
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 21(12), 1323–1348 (DECEMBER 1991)

An Investigation into Concurrent Semantic
Analysis

V. SESHADRI* AND D. B. WORTMAN
Computer Systems Research Institute, University of Toronto, Toronto, Ontario, Canada

M5S 1A4

SUMMARY

Concurrency is an attractive method for reducing the execution time of compilers. By dividing source
programs into segments which can be compiled concurrently, the task of compiling programs can be
accelerated.

Many of the difficult problems which arise when constructing a concurrent compiler occur in the
implementation of the semantic analyser. This paper investigates the problems involved in designing the
semantic analyser for a concurrent compiler for a modern, block-structured language. Several approaches
to solving the problems which arise are presented. These solutions are then implemented as part of a
concurrent Modula-2+ compiler, running on a shared memory multiprocessor. A performance evaluation
of these semantic analysers is presented.

KEY WORDS Compilation Concurrency Semantic analysis Modula-2 Concurrent compilation

INTRODUCTION

In many computing environments, a significant fraction of the time is devoted to
compiling source programs into object code. Reducing the time spent in compilation
would be directly beneficial to programmer productivity. As parallel processing
technology becomes more commonplace, it becomes possible to contemplate design-
ing compilers as parallel programs in order to achieve this goal.

Most compilers consist of a series of phases implemented in a varying number of
passes, with each pass accepting as input the output of the previous pass. 1 The source
program is the input to the first pass, and the final pass emits object code as its
output. The most straightforward manner in which a compiler may be parallelized
is to logically extend the multi-pass organization of the canonical compiler, by running
each pass as a separate process in a pipeline with the processes communicating via
shared data structures. This approach is limited in two ways. First, the compiler is
not scalable with the number of processors available in the system, since the
maximum number of processors which the compiler can use is equal to the number
of passes in the compiler. Secondly, many compilers have an uneven run-time profile,
spending a large fraction of their execution time in one or two passes. Thus, the

* Current address: Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh,
PA, 15213, U.S.A.

0038–0644/91/121323–26$13.00 Received 8 June 1990
© 1991 by John Wiley & Sons, Ltd. Revised 25 June 1991

1324 V. SESHADRI AND D. B. WORTMAN

speed of the pipeline will be constrained by the speed of the slowest pass of the
compiler.

One may construct a parallel compiler which processes different portions of the
source program through all passes of compilation concurrently. This would involve
dividing the source program into disjoint segments early in the compilation process,
processing these segments concurrently and producing object code for each individual
program fragment, and finally combining the object code segments into a single
executable program. This type of organization is more complex than a pipelined
implementation since it raises implementation issues not encountered in a traditional
compiler. First, the source code must be partitioned in such a manner as to introduce
minimal overhead (i.e. communication and synchronization between compiler
processes) while still preserving the ability to detect the same lexical, syntactic and
semantic errors as a sequential compiler. Additionally, the code splitting should
occur as early as possible in the compilation process so as to provide as much
opportunity for parallel processing as possible. A third issue to address is the design
of shared data structures (e.g. symbol tables), which must be constructed in such a
way as to minimize contention when accessed by concurrent compiler processes.

When a concurrent compiler is constructed using the second approach described
above, many of the difficult implementation problems arise in the design of the
semantic analyser. This is because concurrent processing of different parts of the
source program requires communication between the processes semantically analys-
ing the different segments, whereas these same effects can be avoided in other phases
of compilation by intelligent subdivision of the source program. This paper focuses
on the design of the semantic analyser for this type of concurrent compiler.

CONCURRENT COMPILATION

The Concurrent Compiler Development Project at the University of Toronto 2-4 is
an effort to use parallel processing aggressively to accelerate compilation. In this
section we provide a brief overview of our project, including the types of source
languages to which our compilation techniques apply, the multiprocessor architec-
tures which we target towards, and the structure of the concurrent compiler which
was implemented. In addition, a short survey of the previous work in the area is
presented.

Source language and hardware

The source languages that we consider for compilation follow in the mainstream
of modern programming languages. In particular, we require that they use Algol-60
or similar scope rules, and have reserved words rather than keywords which deter-
mine program structure. * Pascal, Ada and Modula-2 are examples of programming
languages which meet these criteria.

Modula-2+ 5 is a modern, block-structured language which is derived from Modula-
2. This language was chosen to be the source language for our concurrent compiler
for several reasons:

* Reserved words may not be used by the programmer for other purposes, e.g. variable names, while keywords
may be. The presence of keywords makes determination of program structure during lexical analysis much more
difficult.

1.

2.

3.

CONCURRENT SEMANTIC ANALYSIS 1325

Modula-2+ is typical of the new generation of systems programming languages,
containing features (e.g. modules) lacking in simpler languages such as Pascal,
thus providing interesting challenges to the compiler writer.
The existence of a large library of Modula-2+ software provided a sizable test
suite for our prototype compiler.
An existing Modula-2+ compiler, itself written in Modula-2+, could be paral-
lelized instead of writing a concurrent compiler from scratch.

The concurrent compiler was written to operate on a shared memory MIMD
multiprocessor with a small number of processors. The DEC Firefly multiprocessor
workstation 6,7 served as our hardware platform. The Firefly used in this research is
a symmetric multiprocessor consisting of five µVAX-II processors. These processors
are connected via a shared bus to 16 megabytes of shared physical memory, with
memory consistency being maintained by snoopy caches. The operating system 8,9

supports lightweight processes, making process creation a relatively inexpensive
operation.

Compiler structure

Our approach to parallelizing a compiler is based upon the code-splitting approach
described in the preceding section. A block diagram of our Modula-2+ compiler is
given in Figure 1. The first column in the Figure describes the processing activity
for definition modules (e.g. module stubs), the second column describes processing
for the main module and the third column describes the processing of procedure
scopes. It is important to note that the activities in these three columns share
information from the compiler’s symbol table. (See the section entitled ‘Structure
of the concurrent compilers’ for a more detailed discussion.) Each pass of the
compiler, except for the first and last, consists of a number of processes concurrently
processing different segments of the source program. The number of concurrently
executing processes is limited to the number of physical processors to prevent an
unproductive explosion of processes. The compilation techniques described in this
paper assume that there are many more compiler processes than physical processors
on which to run them. An internal scheduler is required to determine the order in
which code fragments arriving from the previous pass should be processed. Pipelining
is also implemented between the passes.

The division of the source program is accomplished early in compilation by the
lexical analyser and splitter. The lexical analyser transforms the source program into
a sequence of lexical tokens. The splitter divides this token sequence recursively at
the boundaries of major scopes (e.g. procedures, modules). In order to do so, the
splitter must be endowed with some simple parsing functionality so that it may
recognize scope boundaries. A simple parenthesis matching algorithm is sufficient,
since the scopes of modern, high-level languages are delimited by distinct token
pairs (e.g. begin/end). * The output of the splitter is a program tree with each node
consisting of a sequence of tokens representing a scope in the program. Some tokens
are placeholders, containing references to child scopes removed from their parents.

The division of the source program into its constituent scopes allows concurrent
parsing to be performed on these scopes without requiring communication or synch-

* We assume that lexical analysis is context-free, i.e. independent of programmer declarations.

1326 V. SESHADRI AND D. B. WORKMAN

Figure 1. Concurrent compiler block diagram

ionization between the parsing processes. However, this is not true for semantic
analysis. The Algol-60 scope rule 10 permits identifiers declared in one scope to be
legally referenced in another, thus allowing information to flow between scopes.
Hence, processes must communicate during this phase in order to properly conduct
semantic checks on the declaration and use of identifiers.

Code generation can be performed on individual scopes without the need for
interprocess communication, except for non-conflicting access to the compiler’s

CONCURRENT SEMANTIC ANALYSIS 1327

symbol table. Position-independent code can be generated for each scope with the
individual object modules merged afterward.

