## Group & Kin Selection









# V. C. Wynne-Edwards (1962)

- Group selection explanations for behavior
  - Population control
  - "Good of the Species"
    - Cheaters would always prosper
      - Cooperation and individual reproductive restraint could not evolve by individual level selection
        - Selfish populations must have higher extinction rates.

1

## G. C. Williams (1966)

- Argued that group adaptations did not exist.
  - Individuals more numerous than populations and with higher turnover rate
    - Selfish gene could replace altruistic gene at much higher rate than altruistic gene could increase through population extinction.
- All of Wynne-Edwards' examples explainable by selection at the level of the individual.

# M.J. Wade (1977) David Sloan-Wilson (1983)

 Demonstrated that group selection could overcome individual selection if strong enough.



Fig 12.15B Futuyma, After Wade 1977

#### Requirements for Group Selection

- Differences in birth and death rates among entities (groups in this case).
- Selection on group-level traits that are emergent and heritable.
- The rate of replacement of more fit groups is much higher than the rate of replacement at the level of the individual.
- Any entity at any level of the biological hierarchy that reproduces itself and passes on emergent properties to descendant entities can evolve by natural selection.
  - Genes, populations, species, clades.

#### Species or Taxon Selection

- Some clades are more prone to speciate and/or less likely to go extinct than others
  - Differential survival and reproduction of species and higher taxa.







6



.

#### Kin Selection









#### Altruism

- Acting in the interest of others at a cost to oneself.
  - How can altruism evolve?
  - Four Mechanisms
    - Manipulation
    - Individual Advantage
    - Reciprocation
    - Kin Selection

# Manipulation

Manipulating other's behavior to gain fitness advantage.

## Brood Parasitism in Birds

Black-faced Firefinch Indigobird *V. larvaticola* 



Black-faced Firefinch *L. larvata* 



After Sprengon 2003

9 10





# Individual Advantage

- Individual may cooperate with another because it receives a direct benefit
  - Herding and Schooling as antipredator behavior



# Reciprocation

 Individuals may act altruistically with expectation that such behavior will be reciprocated.





13

## Kin Selection

- Inclusive fitness
- JBS Haldane
  - "I would gladly give my life for two brothers or eight cousins."
- WD Hamilton and Hamilton's Rule. Altruistic behaviors should evolve when:

#### rb > c

Where  ${f r}=$  degree of relatedness,  ${f b}=$  benefit to the donor's relatives, and  ${f c}=$  cost to donor.

#### Kin Recognition and Behavior

Ability to recognize kin influences the evolution of behavior.

Cannibalism in Scaphiopus bombiens



Photo from D. Pfenr



14

Photo from W. Koen

## Eusociality

- Eusociality division of reproductive labor, cooperative care of young, and overlapping generations so that offspring assist their parents.
  - All Isoptera (termites)
  - Evolved independently in at least 10 lineages of Hymenoptera
  - A few other insects
  - One mammal the naked mole rat



Naked Mole Rats



17

# Eusociality

- Three prominent hypotheses for evolution of Eusociality
  - Kin Selection
  - Parental Manipulation
  - Mutualism (Worker Manipulation?)

# Eusociality in insects

- Kin Selection
  - In haplo-diploid Hymenoptera
    - Females diploid, Males haploid
    - Females more closely related to sisters (r = 0.75) than to her own offspring (r = 0.50).
      - In colonies with a single queen (with single mating), females maximize fitness by rearing reproductive sisters.

18

20

- Not adequate explanation for diploid Termites.
  - Several hypotheses available
    - $\, {\sf Inbreeding} \, / \, {\sf outbreeding}, \, {\sf endosymbionts}, \, {\sf etc.}.$

## **Evolution of Eusociality**

- · Parental Manipulation
  - Queens suppress reproduction of workers
    - Chemical cues
    - · Physical inhibition
    - Support comes from multiple queen colonies, multiply mating queens, and slave making ants in which slaves help rear unrelated offspring of the queen.

## **Evolution of Eusociality**

- Mutualism (Worker Reproduction)
  - Workers may be cryptic reproductives and may enjoy greater fitness by helping in a nest rather than trying to found a new colony.
    - Support comes from observations that unmated workers lay haploid (male) eggs in many species.

21

22

24

# Testing Hypotheses for Evolution of Eusociality

- Trivers and Hare (1976) proposed a test of Kin Selection and Parental Manipulation by queens.
  - Queen's fitness maximized by equal offspring sex ratio (Parental Manipulation).
    - Queen is equally related to male and female offspring
  - Workers fitness maximized by female biased offspring sex ratio (Kin Selection).
    - Female offspring are more related to sisters than to brothers.

