
Teaching Basics of Instruction Pipelining with HDLDLX

Miloš Bečvář
Department of Computer Science and Engineering,

Faculty of Electrical Engineering,
Czech Technical University in Prague

Karlovo nám. 13, Prague 2, Czech Republic
becvarm@fel.cvut.cz

Abstract: HDLDLX is a graphically described VHDL model of 5-stage integer pipeline of well known DLX
processor. It can be used as a platform explaining logic-level implementation of pipelined processor as a
complement to SW functional simulators. Students can interact with model by implementing hazard resolution
logic or modifying the pipeline structure. Even though that the model is internally represented in VHDL, the
previous knowledge of this language is not required. HDLDLX can be used in conjunction with HDL Designer
and Modelsim tools from Mentor Graphics corporation. Article also discusses pros and cons of using
commercial EDA tools in undergraduate computer architecture course.

1. INTRODUCTION

Good understanding of instruction pipelining is
essential for current computer architecture students.
RISC processors DLX [1] or MIPS64 [2] are used as
examples explaining the main principles. It is a
common practice to reinforce understanding of this
topic by practical assignments done by students. One
way to help understand of pipelining is making
students to optimize programs for these processors.
Cycle accurate simulators [3] with visualization
capabilities such as DLXView [4], WinDLX [5] or
WinMIPS64 [6] or MIPSIt [7] are used for program
verification. Although these simulators give a good
view of pipelined instruction execution, actual
implementation of pipeline and associated hazard
detection logic is usually hidden. Moreover the
pipeline implementation in these simulators is mainly
fixed although some parameters could be changed
(e.g. functional unit latencies). Main question is how
the students could experiment with actual pipeline
structure on the logic design level. Some teachers
presented dedicated tools which requires the students
to specify the pipeline structure using specialized
Hardware Description Language. These tools usually
generates a complete VHDL or Verilog netlist of the
processor specified. Example of such tool is ASIP
Meister [8].

It is obvious that development and maintenance of
similar tool is relatively complex task. We present
another approach which leverages commercial EDA
tools as teaching aids in undergraduate computer
architecture course.

We were looking for a tool which allows design of
simple pipelined processor and its simulation without
knowledge of Verilog or VHDL. This requirement is a

result of the fact that VHDL is introduced only to
hardware oriented students after the undergraduate
computer architecture course.

Finally we decided to use a graphical VHDL entry
tool – HDL Designer from Mentor Graphics
corporation for our experiments. In this article
HDLDLX – a graphical VHDL model of well known
integer DLX pipeline is presented. This model can be
used together with HDL Designer and Modelsim for
simple experiments with instruction pipeline.

The rest of the paper is organized as follows – section
2 presents an overview of HDL Designer and its use in
computer architecture course. Section 3 outlines the
developed HDLDLX model. Section 4 describes the
use of this model in undergraduate computer
architecture course. Section 5 presents conclusions
and future work.

2. HDL DESIGNER OVERVIEW

HDL Designer is a professional EDA tool intended to
be a “designers cockpit”. It offers a graphical VHDL
entry and integrates several downstream design tools
in a single GUI – namely simulator Modelsim,
synthesis tool Leonardo Spectrum, Precession and
others (see fig. 1) Out intention was to build a flexible
graphical model of integer DLX pipeline and simulate
it using a common VHDL simulator Modelsim. The
reason why we decided to use this tool was in fact
that we used it in specialized design courses and it was
possible to extend the number of licenses without
increase of maintenance fee (offered in Mentor
Graphics High Education Program).

Figure 1: HDL Designer flow

One of important question was how the processor
model will be represented assuming that students do
not know the VHDL or Verilog. HDL Designer offers
several different types of graphical VHDL entry :
• Block Diagram

It was obvious that top-level representation of the
processor should be in block diagram. This
diagram should be the same or similar to block
diagrams used during lecture to simplify
orientation of students and save time.

• Truth Table
This view is useful for defining combinatorial
components of the pipeline. It is also well known
abstraction and easily understandable by students.

• State Diagram
This abstraction is very useful for Finite State
Machine specification. However, our integer
pipeline does not use any state machines and this
abstraction currently is not used.

• Flow Chart
Flow Chart is a graphical equivalent of VHDL
process. It has been used for sequential elements in
design such as memories and registers

From all these components, the tool generates VHDL
files which are submitted to Modelsim for simulation.
Thanks to tight integration of Modelsim and HDL
Designer, it is possible to cross-probe between
Modelsim waveforms and graphical representation in
HDL Designer. Namely, it is possible to observe a
values of signals directly in the block diagram.

