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Abstract--This article introduces a new neural network architecture, called A R T M A P ,  that autonomously learns 
to class(~v arbitrarily many, arbitrarily ordered vectors into recognition categories based on predictive success. 
This supervised learning system is" built up from a pair of  Adaptive Resonance Theory modules (ART,  and 
ARTh) that are capable o f  self-organizing stable recognition categories in response to arbitra O' sequences o f  
input patterns. During training trials, the ART,  module receives a stream [a ~pj] of  input patterns, and ARTh 
receives a stream [b ~p~] o f  input patterns, where b ~ is the correct prediction given a ~p~. These A R T  modules are 
linked by an associative learning network and an internal controller that ensures autonomous system operation 
in real time. During test trials', the remaining patterns a ~'~ are presented without b ~p~, and their predictions at 
ARTb are compared with b(pL Tested on a benchmark machine learning database in both on-line and o f f  line 
simulations, the A R T M A P  system learns orders" o f  magnitude more quickly, efficiently, and accurate(v than 
alternative algorithms, and achieves 100% accuracy after training on less than half the input patterns in the 
database. It achieves these properties by using an internal controller that conjointly maximizes predictive gen- 
eralization and minimizes predictive error by linking predictive success to category size on a trial-by-trial basis', 
using only local operations. This computation increases the vigilance parameter p~, of  ART~ bv the minimal 
amount needed to correct a predictive error at A R TI,. Parameter p,, calibrates the minimum confidence that A R T, 
must have in a category, or hypothesis, activated by an input a ~r~ in order for  ART~, to accept that category, 
rather than search for  a better one through an automatically controlled process o f  hypothesis testing. Parameter 
p,, is compared with the degree o f  match between a ~p> and the top-down learned expectation, or prototype, that 
is read-out subsequent to activation o f  an ART~, category. Search occurs i f  the degree o f  match is less than p~,. 
A R T M A P  is hereby a (vpe o f  self-organizing expert system that calibrates the selectivity o f  its hypotheses based 
upon predictive success. As a result, rare but important events can be quickly and sharply distinguis'hed even if 
the)' are similar to frequent events with different consequences. Between input trials p~, relaxes to a baseline 
vigilance 7,,. When P., is large, the system runs in a conservative mode, wherein predictions are made only it" the 
system is" confident o f  the outcome. Very few Jalse-alarm errors then occur at any stage o f  learning, yet the system 
reaches asymptote with no loss of  speed. Because A R TMA P learning is self-stabilizing, it can continue learning 
one or more databases, without degrading its corpus o f  memories, until its Jull memory capacity is utilized. 
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1. I N T R O D U C T I O N :  P R E D I C T I V E  A R T  

As we move freely through the world,  we can at tend 
to both familiar and novel objects ,  and can rapidly 
learn to recognize,  test hypotheses  about ,  and learn 
to name novel objects  without  unselectively disrupt- 
ing our m e m o r i e s  of  familiar o b j e c t s  This article 
describes  a new self-organizing neural ne twork ar- 
c h i t e c t u r e - c a l l e d  a Predict ive A R T  or A R T M A P  
arch i tec ture - - that  is capable of  fast, yet stable, on- 
line recognit ion learning, hypothesis  testing, and 
adapt ive naming in response to an arbitrary s tream 
of input patterns.  
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The possibility of stable learning in response to 
an arbitrary stream of inputs is required by an au- 
tonomous learning agent that needs to cope with 
unexpected events in an uncontrolled environment. 
One cannot restrict the agent's ability to process input 
sequences if one cannot predict the environment in 
which the agent must successfully function. The abil- 
ity of humans to vividly remember exciting adventure 
movies is a familiar example of fast learning in an 
unfamiliar environment. 

1.1. Fast Learning About Rare Events 

A successful autonomous agent must be able to learn 
about rare events that have important consequences, 
even if these rare events are similar to frequent 
events with very different consequences. Survival 
may hereby depend on fast learning in a nonstation- 
ary environment. Many learning schemes are. in 
contrast, slow learning models that average over 
individual event occurrences and are degraded by 
learning instabilities in a nonstationary environment 
(Carpenter & Grossberg, 1988; Grossberg, 1988a). 

1.2. Many-to-One and One-to-Many Learning 

An efficient recognition system needs to be capable 
of many-to-one learning. For example, each of the 
different exemplars of the font for a prescribed letter 
may generate a single compressed representation 
that serves as a visual recognition category. This ex- 
emplar-to-category transformation is a case of many- 
to-one learning. In addition, many different fonts, 
including lower case and upper case printed fonts 
and scripts of various kinds, can all lead to the same 
verbal name for the letter. This is a second sense in 
which learning may be many-to-one. 

Learning may also be one-to-many, so that a single 
object can generate many different predictions or 
names. For example, upon looking at a banana, one 
may classify it as an oblong object, a fruit, a banana, 
a yellow banana, and so on. A flexible knowledge 
system may thus need to represent in its memory 
many predictions for each object, and to make the 
best prediction for each different context in which 
the object is embedded. 

1.3. Control of Hypothesis Testing, Attention, and 
Learning by Predictive Success 

Why does not an autonomous recognition system get 
trapped into learning only that interpretation of an 
object which is most salient given the system's initial 
biases? One factor is the ability of that system to 
reorganize its recognition, hypothesis testing, and 
naming operations based upon its predictive success 
or failure. For example, a person may learn a visual 
recognition category based upon seeing bananas of 

various colors and associate that category w~th ~, 
certain taste. Due to the variability of color fea- 
tures compared with those of visual form, this learned 
recognition category may incorp~rate form fea- 
tures more strongly than color features. However. 
the color green may suddenly, arid unexpectedly, 
become an important differential predictor of a ba- 
nana's taste. 

The different taste of a green bandana triggers hy- 
pothesis testing that shifts the focus of visual a~- 
tention to give greater weight, ~ ~aliencc. w, the 
banana's color features withou~ negating the 
importance of the other features ~hat define a ba- 
nanas form A new visual recogniuon category can 
hereby form for green bananas. :lnd this category 
can be used to accurately predict ~he different taste 
of green bananas. The new, finer category can form. 
moreover, without recoding eithc~ the previously 
learned generic representation of !~ananas or their 
taste association. 

Future representations may also k)rm that incor- 
porate new knowledge about bananas, without dis- 
rupting the representations that arc used to predict 
their different tastes. In this way, predictive feedback 
provides one means whereby one-to-many recogm- 
tion and prediction codes can form through time. by 
using hypothesis testing and attention shifts that sup- 
port new recognition learning without forcing un- 
selective forgetting of prewous knowledge 

1.4. Adaptive Resonance Theory 

The architecture described herein forms part of 
Adaptive Resonance Theory, or ART, which was 
introduced in 1976 (Grossberg, 1976a. 1976b) in or- 
der to analyze how brain networks can autonomously 
learn in real time about a changing world in a rapid 
but stable fashion. Since that time, ART has steadily 
developed as a physical theory to explain and predict 
ever larger data bases about cognitive information 
processing and its neural substrates IGrossberg, 
1982a. 1987a, 1987b. 1988b). A parallel development 
has described a series of rigorously characterized 
neural architectures called ARq 1. ART 2. and 
ART 3--with increasingly powerful learning, pattern 
recognition, and hypothesis testing capabilities (Car - 
penter & Grossberg, 1987a. 1987b, 1988. 1990). 

1.5. Serf-Organizing Predictive Maps 

The present class of architectures are called Predic- 
uve ART architectures because they incorporate 
ART modules into systems that can learn to predict 
a prescribed m-dimensional output vector b given a 
prescribed n-dimensional input vector a (Figure 1). 
The present example of Predictive ART is called 
ARTMAP because its transformation from vectors 
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FIGURE 1. A Predictive ART, or ARTMAP, system includes two ART modules linked by an inter-ART associative memory. 
Internal control structures actively regulate learning and information flow. Back Propagation and Predictive ART both carry 
out supervised learning, but the two systems differ in many respects, as indicated. 

in :J~" to vectors in .~j~m defines a map that is learned 
by example from the correlated pairs {a ~p), b ~p)} of 
sequentially presented vectors, p = 1, 2 . . . .  (Car- 
penter, 1989). For example, the vectors a ~p) may en- 
code visual representations of objects, and the 
vectors b ~p) may encode their predictive conse- 
quences, such as different tastes in the banana ex- 
ample above. The degree of code compression in 

memory is an index of the system's ability to gen- 
eralize from examples. 

Figure 1 compares properties of the ARTMAP 
network with those of the Back Propagation network 
(Parker, 1982; Rumelhart & McClelland, 1986; Wer- 
bos, 1974, 1982). Both ARTMAP and Back Prop- 
agation are supervised learning systems. With 
supervised learning, an input vector a Ip~ is associated 
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with another input vector b ~p) on each training trial. 
On a test trial, a new input a is presented that has 
never been experienced before. This input predicts 
an output vector b. System performance is evaluated 
by comparing b with the correct answer. This prop- 
erty of generalization is the system's ability to cor- 
rectly predict correct answers to a test set of novel 
inputs a. 

1.6. Conjointly Maximizing Generalization and 
Minimizing Predictive Error 

The A R T M A P  system is designed to conjointly max- 
imize generalization and minimize predictive error 
under fast learning conditions in real time in response 
to an arbitrary ordering of input patterns. Remark- 
ably, the network can achieve 100% test set accuracy 
on the machine learning benchmark database de- 
scribed below. Each A R T M A P  system learns to 
make accurate predictions quickly, in the sense of 
using relatively little computer time; efficiently, in 
the sense of using relatively few training trials; and 
flexibly, in the sense that its stable learning permits 
continuous new learning, on one or more databases. 
without eroding prior knowledge, until the full mem- 
ory capacity of the network is exhausted. In an ART- 
MAP network, the memory capacity can be chosen 
arbitrarily large without sacrificing the stability of 
fast learning or accurate generalization. 

