11a)
can be viewed as a superposition of the string state with strings on the link (see Fig. 11.11b). This is because
the string-net wave functiod (X ) for a string-net state is given By(X) = (X|®), where| X) is the string-
net state of a particular string-net configuratiin So the local rules (11.4.1) — (11.4.4) on the string-net
wave function can be formally interpreted as a relation on the string-net éfates

(| - réﬂi?ﬂ e (11.9.1)
(0| = dido ’ (11.9.2)

< >JI. =1 (11.9.3)

( » 4 = »°d | (11.9.4)

Using the above local rules on the string-nets states, we can always write the state in Fig. 11.11a as a linear
combination of the states in Fig. 11.11b. The physical states really correspond to string-nets on the links
(such as the one in Fig. 11.11b). Drawing string-nets in the fattened honeycomb lattice is just a fancy way to
represent physical string-net states. Every string-nets in the fattened honeycomb lattice (such as Fig. 11.11a)
correspond to a superposition of the physical string-net states with strings on the links (such as Fig. 11.11b).
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@ " k ‘e b ¢ K e

Figure 11.12: (a) The action d#,, can be represented by a loop of the typstring. The string-net state

(a) is actually a linear combination of the string-net states (b). The coefficient of the linear combination
are obtained by the local rules (11.4.1) that change (a) to (b). Note that the center of the hexagon is the
forbidden region. The local rules only apply to the ring-like region around the hexagon.

11.9.1 Graphic representation of theB3; operator

With this understanding, th&;, operator in (11.8.3) has a simple a graphic representation in the fattened

b c

h
9 i
honeycomb lattice. The operatb¥, when acts on a string-net Ste<[?<:>d
! i
k

f e

simply add a closed loop

of type-s string:

b c

9 i
We can use the local rules (11.9.1) — (11.9.4) to vv<iatu

f e

as a linear combination of the physical

string-net states with strings only on the links, i.e. to change Fig. 11.12a to Fig. 11.12b. This allows us to
obtain the matrix elements @f,,. The pentagon identity (11.4.5) ensures that different ways of change lead
to identical result.
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The following is a particular way to implement the above procedure.

(11.9.5)

_ g99™*0 hh* i7" Ji* kk* 1*0
= > R MR P P S (s
g/h/i/j/k/l/

= Z F99°0 th*hg Fiit0, piit0 pkk*0 pll*0
*+ g*sh!* *

s*sg s*si* % g* g s*sk/* L gxslx X
g/hl,i/j/kll/

bg*h  peh*i  pdi*i  pei*k  pafkt
sth/g/*FC /h/*FSz]/jZ/*Fegk/ /*F]il/k,/*

2 : bg*h h*i di* ej*k k*1l al*
== F ;qh/ /*Fc /h/*Fs ]/Jl/*F*jkl ’*Ff;l’k’*Fs*g}%’*
g/h/l/]/k/l/

where we have used the local rules (11.9.1) and (11.6.1) in our calculations. We also used relation (11.6.16).
(11.9.5) is exactly (11.8.4).

The above calculation can also be done locally near a vertex:
b
<g ih‘ :Zth /*<g¥hhh‘
s g
b
Zth* pbg*h <g g yh h ’
*h/ 1% :]’4_411
S S

/hl

. g g g9 999 . g g g9 g9gg
Slnce:f and~= always appears as part o=~ in the loop, we can regarg™ asl and~= as~=7~, or
S S S S

qsq
F; 20

. . g9 gg. . ggg .
a0 . This way a pair o~ and== in a loop will reproduce*=. So we can rewrite the above as
S S S

s*s0

g [hh*0_ pbo*h Fh/;/sg b
* g * D
<<L—‘ 5 Sh/*F *h/g/* F'S SO <g h ‘
/h/
=S Et g g 11.9.6
- S*h,g,* m ( . . )

g/h/
which reproduces eqgn (11.9.5).

11.9.2 Commuting properties ofB;! and B,?

Using the graphic representation8f, we can easily show thaiit;,l1 andBf,‘; commute. Assump, andp,
are next neighbor hexagons. The action3jf B;? on the string-net state Fig. 11.13a can be expressed as
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PN PN )\ PN o A A
aYl ij IY Y ij IY aYl ij IYd
r t m : :: r r m’
h*q p*o n~e h™ q_p Sonte h*q’ p’*o’ n e
he he he hg hg
g f g f g f
(@) (b) (c)

Figure 11.13: The action aB;! B;2 on the string-net state (a) can be represented by two loops ofstype-
and types, strings which lead to (b). The string-net state (b) is a linear combination of the string-net state
(c). The coefficients are obtained by the local rules that change (b) to (c).