Of paramount importance in compilation is error detection. The strategy of
dividing a source program at scope boundaries allows easy detection of the lexical,
syntactic and semantic errors in the program. Since the lexical analyser is sequential,
it detects all errors that it would in a sequential compiler. In addition, it detects any
syntactic errors related to nesting of scopes. If the nesting of scopes is syntactically
correct, then all remaining syntax errors can be detected within the scopes them-
selves. Detecting semantic errors requires information transfer between processes
due to the Algol-60 scope rule.

Previous work

Most of the theoretical work in parallel compilation has dealt with parsing regular
and context-free grammars. In general, the proposed schemes involve a linear array
of identical processing elements analysing arbitrary, disjoint segments of the source
program. Fischer 11 was the fit to extensively study parallel parsing. Cohen et al. 12,13

extended Fischer’s work by investigating the speed-up which was available by parsing
concurrently. He showed that there was a large overhead in merging the output of
individual processors (which is avoided in our compiler by the scope-level subdivision
of the source program). A summary of parallel parsing research can be found in
Reference 14; some recent work in this area appears in Reference 15. The only
theoretical investigation into other phases of concurrent compilation has been the
work of Schell, 16 who studied semantic analysis and code generation based on the
parallel evaluation of attribute grammars.

The earliest practical attempts to parallelize compilation occurred in the early
1970s. 17-21 Most of these efforts involved the use of vector processing techniques in
the compilation of Fortran. Later work in the 1970s involved pipelining compilation
on loosely coupled multicomputers. 22-25

Compiler designs based on division of the source program at well defined syntactic
boundaries are most relevant to the work presented here. The earliest implemen-
tation reported was by Frankel. 26 Frankel’s compiler was a modification of a one-
pass Pascal compiler in which procedure bodies were compiled in parallel with the
enclosing scope. Processes were created to handle these procedure bodies as they
were encountered while processing the parent. His compiler ran on a network of
Xerox Alto workstations, and achieved a speed-up of 3·7 on six processors. However,
the compiler was built upon multiple levels of interpretation, making it more CPU
bound than most compilers and thus optimistically skewing his results.

Vandevoorde 27 constructed a concurrent C compiler to run on a five processor
DEC Firefly workstation. His compiler was partitioned into two passes—a lexical
analyser and a syntax-directed translator. This compiler implemented a fine grain of
parallelism—large statement lists were broken into smaller ones for concurrent
processing. A speed-up of 2·3 to 3·1 on five processors was reported when compiling
large programs, whereas a speed-up of 1·0 to 2·0 was reported for smaller programs.

Boehm and Zwaenepoe1 28 experimented with parallel attribute grammar evalu-
ation for semantic analysis. They implemented a combined static/dynamic attribute
grammar evaluator for a subset of Pascal which ran on a network of SUN-2 worksta-
tions. All attributes local to a processing node were evaluated statically, while

1328 V. SESHADRI AND D. B. WORTMAN

attributes shared between nodes were evaluated dynamically. They achieved a speed-
up of 2·5 on a five processor network when compiling a 1000-line program.

CONCURRENT SEMANTIC ANALYSIS

The purpose of semantic analysis is to verify that the source program obeys all
the non-syntactic constraints imposed by the programming language. The semantic
analyser in a compiler processes declarations and records information from these
declarations in symbol and type tables which are used by subsequent phases.

The Algol-60 scope rule used by the languages under consideration here implies
that semantic information about identifiers can flow between scopes—an identifier
declared in outer scopes may be legally referenced in inner scopes. In our compiler
model, with scope-level concurrency, the process semantically analysing the scope
of declaration of an identifier will frequently not be the same as the one processing
the scope of usage of that identifier. Thus communication between compiler processes
is necessary during semantic analysis.

The information exchanged during semantic analysis is the identifier attribute data
which is stored in the compiler’s symbol tables, making these tables the media by
which the processes communicate. Consequently, two major questions are raised
when implementing a concurrent semantic analyser:

1. How does the need to support concurrency alter the basic structure of the
symbol tables?

2. How should the compiler deal with missing or incomplete symbol table infor-
mation?

These two issues are interrelated—in particular, solutions to the first significantly
affect the second. In this section, we examine these issues and propose solutions to
them.

Symbol table structure

The basic symbol table in a sequential compiler is a stack of (name, attribute)
pairs. When a declaration is processed, the name and attribute of the declared
identifier are pushed onto the top of the stack. Markers in this stack delimit scope
boundaries. Looking up the attribute of an identifier in the symbol table consists of
searching down from the top of the stack until the identifier is found. When the
semantic analyser finishes processing a scope, entries for all identifiers which were
declared in that scope, are popped off the stack. Identifiers are not visible outside
their scope of declaration, and the most recent definition of an identifier is the one
which is found by the symbol look-up routine. Variations of this technique are
employed in most sequential compilers. 1

The stack mechanism is unsuitable for a concurrent compiler. In sequential com-
pilers, symbol table entries from scopes at the same nesting depth do not exist
simultaneously on the stack. However, concurrent compilers require this feature in
order to process scopes at the same nesting level in parallel.

Instead, a tree-structured approach is used in our compiler, with each scope in
the source program allocated a separate hash table in which all declarations for that
scope are recorded. Each hash table is protected by a mutual exclusion mechanism

CONCURRENT SEMANTIC ANALYSIS 1329

to protect the table’s contents against corruption by concurrent writes. The entire
table is locked when a new entry is being added. Individual entries are locked when
they are being modified. A look-up of an identifier referenced in a scope consists
of searching outward from the symbol table of the scope of reference through the
tables of parent scopes until the scope of declaration is found. Vandevoorde 27 used
a similar scheme in his compiler.

The ‘doesn’t know yet’ (DKY) problem

Most modern programming languages require that the programmer declare all
identifiers before they are used in the program. Various mechanisms may be provided
to allow restricted forms of use before declaration (e.g. constructing a pointer to an
undeclared type). Compilers for languages that do not require declaration before
use (e.g. PL/I) usually make a separate pass over the source program to collect
declarations before semantic analysis. These considerations lead to an unstated
invariant that exists in sequential compilers with respect to the symbol tables:

Table completeness invariant. At any point during semantic analysis, the
absence of a given identifier in the symbol table is a definitive indication
that the identifier has not been declared.

This invariant does not necessarily hold in concurrent compilers, leading to a
difficulty which we call the ‘doesn’t know yet’ (DKY) problem. The most common
cause of the problem arises when an identifier is referenced in a nested scope, but
is not declared in that same scope. A transient version of the problem arises when
a symbol table entry is temporarily incomplete during its creation. For example, the
symbol table entry for a large record type might require many symbol table operations
to complete its definition. To locate the definition of a non-local identifier, a search
through the symbol tables of the parent scopes is required. However, because the
symbol tables are being built by separate processes, the failure to find a name in a
parent symbol table does not necessarily mean that the name is not declared in that
scope; its declaration may exist but not have been processed yet or its declaration
may be incomplete. If either of these situations arise then the searching process
doesn’t know yet (DKY) whether or not a visible declaration of the identifier in
that parent scope exists.

Our goal in designing concurrent compilers is to achieve faster compilation through
concurrent processing of scopes. The DKY problem is the primary impediment to
achieving this goal. Every time a compiler process waits for a DKY, overhead is
incurred dealing with the DKY event and concurrent processing may be restricted
if there are no other processes that can execute while the DKY event is being waited
for. An example that demonstrates this problem is a module with a large number
of declarations and a number of child procedures that all incur a DKY wait on the
last declaration in the module.