1.7. Match Tracking of Predictive Confidence by 
Attentive Vigilance 

An essential feature of the ARTMAP design is its 
ability to conjointly maximize generalization and 
minimize predictive error on a trial-by-trial basis us- 
ing only local operations. It is this property which 
enables the system to learn rapidly about rare events 
that have important consequences even if they are 
very similar to frequent events with different con- 
sequences. This property builds upon a key design 
feature of all ART systems; namely, the existence 
of an orienting subsystem that responds to the un- 
expectedness, or novelty, of an input exemplar a by 
driving a hypothesis testing cycle, or parallel memory 
search, for a better, or totally new. recognition cat- 
egory for a. Hypothesis testing is triggered by the 
orienting subsystem if a activates a recognition cat- 
egory that reads out a learned expectation, or pro- 
totype, which does not match a well enough. The 
degree of match provides an analog measure of the 
predictive confidence that the chosen recognition cat- 
egory represents a, or of the novelty of a with respect 
to the hypothesis that is symbolically represented by 
the recognition category. This analog match value is 
computed at the orienting subsystem where it is com- 
pared with a dimensionless parameter that is called 

vigilance (Carpenter & Grossberg, t987a, 1987bL A 
cycle of hypothesis testing is triggered if the degree 
of match is less than vigilance. Conjoint maximiza- 
tion of generalization and minimization of predictive 
error is achieved on a trial-by-trial basis by increasing 
the vigilance parameter in response to a predictive 
error on a training trial (Carpemcr & Grossberg~ 
1987a). The minimum change i~ ~m~de that is co~- 
sistent with correction of the erro,. In fact, the pre- 
dictive error causes the vigilance ~ increase rapidly 
until it just exceeds the analog match value, ia ::~ 
process called match tracking 

Before each new input arrives vigilance relaxes 
to a baseline vigilance value. Setting baseline vigi- 
lance to 0 maximizes code compression. The system 
accomplishes this by allowing an ~ d u c a t e d  guess" 
on every trial, even if the match between input and 
learned code is poor. Search ensues, and a new cat- 
egory is established, only if the prediction made in 
this forced-choice situation proves wrong. When pre- 
dictive error carries a cost, howcve;, baseline vigi- 
lance can be set at some higher value, thereby 
decreasing the "false alarm" rate. With positive base- 
line vigilance, the system responds "'I don't know" 
to an input that fails to meet the minimum matching 
criterion. Predictive error rate ca~ hereby be made 
very small, but with a reduction in code compression. 
Search ends when the internal control system (Figure 
1) determines that a global consensus has been 
reached. 

1.8. Self-Organizing Expert System 

ARTMAP achieves its combination of desirable 
properties by acting as a type of self-organizing ex- 
pert system. It incorporates the basic properties of 
all ART systems (Carpenter & Grossberg, 1988) to 
carry out autonomous hypothesis testing and parallel 
memory search for appropriate recognition codes. 
Hypothesis testing terminates in a sustained state of 
resonance that persists as long a~ an input remains 
approximately constant. The resonance generates a 
focus of attention that selects the bundle of critical 
features common to the bottom-up input and the top- 
down expectation, or prototype, that is read-out bv 
the resonating recognition category. Learning of the 
critical feature pattern occurs in this resonant and 
attentive state, hence the term adaptive resonance. 

1.9. 2/3 Rule Matching, Priming, !ntentionality, 
and Logic 

The resonant focus of attention is a consequence of 
a matching rule called the 2/3 Rule (Carpenter & 
Grossberg, 1987a). This rule clarifies how a bottom- 
up input pattern can supraliminally activate its fea- 
ture detectors at the level F~ ot an ART network. 
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yet a top-down expectation can only subliminally sen- 
sitize, or prime, the level FI. Supraliminal activation 
means that F] can automatically generate output sig- 
nals that initiate further processing of the input. Sub- 
liminal activation means that F1 cannot generate 
output signals, but its primed cells can more easily 
be activated by bottom-up inputs. For example, the 
verbal command "Look for the yellow banana" can 
prime visual feature detectors to respond more sen- 
sitively to visual inputs that represent a yellow ba- 
nana, without forcing these cells to be fully activated, 
which would have caused a visual hallucination. 

Carpenter  and Grossberg (Grossberg, 1987a) 
have shown that the 2/3 Rule is realized by a kind 
of analog spatial logic. This logical operation com- 
putes the spatial intersection of bottom-up and top- 
down information. The spatial intersection is the fo- 

cus of attention. It is of interest that subliminal top- 
down priming, which instantiates a type of "inten- 
tionality" in an ART system, implies a type of match- 
ing law, which instantiates a type of "logic." Searle 
(1983) and others have criticized some Artificial In- 
telligence models because they sacrifice intention- 
ality for logic. In ART, intentionality implies logic. 

2. THE ARTMAP SYSTEM 

The main elements of an ARTMAP system are 
shown in Figure 2. Two modules, ART, and AR%,  
read vector inputs a and b. If ART° and ARTb were 
disconnected, each module would self-organize cat- 
egory groupings for the separate input sets. In the 
application described below, ART, and AR% are 
fast-learn ART 1 modules coding binary input vec- 

I b(TRAINING) 

MAP F I E L D ~  
GAIN [ 

CONTROL~// " 

ART b 

MAP FIELD MAP FIELD 
ORIENTING 
UBSYSTEM 

\ 7 MATCH 
TRACKING 

ARTa h - q  

FIGURE 2. Block diagram of an ARTMAP system. Modules ART, and ARTb self-organize categories for vector sets a and b. 
ART, and ARTb are connected by an inter-ART module that consists of the Map Field and the control nodes called Map Field 
gain control and Map Field orienting subsystem. Inhibitory paths are denoted by a minus sign; other paths are excitatory. 
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tors. ART, and ARTb are here connected by an inter- 
ART module that in many ways resembles ART 1. 
This inter-ART module includes a Map Field that 
controls the learning of an associative map from 
ART~ recognition categories to ARTb recognition 
categories. This map does not directly associate ex- 
emplars a and b, but rather associates the com- 
pressed and symbolic representations of families of 
exemplars a and b. The Map Field also controls 
match tracking of the ART° vigilance parameter. A 
mismatch at the Map Field between the ART~ cat- 
egory activated by an input a and the ARTb category 
activated by the input b increases ART, vigilance by 
the minimum amount needed for the system to 
search for and, if necessary, learn a new ART,, cat- 
egory whose prediction matches the ARTb category. 

This inter-ART vigilance resetting signal is a form 
of "back propagation" of information, but one that 
differs from the back propagation that occurs in the 
Back Propagation network. For example, the search 
initiated by inter-ART reset can shift attention to a 
novel cluster of visual features that can be incor- 
porated through learning into a new ART~ recogni- 
tion category. This process is analogous to learning 
a category for "green bananas" based on "taste" 
feedback. However, these events do not "back 
propagate" taste features into the visual represen- 
tation of the bananas, as can occur using the Back 
Propagation network. Rather, match tracking reor- 
ganizes the way in which visual features are grouped, 
attended, learned, and recognized for purposes of 
predicting an expected taste. 

The following sections describe ARTMAP simu- 
lations using a machine learning benchmark data- 
base.  The A R T M A P  system is then descr ibed 
mathematically. The Appendix summarizes ART 1 
and ARTMAP system equations for purposes of sim- 
ulation, and outlines system responses to various in- 
put protocols. 

3. ARTMAP SIMULATIONS: 
DISTINGUISHING EDIBLE AND 

POISONOUS MUSHROOMS 

The ARTMAP system was tested on a benchmark 
machine learning database that partitions a set of 
vectors a into two classes. Each vector a characterizes 
observable features of a mushroom as a binary vec- 
tor. and each mushroom is classified as edible or 
poisonous (Schlimmer. 1987a). The database rep- 
resents the 11 species of genus Agaricus and the 12 
species of the genus Lepiota described in "The Au- 
dubon Society Field Guide to North American Mush- 
rooms" (Lincoff, 1981). These two genera constitute 
most of the mushrooms described in the "Field 
Guide" from the family Agaricaceae (order Agar- 
icales, class Hymenomycetes, subdivision Basidiomy- 
cetes, division Eumycota). All the mushrooms rep- 
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resented in the database are similar to one another: 
"These mushrooms are placed ina  single family on 
the basis of a correlation of characteristics that in- 
clude microscopic and chemical features. ~ ." (Lin- 
coff, 1981, p. 500). The "Field Guide" warns that 
poisonous and edible species can lye difficult to dis- 
tinguish on the basis of their observable features, 
For example, the poisonous species Agaricus cali- 
]brnicus is described as a "'dead ringer" (l_incofL 
1981, p. 504) for the Meadow Mushroom, Agaricus 
campestris, that "may be known better and gathered 
more than any other wild mushroom in North Amer- 
ica" (Lincoff, 1981, p. 505). This database thus pro- 
vides a test of how ARTMAP and other machine 
learning systems distinguish rare but important 
events from frequently occurring collections of sim- 
ilar events that lead to different consequences. 

The database of 8,124 exemplars describes each 
of 22 observable features of a mushroom, along with 
its classification as poisonous (48.2%) or edible 
(51.8%). The 8,124 "hypothetical examples" rep- 
resent ranges of characteristics within each species; 
for example, both Agaricus californicus and Agaricu~" 
campestris are described as having a '!white to brown- 
ish cap," so in the database each species has corre- 
sponding sets of exemplar vectors representing their 
range of cap colors. There are 126 different values 
of the 22 different observable features. A list of the 
observable features and their possible values is given 
in Table 1. For example, the observable feature of 
"cap-shape" has six possible values, Consequently, 
the vector inputs to ART,~ are 126-element binary 
vectors, each vector having 22 !'s and 104 O's, to 
denote the values of an exemplar~s 22 observable 
features. The ARTh input vectors are (1, 0) for poi- 
sonous exemplars and (0. 1) for edible exemplars. 