Fig. 11.13b. Fig. 11.13bis actually a linear combination of the string-net state Fig. 11.13c. The coefficients
of the linear combination is determined by the local rules that changes Fig. 11.13b to Fig. 11.13c. Those
coefficients are the matrix elementslﬁ);}1 Bp:. 1t is clear that, since the two loops of the typeand type-

s strings do not overlap, the action Bf? B;! is represented by the same graph Fig. 11.13b. Bjas3;!

has the same matrix eIementsB§ Bg:.

We would like to remark that we did not assume the branching points to satisfy the branching rule in the
above graphic calculation. Thus we have showed tBgt, B;2] = 0 in the total Hilbert space of the spin
model.

11.9.3 The condition for B, to be a projector

To find the condition foi3;, to be a projector, we consider

< 51352: ( ) ‘_ZFssl:;k* (% E} ’

:ZFjle,S*F’i,jgsldSQ G ) (11.9.7)
Using eqgn (11.6.16), we find

< ’B;}B;f zzk:ak< (®) )

BBy = Zék*SQSle,. (11.9.8)
k

or

Let B, = ), asB;,. Using (11.9.8), we find that
= Z 5k*3231 Asq asgB
k,s1,52

So, if we choose, to satisfy
Ug =) Ograns sy Gy, (11.9.9)

51,52

then B, will become a projection operator.
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oo (D) -+ (B0)
- %:zr;j}%@< D@;) = %:F OFHY d; q>< ﬂ) (11.9.10)

we can show that, F. ;%F;fé“ = 1. Using eqn (11.6.7), we can reduce the abovg te Y, 6;+x,d/d;.

This allows us to show; > d2 >k Oirkjdid;. We find thatu, = ds/ > d2 is a solution of eqn (11.9.9).

11.9.4 The condition for the continuum string-net state
Now let us consider hou8,, act on the Statéiﬂi)I
i

(7= B - Sy (3

s*sj*

S

where the shaded area is the forbidden area in the center of the hexagon for applying the local rules. Simi-
larly, for a state where the string going around the hexagon in the other way, we have

<ivi\Bp = Zas<i{oﬁ‘ = Zang 0, < i:ﬂ
; i

Thus if B
asFES. = uia; Fl.2. (11.9.11)
then
<iI\—i‘Bp — Ui<ivi‘Bp
The condition (11.9.11) can be simplified to
a d
L ¥ 11.9.12
7 jrs = d] 7" ( )

Since the ground state of the string-net moHeknet (11.8.2) is an eigenstate &f,, the ground state wave

function ® satisfies
) (iﬂi) =u;® (ivi>

We like to point out that the condition (11.9.11) or (11.9.12) is very important. Very often it is the condition
for the HamiltonianHgnetto have a finite number of ground states.

A solution of eqn (11.9.9)¢; = d /Z] ;, satisfies (11.9.11) with; = 1. In general ifa, satisfy
eqgn (11.9.12) withy; = 1, the ground state of the string-net mod&e Will satisfy

o ()=o)

The forbidden region in the center of the hexagon will become unobservable and we can apply the local rules
anywhere. The wave function satisfies eqn (11.4.1) — (11.4.4) on the hexagon lattice without any forbidden
region. In this case, we say that the lattice moHeg}net has a canonical continuum limit and the lattice
string-net wave function can be treated as a continuum string-net wave function.

A generic choice ofi; also give us exactly soluble models. But the lattice string-net wave function may
not have a simple continuum limit due to the possible presence of fast oscillation in the string-net wave
function at lattice scale.
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Figure 11.14: The Kagome lattice formed by spin-1/2 spins. The sites of the Kagome lattice are label by
The vertices, labeled hfj, form the honeycomb lattice. The open circles represent down-spins and the solid
circles represent up-spins. The strings on the links are formed by up-spins. In this figure, the up-spins form
a closed loop. The six think links that form the loop around the shaded hexagon is the edges of hexagon.
The six thick links that are attached to the shaded hexagon are the legs of the hexagon. The three thick links
connecting to the vertek form the legs off. TheU-term and they-term in (11.10.4) are also presented in

the figure.