The strategies described in the following sections take two approaches to minimiz-
ing the impact of the DKY problem. The avoidance strategy prevents DKYs from
occurring. The handling strategies allow DKYs to occur but try to minimize their
impact. The choice between these, and other, ways of dealing with the DKY problem
is usually made based on tradeoffs between ease of implementation and level of
processing speed-up achieved.

1330 V. SESHADRI AND D. B. WORTMAN

We consider three methods of dealing with the DKY problem. The first approach
employs scheduling of scope processing during semantic analysis to eliminate the
DKY problem altogether. The second method allows DKYs to occur, suspending
processing when a DKY occurs. The third approach is a hybrid of the other two,
splitting semantic analysis into two phases and allowing DKYs to occur during one
but not the other.

DKY avoidance

The avoidance approach to solving the DKY problem schedules processes in the
compiler in order to avoid DKYs during semantic analysis and thereby maintains
the table completeness invariant. This technique was used by Franke1 26 and Vande-
voorde 27 in their compilers. In order to determine the scheduling constraints on
semantically analysing a scope, it is necessary to examine the identifier attribute
information flow and the types of scopes in the source language.

In the languages we consider, information flows between scopes in two ways:

1. A nested scope may inherit or explicitly import identifiers from its parent

2. A nested scope may export identifiers and their attributes (both explicitly and
implicitly) to its parent scope.

This information flow determines the flow of semantic attributes between scopes
and constrains the order in which semantic analysis must be performed if the required
semantic information is to be available when needed. The imported and exported
identifiers are the carriers of this semantic information.

Since scopes can inherit all the identifiers declared in their parent scopes, parent
scopes must be processed before their child scopes. More precisely, semantic analysis
of a scope cannot begin until all of the definitions in its parent scopes which it may
legally inherit are entered into the symbol tables. This does not preclude concurrent
processing of child scopes with their parents, since not all declarations in parent
scopes are visible in child scopes (e.g. declaration before use rules restrict this). In
order to determine precisely when parent scopes may be concurrently processed with
their children, we must consider the manner in which declarations within a child
scope are visible to the parent.

In the programming languages being considered, the scopes can be classified into
the following categories:

(a) unnamed scopes such as begin/end constructs
(b) named scopes such as procedures, which have parameter lists containing type

information
(c) named scopes such as modules, which export identifiers but do not specify

the identifiers’ type at the point of export.

Unnamed scopes cannot be referenced, and hence identifiers declared within them
are not visible outside. This implies that concurrent processing of an unnamed scope
with its parent can proceed after all declarations in the parent that are visible to the
child have been processed. In our compiler, and in most sequential compilers,
declarations in unnamed scopes are processed by putting these definitions in the
symbol table of the enclosing procedure or module. The symbol table look-up

CONCURRENT SEMANTIC ANALYSIS 1331

mechanism is modified to ensure correct application of the language’s scope rules.
This is usually more efficient than incurring the overhead associated with scope
creation and deletion for each unnamed scope.

Procedure-like scopes are named (and hence can be referenced elsewhere) and
have an associated parameter list. The identifiers in the parameter list are attributed
with type information. The identifier attributes, and the name of the scope are
usually the only information exported. The definition of parameter type attributes
is usually done in the context of the parent scope. Therefore, the parameter list of
the child scope must be processed before the remainder of that scope can be analysed
in parallel with its parent. For example, in Modula-2+ the child and the parent can
be processed concurrently once the parameter list has been analysed.

Module-like scopes export selected identifiers. In general, the exports list of
module-like scopes contain simple identifiers, with attribute information being pro-
vided by declarations elsewhere in the module. References in outer scopes to these
exported identifiers cannot be semantically analysed without the possibility of DKYs
occurring until the declarations of these identifiers in the module-like scope have
been processed and entered into the symbol table. Additionally, all declarations in
the module’s parent scope which can be referenced inside the module-like scope
must be processed before the module can be processed.

We make the distinction between procedure-like and module-like scopes since the
externally visible semantic attributes of procedure-like scopes are usually completely
determined by declarations given in the procedure header. In module-like scopes
the declarations for exported names may be embedded at arbitrary points within the
scope. This embedding makes concurrent semantic analysis of module-like scopes
much more difficult. However, this restriction does not preclude concurrent pro-
cessing within the module-like scope itself. For example, procedure bodies within a
module-like scope can be processed in parallel. Note that in some languages (e.g.
PL/I) procedures are module-like scopes because the attributes of parameters are
specified in declarations in the body of the procedure.

Given these restrictions on the concurrent processing of scopes, a DKY avoidance
algorithm can be devised. This algorithm is given in Figure 2. It uses a ‘parents
before children’ strategy in scheduling the semantic analysis of program scopes,
starting with the outermost program scope. Note that the algorithm given in Figure
2 assumes declaration before use of identifiers in the program is required. The
algorithm is easily extended to allow relaxations of this rule at some loss in potential
concurrency.

By avoiding DKYs entirely, compiler table management is greatly simplified.
Looking up the definition of an identifier consists of searching through the symbol
tables of all containing scopes. If a definition of an identifier in a symbol table is
not found, then no visible declaration of the identifier in that scope exists. Defining
an identifier in a symbol table consists merely of adding its name and attribute to
the proper hash table.

DKY handling

The major difficulty with the DKY avoidance approach is that it is conservative
in permitting parallel processing. DKY avoidance presupposes that there are a large
number of declaration dependencies between child scopes and parent scopes (i.e.

1332 V. SESHADRI AND D. B. WORTMAN

PROCEDURE SemAnal (scope)
LOOP

EXIT WHEN end of scope.
Semantically process scope until either

(1) a child scope is encountered or
(2) scope is module-like and all its exported
identifiers have just been processed.

IF case (2) THEN
Signal process handling scope’s parent to continue.

ELSIF a module-like child scope has been encountered THEN
Fork a processes to do SemAnal on that scope.
Wait until it has finished processing all its exported identifiers.

ELSIF a procedure-like child scope. has been encountered THEN
Semantically process its parameter list.
Fork a process to do SemAnal on that scope.

ELSE (*A nameless child scope has been encountered *)
Fork a process to do SemAnal on that scope.

END IF
END LOOP

END SemAnaI

Figure 2. DKY avoidance algorithm

child scopes extensively reference declarations in parent scopes). An alternative
approach to dealing with the DKY problem is to permit processing of a scope to
continue until a DKY arises, suspending processing until the DKY can be resolved.

This approach is opportunistic, in that it does not use any conservative scheduling.
However, it does complicate the compiler’s symbol table management routines. This
complication arises from

(a) the need to support incomplete symbol table entries
(b) the need to detect and resolve DKYs.

Incomplete entries

Some types of identifier definitions require multiple symbol table accesses and
considerable processing to create. While these entries are being constructed they are
incomplete. If other processes look up these identifiers while they are incomplete,
the look-up must be suspended until the entry has been completed. Therefore,
entries in the symbol table must be augmented with a field to denote the completeness
of the entry and a lock with a queue on which processes can wait for the entry to
be completed.

There are several ways in which incomplete entries can arise. Some language
constructs such as record types, enumerated types and forward declared types require
many symbol table accesses to complete and thus result in one type of incomplete
entry. For these entries, the process creating the locked entry and finally completing
and unlocking it are the same. Another type of incomplete entry arises from the
way in which scopes are separated in the source program for concurrent processing.
These scopes are replaced in their parent scope by placeholder tokens containing
the identity of the child scope. When a semantic analysis process encounters such a
token, it creates an incomplete, placeholder entry for it in its own symbol table.
This entry is eventually overwritten with a concrete entry (and completed) by the
process semantically analysing the child scope, which contains the complete attribute

CONCURRENT SEMANTIC ANALYSIS 1333

information about its name. This type of incomplete entry is completed by a different
process than the one which originally entered it into the symbol table.