Although the creation of the model was relatively easy
task for us, the big question was whether students are
able to learn how to use it. Even when we use only
limited functionality of the tool the overhead to learn
how to use it can overweight actual benefits. For this
reason high effort was spent in preparation of
documentation and step by step user guide.

We return to this issue later in section 4. Another
disadvantage of using commercial EDA tool is that it
runs only with connection to licensing server. It limits
the ability of students to run this tool from their home
computer if they do not have an access to the Internet.

3. HDLDLX MODEL

Although the latest edition of Hennessy-Patterson
book [2] switched to MIPS64 processor, we decided
to implement 32-bit DLX processor because we use
WinDLX and DLXV simulators in rest of the semester
and DLX ISA during lectures. However, resulting
model can be relatively easy modified to 64-bit MIPS
due to similarity of pipeline structure.

Figure 2: HDLDLX pipeline

3.1 HDLDLX Pipeline Overview

DLX is well known 32-bit RISC processor used in
computer architecture courses and many different
simulators of this processor exist. These tools differs
in the variant of DLX implementation because it
evolves throughout the book.

Our main intention was to create the same variant of
DLX as the one used during our lectures.
In the first pipelining lecture, the evolution of integer
DLX processor datapath and controller from single-
cycle non pipelined processor through multicycle
processor to 5-stage integer pipeline.
The implemented model corresponds to this simple 5-
stage integer DLX pipeline (Instruction Fetch –
Instruction Decode – Execute – Memory – Write
Back).

Following section outlines the implementation of DLX
pipeline components.

3.2 HDLDLX Pipeline Components

HDLDLX consists of pipelined datapath and
controller. Datapath is created by PC, program
memory, register-file, ALU, data memory,
multiplexers and pipeline registers. Controller consists
of combinatorial logic in every stage and pipeline
registers.

• Program Counter (PC) is fed by the value from
Next Address Logic. Depending on control signal,
the PC is either incremented by 4 or jump to
branch target address.

HDL Designer

Modelsim
VHDL/Verilog

Simulator

Leonardo Spectrum
FPGA/ASIC
Synthesis

Precission
FPGA Synthesis

FPGA/ASIC
Place and Route
(Xilinx ISE, Altera

Quartus)

Program
Memory

Next
Addr
Logic

PC

Imm16

Addr

Instr Addr

Data
Memory

32 32-bit
Registers

ALU

Imm16
Ext

Addr

Instruction

busA

busBbusW

busB

M

S

Comb.
Logic

Comb.
Logic

Comb.
Logic

Comb
.Logic

ID stage EX stage MEM stage WB stageIF stage

Important control signal of PC is IF_stall which
can prevent the PC from changing its value. This
signal is very useful in implementation of pipeline
stalls.

• Program Memory is implemented as a ROM. Its
content can be preloaded from the file (containing
instructions encoded in hexadecimal form). The
size of Program Memory is limited to 16K x 4B
(higher bits of PC are ignored).

• Register file implements 32 32-bit registers. It can
be described as 3-ported synchronous RAM with
R0 hardwired to zero. To be conform with book,
the register file contains internal bypassing – data
from write port could be forwarded directly to one
of read ports in the same clock cycle (in exception
of write to register R0 which is never forwarded).
Register file ignores any attempt to write to
register R0 which can be used to simplify the
pipeline control.

• ALU is implemented using Truth-Table
abstraction as a black box. It supports only limited
set of binary and unary operations (see section
3.3). However number of operations can be
expanded by increasing the size of ALU control
bus and expanding the truth-table. Besides the
result of operation, it also produces zero indication
which can be used in branch evaluation.

• Data Memory is implemented as ideal
synchronous RAM. Memory model pre-loads
initial data from the text file and dumps its content
into file after the simulation is finished. The size of
Data Memory is currently limited to 64KB and
higher address bits are ignored.

• Controller. As could be seen from fig. 2, the
controller is implemented as a sequence of
combinatorial logic sliced by pipeline registers. In
real implementation, the instruction is decoded in
ID stage into internal representation which flows
through the pipeline stages. However, it would be
very difficult for students to observe the pipeline
behavior in this case. For this reason we let the
complete 32-bit instruction code to flow through
the whole pipeline. In every stage, the necessary
control signals are decoded from this 32-bit
instruction code. Although, this is slightly
redundant implementation, it allows to understand
the pipeline much easily. Control combinatorial
logic in every pipeline stage is described as truth-
table and can be easily modified.