11.10 Simple examples of exact soluble models

We have shown that each solutid}?l"[r{fj1 of the self consistent equation (11.6.7) give rise to a string-net
condensed state on the 2D honeycomb lattice and an exactly soluble Hamilibgiqn(11.8.2) whose

ground state is the string-net condensed state. We have given some simple examples of the solutions of
egn (11.6.7). In this section, we will use those simple solutions to construct exactly soluble string-net model
on honeycomb lattice.

11.10.1 Exact soluble Hamiltonian forN = 1 closed-strings

The simplest solution (11.7.1) describ®s = 1 closed strings. To use such]%{{j;’; to construct an ex-
plicit Hamiltonian, we need examins carefully the matrix elements oftfjeoperator in eqn (11.9.5) or
egn (11.9.6). Since each spin has two statesd1, the string-net model can be viewed as a spin-1/2 model
on a Kagome lattice, if we identify th@ state as a spin-down and thestate as a spin-up state (see Fig.
11.14). We find that

1. When it acts on a string-net state that does not satisfy the branchingjiteake the state vanishes.
- - bg*h bg*h

2. By is determined by}, \. and B, by Fy7, ..

3. When it acts on a string-net state that satisfies the branchinng;Ijm,st do nothing.

4. When it acts on a string-net state that satisfies the branchingByIﬁi,ps the spins on the six edges
of the hexagom and multiply the resulting state with a phase.

5. The above phase is given by" wheren is the number of the up-spins on the six legs of the hexagon
p (see Fig. 11.14).

In the spin-1/2 model, the operathy is given by

11
Er=;-3 II - (11.10.1)
legs of I

520



The action oth can be produced by

By= [[ Ex (11.10.2)
vertices ofp
and the action ole, can be produced by
Bi= [ oo II ¢ I Er (11.10.3)
legs ofp edges ofp vertices ofp
wherel‘[legsfu;(IJFU'?)/2 is the product of the spin operators on the six legs of the hexpgol] [ 447 is

the product of the spin operators on the six edges of the hexagba we can write the HamiltoniaH sy net
(11.8.2) explicitly in terms of spin-1/2 operators.

In the following we assumé is positive and very large. In this case thieterm in the Hamiltonian
Hginetenforces the branching rules When= 0, the ground states df = U ) ; E1 have an vanishing
energy. The ground state is highly degenerate. Any string configurations that satisfy the branching rules cor-
respond to the ground states. Those states are actually the close string states. All other string configurations
that do not satisfy the branching rules (i.e. the states containing open strings) have energiedbabmer
the ground state. Thgterm in Hgynetlifts the degeneracy and determines the dynamics of the strings.

SinceEy for the low energy excitations, we may 96t in the g term to 1. After dropping the constant
terms, we obtain the following' = 1 closed-string Hamiltonian

H=UY (5 +5 [I o)~ 503 (Bh+he)
I P

legs of I

Bi= [ w11 o (11.10.4)

legs ofp edges ofp
Wherezp is the sum over all the hexagons of the honeycomb latticeapds the sum over all the vertices
of the honeycomb lattice. Egn (11.8.2) and egn (11.10.4) have the same low energy spectrum.
In the closed-string subspace

H1 1 pl Pl
Bl = (BT, (B, Byy] = 0. (11.10.5)

All the low energy eigenstates for the model (11.10.4) are labeled by the common eigenﬁyadljelé;.
The energy of the state is given by Zp Ep. Ep ==+1 since(B},)Q = 1. Depending on the signs ¢f and
v?, the model (11.10.4) can have four different ground states givén by sgn(g). The ground states are
superpositions of closed strings.

The excitations above the ground state are created by simply flipping the signs df,;és‘awd changing
afewEy's from 1 to 0. Those excitations are particles with short range interactions.

Whenv; = 1, eqn (11.10.4) becomes

H :UZ(% +
I

II s -9> I] < (11.10.6)

legs of I P edges ofp

N

IntheU — +oo limit, the above Hamiltonian becomes the standard Hamiltonian 65 gauge theory
on the honeycomb lattice. The excitations created by flipping the sigthorﬁorrespond to thes vortex
excitation in theZ, gauge theory. The excitations created by chandintg from 1 to 0 correspond td7,
charge excitations. Sindg; = 0 only at the end of an open string, thig charge excitations correspond to
ends of open strings.
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The closed-string wave function for the ground state has a form
®(X) = (sgn(g))™"

where X represent closed-string configuration a¥glis the total number of the hexagons enclosed by the
closed-strings inX. Wheng > 0, ®(X) is simply the equal weight superposition of all closed strings.
Such a closed-string condensed wave function have a nice continuum limit. ¥\4éh the sign ofd(X)
changes at lattice scale aftd.X ) does not have a simple continuum limit. Such a state correspond to a state
in Z» gauge theory withr-flux through each hexagon.