3.1. Performance 

The ARTMAP system learned to classify test vectors 
rapidly and accurately, and system performance 
compares favorably with results of other machine 
learning algorithms applied to the same database. 
The STAGGER algorithm reached its maximum per- 
formance level of 95% accuracy after exposure to 
1,000 training inputs (Schlimmer. i987b). The HIL- 
LARY algorithm achieved similar results (Iba, Wo- 
gulls. & Langley, 1988). The ARTMAP system 
consistently achieved over 99% accuracy with 1.000 
exemplars, even counting "I don"t know" responses 
as errors. Accuracy of 95% was usually achieved with 
on-line training on 300-400 exemplars and with off- 
line training on 100-200 exemplars. In this sense. 
ARTMAP was an order of magnitude more efficient 
than the alternative systems. In addition, with con- 
tinued training, ARTMAP predictive accuracy al- 
ways improved to t00%. These results are elaborated 
below. 
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TABLE 1 
126 Values of 22 Observable Features Represented in ARTa Input Vectors 

Number Feature Possible Values 

1 Cap-Shape 
2 Cap-Surface 
3 Cap-Color 

4 Bruises 
5 Odor 

6 Gill-Attachment 
7 Gill-Spacing 
8 Gill-Size 
9 Gill-Color 

10 Stalk-Shape 
11 Stalk-Root 
12 Stalk-Surface-Above-Ring 
13 Stalk-Surface-Below-Ring 
14 Stalk-Color-Above-Ring 

15 Stalk-Color-Below-Ring 

16 Veil-Type 
17 Veil-Color 
18 Ring-Number 
19 Ring-Type 

20 Spore-Print-Color 

21 Population 

22 Habitat 

Bell, Conical, Convex, Flat, Knobbed, Sunken 
Fibrous, Grooves, Scaly, Smooth 
Brown, Buff, Gray, Green, Pink, Purple, Red, White, Yellow, 

Cinnamon 
Bruises, No Bruises 
None, Almond, Anise, Creosote, Fishy, Foul, Musty, Pun- 

gent, Spicy 
Attached, Descending, Free, Notched 
Close, Crowded, Distant 
Broad, Narrow 
Brown, Buff, Orange, Gray, Green, Pink, Purple, Red, 

White, Yellow, Chocolate, Black 
Enlarging, Tapering 
Bulbous, Club, Cup, Equal, Rhizomorphs, Rooted, Missing 
Fibrous, Silky, Scaly, Smooth 
Fibrous, Silky, Scaly, Smooth 
Brown, Buff, Orange, Gray, Pink, Red, White, Yellow, Cin- 

namon 
Brown, Buff, Orange, Gray, Pink, Red, White, Yellow, Cin- 

namon 
Partial, Universal 
Brown, Orange, White, Yellow 
None, One, Two 
None, Cobwebby, Evanescent, Flaring, Large, Pendant, 

Sheathing, Zone 
Brown, Buff, Orange, Green, Purple, White, Yellow, Choc- 

olate, Black 
Abundant, Clustered, Numerous, Scattered, Several, Soli- 

tary 
Grasses, Leaves, Meadows, Paths, Urban, Waste, Woods 

Almost every ARTMAP simulation was com- 
pleted in under 2 minutes on an IRIS 4D computer, 
with total time ranging from about 1 minute for small 
training sets to 2 minutes for large training sets. This 
is comparable to 2-5 minutes on a SUN 4 computer. 
Each timed simulation included a total of 8,124 train- 
ing and test samples, run on a time-sharing system 
with nonoptimized code. Each 1-2 minute compu- 
tation included data read-in and read-out, training, 
testing, and calculation of multiple simulation in- 
dices. 

3.2. On-Line Learning 

On-line learning imitates the conditions of a human 
or machine operating in a natural environment. An 
input a arrives, possibly leading to a prediction. If 
made, the prediction may or may not be confirmed. 
Learning ensues, depending on the accuracy of the 
prediction. Information about past inputs is available 
only through the present state of the system. Simu- 
lations of on-line learning by the ARTMAP system 
use each sample pair (a, b) as both a test item and 
a training item. Input a first makes a prediction that 
is compared with b. Learning follows as dictated by 
the internal rules of the ARTMAP architecture. 

Four types of on-line simulations were carried out, 
using two different baseline settings of the ART, 
vigilance parameter Pa: P~ = 0 (forced choice con- 
dition) and ~ = 0.7 (conservative condition); and 
using sample replacement or no sample replacement. 
With sample replacement, any one of the 8,124 input 
samples was selected at random for each input pre- 
sentation. A given sample might thus be repeatedly 
encountered while others were still unused. With no 
sample replacement, a sample was removed from the 
input pool after it was first encountered. The re- 
placement condition had the advantage that repeated 
encounters tended to boost predictive accuracy. The 
no-replacement condition had the advantage of hav- 
ing learned from a somewhat larger set of inputs at 
each point in the simulation. The replacement and 
no-replacement conditions had similar performance 
indices, all other things being equal. Each of the 4 
conditions was run on 10 independent simulations. 
With ~ = 0, the system made a prediction in re- 
sponse to every input. Setting p~ = 0.7 increased the 
number of "I don't know" responses, increased the 
number of ARTa categories, and decreased the rate 
of incorrect predictions to nearly 0%, even early in 
training. The ~ = 0.7 condition generally outper- 
formed the ~ = 0 condition, even when incorrect 
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predictions and " I  don ' t  know" responses were both 
counted as errors. The pr imary exception occurred 
very early in training, when a conservative system 
gives the large majori ty of its no-prediction r e  
sponses. 

Results are summarized in Table 2. Each entry 
gives the number  of correct predictions over  the pre- 
vious 100 trials (input presentations),  averaged over  
10 simulations. For example,  with ~ = 0 in the no- 
replacement  condition, the system made.  on the av- 
erage, 94.9 correct predictions and 5.1 incorrect pre- 
dictions on trials 201-300. In all cases a 95% correct- 
prediction rate was achieved before trial 400. With 
p--7 = 0, a consistent correct-prediction rate of over  
99% was achieved by trial 1.400. while with p,~ = 

0.7 the 99% consistent correct-prediction rate was 
achieved earlier, by trial 800. Each simulation was 
continued for 8,100 trials. In all four cases, the min- 
imum correct-prediction rate always exceeded 99.5 q4 
by trial 1,800 and always exceeded 99.8% by trial 
2,800. In all cases, across the total of 40 simulations 
summarized in Table 2, 100% correct prediction was 
achieved on the last 1,300 trials of each run. 

Note  the relatively low correct-prediction rate for 
p~ = 0.7 on the first 100 trials. In the conservative 
mode,  a large number  of inputs initially make no 
prediction. With ~ = 0.7 an average total of only _ ~' 
incorrec t  predictions were made on each run of 8,100 
trials. Note  too that Table 2 underest imates predic- 

tion accuracy at any given time, since performance 
almost always improves during the 100 trials over  
which errors are tabulated. 

3.3. Off-Line Learning 

In off-line learning, a fixed training set is repeatedl~ 
presented to the system until 100~ accuracy is 
achieved on that set. For Iraining sets ranging in s~ze 
from 1 to 4.000 samples. 100% accuracy was almosl 
always achieved after one or two presentat ions ot 
each training set. System performance was then mea- 
sured on the test set, which consisted of all 8.124 
samples not included in the training set. During test- 
ing no further learning occurred. 

The role of repeated training set presentations was 
examined by comparing simulations that used the 
100% training set accuracy Criterion with simulations 
that used only a single presentat ion of each input 
during training. With only a few exceptions, per- 
formance was similar. In fact. for/)7 - 0.7. and for 
small training sets with ~ = 0. 1()t1% training-set 
accuracy was achieved with single input presenta- 
tions, so results were identical. Performance differ- 
ences were greatest  for ~ = 0 simulations with mid- 
sized training sets (60-500 samples) when 2-3  train- 
ing set presentations tended to add a few more ART 
learned category nodes. Thus.  even a single presen- 
tation of training-then-testing inputs, carried out on- 

TABLE 2 
On-line Learning and Performance in Forced Choice (~.. = 0) or 

Conservative ( ~  = 0.7) Csees, With Replacement or No Replacement of 
Samples After Training 

Trial 

Average number of correct predictions on previous 
100 trials 

p~ = 0 p-~ - 0 p-~ = 0.7 p~ = 0,7 
No Replace Replace No Replace Replace 

100 82.9 81.9 66.4 67.3 
200 89.8 89.6 87.8 87.4 
300 94.9 92.6 94,1 93.2 

400 95.7 95.9 96.8 95.8 
500 97.8 97 1 97.5 97.8 
600 98.4 98.2 98.1 98.2 
700 97.7 97.9 98,1 99.0 
800 98,1 97.7 99.0 99.0 
900 98.3 98.6 99.2 99.0 

1000 98.9 98.5 99.4 99.0 

t 100 98.7 98.9 99,2 99.7 
1200 99.6 99.1 99.5 99.5 
1300 99.3 98.8 99.8 99.8 
1400 99.7 99.4 99.5 99.8 
1500 99.5 99.0 99.7 99.6 
1600 99.4 99.6 99.7 99,8 
1700 98.9 99.3 99.8 99.8 
1800 99.5 99,2 99.8 9919 
1900 99.8 99.9 99.9 99.9 
2000 99.8 99:8 99.8 99.8 
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line, can be made to work almost as well as off-line 
training that uses repeated presentations of the train- 
ing set. This is an important benefit of fast learning 
controlled by a match tracked search. 

Under all training conditions, each of the 8,124 
ART, input vectors is a 126-dimensional binary vec- 
tor with 22 positive entries. Simulation dynamics are 
illustrated by projecting these vectors onto the first 
two principal components of the data set (Kendall 
& Stuart, 1966). These two components represent 
31% of the total variance of the data set. 

Figure 3a shows the projections of all 3,916 ex- 
emplars representing poisonous mushrooms, and 
Figure 3b shows the 4,208 exemplars representing 
edible mushrooms. These figures show that, in these 
two dimensions, certain clusters are readily distin- 
guishable, such as the clusters of poisonous samples 
on the top and left portions of Figure 3a. However, 

Y 

(a) 
::', :~ .'~,~... 
(.:~'~. - 

; i  i?~" 

- ~ S  t'"~ .~ ,,<~ .. 

(b) .. ,~:, .~ ~<'-~%~ 

X 

FIGURE 3. Mushroom observable feature data projected onto 
first 2 principal components. Each point represents a 126- 
dimensional ART, Input vector. Axes are scaled to run 
from - 1 to + 1. (a) 3,916 exemplars representing poisonous 
mushrooms (48.2%); (b) 4,208 exemplars representing edible 
mushrooms (51.8%). 
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poisonous and edible samples are densely mixed near 
the positive x-axis. 

3.4. Off-Line Forced-Choice Learning 

The simulations summarized in Figure 4 and Table 
3 illustrate off-line learning with ~ = 0. In this forced 
choice case, each ARTs input led to a prediction of 
poisonous or edible. The number of test set errors 
with small training sets was relatively large, due to 
the forced choice. 