Detecting and resolving DKYs

DKYs can occur in two ways:

1. A look-up of an identifier in a symbol table finds an incomplete entry.
2. A look-up of an identifier in a symbol table finds no entry at all, but the table

is incomplete. This is by far the most common case.

DKYs on incomplete entries can be resolved in two ways—either the entry can
be completed by the same process which created it, or it can be completed by
another process. The first type of resolution usually corresponds to the completion
of a complex definition (e.g. a type declared forward, a record type or an enumerated
type) in the local scope. The second type of resolution occurs on incomplete entries
which correspond to named child scopes that are entered into the symbol table of
their parent scope. A concrete entry (with complete attribute information for the
child) is entered into the symbol table of the parent scope overwriting the entry
generated from the placeholder token. In the performance results section, we dis-
tinguish these two types of incomplete DKYs as local DKYs and placeholder DKYs.

DKYs on incomplete symbol tables can be resolved in two possible ways. First,
the identifier may eventually be defined at which point any processes waiting for its
definition can be unblocked. The second way in which this type of DKY can be
resolved is by having the table completed without a declaration of the identifier
occurring in that scope. The process semantically analysing a scope is responsible
for unblocking the appropriate suspended processes when that scope’s table is
complete. This type of DKY should not occur when a process is searching through
the symbol table of the scope which it is processing—this would cause that process
to block forever.

Given these criteria, procedures for entering identifiers into symbol tables and
looking up identifier definitions in the symbol tables can be developed. A sample
skeleton procedure for performing identifier definitions in a symbol table is given
in Figure 3, and the corresponding procedure for performing look-ups is given in
Figure 4.

Two part semantic analysis

Two basic types of constructs exist in high-level programming languages—declar-
ations and statements. Semantic analysis of declarations requires both reading from
and writing to the symbol tables, whereas the semantic analysis of statements usually
requires only reading from the tables.

In order to eliminate the effects of the DKY problem as soon as possible, it is
beneficial to complete the compiler’s symbol tables as quickly as possible. Since only
declaration analysis adds information to the tables, the table for a scope can be said
to be complete as soon as all the declarations in that scope have been processed.
Since we assume that there are a limited number of processors available to execute
the compiler processes, the completion of all symbol tables may be accelerated by
deferring the semantic analysis of statements until all declarations have been pro-

1334 V. SESHADRI AND D. B. WORTMAN

PROCEDURE Define (identifier, scope)
Lock semaphore on symbol table of scope.
IF modifying definition of incomplete entry THEN

Modify the entry.
(* Includes overwrite of placeholder entry with concrete entry *)

ELSIF making entry for placeholder token but concrete exists THEN
(*Do nothing *)
Release semaphore on symbol table of scope.
RETURN

ELSE (* Normal case *)
Create entry for identifier in the symbol table.

END IF
IF entry is complete THEN

IF entry is locked THEN
Unlock the entry.

END IF
Release semaphore on symbol table of scope.
Signal all processes blocked on a definition of identifier.

ELSE (* For incomplete entries do the following *)
Lock the entry.
Release semaphore on symbol table of scope.
RETURN
(* Entry will be completed and unlocked by subsequent processing*)

END IF
END Define

Figure 3. Identifier definition routine for DKY handling

cessed. Two part semantic analysis is most useful in dealing with nested scopes
because it helps reduce the occurrence of DKYs from inner scopes on symbols
declared in outer scopes. A procedure containing a few local declarations, several
nested subprocedures and a large number of statements is one example where the
performance of two part semantic analysis would be better than one part semantic
analysis.

In two part semantic analysis, the parser is used to divide a scope into its
declarations and statements. The first part of the semantic analysis phase is declar-
ation analysis, during which the declarations of the program are processed and
entered into the symbol tables. After the tables are built, the statements of the
source program are processed.

For high-level languages which permit declarations and statements to be syntacti-
cally intermixed (e.g. Turing 29) significant benefits may accrue by using this strategy.
In a one part semantic analyser which employs DKY avoidance, child scopes have
to wait for all statements in addition to the declarations textually preceding them in
containing scopes to be semantically analysed before they can be processed concur-
rently with the outer scopes. Since the semantic analysis of statements adds nothing
to the symbol tables, this additional wait is needless. The same situation holds if
DKY handling is used—resolution of a DKY may be delayed by some statement
processing in a parent scope which does nothing to resolve the DKY.

Using two part semantic analysis, a hybrid between DKY avoidance and DKY
handling can be employed. For many programming languages, source programs
contain more statements than declarations. If declaration processing requires signifi-
cantly less effort than statement processing, then it may be advantageous to avoid
DKYs during statement analysis, while using DKY handling during declaration
analysis.

CONCURRENT SEMANTIC ANALYSIS 1335

PROCEDURE Lookup (identifier, referenceScope)
searchScope :=referenceScope
LOOP

Lock semaphore on symbol table of searchScope.
LOOP

Search for a definition of identifier in the symbol table.
IF found THEN

IF entry is locked THEN
IF referenceScope searchScope THEN

Release semaphore and Wait. (* DKY *)
RETURN definition.

ELSE
ERROR. (* Wait would deadlock*)

END IF
ELSE

Release semaphore on symbol table of searchScope.
RETURN definition.

END IF
ELSIF not found and symbol table is incomplete THEN

IF referenceScope searchScope THEN
Release semaphore and Wait. (* DKY *)
Lock semaphore on symbol table of searchScope.

END IF
ELSE

EXIT
END IF

END LOOP
Release semaphore on symbol table of searchScope.
EXIT WHEN searchScope = outermost scope.
searchScope := parent of searchScope.

END LOOP
RETURN NIL. (* No definition found*)

END Lookup
Figure 4. Identifier look-up routine for DKY handling

In order to guarantee the absence of DKYs during statement analysis, the semantic
analysis of the statements of a scope cannot begin until all declarations in the parent
scopes which those statements can legally reference are processed. This scheduling
criterion is less restrictive than that of a one part semantic analyser using DKY
avoidance. This is because only part of the scope is being subjected to the conserva-
tive scheduling strategy of DKY avoidance in two part processing, while the entire
scope has to be delayed in one part processing.

Pros and cons

The relative merits of DKY avoidance and DKY handling depend heavily on the
cross-usage of identifiers in source programs. If most identifiers referenced in a
scope are declared within that scope, then there will be few DKYs, allowing the DKY
handling scheme to perform better than the DKY avoidance strategy. However, a
heavy usage of identifiers declared in parent scopes implies that the overhead
involved in handling DKYs may impose a greater penalty than the restricted con-
currency of DKY avoidance.

Two part semantic analysis can be employed to two ends. By processing all
declarations first, the symbol table for a scope is completed as soon as possible,
thereby narrowing the interval in which DKYs can occur. Look-ups that cause DKYs

1336 V. SESHADRI AND D. B. WORTMAN

slow down compilation and thus reduce the speed-up achievable through concurrent
processing. Secondly, DKYs during statement analysis can be avoided if the pro-
cessing of statements is delayed until the declaration analysis of all parent scopes is
complete.

THE IMPLEMENTATIONS

The source language for our prototype compiler was Modula-2+. 5 In addition, the
compiler itself was written in Modula-2 +. The compiler was implemented to run on
a DEC Firefly workstation, a five processor, shared memory MIMD machine. 6,7

Three different semantic analysers were written for our compiler to experiment
with the ideas presented in the previous section. The first used one part DKY
avoidance, the second employed one part DKY handling and the third performed
semantic analysis in two parts, with DKY handling during declaration processing
and DKY avoidance during statement analysis. For our tests, the compiler on] y
processed source code up to the end of the semantic analysis phase and no code was
generated.