Whenv; = ¢, the ground state still correspond to closed-string condensed state. The wave function is
given by

®(X) = (sgn(g))"r(—)™

whereN, is the total number of the closed strings (the loopsXin

11.10.2 N =1 string-net models

The self consistent equation (11.6.7) also has the following two solution:

000 _ 110 _ 101 _ 011 _ @11l _
Fooo = Foor = Foro = Foir = Foir =
000 _ 72011 _ 1101 _ 7011 _ g1l _ 101 _
Fiiy = Fiog = Fior = Frin = Fion = Fip =1
1
110 _ 11l _
Fiiy = Fig = —
vl
1
110 111
Fiip = Fiii = 2 (11.10.7)
i

for the N = 1 non-oriented string-net. Here

VBl (V-1
V1 = 9 , 1 B

describing the two solutions. The allowed branchingsigke = 000, 110, 101, 011, and111. So the
string-net condensed state the above solution is a superposition of branched string-nets.

After obtaining F's and v's, we can construct the corresponding exact soluble HamiltoRigmet
(11.8.2). First we calculate the actionB}, on a few simple string-net states:

<‘ Bl = <Q , <Q‘ BL = <‘ . (11.10.8)
(PMsb= (U4 (O].
(U= (745 (O1
(B} :;1 (£ + vll (| + vl% (O] (11.10.9)
We find thatB! and By, is not hermitian when; is not real. Thus only the solution with = @

leads to a physical string-net model.

To construct the exact soluble HamiltoniafnetWith B, as a projector, we need solve (11.9.9) first.

Eqgn (11.9.9) has two solution&ag, a1) = (

5-v5 1

54+/5 1
100745

10 >

1

\/5) and(

). The two sets ofay, a1 ) allow us
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to construct two exactly soluble HamiltoniaBgqne: The Hamiltonian from the first solution has extensive
degenerate ground states. In fact the ground state degeneracy is givap byr an open lattice, where

N, is the number of the hexagons aAg the Fubinachi number. The Hamiltonian has a finite number of
degenerate ground states for the second solution. The second solution also satisfies (11.912) witBo

the corresponding Hamiltonian has a canonical continuum limit and the string-net condensation on the lattice
can be regarded as a string-net condensation in the continuum space. In the following we will concentrate
on such a model. We call such a modél= 1 string-net model.

Again we can associate a down-spin with a null string and a up-spin with the type-1 string and write the
Hamiltonian in terms of spin operators. Bhnetis still a spin-1/2 model in Kagome lattice. However, its
expression in terms of the spin-1/2 Pauli matrices is quit complicated. We will not igjtein terms of
the Pauli matrices.

All the eigenstates for the exactly soluble model are labeled by the common eiger{valugs of Er
andBp. The energy of the state is given by (1 —er) + >_,,(1 — bp). er = 0,1 andb,, = 0, 1 since both
Er and B, are projection operators. The states wifh= 1 on every vertex are the string-net states that
satisfy the branching rule. Those states are called closed string-net states. The different closed-string-net
states are labeled Idy,. However, the labeling is not one-to-one. The number of the closed-string-net states
labeledb,, is F;, wheren is the numbeb,,’s that are equal to 0.

We would like to point out that the hexagon witlj = 0 correspond to a quasiparticle excitation at
the hexagorp. Thus, the state that hashexagons withb,, = 0 correspond to a state witlh quasiparti-
cle excitations. The above result implies that even when we fixed the locations of the quasiparticles, the
corresponding states still have degeneracy. We would like to stress that the degeneracy is topological. No
perturbation can lift the degeneracy when the quasiparticles are far apart.

On a periodic Kagome lattice, the ground states of¥he- 1 string-net model have a four-fold topo-
logical degeneracy and contain a non-trivial topological order. However, the topological order in the ground
states are very different from those in the= 1 closed-string model discussed in the last subsection. The
low energy effective theory of th%¥ = 1 string-net models are described by the trunc#&e(2) x SUs(2)
non-Abelian Chern-Simons theory and the quasiparticles carry non-Abelian statistics. The topological de-
generacy of thew-quasiparticle state makes the non-Abelian statistics possible.