Figure 4 shows the evolution of test set errors as 
the training set is increased in size from 5 to 500. In 
Figure 4a, a set of 5 randomly chosen exemplars (3 
poisonous, 2 edible) established 2 ART~ categories 
(1 poisonous, 1 edible) during training. For each of 
the 8,119 test set exemplars, the system was forced 
to choose between poisonous and edible, even if no 
category representation was a close match. The sys- 
tem made 73% correct predictions. Many of the er- 
rors were in the dense cluster of poisonous exemplars 
in the upper quarter of the graph (Figure 3a). By 
chance, this cluster was not represented in the 
5-sample training set. 

Table 3 summarizes the average results over 10 
simulations at each size training set. For example, 
with very small, 5-sample training sets, the system 
established between 1 and 5 ART, categories, and 
averaged 73.1% correct responses on the remaining 
8,119 test patterns. Success rates ranged from chance 
(51.8%, 1 category) in one instance where all 5 train- 
ing set exemplars happened to be edible, to surpris- 
ingly good (94.2%, 2 categories). The range of 
success rates for fast-learn training on very small 
training sets illustrates the statistical nature of the 
learning process. Intelligent sampling of the training 
set or, as here, good luck in the selection of repre- 
sentative samples, can dramatically alter early suc- 
cess rates. In addition, the evolution of internal 
category memory structure, represented by a set of 
ART° category nodes and their top-down learned 
expectations, is influenced by the selection of early 
exemplars. Nevertheless, despite the individual na- 
ture of learning rates and internal representations, 
all the systems eventually converge to 100% accuracy 
on test set exemplars using only (approximately) 
1/600 as many ART, categories as there are inputs 
to classify. 

Figure 4 and Table 3 summarize the rate at which 
learning converges to 100% accuracy. In Figure 4b, 
25 exemplars were added to the 5 used for Figure 
4a, and the resulting 30-sample training set was pre- 
sented to a new ARTMAP system. The 25 additional 
training exemplars increased the number of ARTa 
categories to 3 and improved the test set correct- 
prediction rate to 92.3%. The addition of poisonous 
training exemplars in the upper quarter of the graph 
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(a) 

Training Set 
y . . . . . . . . . . . . . . . . . . .  

(L A. Carpenter, S. Grossber, e, und J. H. Reynolds 

Test Set Misctassifications 
y . . . . . . . . . . . . .  T-  

5 S a m p l e s  2194 Misctassified Samples 
(out of 8119 total~ 

(b) 
= 

. _ = 

30 Samples 624 Misclassified Samples 
(out of 8094 total) 

(c) 

125 Samples 288 Misclassified Samples 
(out of 7999 total) 

Y 

(d) 

[ 

500 Samples 168 Misctasldl~l Samples 
(out of 7624 total) 

FIGURE 4. Training sets of I 
prqected onto ttrst two pri~ 
2 ART, :atm~xles, the trot 
~ ranged from 1 b 
set that estmbll~ed 3 ART, 
runs, the number ot ART. © 
With a 125-sample tradning 
other 125-training aample r 
8.5%, avwaoing 4.4%; (d) VI 
168 errors (2.2%). On 10 other 500-training ample-runs, the number of ART, categories ranged from0 to 22; and the error 
rate ranged from 0.7% to 3.1%, averaging 1.6%. 
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TASLll a 
Off-line Forced C.hOlee (~  " O) ARTMAP System 

Performance After l'rJliditlg On InpUt Beta Ranging In Size 
From 3 to 4,000 Exemplat~, li11011 kifle lhowl  Average 

Correct and Incorrect Test ~0t @feeCll~flons Over 10 
Independent Simulations, PIU~ { ~  ~Sflg0 Of learned ART. 

Category Number§ 

Average Average Nuttlber 
Training % Correct % Incorrect of AP]T~ 
Set Size (Test Set) (Test Set) Categories 

3 65.8 34.2 1-3 
5 73.1 26.9 1-5 

15 81.6 18.4 2-4 
30 87.6 12.4 4-6 
60 89.4 10.6 4-10 

125 95.6 4.4 5-14 
250 97.8 2.2 8-14 
500 98.4 1.6 9-22 

1000 99.8 0,2 7-18 
2000 99.96 0,04 10-16 
4000 100 0 11-22 

eliminated all errors there. However, errors per- 
sisted for exemplars near the positive x-axis. On 10 
other simulations with 30-sample training sets, the 
correct prediction rate averaged 87.6% and ranged 
from 74.9% (4 categories) to 93.3% (6 categories). 

The ~itrlulation that generated Figure 4c added 
95 traittJfl~ sample~ to the 30 used for Figure 4b. 
The number of AI~Ta ¢ategories increased to 9 and 
the correct prediction rate ftlcreased to 96.4%. On 
10 other simulations with 125 randomly chosen train- 
ing exemplars, the correct-prediction rate averaged 
95,6%, ranging from 91.5% (10 categories) to 98.8% 
(9 categories). 

The ~imulation of Figure 4d added 375 samples to 
the set u~¢d in Figure 4c. This 500-sample training 
get increasfd the correct-prediction rate to 97.8% on 
the test set, establishing 15 categories. On 10 other 
runs, each with 500 randomly chosen training 
exetnplars, the correct-prediction rate averaged 
98.4%, ranging from 96.9% (14 categories) to 99.3% 

(9 categories). The low error rate of this latter 9- 
category simulation appears to reflect success of early 
sampling. On other runs, additional categories were 
added as errors in early category structures were de- 
tected. 

With 1,000-sample training sets, 3 out of 10 sim- 
ulations achieved 100% prediction accuracy on the 
7A24-sample test set. With 2,000-sample training 
sets, 8 out of 10 simulations achieved 100% accuracy 
on the 6,124-sample test sets. With 4,000-sample 
training sets, all simulations achieved 100% accuracy 
on the 4,124-sample test sets. In all, 21 of the 30 
simulations with training sets of 1,000, 2,000, and 
4,000 samples achieved 100% accuracy on test sets. 
The number of categories established during these 
21 simulations ranged from 10 to 22, again indicating 
the variety of paths leading to 100% correct predic- 
tion rate. 

3.5. Off-Line Conservative Learning 

As in the case of poisonous mushroom identification, 
it may be important for a system to be able to respond 
"I don't know" to a novel input, even if the total 
number of correct classifications thereby decreases 
early in learning. For higher values of the baseline 
vigilance p-~, the ARTMAP system creates more 
ARTa categories during learning and becomes less 
able to generalize from prior experience than when 
p-~ equals 0. During testing, a conservative coding 
system with ~ -- 0.7 makes no prediction in response 
to inputs that are too novel, and thus initially has a 
lower proportion of correct responses. However, the 
number of incorrect responses is always low with 
p-~ = 0.7, even with very few training samples, and 
the 99% correct-response rate is achieved for both 
forced choice ( ~  = 0) and conservative ( ~  = 0.7) 
systems with training sets smaller than 1,000 exem- 
plars. 

Table 4 summarizes simulation results that repeat 

TABLE 4 
Off-line Conservative (~  = 0.7) ARTMAP System Performance After Training on 

Input Sets Ranging in Size From 3 to 4,000 Exemplars. Each Line Shows Average 
Correct, Incorrect and No-Response Test Set Predictions Over 10 Independent 

Simulations, Plus the Range of Learned ART, Category Numbers 

Average % Average % Average % Number 
Training Correct Incorrect No-Response of ARTa 
Set Size (Test Set) (Test Set) (Test S e t )  Categories 

3 25.6 0.6 73.8 2-3 
5 41.1 0.4 58.5 3-5 

15 57.6 1.1 41.3 8-10 
30 62.3 0.9 36.8 14-18 
60 78.5 0.8 20.8 21-27 

125 83.1 0.7 16.1 33-37 
250 92.7 0.3 7.0 42-51 
500 97.7 0.1 2.1 48-64 

1000 99.4 0.04 0.5 53-66 
2000 100.0 0.00 0.05 54-69 
4000 100 0.00 0.02 61-73 
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the conditions of Table 3 except that ~ = 0.7. Here, 
a test input that does not make a 70% match with 
any learned expectation makes an "I don't know" 
prediction. Compared with the ~ = 0 case of Table 
3, Table 4 shows that larger training sets are required 
to achieve a correct prediction rate of over 95%. 
However, because of the option to make no predic- 
tion, the average test set error rate is almost always 
less than 1%, even when the training set is very small, 
and is less than . 1% after only 500 training trials. 
Moreover, 100% accuracy is achieved using only (ap- 
proximately) 1/130 as many ART, categories as there 
are inputs to classify. 

3.6. Category Structure 

Each ARTMAP category code can be described as 
a set of ART, feature values on 1 to 22 observable 
features, chosen from 126 feature values, that are 
associated with the ARTb identification as poisonous 
or edible. During learning, the number of feature 
values that characterize a given category is monotone 
decreasing, so that generalization within a given cat- 
egory tends to increase. The total number of classes 
can, however, also increase, which tends to decrease 
generalization. Increasing the number of training 
patterns hereby tends to increase the number of cat- 
egories and decrease the number of critical feature 

values of each established category. ]'he balance be- 
tween these opposing tendencies leads to the final 
net level of generalization. 

Table 5 illustrates the long term memory structure 
underlying the 125-sample forced-choice simulation 
shown in Figure 4c. Of the 9 categories established 
at the end of the training phase, 4 are identified as 
poisonous (P) and 5 are identified as edible (E). Each 
ART° category assigns a feature value to a subset of 
the 22 observable features. For example, Category 
1 (poisonous) specifies values fol 5 features, and 
leaves the remaining t7 features unspecified. The 
corresponding ARTa weight vector has 5 ones and 
121 zeros. Note that the features that characterize 
Category 5 (poisonous) form a subset of the features 
that characterize Category 6 (edible ~. Recall that this 
category structure gave 96.4% correct responses on 
the 7,999 test set samples, which are partitioned as 
shown in the last line of Table 5. When 100% ac,- 
curacy is achieved, a few categories with asmatl num- 
ber of specified features typically code large clusters, 
while a few categories with many specified features 
code small clusters of rare sampte~. 

Table 6 illustrates the statistical r~ature of the cod- 
ing process, which leads to a variety of category struc- 
tures when fast learning is used. Test set prediction 
accuracy of the simulation that generated Table 6 
was similar to that of Table 5, and each simulation 

TABLE 5 
Critical Feature Values of the 9 Category Prototypes Learned in the 125-Sample Simulation illustrated inFigure 4c ( ~  = 0). 
Categories 1, 5, 7 and 8 are ~ as Poisonous (P) end Categories 2, 3, 4, 6, and 9 are Identified as ~ i e  (E). These 

Prototypes Yield 96.4% Accuracy on Test Set Inputs. 