Revelant features of Modula-2+

A program in Modula-2+ consists of a set of implementation modules, a set of
definition modules and a program module. An implementation module contains the
code which typically implements an abstract data type used in the program. It exports
identifiers through one or more stubs, called definition modules, which contain all
the information necessary to semantically analyse references to identifiers exported
from its associated implementation module. A definition module contains only
declarations and procedure stubs, and no statements. The program module contains
the main program, which for our purposes differs from an implementation module
only in that it has no accompanying definition module. A compilation unit is a single
module residing in a file.

There are three possible types of scopes in a Modula-2+ compilation-definition
modules, the implementation or program module and its procedures. There are no
unnamed scopes in Modula-2 +. Nested modules are not permitted, but nested
procedures are allowed. Definition modules contain no nested scopes.

Implicit inheritance of identifiers declared in outer scopes is permitted for pro-
cedures, but inheritance is not defined for modules, since they have no parent scope.
Identifiers declared in other modules are made visible in a module scope via the
IMPORT statement. Processing of an IMPORT statement requires reading and seman-
tically analysing the definition modules whose names appear in that statement. All
identifiers declared in a definition module are also considered to be declared in its
accompanying implementation module.

Modula-2+ does not allow syntactic intermixing of declarations and statements.
Within a scope, all declarations must precede the statements. Declarations and
statements are separated by the reserved word BEGIN.

The WITH statement in Modula-2+ is a construct which allows fields of a record-
type variable to be referenced without qualification. To accommodate identifier
look-ups inside WITH statements each record declared in the program was allocated
a symbol table in which all of its fields are defined. Upon entry to a WITH statement,

CONCURRENT SEMANTIC ANALYSIS 1337

the symbol table of the appropriate record is added to the end of the chain of symbol
tables through which identifier look-ups from that scope proceeded. In this way, the
symbol table for the record specified in the WITH statement will be the first one
searched for a definition of an identifier referenced inside the WITH statement. At
the end of processing a WITH statement, the record’s symbol table is unlinked from
the lookup chain. This scheme handles nested WITH statements as well.

Structure of the concurrent compilers

The concurrent compiler is invoked on a file containing either an implementation
module or a program module. Figure 1 describes the general structure of our
compilers. The first column describes the processing that is performed on each
definition module that is imported directly or indirectly by the module being com-
piled. The second column describes the processing applied to the main module and
the third column describes the processing for each procedure scope contained in the
module.

Processing implementation and program modules

The lexical analysis and splitter processes transform the main module of the source
program, with the lexical analyser converting characters to tokens and the splitter
dividing the module into its constituent scopes. Separate instances of the parser are
created by the splitter to process the code in each procedure and the module body
concurrently. The parser processes call procedures to semantically analyse their
scope. Pipelines are implemented between the lexical analyser and the splitter, and
between the splitter and the parsers. Thus, compilation of the main module requires
one lexical analyser process, one splitter process and one parser process for each
scope in the module.

Processing definition modules

The token stream for the main module scope is concurrently directed to the import
process. As the import process encounters IMPORT statements, it forks instances of
the compiler to process the appropriate definition modules. A table of definition
modules which have been compiled or are being compiled is kept so that each
definition module is compiled exactly once. This action is one of the earliest taken
by the compiler since all IMPORT statements appear at the beginning of the module.
In addition, if the main module is an implementation module, then instances of the
compiler are forked to process its corresponding definition modules. Compilation of
a definition module is similar to that of an implementation or program module. The
major difference stems from the fact that definition modules contain no nested
scopes. Thus, there is no splitter process, and only one instance of a parser exists
per definition module. The import process is used to detect cases of nested import-
ation and start appropriate compiler processing.

1338 V. SESHADRI AND D. B. WORTMAN

Employing and restricting concurrency

Since the compilers were implemented in Modula-2+, the language’s concurrency
features were used to parallelize the compiler. The Thread module provides routines
to create, suspend and unblock lightweight processes. 8 Mutual exclusion is
implemented with mutexes, a semaphore-like construct.

Since the Firefly has only five processors, allowing unrestricted forking of processes
would result in unproductive parallelism. 4,30 Therefore, concurrency control was
implemented by building a process control mechanism above the Thread abstraction.
Only a fixed number of processes were allowed to run at any given time. Calls
to the process creation routine (Thread. Fork) and the process suspension routine
(Thread.Wait) were replaced by calls to similar procedures of the process control
module, Scheduler. This module allowed processes to be activated only when the
number of currently executing processes was less than the number of processors.

One part DKY avoidance

The mm1a compiler performed one part semantic analysis with DKY avoidance.
The compiler began by starting compilation of the main module. Processes were
created to compile the definition modules of the main module (if any) and all
imported definition modules.

The compilers processing definition modules in turn forked processes to compile
their imported modules. Processing of a module scope was suspended until all of its
imported definition modules were semantically analysed. When these definition
modules were finally compiled, processing of the main module continued, and the
declarations in the body of this scope were processed, with processes forked to
semantically analyse procedure scopes as they were encountered.

One part DKY handling

The mm1h compiler performed semantic analysis in one part using DKY handling.
Compilation of a scope was started as soon as possible. For the main module being
compiled, this happened upon invocation of the compiler. Procedure scopes were
parsed and semantically analysed as soon as they were detected by the splitter.
Compilation of a definition module was started as soon as an import of that module
was detected by the import process. Processes compiling modules did not wait for
their imported definition modules to be completely processed before continuing.

The completion of the symbol table of a scope was signalled at the end of
declaration processing for that scope (i.e. when the reserved word BEGIN was seen).
It is at this point that all processes waiting for declarations of undeclared identifiers
in the symbol table of that scope were unblocked.

Two part DKY handling

In Modula-2+, the strict ordering of declarations before statements in a scope
implies that statement semantic analysis will never delay the resolution of a DKY
in one part DKY handling or the forking of a semantic analyser to process a child
scope in one part DKY avoidance. Therefore, two part semantic analysis with DKY
avoidance is the same as one part semantic analysis with DKY avoidance.

CONCURRENT SEMANTIC ANALYSIS 1339

The fact that Modula-2+ requires all of the declarations in a scope to precede all
the statements removes one of the major potential advantages of two part semantic
analysis as compared to a one part scheme. However, the merits of avoiding DKYs
during statement analysis and allowing them during declaration analysis could still
be tested. Thus, the only two part semantic analyser which was constructed (compiler
mm2h) used DKY handling during declaration analysis and delayed the statement
analysis of a scope until all the tables which it could possibly search were completed.
The symbol table of a module scope was complete when all of its declarations were
processed and the tables of its imported definition modules were complete. For a
procedure scope, this event occurred when its tables, its parent procedures’ tables
and its enclosing module’s tables were complete.

The semantic analysis of a scope began as it would have in one part DKY handling.
Semantic processing of a scope began as soon as possible, with DKYs allowed to
occur. However, when the reserved word BEGIN was encountered in that scope
(signifying the end of the declarations), semantic analysis was halted until all the
symbol tables which that process could search were completely built. Then, statement
analysis could be conducted on the scope without DKYs occurring.

PERFORMANCE RESULTS

In this section we evaluate the performance of the compilers described in the
preceding section. Several statistics were gathered, both regarding the compilers
and the source programs which they compiled. * The experiments were conducted
on a five processor Firefly workstation which was otherwise idle.

The source programs used for these tests were drawn from a large program library,
which was made available by the Digital Equipment Corporation Systems Research
Center. We gathered statistics on the compilation of 40 different source programs
that were written by a diverse set of authors. The statistics presented in this paper
are drawn from a set of twelve programs that form a representative subset of our
data. More detailed results are available in Reference 31. A general description of
these programs is given in Table I. None of these programs had semantic errors.
The compilers were instrumented to measure the following statistics:

1. Speed-up over a sequential compiler for one to five processors for all three
compilers.

2. Average number of processes which were kept active for all three compilers.
3. Number and types of DKYs which occurred in mm1h and mm2h.