• Pipeline Registers are implemented as rising-
edge triggered D flip-flops. Two types of flip-flops
is used in the pipeline - normal D-flip-flops in the
datapath and specialized in the controller.
Specialized D-flip-flops in the controller have two
control signals – stall and clear. There are
dedicated stall and clear signals for every pipeline
stage (e.g. ID_stall, ID_clear, EX_stall, EX_clear

etc.) If the stall signal is asserted, the pipeline
register retains its value, if clear signal is asserted,
the pipeline register is synchronously cleared.
Clearing pipeline register in controller efficiently
means that NOP is inserted to this pipeline stage.

As could be seen from fig.2 , the pipeline evaluates
branch instruction in the MEM stage and no
forwarding and no hazard detection is implemented.
These features has to be added by students.
Main methodology to implement these changes is
defining of stall and clear signals behavior either by
drawing schematics or writing VHDL equation. We
would discuss this in detail in the section 4.

3.3 HDLDLX Instruction Subset

Only limited instruction subset is implemented in
HDLDLX. However, all types of instruction are
supported (Register-Register, Register-Immediate,
Load, Store and Branch).
Number of supported instructions can be expanded by
changing combinatorial logic in controller and ALU.

4. EXPERIENCE WITH HDLDLX

We currently use the HDLDLX in our undergraduate
computer architecture course. This course is
obligatory for all computer science and engineering
students and current capacity is around 300 students.
The course has a single 90-minute lecture and single
90-minute laboratory seminar per week. HDLDLX is
used in laboratory seminars during 4 sessions as could
be seen in table 1. Experiments with HDLDLX were
done every second week and interleaved with
simulations on WinDLX. It means that students can
compare two models of the same architecture.
WinDLX also helps in understanding what must be
implemented in HDLDLX. The ultimate goal is that
both simulators process the same integer program
equivalently.

Following subsections outline the actual use of
HDLDLX during the course.

Table 1 HDLDLX in undergraduate CA Course.

Week Lab Overview

1 Introduction to HDL Designer and
HDLDLX model
Simulation of HDLDLX with pipeline data
hazards

2 Implementation of RAW hazard resolution
logic (pipeline interlock)

3 Adding of control hazard resolution logic
into DLX pipeline with stalls.
Implementation of forwarding

4 Finalizing of forwarding

4.1 Introductory Session

As could be seen from table 1, a first session is spent
in introduction to the tool and model. An ultimate goal
of the first session is a brief explaining of HDL
Designer and Modelsim and more detailed description
of HDLDLX model.

Although only limited functionality of HDL Designer
is used, some time must be spent in setting up the tool
and explanation of necessary steps in using this tool in
various situations. Tool setup was relatively easy task
accomplished only by downloading and expanding of
HDL Designer library from a web into a user
directory. All HDLDLX model components were
stored in shared library and students had read-only
access to this library. It means that only top-level part
of HDLDLX was stored in student's libraries and only
this part can be modified. This restriction saves a lot
of time possibly spent in tracking of peculiar bugs
unintentionally introduced by students modifying of
model components.
After setting-up the library in the user directory, the
tool use was relatively simple and consists mainly
from sequence of mouse clicking. In the beginning,
students must open a project, open a library within
this project and finally open structural view of
HDLDLX. Luckily, the majority of these steps is
performed only during a first HDL Designer run and
later the tool opens the library automatically.
Although it was not completely necessary, we briefly
explained the concept of projects, libraries and blocks
and their different views to students. The rest was not
difficult to understand and students considered HDL
Designer just as any other schematic editor.
Generation of VHDL model, compilation and
invoking of Modelsim was automated by a single
clicking on Modelsim icon in HDL Designer. Overall
the tool setup and necessary explanation took around
30 minutes.

Problem of explaining HDLDLX pipeline is more
demanding. However, it was simplified by the fact
that the same (simplified) DLX pipeline is explained
in the same week during lecture. In the first lab, the
effort is spent mainly in explaining how each type of
instruction flow through pipeline and purpose of
various parts of DLX datapath. This is illustrated by
running of simulation of sample program.
Next, the concept of inserting stalls into pipeline using
stall and clear signals is explained. Initial model of
HDLDLX does not contain any hazard detection and
resolution logic and students may actually observe the
effect of RAW hazards in the pipeline. A good
teaching aid is the ability of cross-probing signals
between HDL Designer schematic diagram and
Modelsim.

4.2 Experiments performed with HDLDLX

A list of experiments possible with HDLDLX is
presented in table 1. Simple experiments are suitable

for undergraduate course where students have limited
access to the tool. More complex experiments can be
performed in graduate course as a half semester
assignments assuming that graduate students will have
more knowledge of the HDL Designer and better
access to the tool.

All simple experiments lead to specification of some
form of combinatorial logic into pipeline. Typically,
equations for stall and clear signals must be specified
for implementation of pipeline interlocks and branch
instruction. Forwarding is implemented by adding of
multiplexers into datapath and specifying control of
these multiplexers.