# Feature 1 = P 2 = E 3 = E 4 = E 5 = P 6 = E 7 = P 8 ..... P 9 ~ E 

1 Cap-Shape 
2 Cap-Surface 
3 Cap-Color 
4 Bruises? Yes No Yes 
5 Odor None None 
6 Gill-Attachment Free Free Free Free Free Free Free Free 
7 Gill-Spacing Close Close Close Close Close Close Close 
8 Gill-Size Broad Narrow Broad 
9 Gill-Color Buff 

10 Stalk-Shape Tapering Enlarged 
11 Stalk-Root Missing Club 
12 Stalk-Surface- Smooth Smooth Smooth Smooth Smooth Smooth Smooth 

Above-Ring 
13 Stalk-Surface- Smooth Smooth 

Below-Ring 
14 S ta lk -Co lo r -  White White White Pink White 

Above-Ring 
15 Stalk-Color-Be- White White 

low-Ring 
16 Veil-Type Partial Partial Partial Partial Partial Partial Partial Partial Partial 
17 Veil-Color White White White White White White White White 
18 Ring-Number One One One One One One One 
19 Ring-Type Pendant Pendant Evanescent Pendant 
20 Spore-Print- White 

Color 
21 Population Several Several Scattered Several Scattered 
22 Habitat 

# Coded/Category: 2367 1257 387 1889 756 373 292 427 251 
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TABLE 6 
Critical Feature Values of the 4 Prototypes Learned in a 125-Sample Simulation With a 

Training Set Different From the One in Table 5. Prediction Accuracy is Similar (96.0%), but 
the ART. Category Boundaries are Different 

# Feature 1 = E 2 = P 3 = P 4 = E 

1 Cap-Shape 
2 Cap-Surface 
3 Cap-Color 
4 Bruises? No 
5 Odor None 
6 Gill-Attachment Free Free 
7 Gill-Spacing Close Close 
8 Gill-Size Broad Broad 
9 Gill-Color 

10 Stalk-Shape Enlarging 
11 Stalk-Root 
12 Stalk-Surface-Above-Ring Smooth 
13 Stalk-Surface-Below-Ring 
14 Stalk-Color-Above-Ring 
15 Stalk-Color-Below-Ring White 
16 Veil-Type Partial Partial Partial Partial 
17 Veil-Color White White White 
18 Ring-Number One One 
19 Ring-Type Pendant 
20 Spore-Print-Color 
21 Population 
22 Habitat 

# Coded/Category: 3099 1820 2197 883 

had a 125-sample training set. However, the simu- 
lation of Table 6 produced only 4 ART° categories, 
only one of which (Category 1) has the same long- 
term memory representation as Category 2 in Table 
5. Note that, at this stage of coding, certain features 
are uninformative. For example, no values are spec- 
ified for features 1, 2, 3, or 22 in Table 5 or Table 
6; and feature 16 (veil-type) always has the value 
"partial." However, performance is still only around 
96%. As rare instances form small categories later 
in the coding process, some of these features may 
become critical in identifying exemplars of small cat- 
egories. 

We will now turn to a description of the compo- 
nents of the ARTMAP system. 

4. ART MODULES ART. and ARTb 

Each ART module in Figures 1 and 2 establishes 
compressed recognition codes in response to se- 
quences of input patterns a and b. Associative learn- 
ing at the Map Field links pairs of pattern classes via 
these compressed codes. One type of generalization 
follows immediately from this learning strategy: If 
one vector a is associated with a vector b, then any 
other input that activates a's category node will pre- 
dict the category of pattern b. Any ART module can 
be used to self-organize the ARTa and ARTb cate- 
gories. In the application above, a and b are binary 

vectors, so ARTa and ARTb can be ART 1 modules. 
The main computations of an ART 1 module will 
here be outlined. A full definition of ART 1 modules, 
as systems of differential equations, along with an 
analysis of their network dynamics, can be found in 
Carpenter and Grossberg (1987a). 

In an ART 1 module, an input pattern I is rep- 
resented in field Fj and the recognition category for 
I is represented in field Fz. We consider the case 
where the competitive field F2 makes a choice and 
where the system is operating in a fast-learn mode, 
as defined below. An algorithm for simulations is 
given in the Appendix. 

4.1. F~ Activation 

Figure 5 illustrates the main components of an 
ART 1 module. A field, F~ of M nodes, with output 
vector x - (x~ . . . . .  XM), registers the F~ ~ FI input 
vector I --- (1~ . . . . .  IM). Each F~ node can receive 
input from 3 sources: the F, --~ F~ bottom-up input; 
nonspecific gain control signals; and top-down sig- 
nals from the N nodes of F2, via an F2 --~ Ft adaptive 
filter. A node is said to be active if it generates an 
output signal equal to 1. Output from inactive nodes 
equals 0. In ART 1 an F~ node is active if at least 2 
of the 3 input signals are large. This rule for F~ ac- 
tivation is called the 2 /3  Rule.  The 2/3 Rule is re- 
alized in its simplest, dimensionless form as follows: 
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2/3 Rule matching 
The ith F~ node is active if its net input exceeds 

a fixed threshold. Specifically, 

{~ i f l , + g ,  + ~)~'=lytzli>l'i-Z 
x, = otherwise, (1) 

where term li is the binary F0 ~ F~ input, term g~ is 
the binary nonspecific F~ gain control signal, term 
Y. yjzj~ is the sum of F2 ~ G signals yj via path- 
ways with adaptive weights z,,  and 2 is a constant 
such that 

0 < ~ <  1. (2) 

FI gain control 
The F1 gain control signal g~ is defined by 

t~  if Fo is active and F_, is inactive 
g~ = otherwise. (3) 

% 

Note that F2 activity inhibits F~ gain, as shown in 
Figure 5. These laws for G activation imply that, if 
F2 is inactive, 

{10 i f / ' =  1 (4) 
x, = otherwise. 

If exactly one F2 node J is active, the sum E y~zj~ in 

G. A. Carpenter, S. Grossberg, und d. H. Reynoidz 

eqn (1) reduces to the single term z ,  so 

1 ifL = 1 a n d z ~  .-5 
x, = 0 otherwise. (5) 

4.2. Fz Choice 

Let 7 i denote the total input from F~ to t h e / t h  b~ 
node, given by 

7: = y .  x,z,,. (6i 
t = l  

where the Z 0 denote the Fj --~/~ adaptive weights. 
If some Ti > 0, define the F2 choice index J by 

Tj = max{T~:j = I ~'}. (7) 

In the typical case, J is uniquely defined, Then the 
F2 output vector y = (Yl . . . . .  y~) obeys 

Y' = if j ~ J (8) 

If two or more indices j share maximal input, then 
they equally share the total activity, This case is not 
considered here. 

GAIN 
CONTROL 
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'Yi / 
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1 / 
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RESET 
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FIGURE 5. ART 1 
field FI wh(me ~ 
eachF,  node to e|f F~, 
the ¢dmrion ~ . . . . . . . . . . . . . . . .  

F 2 

\ 
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4.3. Learning Laws 

In fast-learn ART 1, adaptive weights reach their 
new asymptote on each input presentation. The 
learning laws, as well as the rules for choice and 
search, are conveniently described using the follow- 
ing notation. If a is a binary M-vector, define the 
norm of a by 

M 

lal-= E ~,. (91 
i=1 

I fa  and b are two binary vectors, define a third binary 
vector a A b by 

(a 71b), = l<=>a, = 1 andb~ = 1. (10) 

Finally, let a be a s u b s e t  of b (a _C b) iff a ('1 b = a. 
All ART 1 learning is gated by F2 activity; that 

is, the adaptive weights zji and Z~j  can change only 
when the Jth F2 node is active. Then both F: -+ Ft 
and F~ --+ F2 weights are functions of the Fl vector 
x, as follows: 

Top-down learning 
Top-down ~ -~ F~ weights in active paths learn 

x; that is, when the Jth F2 node is active 

z,i----> x,. (11) 

All other zj~ remain unchanged. Stated as a differ- 
ential equation, this learning rule is 

d 
d t  z,, = y , ( x ,  - zj,). (12) 

In eqn (12), learning by zj~ is g a t e d  by yj. When the 
yj gate opens-- that  is, when y j  > 0--then learning 
begins and zj~ is attracted to xi. In vector terms, if 
yj > 0, then zi - =  ( z j i  , zj2 . . . . .  ZjM ) approaches x. 
Such a law is therefore sometimes called learning by 
g a t e d  s t e e p e s t  d e s c e n t .  It is also called the o u t s t a r  

l e a r n i n g  rule, and was introduced into the neural 
modelling literature in 1969 (Grossberg, 1969). 

Initially all zi~ are maximal: 

z,,(0) = 1. (13) 

Thus with fast learning, the top-down weight vector 
zj is a binary vector at the start and end of each input 
presentation. By eqns (4), (5), (10), (11), and (13), 
the FI activity vector can be described as 

{~ if F2 is inactive (14) 
x = A zj if the Jth F2 node is active. 

By eqns (5) and (12), when node J is active, learning 
causes 

wlold) z j - -~IA~j  , (15) 

where z~ °~d) denotes zj at the start of the input pre- 
sentation. By eqns (11) and (14), x remains constant 
during learning, even though ]zj[ may decrease. 

The first time an F2 node J becomes active, it is 
said to be u n c o m m i t t e d .  Then, by eqns (13)-(15), 

zj --~ I (16) 

during learning. Thereafter node J is said to be c o m -  

m i t t e d .  