In order to better understand these results, the following data were obtained
regarding the source programs that were being compiled:

1. Number and types of scopes in the source programs, along with their nesting
depth.

2. Identifier usage between scopes in the source programs.

An existing sequential Modula-2+ compiler (called mp) was used as the baseline
for speed-up comparisons.

* A much more detailed presentation of our experimental results is given in Reference 31.

1340 V. SESHADRI AND D. B. WORTMAN

Table I. Description of test suite

Name No. of lines Definition modules Description
in main module

Linkage. mod

TimeConv.mod

Clock. mod
ColorCodeServer.mod
ColorCode.mod
Symbol.mod
Basic VM.mod
DECnet.mod
M2Macro.mod
NSP.mod
High TTD. mod
Disk. mod

142

354

444
1390
1498
689

1019
1839
1398
4000
2863
2168

6 files, 577 lines

9 files. 1074 lines

14 files, 3611 lines
14 files, 1359 lines
14 files, 1371 lines
26 files, 3180 lines
14 files, 3832 lines
19 files, 4557 lines
11 files, 2334 lines
18 files, 4465 lines
27 files, 5082 lines
19 files, 5504 lines

Manager of lists of symbols and
mutexes
Converter of times from
different time zones
Software clock manager
Server for colour manager
Manager of colour states
Compiler table manager
Memory manager software
DECnet network software
Preprocessor for Modula-2
Communication software
Module used by debugger
Driver for MSCP

Source program statistics

Table II gives detailed characteristics of the source programs described in Table
I. For each program, the number and type of scopes is given, along with the number
of procedure scopes at each nesting depth. Note that each program contains only one
implementation/program module—the remaining modules are definition modules.

Also given are the sequential compilation times to the end of semantic analysis,
with the breakdown given of the fraction of that time spent in declaration analysis
and in statement analysis. These numbers were derived from the mp compiler. The
programs are listed in order of increasing size, where size is defined to be sequential
compilation time.

Table II. Characterization of test programs

Name Modules Procedures
(implementation/ (nesting depth)

program and 1 2 3
definition)

Linkage.mod 7 5 2 1
TimeConv.mod 10 9 0 0
Clock.mod 15 15 1 0
ColorCodeServer.mod 15 25 0 0
ColorCode.mod 15 24 0 0
Symbol. mod 27 26 0 0
Basic VM.mod 15 48 3 0
DECnet.mod 20 18 8 0
M2Macro.mod 12 53 27 0
NSP.mod 19 27 27 1
High TTD. mod 28 149 6 0
Disk. mod 20 67 2 0

Compile time Declaration
(sequential),s analysis, per

cent

5·0 86
11·0 69
19·3 84
20·0 89
22·3 87
25·4 69
29·1 80
32·2 82
35·1 86
44·5 88
57·7 72
69·4 53

Statement
analysis,
per cent

14
31
16
11
13
31
20
18
14
12
28
47

CONCURRENT SEMANTIC ANALYSIS 1341

There are three interesting observations that may be made here. First, the smaller
programs appear to have roughly equal numbers of module scopes and procedure
scopes, whereas the larger ones have more procedure scopes. Thus we may say that
the number of procedure scopes in a program grows at a faster rate with program
size than the number of module scopes. The second observation is that the fraction
of time spent in declaration semantic analysis is approximately 75 per cent of the
time spent in semantic analysis, and this ratio appears to be independent of program
size. Finally, note that there are very few nested procedures—the vast majority of
procedure scopes are at nesting level 1.

Table III gives the statistics on the cross-usage of identifiers in the source programs.
The leftmost column identifies the type of reference:

1. Local—an identifier declared in the scope in which the reference occurred.
2. Non-local— an identifier in an enclosing scope.
3. Imported— an identifier imported from a definition module.
4. Record field— an identifier that names a field in a record.
5. Built-in— the name of a built-in object (e.g. library routines such as sqrt)

provided by the compiler.

The top row of this table identifies the source of the reference (i.e. where the
reference occurred):

(a) def module— a definition module
(b) main decl — declarations in the main module
(c) main stmt —statements in the main module outside its procedures
(d) proc decl— declaration in a procedure
(e) proc stmt— statements in a procedure.

There are some important observations which can be made about this data. First,
references to locally declared identifiers form the largest single type of reference.
Secondly, most non-local references are from procedure statements to identifiers in
the main module. The vast majority of references to identifiers arise from statements
in procedures. This implies that it is imperative to have the symbol table of the main
module complete as early as possible. Finally, the large number of references arising
in definition modules is indicative of the use of hierarchical definition of higher level
abstractions from lower level abstractions.

The empty table entries for non-locals occurs because a module scope cannot
contain ‘non-local’ references, since they have no enclosing scope. The empty table

Table III. Percentage distribution of identifier references

Referent Source of reference Total
def module main decl main stmt proc decl proc stmt

Local 24·21 1·19 0·25 0·58 18·56 44·79
Non-local 5·41 16·81 22·20
Imported 4·45 0·54 0·00 1·37 4·17 10·54
Record field 0·00 11·21 11·21
Built-in 5·69 0·27 0·10 1·74 3·48 11·26
Total 34·35 1·99 0·37 9·05 54·28 100·00

1342 V. SESHADRI AND D. B. WORTMAN

Figure 5. Speed-up curves for concurrent semantic analysis

entries for record fields occur because record fields cannot be referenced in declar-
ations, and are therefore unreferenced in definition modules, and in procedures’ and
main modules’ declarations.

Compiler statistics

The speed-up curves for the compilers (relative to the sequential mp compiler) on
the test programs are given in Figure 5. * The speed-up is relatively similar for all
compilers, with mm1h showing somewhat better results than mm1a and mm2h. The
speed-ups for individual programs ranged from 1·9 to 2·5 on five processors for
mm1a and from 2·0 to 2·7 on five processors for mm1h and mm2h. In general,
greater speed-up was observed when compiling larger programs. These results are
similar to Vandevoorde’s C compiler (2·3 to 3·0 on a five-processor Firefly). How-
ever, his compiler performed code generation as well, while our compilers do not.
We expect our speed-up results to improve when code generation is added.

Table IV shows the average number of active processes during compilation with
five processors on the source programs. As expected, mm1a keeps fewer processes
active than either of the DKY handling compilers, by about 0·6 processes per
compilation.

The symbol table look-up and definition routines were instrumented to gather
statistics on the number and types of DKYs which occurred in mm1h and mm2h.

Table IV. Active processes

mm1a mm1h mm2h

Average number of live processes 4·0 4·6 4·5
Average speed-up 2·2 2·3 2·2

* These results are the averages from 10 separate tests. The standard deviation of the results from these runs was
usually less than 1 per cent of the elapsed time, and never more than 2 per cent.

CONCURRENT SEMANTIC ANALYSIS 1343

Table V. Percentage distribution of DKYs for mm1h

Type of DKY

Incomplete
P-Mod
P-Proc
Local

No entry
Total

Source of DKY
def module main decl main stmt proc decl

26·45 1·18 0·00 2·11
0·08

0·00 0·25 0·00 1·43
12·89 0·25 37·57
39·34 1·68 0·08 41·11

Total
proc stmt

3·29 33·02
4·72 4·80
0·93 2·61
8·85 59·56

17·78 100·00

Table VI. Percentage distribution of DKYs for mm2h

Type of DKY Source of DKY Total
I def module main proc

Incomplete
P-Mod 29·82 1·61 5·79 37·23
P-Proc
Local 0·57 0·09 0·28 0·95

No entry 13·87 0·19 46·82 61·06
Total 44·25 1·90 51·38 100·00

These results are summarized in Table V, VI and VII. Tables V and VI show the
types of DKYs and the frequencies at which they occurred when semantically
analysing declarations and statements in each of the three types of scopes for
mm1h and mm2h. In these tables, we distinguish three kinds of DKYs arising from
incomplete symbol table entries. Local DKYs are due to the temporary symbol table
locking during the completion of a complex symbol table entry. P-Proc DKYs are
due to waits for the completion of entries for named procedure like scopes. P-Mod
DKYs are caused by waits for the completion of entries for named module like
scopes.