11.11 Long string operators

11.11.1 Quasiparticles and invisible closed string operators

As we have seen in the last two sections that all the eigenstates of the string-netiigadel11.8.2) are

labeled by the common eigenvaluesif: ey = 0,1 andBp: by, = by, b1, ... The ground state corresponds

toeyr = 1 andb, = by (by is the maximum eigenvalue db,). Changing a fewe,; from 1 to 0 and

a fewb,, from by to by, by, ... correspond to creating a few quasiparticles. Those quasiparticles have finite
energies and short-range interactions. In this section, we are going to discuss the physical properties of those
guasiparticle excitations. First we would like to find the creation operators that create those quasiparticles.

This turns out to be a difficult task. One reason is that those quasiparticles cannot be created by local
operators in our “spin” modellsyne: FOr example, in théV = 1 closed-string model discussed in the last
section, the quasiparticle created by changingfrom 1 to 0 correspond to an end of open string. There is
no way to create a single end of string alone. The ends of string can only be created by a string operator and
their can only be created in pairs. (A string operator, by definition, is a operator formed by the product of
local operators on a curve.)

Clearly, a string operator will create an excitation above the ground state. In general, such a excitation
behave like an extended object (say with an energy proportional to its length). So the string operators that
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@ (b)

Figure 11.15: (a) An open string with two ends. (b) The open string is unobservable in the background of
string-net condensed state. Thus the ends of open strings behave like independent particles.

Figure 11.16: TheB,, operator creates a small loop of typstring. The long string loop is created by the
string operator.

create our quasiparticles must be very special. They must create excitations whose energy do not depend on
the length of string. Further more, different strings that share the same ends must create exactly the same
excitation. That is the string itself (apart from its ends) is unobservable. Is this possible? The answer is
yes, but it can only happen in the string condensed state (see Fig. 11.15). The invisibility of a string means
that the corresponding closed string operdidfCcose) does not create any thing from the ground state.
Mathematically, this means that the ground state is an eigenstate of the closed string operator

W (Cglose)|ground) = A|ground).

We may rescale the operatd¥ (Ccose) to make the eigenvalue to be = 1: In this way, we obtain
(ground |[W (Ceiose)|ground) = 1. The above result is very similar to the order parameter characteriza-
tion of symmetry breaking statéground|¢(x)|ground) = constant.

We see that there are two pictures for string-net condensation. In the first picture, we view a string-net
condensed state as a superposition of different string-nets whose size is as large as the system. This is the
picture adapted in this chapter. In the second picture, we may view a string-net condensed state as a common
eigenstate of non-trivial closed string operators. The closed strings can have arbitrary shapes and their size
can be as large as the system. The second picture is more general, which was used in the last chapter. In the
second picture, different string-net condensed states are classified by different algebras of the closed string
operators.

11.11.2 Simple string operators

One way to find invisible string operators is to find string operators that commute with the Hamiltonian
except near its end, in other words, to find closed string operator that commute with the Hamilfgfjan
(11.8.2)

[W(CC|OSE)7 Hstrnel] =0

Certainly, a product local identity operators along a loop satisfies the above above condition. (A local
identity operator, by definition, is the identity operator that acts within the local Hilbert space on a site.) But
obviously, such a string operator is trivial. We need to find non-trivial closed-string operators that commute
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with Hgrner But what does “non-trivial” mean? One definition of non-trivial closed-string operators is the
following. We know that we can always obtain open-string operators from closed-string operator. A non-
trivial closed-string operator has a properties that its corresponding open-string operator never commute
with the HamiltonianHsynetn0 matter how we modify its ends (by multiplying local operators near the ends

of the open string).

First let us try to find the string operator that creates quasiparticle correspondipg=to0. Those
quasiparticles are ends of strings. From the graphic representation &i tloperator, we see thdt,,
creates a small loop of typestring around a hexagon (see Fig. 11.12). Atgpcommute with thefsinet
So if we can generaliz&;, to a closed string with any length and shape, the resulting operator, denoted as
W,(C), will be the desired closed-string operator.