Bottom-up learning 
In simulations it is convenient to assign initial val- 

ues to the bottom-up F~ ~ F2 adaptive weights Z# 
in such a way that F2 nodes first become active in 
the order j = 1, 2 . . . . .  This can be accomplished 
by letting 

Z,i(0) = 0/j (17) 

where 

0/1 > Ol2 > " ' • > O/N" ( 1 8 )  

Like the top-down weight vector z j, the bottom-up 
F1 ~ F2 weight vector Z j  =- ( Z I j  . . . Z n  . • . Z v ~ )  

also becomes proportional to the F l output vector x 
when the F2 node J is active. In addition, however, 
the bottom-up weights are scaled inversely to Ixl, so 
that 

Xt 

Z,, ~ fl + ix l, (19) 

where fl > 0. This FI --+ & learning law, called the 
Weber Law Rule (Carpenter & Grossberg, 1987a), 
realizes a type of competition among the weights zj 
adjacent to a given F2 node J. This competitive com- 
putation could alternatively be transferred to the F~ 
field, as it is in ART 2 (Carpenter & Grossberg, 
1987b). By eqns (14), (15), and (19), during learning 

I N z5 °~d~ 
z , - - ' l t  + If n z,~°'d' r ' (20) 

The Z 0 initial values are required to be small 
enough so that an input I that perfectly matches a 
previously learned vector Zj will select the F2 node 
J rather than an uncommitted node. This is accom- 
plished by assuming that 

1 
0 < 0/, = Z,,(0) < fl + ii I (21) 

for all F0 --+ F1 inputs I. When I is first presented, 
x = I, so by eqns (6), (15), (17), and (20), the 
& --~ F,_ input vector T ~ ( T j ,  T2 . . . .  , TN)  is given 
by 

Ilia/if j is an uncommitted node 
T, = ,=~" LZ,, = [i I n z,l/(fl + Iz,]) ifj is a committed node. 

(22) 

In the simulations above, fl is taken to be so small 
that, among committed nodes, ~ is determined by 
the size of ]I A zjl relative to Izjl. I f f l  were large, 
would depend primarily on ]I Cl zj[. In addition, aj 
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values are taken to be so small that an uncommitted 
node will generate the maximum T: value in eqn (22) 
only if II n z/[ = 0 for all committed nodes. Larger 
values of aj and fl bias the system toward earlier 
selection of uncommitted nodes when only poor 
matches are to be found among the committed 
nodes. A more complete discussion of this aspect of 
ART 1 system design is given by Carpenter and 
Grossberg (1987a). 

4.4. Hypothesis Testing, Confidence, Novelty, 
and Search 

By eqns (7), (21), and (22), a committed F2 node J 
may be chosen even if the match between ! and z~ 
is poor; the match need only be the best one avail- 
able. If the match is too poor, then the ART 1 system 
can autonomously carry out hypothesis testing, or 
search, for a better F2 recognition code. This search 
process is mediated by the orienting subsystem. 
which can reset F2 nodes in response to poor matches 
at F~ (Figure 5). The orienting subsystem is a type 
of novelty detector that measures system confidence. 
If the degree of match between bottom-up input I 
and top-down weight vector zs is too poor, the sys- 
tem's confidence in the recognition code labelled by 
J is inadequate. Otherwise expressed, the input | is 
too unexpected relative to the top-down vector zs, 
which plays the role of a learned top-down expec- 
tation. 

An unexpected input triggers a novelty burst at 
the orienting subsystem, which sends a nonspecific 
reset wave r from the orienting subsystem to F2. The 
reset wave enduringly shuts off node J so long as 
input | remains on. With J off and its top-down 
F2 ~ F~ signals silent, F~ can again instate vector 
x = 1, which leads to selection of another F2 node 
through the bottom-up F~ ~ F2 adaptive filter. This 
hypothesis testing process leads to activation of a 
sequence of F2 nodes until one is chosen whose vector 
of adaptive weights forms an adequate match with 
1, or until an uncommitted node is selected. The 
search takes place so rapidly that essentially no learn- 
ing occurs on that time scale. Learned weights are 
hereby buffered against recoding by poorly matched 
inputs that activate unacceptable F2 recognition 
codes. Thus, during search, previously learned 
weights actively control the search for a better rec- 
ognition code without being changed by the signals 
that they process. 

4.5. Vigilant Search and Resonant Learning 

As noted above, the degree of match between bot- 
tom-up input I and top-down expectation z~ is eval- 
uated at the orienting subsystem, which measures 
system confidence that category J adequately rep- 

resents input I. A reset wave is triggered only if this 
confidence measure falls below a dimensionless pa- 
rameter p that is called the vigilance parameter. The 
vigilance parameter calibrates the system's sensitivity 
to disconfirmed expectations. 

One of the main reasons for the successful clas- 
sification of nonstationary data sequences by 
ARTMAP is its ability to recalibrate the vigilance 
parameter based on predictive success. How this 
works will be described below. For now, we char° 
acterize the ART l search process given a constant 
level of vigilance. 

In fast-learn ART 1 with choice at/ 'z, the search 
process occurs as follows: 

Step 1--Select one F2 node J that maximizes I) 
in eqn (22), and read-out its top-down weight 
v e c t o r  zs. 

Step 2---With J active, compare the/'-~ output 
vector x -- I n zj with the F~-~ F~ input vector 
1 at the orienting subsystem (,Figure 5). 
Step 3A--Suppose that I N z. fails to match I 
at the level required by the vigilance criterion, 
i.e., that 

xi = It n zjl < pll (23) 

Then ~ reset occurs: node J is shut off for the du- 
ration of the input interval during which I remains 
on. The index of the chosen F2 node is reset to the 
value corresponding to the next highest F| --~ ~ input 
~ .  With the new node active, Steps 2 and 3A are 
repeated until the chosen node satisfies the reso- 
nance criterion in Step 3B. Note that  reset never 
occurs if 

p <~ O. (24) 

When eqn (24) holds, an ART system acts as if there 
were no orienting subsystem. 

Step 3B---Suppose that I N zj meets the cri- 
terion for resonance; i.e., that 

ix[ : II n z,l ~ / , i i  ~5~ 

Then the search ceases and the last chosen F2 node 
J remains active until input | shuts off (or until p 
increases). In this state, called resonance, both the 
F~ ~ F~ and the F: ~ Ft adaptive weights approach 
new vaiues if I n z~ °td) # zi °~d). :Note that resonance 
cannot occur if p > 1. 

If p -< 1, search ceases whenever 1 C_ z~, as is the 
case if an uncommitted node J is chosen. If Vigilance 
is close to 1, then reset occurs if F2 ---, F~ input alters 
the F~ activity pattern at all; resonance requires that 
I be a subset of zj. If vigilance is near 0, reset never 
occurs, The top-down expectation z~ of the first cho, 
sen F2 node J is then recoded from z~d~ tO I N 
z(Old) s . even if I and z~ °ld) are Very different vectors. 
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4.6. F~ Gain Control 

For simplicity, ART 1 is exposed to discrete presen- 
tation intervals during which an input is constant and 
after which F] and F2 activities are set to zero. Dis- 
crete presentation intervals are implemented in 
ART 1 by means of the FI and F2 gain control signals 
gl and g2 (Figure 5). The ~ gain signal g2 is assumed, 
like gl in eqn (3), to be 0 if F0 is inactive. Then, 
when F0 becomes active, g2 and F2 signal thresholds 
are assumed to lie in a range where the F2 node that 
receives the largest input signal can become active. 
When an ART 1 system is embedded in a hierarchy, 
F2 may receive signals from sources other than FI. 
This occurs in the ARTMAP system described be- 
low. In such a system, ~ still makes a choice and 
gain signals from F~j are still required to generate 
both Fj and F2 output signals. In the simulations, F2 
nodes that are reset during search remain off until 
the input shuts off. A real-time ART search mech- 
anism that can cope with continuously fluctuating 
analog or binary inputs of variable duration, fast or 
slow learning, and compressed or distributed 
codes is described by Carpenter and Grossberg 
(1990). 

5. THE MAP FIELD 

A Map Field module links the F2 fields of the ART~ 
and ARTb modules. Figure 6 illustrates the main 
components of the Map Field. We will describe 
one such system in the fast-learn mode with choice 
at the fields F~ and F~. As with the ART 1 and 
ART 2 architectures themselves (Carpenter & 
Corossberg, 1987a, 1987b), many variations of the 
network architecture lead to similar computations. 
In the ARTMAP hierarchy, ART,,  ARTb, and Map 
Field modules are all described in terms of ART 1 
variables and parameters. Indices a and b identify 
terms in the ARTa and ARTb modules, while Map 
Field variables and parameters have no such index. 
Thus, for example, Pa, Pb, and p denote the ARTa, 
ARTh, and Map Field vigilance parameters, respec- 
tively. 

5.1. ARTa, ARTb, and Complement Coding 

Both ART, and ARTb are fast-learn ART 1 modules. 
With one optional addition, they duplicate the design 
described above. That addition, called complement 
coding (Carpenter, Grossberg, & Rosen, 1991), rep- 

ART b 

Fab 

CHOICE 

MAP FIELD 

'l'y a 

CHOICE 

ART a 

INTER-ART 
RESET R 

MATCH 
TRACKING 

FIGURE 6. The Map Field is connected to F~ with one-to-one, nonadaptive pathways in both directions. Each F| node is connected 
to all Map Field nodes via adaptive pathways. A mismatch between the category predicted by a and the actual category of b 
activates the Map Field orienting subsystem. This leads to F~ reset and increased vigilance (p,) via match tracking. 
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resents both the on-response to an input vector and 
the off-response to that vector. This A R T  coding 
strategy has been shown to play a useful role in 
searching for appropriate recognition codes in re- 
sponse to predictive feedback (Grossberg, 1982b. 
1984). To represent such a code in its simplest form. 
let the input vector a itself represent the on-response. 
and the complement  of a, denoted by a':, represent 
the off-response, for each ART,  input vector a. If a 
is the binary vector (a~ . . . . .  aM,), the input to ART,, 
is the 2Me-dimensional binary vector 

(a. a') =- ( a ,  . . . . .  a ,~o .  a~ . . . . .  a~.) (26) 

where 

a', = 1 - a,, (27) 

The utility of complement  coding for searching an 
A R T M A P  system will be described below• Condi- 
tions will also be given where complement  coding is 
not needed. In fact, complement  coding was not 
needed for any of the simulations described above. 
and the ARTo input was simply the vector a. 