From these statistics, it can be determined that the majority of DKYs occurred
on identifiers that had not yet been entered into the symbol tables. In addition,
DKYs on local entries were insignificant. DKYs on placeholder module identifiers
(i.e. P-Mod DKYs) were significant, accounting for one third of the DKYs. Finally,

Table VII. Percentage distribution of DKY
targets

DKY target Compiler
mm1h mm2h

def module 40·19 44·54
main decl 52·99 49·57
proc decl 6·57 7·69

1344 V. SESHADRI AND D. B. WORTMAN

the vast majority of DKYs occurred during the processing of declarations, both in
procedures and in modules. Note that DKYs on placeholder procedure entries during
declaration processing do not occur, since procedures cannot be referenced in
declarations.

The distribution of DKY targets (i.e. where the identifiers that were waited upon
were declared) is given in Table VII. The high percentage of DKY targets in
definition modules is indicative of the hierarchical definition chains that are typical
in large software systems.

Finally Table VIII shows, for each source program, the ratio of DKYs to identifier
references in the compilation of the program using five processors. As can be seen,
fewer than 5 per cent of all identifier references cause DKYs during semantic
analysis. Furthermore, the numbers for mm1h and mm2h are very similar in almost
all cases.

Discussion

General results

The curves in Figure 5 show that on average, the compilers achieved a speed-up
of approximately 2·3. This result is somewhat disappointing—however, there are
explanations for this.

First, the compilers did not perform code generation, * which is a major, CPU-
intensive phase of compilation. We expect that with code generation, the speed-up
will be significantly higher. Secondly, the Firefly is not a totally symmetric machine.
In particular, I/O processing is handled by a designated processor, and thus it cannot
contribute fully to the parallel processing. This explains the flat part of the speed-
up curve between 4 and 5 processors. Finally, contention on the shared memory bus
on the Firefly causes speed-up to be significantly less than ideal. Analytic perform-

Table VIII. Ratio of number of DKYs to num-
ber of identifier references

Program mm1h mm2h

Linkage.mod
TimeConv.mod
Clock.mod
ColorCodeServer.mod
ColorCode.mod
Symbol.mod
Basic VM.mod
DECnet.mod
M2Macro.mod
NSP.mod
HighTTD.mod
Disk. mod

0·043 0·043
0·029 0·029
0·039 0·032
0·019 0·018
0·018 0·018
0·033 0·036
0·036 0·037
0·021 0·027
0·029 0·015
0·020 0·019
0·032 0·022
0·032 0·028

* The code generation phase of the base compiler we were using had not been modified for concurrent processing
at the time the research reported in this paper was performed.

CONCURRENT SEMANTIC ANALYSIS 1345

ante measures 6 show that the degradations in adding processors to the Firefly’s
shared bus are 0·89, 0·87, 0·86 and 0·84 for two, three, four and five processors.
This implies that even if one more compiler process can be kept busy, the bus
contention will cause the speed-up to be less than ideal.

DKY avoidance vs DKY handling

In comparing the DKY avoidance and DKY handling strategies, we must look at
the results for mm1a and mm1h. From our results, it is obvious that mm1h only
performs marginally better (between 5 and 10 per cent better) than mm1a. We had
expected DKY handling to outperform DKY avoidance, but by a larger margin.
The results obtained can be explained by several factors.

First, DKY handling breaks down when there is a large degree of identifier cross-
usage between scopes of the source program. From the source program statistics in
Table III, we see that a large portion of the identifiers referenced in a scope are
either imported or declared in an enclosing scope (approximately 33 per cent).
Secondly, scopes are not nested very deeply in the source programs—nearly all
procedure scopes are at nesting level one. The DKY avoidance strategy performs
badly when there is a deep nesting of scopes, since the semantic analysis of these
scopes must be delayed until enclosing scopes are processed. Since there is not very
much deep nesting, DKY handling and DKY avoidance will perform similarly.

Finally, the traditional approach to handling built-in identifiers is for the compiler
to put them in a virtual scope which conceptually encloses the main program, and
to provide a symbol table for this virtual scope. This is often done for implementor
convenience, even in languages like Modula-2 + where redeclaration of built-in
identifiers is prohibited. This is a poor strategy for parallel compilers that use DKY
handling, since it causes an unnecessary DKY on the main module scope. When a
reference to a built-in identifier must search through the main module scope before
reaching the enclosing virtual scope. This effect is not negligible, since in the test
programs used, built-in identifiers comprise 11 per cent of the identifiers referenced.
In retrospect, we should have used a different strategy for handling built-in identifiers
when using DKY handling (e.g. including the built-in identifiers in each scope).

It is also interesting to note that although mm1h managed to keep approximately
0·6 more processes active than mm1a, the difference in speed-up is only 0·1. This
leads us to believe that the processes in mm1h are performing extra, unproductive
work. Some of this can be explained by the fact that there is additional contention
for the locks on the symbol tables (especially for the symbol table of the main
module) in mm1h. The additional contention in mm1h is explained by the fact that
when processes are awakened, they immediately try to reacquire the lock on the
symbol table that they were holding when they blocked. This lock is still being held
by the signalling process. This situation does not arise in mm1a. Using a system
provided utility on the Firefly, contention on locks can be measured. * The extra
time spent by processes in mm1h waiting for the lock on the symbol tables to be
released accounted for approximately 60 per cent of the extra processing done by
mm1h processes. Almost all of this overhead was caused by the lock on the symbol
table of the main module.

* The locks are implemented as queues of waiting processes so a processor does not spin waiting on a lock.

1346 V. SESHADRI AND D. B. WORTMAN

One part vs two part processing

In comparing one part semantic analysis with the two part semantic analysis
strategy, the results obtained for mm1h and mm2h are examined. From the speed-
up curves, mm1h seems to perform slightly better than mm2h. This can be explained
by three factors.

First, from Table II, it is clear that approximately 75 per cent of the effort (i.e.
processing time) in semantic analysis is spent in declaration processing. Since DKY
handling is used in declaration processing for both mm1h and mm2h, it would be
expected that the two compilers performed very similarly. mm2h outperformed mm1h
by 1 to 3 per cent on the source modules TimeConv.mod, Clock. mod and Disk.mod.
Secondly, Tables V and VI show that only a small fraction (approximately 18 per
cent) of the DKYs in mm1h occurred during statement semantic analysis, and
therefore DKY avoidance during this phase would be inferior to DKY handling.
Finally, as stated above, Modula-2+ does not allow syntactic intermixing of declar-
ations and statements, thus removing one possible benefit of two part semantic
analysis. Even for a language with intermixing it is not clear how great this benefit
would have been since statement processing requires only a small portion of the
semantic analysis time.

CONCLUSIONS

We have presented the results of an investigation into how the semantic analyser of
a concurrent compiler should be structured in order to maximize performance. The
major problem that arises is what we call the DKY problem, in which a process
analyzing one scope looks into an incomplete symbol table of a containing scope for
identifier attribute information. Three solutions were presented: DKY avoidance,
DKY handling and two part semantic analysis.