Table 2 Experiments with HDLDLX

Simple experiments possible with HDLDLX

• Implementation of data hazard detection logic
and stalling of the pipeline

• Implementation of pipeline flushing after branch
instruction

• Implementation of data forwarding
• Moving branch evaluation into ID stage and

implementation of delayed branches

More complex experiments with HDLDLX

• Implementation of Program and Data Caches
and pipeline stall due to “Cache miss”

• Implementation of multicycle operations (e.g.
multiplication) and associated WAW, structural
hazard resolution logic

• Implementation of exceptions

During the first run of the course, we proposed use of
schematic diagram or VHDL subset for specifying this
combinatorial logic. It was expected that students
would prefer schematic diagrams over learning of
subset of a new language. However, majority of
students decided to directly write VHDL parallel
signal assignments. We thought that students preferred
a text description because it is faster and it reminds
them software programming.

Overhead of learning subset of VHDL syntax was not
high. Students received a one-page simplified
description of the VHDL parallel statements and some
of them were even able to write these statements
before the end of the first session with HDLDLX.
Parallel assignments have smallest learning overhead
in VHDL . Their another advantage is in fact that they
introduce a dataflow way of thinking.

The major difficulty encountered by students was
distinguishing between std_logic and boolean
statements which use the same overloaded operators
(e.g. AND, OR, NOT). It suggests that using Verilog
can be even more straightforward in this application.

4.3 Experience from First Run on HDLDLX

After first introductory session, students work in
groups of two autonomously and tried to complete

assigned tasks. A role of teaching assistant during
these sessions was in helping students to overcome
difficulties with VHDL and trying to push them on a
way to find solution. Although the fact that students
can work on the simulator only in the school
complicated their task, it also limited the possibility of
cheating by copying solution of other groups.
 Experience shows that around 50 % of groups
completed the assignments during the expected time
and obtained a full number of points. The rest of
students required more time but majority of them were
finally able to complete it also. It was an important
role of teaching assistant to check that students
understand “their” solution to limit the possibility of
cheating.

5. CONCLUSIONS AND FUTURE WORK

Current experience shows that HDLDLX is a good
teaching aid in explaining basics of instruction
pipelining. The use of commercial EDA tool allows
relatively fast model development comparing to
building custom simulator. Although the model is
based on VHDL, the students were able to use it
without previous knowledge of this language. Students
of undergraduate computer architecture course were
able to learn a limited subset of this language
relatively easy and preferred using it over schematic
diagrams.

Students who completed the assigned tasks get better
understanding of complexity of hazard detection logic
implementation. Moreover, they were also introduced
to contemporary tools and language used in design of
digital circuits. Students mostly stated that their task
was relatively difficult but very interesting. A fact that
a commercial tool is used was also positively
appreciated and some students were interested to use
this tool in the future courses.

A good experience we had with HDLDLX confirmed
our decision to introduce Hardware Description
Languages in early courses of logic design. It means
that in the future, students will come to undergraduate
computer architecture course with basic knowledge of
VHDL which will offer new possibilities.

HDLDLX model will be soon available on the
internet - http://service.felk.cvut.cz/hdl_dlx.html

REFERENCES

[1] Patterson, D., Hennessy, J.,Computer Architecture
A Quantitative Approach, Morgan Kaufmann
Publishers 1996, 2nd edition

[2] Patterson, D., Hennessy, J.,Computer Architecture
A Quantitative Approach, Morgan Kaufmann
Publishers 2002, 3rd edition

[3] Yurcik, W., Wolffe, G., Holliday, M. ,
A Survey of Simulators Used in Computer
Organization/Architecture Courses, In: Proc. of
the 2001 Summer Computer Simulation
Conference (SCS 2001), Orlando, USA

[4] Zhang, Y., Adams, G.B.: An Interactive Visual
Simulator for DLX pipeline, Newsletter of IEEE
Computer Society Technical Cometee on
ComputerArchitecture, September 1997

[5] Gruenbacher, H., Khosravipour, M.,WinDLX and
MIPSim Pipeline Simulators for Teaching
Computer Architecture, In: Proc. of IEEE
Symposium and Workshop on Engineering of
Computer Based Systems (ECBS'96)
Friedrichshafen, 1996, GERMANY

[6] http://www.computing.dcu.ie/~mike/
winmips64.html

[7] Brorson, M.., MipsIT – a Simulator and
Development Environment using Animation for
Computer Architecture Education, In: Proc. of
Workshop of Computer Architecture Education,
Anchorage, USA , 2002

[8] ASIP Meister. http://www.eda-meister.org