In the discussion of the Map Field module below, 
F_g nodes, indexed by j = I . . . N~, have binary 
output  signals y~; and F) nodes, indexed by k = 1 
• . . Nh, have binary output  signals y~. Correspond- 
ingly, the index of the active F~ node is denoted by 
J, and the index of the active F2 ~ node is denoted by 
K. Because the Map Field is the interface where 
signals from F~ and F b interact, it is denoted by F "b. 
The nodes of F ~h have the same index k, k = 1, 2, 
. . . .  Nb,  as the nodes of F b because there is a one- 
to-one correspondence between these sets of nodes. 
The output  signals of F "b nodes are denoted by Xk* 

5.2. 2 /3  Rule Map Field Matching 

Each node of F °b can receive input from three 
sources: F~, F~, and a Map Field gain control G. 
The F °b output  vector x obeys the 2/3 Rule of 
AR T 1; namely, 

ify~ + G + Z,=~y,w,k> 1 + ~ (28) 
xk = otherwise 

where term y~, is the FEb output  signal, term G is a 
binary gain control signal, term Z yTWjk is the sum 
of F~ ~ F "b signals y~ via pathways with adaptive 
weights Wjk, and ~ is a constant such that 

0 < ~ < 1. (29) 

Values of the gain control signal G and the F~ ~ F "b 
weight vectors wj =- (w~t . . . . .  WjNb) , j = 1 . . . N , ,  

are specified below. 

5,3. F ~b Gain Control 

Comparison of eqns (1) and (28) indicates an analogy 
between fields F~. F "b. and F~ in a Map Field module 
and f ie lds /~,  F~. and F2, respectively, in an A R T  1 
module. Differences between these modules include 
the bidirectional nonadaptive connections between 
F~ and F ~b in the Map Field module (Figure 6) com- 
pared to the bidirectional adaptive connections be- 
tween fields F~ and F~ in the A R T  1 module (Figure 
51. These different connectivity schemes require dif- 
ferent rules for the gain control signals G and g~. 

The Map Field gain control signal G obeys the 
equation 

j ~J if F~ and F(~ are both active U / 30) I otherwise, 

Note that G is a persistently actwc, or tonic, signal 
that is turned off only when both ART~ and ARq-~ 
are active. 

5.4. F~ ---, F °b Initial Values 

If an active F~ node J has not yet learned a prediction. 
the A R T M A P  system is designed so that J can learn 
to predict any ARTb pattern if one is active or be- 
comes active while J is active. This design constraint 
is satisfied using the assumption, analogous to eqn 
(13), that 

w~(0) -- 1 ~31 ~, 

f o r j  =: t . . . N a n d k  = 1 _ A~., 

5.5. Map Field Activation 

Rules governing G and wj(0) enable the following 
Map Field properties to obtain. If both ART,, and 
ARTh are active, then learning of ARTe --0 ARTb 
associations can take place at F "~. If ART,  is ac- 
tive but ARTb is not, then any previously learned 
ART,  ~ ARTb prediction is read out at F "b. If ARTh 
is active but ART~ is not, then the selected ARTh 
category is represented at F eb . If neither ART,  nor 
ARTb is active, then F eb is not active. By eqns (28)- 
(31), the 2/3 Rule realizes these proper t ies  in the 
following four cases. 

F~ active and F~ active 
If both the F~ category node J and the F~ category 

node K are active, then G = 0 by eq n  (30). Thus by 
eqn (28), 

1 i fk  = Kand w~• > 
x~ = 0 otherwise. (32) 

All Xk = 0 for k ~ K. Moreover ,  xK = 1 only:if an 
association has previously been learned in the path-  
way from node J to node K, or if J has not  yet learned 
to predict any ARTb category. If J p red ic t sany  cat- 
egory other  than K, then all Xk = 0• 
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F~ active and F~ inactive 
If the F~ node J is active and F2 ° is inactive, then 

G = 1. Thus 

{~ i f w j k > ~  
xk = otherwise. (33) 

By eqns (31) and (33), if an input a has activated 
node J in F~ but F2 b is not yet active, J activates all 
nodes k in F ~b i f J  has learned no predictions. If prior 
learning has occurred, all nodes k are activated 
whose adaptive weights w~k are still large. 

Fz b active and F~ inactive 
If the F~ node K is active and F~ is inactive, then 

G = 1. Thus 

{~ if k =  K (34) 
x~ = otherwise. 

In this case, the F "~ output vector x is the same as 
the F~ output vector y~. 

F~ inactive and F2 ~ inactive 
If neither F," nor F~ is active, the total input to 

each F ~ node is G = 1, so all x~ = 0 by eqn (28). 

5.6. Fz b Choice and Priming 

If ARTb receives an input b while ART~ has no input, 
then F~ chooses the node K with the largest F~ 
F2 b input. Field F2 b then activates the Kth F ~ node, 
and F "b --9 F b feedback signals support the original 
F~ ~ F~ choice. If ART,  receives an input a while 
ART~ has no input, F~ chooses a node J. If, due to 
prior learning, some w~  = 1 while all other wjk = 
0, we say that a predicts  the ARTb category K, as 
F "b sends its signal vector x to F~. Field F~ is hereby 
attentionally p r imed ,  or sensitized, but the field re- 
mains inactive so long as ARTb has no input from 
F~. If then an F~ ~ FI b input b arrives, the F2 b choice 
depends upon network parameters and timing. It is 
natural to assume, however, that b simultaneously 
activates the F~ and F~ gain control signals gb and 
g~ (Figure 5). Then F~ processes the F "b prime x as 
soon as F~ processes the input b, and F~ chooses the 
primed node K. Field F~ then receives F~ ~ F~ ex- 
pectation input z~ as well as F~ ~ F~ input b, leading 
either to match or reset. 

5.7. F~ --~ F ab Learning Laws 

The F~ ---, F ~b adaptive weights wjk obey an outstar 
learning law similar to that governing the ~ ~ F~ 
weights zj, in (12); namely, 

d 
dt w,k = yT(xk - wjk). (35) 

According to (35), the F~ --> F "b weight vector wj 
approaches the F °b activity vector x if the J th F~ node 

is active. Otherwise wj remains constant. If node J 
has not yet learned to make a prediction, all weights 
w~ equal 1, by eqn (31). In this case, if ARTh re- 
ceives no input b, then all xk values equal 1 by eqn 
(33). Thus, by eqn (35), all wjk values remain equal 
to 1. As a result, category choices in F~ do not alter 
the adaptive weights wjk until these choices are as- 
sociated with category choices in F~. 

5.8. Map Field Reset and Match Tracking 

The Map Field provides the control that allows the 
ARTMAP system to establish different categories 
for very similar ARTa inputs that make different pre- 
dictions, while also allowing very different ART,, 
inputs to form categories that make the same 
prediction. In particular, the Map Field orienting 
subsystem becomes active only when ART,, makes a 
prediction that is incompatible with the actual ARTb 
input. This mismatch event activates the control 
strategy, called match tracking,  that modulates the 
ARTa vigilance parameter p, in such a way as to keep 
the system from making repeated errors. As illus- 
trated in Figure 6, a mismatch at F "b while F~ is active 
triggers an inter-ART reset signal R to the ART,, 
orienting subsystem. This occurs whenever 

Ix] < plyh], (36) 

where p denotes the Map Field vigilance parameter. 
The entire cycle of p, adjustment proceeds as follows 
through time. At the start of each input presentation, 
Pa equals a fixed baseline vigilance ~,, When an input 
a activates an F~ category node J and resonance is 
established, 

]x"l = ]a A zJI -> p,,lal, (37) 

as in eqn (25). An inter-ART reset signal is sent to 
ART~ if the ART~ category predicted by a fails to 
match the active ART~ category, by eqn (36). The 
inter-ART reset signal R raises p, to a value that is 
just high enough to cause eqn (37) to fail, so that 

la ~ zj[ 
P" > ta--U (38) 

Node J is therefore reset and an ART,, search ensues. 
Match tracking continues until an active ARTa cat- 
egory satisfies both the ART~ matching criterion eqn 
(37) and the analogous Map Field matching criterion. 
Match tracking increases the ART,  vigilance by 
the minimum amount needed to abort an incorrect 
ART,  ~ ARTb prediction and to drive a search for 
a new ART~ category that can establish a correct 
prediction. As shown by example below, match 
tracking allows a to make a correct prediction on 
subsequent trials, without repeating the initial se- 
quence of errors. Match tracking hereby conjointly 
maximizes predictive generalization and minimizes 
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predictive error on a trial-by-trial basis, using only 
local computations. 

5.9. Match Tracking Using VITE Dynamics 

The operation of match tracking can be implemented 
in several different ways. One way is to use a vari- 
ation on the Vector Integration to Endpoint, or 
VITE, circuit (Bullock & Grossberg, 1988) as fol- 
lows. Let an ART~ binary reset signal r, (Figure 7) 
obey the equation 

[1 ifpola I - Ix"l > 0 
r+ = ].0 o therwise ,  (39) 

as in eqn (23). The complementary ARTa resonance 
signal r~ = 1 - r,. Signal R equals 1 during inter- 
ART reset; that is, when inequality (36) holds. The 
size of the ART~ vigilance parameter p~ is determined 
by the match tracking equation 

dt 
d--t p" = ( ~  - p+) + ),Rr~, (40) 

where 7 ~> 1. During inter-ART reset, R = r~ = 1, 
causing p, to increase until r~ = 0. Then Palal > Ix"l, 
as required for match tracking (38). When r~ = 0, 
po relaxes to ~ .  This is assumed to occur at a rate 
slower than node activation, also called short-term 
memory (STM), and faster than learning, also called 
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long-term memory (LTM). Such an intermediate rate 
is called medium-term memory (MTM) (Carpenter 
& Grossberg, 1990). 

Comparing the match tracking circuit in Figure - 
to a VITE circuit, the inter-ART reset signal R is 
analogous to the VITE GO signal: total F~ output 
x"l is analogous to the Target Position Code (TPC): 

total F8 output, gated by po, is analogous to the Pres- 
ent Position Command (PPC): and the quantity 
(pala[ Ixa[) in (39) is analogous to the Difference 
Vector (DV). ¢See Bullock & Grossberg. 1988. Fig- 
ure 17. ) 

An ART, search that is triggeredby increasing p, 
according to eqn (40) ceases if some active F~ node 
J satisfies 

la C~ z'~ ~ p,,ia~ t4,] + 

If no such node exists. F~ shuts down for the rest ot 
the input presentation. In particular, if a C z~, match 
tracking makes p, > 1. so a cannot activate another 
category in order to learn the new prediction. The 
following anomalous case can thus arise. Suppose 
that a = z~ but the ARTb input b mismatches the 
ART~ expectation z~ previously associated with 
J. Then match tracking will prevent the recoding 
that would have associated a with b. That is. the 
ARTMAP system with fast learning and choice will 
not learn the prediction of an exemplar that exact& 
matches a learned prototype when the new predic- 
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FIGURE 7. Match tracidng by a scalar VITE circuit. When r: = R = 1, p, rapidly i ~  until p.tal > Ix'l. ~ this occurs, 
r l  = 0 and ro = 1, caueing ART, reset. The Inter-ART r e ~ t  ~ 1 R  plays a role analogous to  t h e ~  ~ G O ~ I .  : 
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tion contradicts the previous predictions of the ex- 
emplars that created the prototype.  This situation 
does not arise when all ARTa inputs a have the same 
number of l 's,  as follows. 