All three approaches performed similarly, achieving an average speed-up of
approximately 2·5 on a wide variety of source programs. DKY handling performed
about 5 to 10 per cent better than DKY avoidance. The difference was small due
to a significant degree of identifier cross-usage between scopes and because of the
shallow nesting depth of most of the program scopes. Two part semantic analysis
did not outperform one part semantic analysis since statement processing in Modula-
2+ takes approximately one-third of the time that declaration processing does.
Furthermore, few DKYs were found to occur during statement semantic analysis
during one part processing.

AKNOWLEDGEMENTS

The research described in the paper was generously supported by Digital Equipment
Corporation of Canada and by the Digital Systems Research Center. V. Seshadri
was supported an Ontario Graduate Fellowship.

REFERENCES

1. A. V. Aho, R. Sethi and J. D. Unman, Compilers: Principles, Techniques and Tools, Addison-
Wesley, Reading, Massachusetts, 1986.

2. V. Seshadri, I. S. Small and D. B. Wortman, ‘Concurrent compilation’, Proceedings of the IFfP
WG1O.3 Working Conference on Distributed Processing, 1987, pp. 627–641.

3. V. Seshadri, D. B. Wortman, M. D. Junkin, S. Weber, C. P. Yu and I. Small, ‘Semantic analysis

CONCURRENT SEMANTIC ANALYSIS 1347

in a concurrent compiler’, Proceedings of the SIGPLAN ’88 Conference on Programming Language
Design and Implementation, 1988, pp. 233–240.

4. M. D. Junkin and D. B. Wortman, ‘The implementation of a concurrent compiler’, Technical
Report CSRI-235, Computer Systems Research Institute, University of Toronto, 1990.

5. P. Rovner, R. Levin and J. Wick, ‘On extending Modula-2 for building large, integrated systems’,
Technical Report 3, Digital Equipment Corporation Systems Research Center, 1985.

6. C. P. Thacker and L. C. Stewart, ‘Firefly: a multiprocessor workstation’, Proceedings of the
Second International Conference on Architectural Support for Programming Language and Operating
Systems, 1987, pp. 164–172.

7. C. P. Thacker, L. C. Stewart and E. H. Satterthwaite, ‘Firefly: a multiprocessor workstation’,
IEEE Trans. Computers, C-37, (8), 909–920 (1988).

8. A. D. Birrell, J. V. Guttag, J. J. Horning and R. Levin, ‘Synchronization primitives for a
multiprocessor: a formal specification’, Proceedings of the Eleventh ACM Symposium on Operating
System Principles, 1987, pp. 94–102.

9. P. R. McJones and G. F. Swart, ‘Evolving the UNIX system interface to support multithreaded
programs’, Technical Report 21, Digital Equipment Corporation Systems Research Center, 1987.

10. B. J. MacLennan, Principles of Programming Languages: Design, Evaluation and Implementation,
Holt, Rinehart and Winston, New York, New York, 1983.

11. C. N. Fischer, ‘On parsing context free languages in parallel environments’, Ph.D. Thesis, Cornell
University, 1975.

12. J. Cohen, T. Hickey and J. Katcoff, ‘Upper bounds for speedup in parallel parsing’, Journal of
the ACM, 29, (2), 408–428 (1982).

13. J. Cohen and S. Kolodner, ‘Estimating the speedup in parallel parsing’, IEEE Trans. Software
Engineering, SE-11, (l), 114–124 (1985).

14. R. op den Akker, H. Alblas, A. Nijholt and P. Oude Luttighuis, ‘An annotated bibliography on
parallel parsing’, Technical Report Memoranda Informatica 89-67, Department of Computer Sci-
ence, University of Twente, 1989.

15. G. V. Cormack, ‘An LR substring parser for noncorrecting syntax error recovery’, ACM SIGPLAN
Notices, 24, (7), 166–169 (1989).

16. R. M. Schell, ‘Methods for constructing parallel compilers for use in a multiprocessor environment’,
Ph. D. Thesis, University of Illinois at Urbana-Champaign, 1979.

17. M. K. Donegan and S. W. Katzke, ‘Lexical analysis and parsing techniques for a vector machine’,
Proceedings of the ACM Conference on Programming Languages and Compilers for Parallel and
Vector Machines, 1975, pp. 138-145.

18. C. A. Ellis, ‘Parallel compiling techniques’, Proceedings of the ACM National Conference, 1971,
pp. 508–519.

19. H. E. Krohn, ‘A parallel approach to code generation for FORTRAN-like compilers’, Proceedings
of the A CM Conference on Programming Language and Compilers for Parallel and Vector Machines,
1975, pp. 146–152.

20. N. Lincoln, ‘Parallel compiling techniques for compilers’, ACM SIGPLAN Notices, 5 (10), 18–31
(1970).

21. M. Zosel, ‘A parallel approach to compilation’, Proceedings of the ACM Symposium on Principles
of Programming Languages, 1973, pp. 59–70.

22. J-L. Baer and C. S. Ellis, ‘Model, design, and evaluation of a compiler for a parallel processing
environment’, IEEE Trans. Software Engineering, SE-3 (6), 394–405 (1977).

23. T. Christopher, O. E1-Dessouki, M. Evens, H. Harr, H. Klawans, P. Krystosek, R. Mirchandani
and Y. Tarhan, ‘SALAD: a distributed compiler for distributed systems’, Proceedings of the
International Conference on Parallel Processing, 1981, pp. 50–57.

24. W. Huen, O. E1-Dessouki, E. Huske and M. Evens, ‘A pipelined DYNAMO compiler’, Proceedings
of the International Conference on Parallel Processing, 1977, pp. 57–66.

25. J. A. Miller and R. J. LeBlanc, ‘Distributed compilation: a case study’, Proceedings of the 3rd
International Conference on Distributed Computing Systems, 1982, pp. 548–553.

26. J. L. Frankel, ‘The architecture of closely-coupled distributed computers and their language
processors’, Ph. D. Thesis, Harvard University, 1983.

27. M. T. Vandevoorde, ‘Parallel compilation on a tightly-coupled multiprocessor’, Technical Report
26, Digital Equipment Corporation Systems Research Center, 1988.

28. H-J. Boehm and W. Zwaenepoel, ‘Parallel attribute grammar evaluation’, Technical Report COMP
TR87-55, Department of Computer Science, Rice University, 1987.

1348 V. SESHADRI AND D. B. WORTMAN

29. R. C. Holt and J. Hume, Introduction to Computer Science Using the Turing Programming
Language, Reston Publishing Company, Inc., Reston, Virginia, 1984.

30. M. T. Vandevoorde and E. Roberts, ‘Workcrews: an abstraction for controlling parallelism’,
Technical Report 42, Digital Equipment Corporation Systems Research Center, 1989.

31. V. Seshadri, ‘Concurrent semantic analysis’, Master’s Thesis, Department of Electrical Engineering,
University of Toronto, 1988. Reprinted as Computer Systems Research Institute Technical Report
CSRI-216.

	An Investigation into Concurrent Semantic Analysis
	SUMMARY
	INTRODUCTION
	CONCURRENT COMPILATION
	Source language and hardware
	Compiler structure
	Previous work

	CONCURRENT SEMANTIC ANALYSIS
	Symbol table structure
	The ‘doesn’t know yet’ (DKY) problem
	DKY avoidance
	DKY handling
	Incomplete entries
	Detecting and resolving DKYs

	Two part semantic analysis
	Pros and cons

	THE IMPLEMENTATIONS
	Revelant features of Modula-2+
	Structure of the concurrent compilers
	Processing implementation and program modules
	Processing definition modules
	Employing and restricting concurrency

	One part DKY avoidance
	One part DKY handling
	Two part DKY handling
	PERFORMANCE RESULTS
	Source program statistics
	Compiler statistics
	Discussion
	General results
	DKY avoidance vs DKY handling
	One part vs two part processing

	CONCLUSIONS
	AKNOWLEDGEMENTS
	REFERENCES