Since theB;, is obtained by simply adding a small loop of string, its natural generalization appear be
adding a large loop of string (see Fig. 11.16). Here we would like to point out that the “string” in the string
operator and the “string” in the string-net condensed state are quite different things. The “string” in the
operator represents a product of operators along the string, while the “string” in the string-net condensed
state represents a collection of “flipped” spins. So we will use dash line to represent “string” in the operator.
Its the action of the string operator that produces the strings in the state. Or in other wrods, the action of the

dash line produces solid Iin% ‘T>°> = ) ©5>4

The explicit form of the matrix elements @#;, are obtained from the local rules (11.4.1) — (11.4.4).
Similarly to obtain the matrix elements &F,(C') that creates a long string, we can start with its graphic
representation (see Fig. 11.16) and then use local rules.

We note that the long string and the small loop create@pyrave an important difference. The small
loop created by3;, never cross the strings that are already in the state. (The strings in the state always live
on the links.) However, a long string in general does cross those strings. So we need additional local rules to
handle the crossing. It turns out that the following set of local rules for string operators allow us completely
determine the their matrix elements:

~ j
SN ) E Wy

\\\/i —j
'/G > = § ws,’i
J

wherew? ; andw? ; are complex numbers. Eqn (11.11.1) in fact defines the close string opéfator

) (11.11.1)

Since we are interested in the invisible closed-string operators whose action does depend on the shape
and the position of the strings, so we requafg andw] to satisfy

G = [y a1112)
o '> -
o

Using the local roles (11.9.1) and (11.11.1), we can rewrite the above as algebraic equations

b e ) (11.11.3)

—m sl*i l U]US ji*k Jl*n
Wy s E Foews i F

kjm ksm*

Zwsz Fisk (11.11.4)

8)*
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Figure 11.17: The placement of the string operdi@fC'). The think lines are links that form the oriented
loop C. The links attached to the loap are the legs of”. The spin states on the legs are labeledy
The spin states o€’ are labeled by;.. The vertices o’ are labeled by ;.. We note that the string operator

cross the linkk only whenC' turns (right, left) or (left, right) at&y, Ix.1).

Note thats in the above equations is fixed.

After finding the solutions of eqn (11.11.4), we can calculate the matrix elements using the local rules
(11.9.1)and (11.11.1). The placement of the closed string operator follows the convention in Fig. 11.17. We
find that the string operatd#’s(C') only changes the spin states on the pattsee Fig. 11.17). The matrix
elements also depend on spins on the legS.oThe matrix element of string operatdr; (C') between an

initial spin statei;, ...ix and final spin staté , ...i%y on the path is of the form

il il gl N N
(We(C))i1 27N (erea...en) = (H Fk> (H ws,k>
k=1 k=1
whereey, ..., e are the spin states of theé “legs” of C' (see Fig. 11.17) and

FEREL,if O turns left atly,

Fp={ O hk
€Ll (2 . .
F 520" if C turns right atly,
kk—1
Vi Vs iy . .
E=wd . i Cturns right, left atly, Ti4q
3 R
. i
Wek =\ SEZgE if C turns left, right atly, Ty
U ’
1, otherwise

(11.11.5)

(11.11.6)

(11.11.7)

Because of (11.11.2), one can show that the above long string operator commug &itd £y, and hence

Hgines USing the graphic representation.

We can easily obtain open string operator from the above closed string operator. Such a open string

operator will create a pair of quasiparticles that correspond to ends oftyiping.

However, the equations (11.11.4) have more then one solutions! The different solutions give rise to
different long string operators that all create a loop of tyring when acting on a state without strings.
However, the action of those different long string operators on a state with strings are different.

To understand the meaning of those different solutions, let us consider the case of Abelian gauge theory.

The solutions to (11.11.4) can be divided into three classes. The first class is gwgpﬂw

— (D] ViVs __

S vj

1 for s # 0. These string operators create typstrings that correspond to electric flux lines in the gauge
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theory. The corresponding open string operators create a pair of electric charges. The second class of
solutions is given byugl;’—] = (wg’i“;—?s)* # 1 for s = 0. These string operators create no strings, but

they modify the string-net wave function. Those operators are similar to the vortex creation operators in the
superfluid. The associated open string operators create a pair of quasiparticles that correspond to changing
by, for by to some other values. Those quasiparticles correspond to the magnetic-flux excitation in the gauge
theory. The third class has# 0 andw;i% = (wg,i%)* # 1. The corresponding open string operators
create quasiparticles which correspond to electric-charge/magnetic-flux bound states. This accounts for all
the quasiparticles i2 + 1) D Abelian gauge theory. Therefore, all the string operators are simple in this
case.
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