5.10. Equal-Norm Inputs and Search 

Consider the case in which all ART~ inputs have the 
same norm: 

[a I --= constant. (42) 

When an ART~ category node J becomes committed 
to input a, then IzJ] = [al. Thereafter ,  by the 2/3 
Rule (15), z~ can be recoded only by decreasing its 
number of 1 entries, and thus its norm. Once this 
occurs, no input a can ever be a subset of z~, by eqn 
(42). In particular, the situation described in the pre- 
vious section cannot arise. 

In the simulations reported in this article, all 
ARTa inputs have norm 22. Equation (42) can also 
be satisfied by using complement coding, since 
I(a, a")l = M~, Preprocessing ART~ inputs by com- 
plement coding thus ensures that the system will 
avoid the case where some input a is a proper  subset 
of the active ART~ prototype z~ and the learned pre- 
diction of category J mismatches the correct ARTh 
pattern. 

Finally, note that with A R T M A P  fast learning and 
choice, an ART° category node J is permanently 
committed to the first ARTb category node K to 
which it is associated. However ,  the set of input ex- 
emplars that access either category may change 
through time, as in the banana example described in 
the introduction. 

5.11. Match Tracking Example 

The role of match tracking is illustrated by the fol- 
lowing example. The input pairs shown in Table 7 
are presented in order (a m, bin), (a (2), b~2~), (a  (3), 

b~3)). The problem solved by match tracking is cre- 
ated by vector a ~2) lying "be tween"  a ~) and a (3), with 
a (~) C a ¢2) C a ¢3), while a o) and a 13) are mapped to the 
same ARTb vector. Suppose that, instead of match 
tracking, the Map Field orienting subsystem merely 
activated the ART~ reset system. Coding would then 
proceed as follows. 

TABLE 7 
Nested ART. Inputs and Their 

Associated ARTb Inputs 

ART~ inputs ARTb inputs 

a I '  (111000) b °) (1010) 
a 12) (111100) b c2) (0101) 
a 13~ (111110) b 13) (1010) 

Choose ~ -< 0.6 and Pb > O. Vectors a (1) t h e n  b (1) 

are presented, activate ART,  and ARTb categories 
J = 1 and K = 1, and the category J = I learns to 
predict category K = 1, thus associating a/~) with b (l). 
Next a (2) then h (2) are presented. Vector a (2) first ac- 
tivates J = 1 without reset, since 

]a 12~ N Z~l 3 
la'2'l - 4 > p° = y ' '  (43)  

However,  node J = 1 predicts node K = 1. Since 

Ibm2, n z,fl 
{b,2)l - -  0 < Ph, (44) 

ARTb search leads to activation of a different F2 b 
node, K = 2. Because of the conflict between the 
prediction (K = 1) made by the active F~ node and 
the currently active F~ node (K = 2), the Map Field 
orienting subsystem resets F~, but without match 
tracking. Thereafter  a new F~ node (J = 2) learns 
to predict the correct F~ node (K = 2), associating 
a (2) with b (2). 

V e c t o r  a (3) first activates J = 2 without ART~ 
reset, thus predicting K = 2, with z{ = b (2). How- 
ever, b TM mismatches z~, leading to activation of the 
F} node K = 1, since b TM = b Ill. Since the predicted 
node (K = 2) then differs from the active node 
(K = 1), the Map Field orienting subsystem again 
resets F~_. At this point, still without match tracking, 
the F~ node J = 1 would become active, without 
subsequent ART,  reset, since z{ = a I~) and 

la ~'' n a t')] 3 
- > P .  = P , Z .  (45) la(3'l 5 

Since node J = 1 correctly predicts the active node 
K = 1, no further reset or new learning would occur. 
On subsequent prediction trials, vector a (3) would 
once again activate J = 2 and then K = 2. When 
vector b (3) is not presented, on a test trial, vector a (3) 

would not have learned its correct prediction. 
With match tracking, when a (3) is presented, the 

Map Field orienting subsystem causes p~ to increase 
to a value slightly greater than [a (3~ n a(2)[(a(3) I - i  = 

0.8 while node J = 2 is active, Thus after node J = 
2 is reset, node J = 1 will also be reset because 

la~l - 0.6 < 0.8 < p~. (46) 

The reset of node J = 1 permits a (3) tO choose an 
uncommitted F~ node (J  = 3) that is then associated 
with the active F~ node (K = 1). Thereafter  each 
ART,  input predicts the correct ARTb output with- 
out search or error. 

5.12. Complement Coding Example 

The utility of ARTa complement coding is illustrated 
by the following example. Assume that the nested 
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input pairs in Table 7 are presented to an A R T M A P  
system in order (a (3), b(3)), (a (2), b(2)), (a (t), bO)), with 
match tracking but without complement coding. 
Choose ~ < 0.5 and p~ > 0. 

Vectors a (3~ and b (3~ are presented and activate 
ART,  and ARTb categories J = 1 and K = 1, The 
system learns to predict b ~3~ given a (3~ by associating 
the F~ node J = 1 with the F~ node K = 1. 

Next a ~2~ and b ~:~ are presented. Vector a ~z~ 
first activates J = 1 without reset, since ta ~ (3 
zlJlal2~ 1-~ = 1 - p~ -- ~ .  However,  n o d e J  -- 1 
predicts node K = 1. As in the previous example, 
after b ¢:) is presented, the F~ node K = 2 becomes 
active and leads to an inter-ART reset. Match track- 
ing makes p~ > 1, so F~ shuts down until the pair 
(a ~), b ~)) shuts off. Pattern b <2) is coded in ARTs as 
z~, but no learning occurs in the ART,, and F ~ mod- 
ules. 

Next a ~) activates J = 1 without reset, since 
[a ~) ~ z~lla")l-~ = 1 >- p~ =- p~. Since node J ~ l 
predicts the correct pattern b") = z~, no  reset en~ues. 
Learning does occur, however,  since z~ shrinks to 
a ~ .  If each input can be presented only once,  a 12~ 
does not learn to predict b r:). However if the input 
pairs are presented repeatedly, match tracking allows 
ARTo to establish 3 category nodes and an accurate 
mapping. 

With complement coding, the correct map can be 
learned on-line for any ~ > 0. The critical difference 
is due to the fact that [a ¢2) fq zglla(2)[ -~ now equals 
5 /6  when a 12) is first presented, rather than equaling 
1 as before. Thus either ART,  reset (if p~ > 5/6)  or 
match tracking (if ~ -< 5/6)  establishes a new ART,  
node rather than shutting down on that trial. On the 
next trail, a ¢~) also establishes a new ART~ category 
that maps to b °). 

The Appendix outlines A R T M A P  system re- 
sponses to various input situations, namely, combi- 
nations of: a without b, b without a, a then b, b then 
a, a making a prediction or making no prediction, 
and a's prediction matching or mismatching b. 
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APPENDIX 

AI.  Simulation Algorithms 

AI.I .  ART 1 algorithm 
Fast-learn A R T  1 with binary E~ ---~ F~ input vector 1 and choice 

at F2 can be simulated by following the rules below. Fields F0 and 
F~ have M nodes and field F2 has N nodes. 

Initial values 
Initially all ~ nodes are said to be u n c o m m i t t e d .  Weights Z 0 

in F~ --* ~ paths initially satisfy 

Z,,(0) = a,, (A1) 

where Zj -= (Z~j . . . . .  Z~) denotes the bottom-up F, --* Fz weight 
vector. Parameters a, are ordered according to 

a,  > a2 > . . . > a ~ ,  (A2) 

where 

1 
0 < c~, < (fl + lit) (A31 

for/] > 0 and for any admissible F,,--* F~ input I. In the simulations 
in this article, o~, and fl are small. 

Weights z,, in F, --, F~ paths initially satisfy 

z,,(0) - l. (A4) 

The top-down, F: ---, F~ weight vector (z,~ . . . . .  zm) is denoted 
T / . 

F 1  activation 
The binary F~ output vector x ~- (x~ . . . . .  x,~) is given by 

{I  ! if ~ is inactive 
x = ~ z~ if the J t h  F2 node is active. (A5) 

F~ -+ F2 input 
The input T, from Fx to the ]th F2 node obeys 

J l l l a  , i f ]  is an uncommitted node index 
/-i = [i  I f"l z / / ( [ ]  + Iz, I) i f ]  is a committed node index. 

(A6) 

The set of committed F2 nodes and update rules for vectors z, and 
Z, are defined iteratively below. 

F 2  choice 
If E, is active (111 > 0), the initial choice at F2 is one node with 

index J satisfying 

T~ = max(T~). (A7) 
i 

If more than one node is maximal, one of these is chosen at 
random. After an input presentation on which node J is chosen, 
J becomes c o m m i t t e d .  The F2 output vector is denoted by y = 
(y . . . . . .  y,O. 

Search and resonance 
ART 1 search ends upon activation of an ~ category with 

index j = J that has the largest T, value and that also satisfies the 
inequality 

]1 71 z~l -> pill (A8) 

where p is the ART I vigilance parameter.  If such a node J exists, 
that node remains active, or in r e s o n a n c e ,  for the remainder of 
the input presentation. If no node satisfies (A8), & remains in- 
active after search, until I shuts off. 

Fast learning 
At the end of an input presentation the Fe --, F, weight vector 

Z~ satisfies 

Z~ = ! ~ z~ ''~! (A9) 

where z~ "~d~ denotes z~ at the start of the current input presentation. 
The F, ---, & weight vector Z~ satisfies 

z ,  - / ~  + Ii n z?'~T (MO) 

A1.2. ARTMAP Algorithm 

The A R T M A P  system incorporates two A R T  modules and an 
inter-ART module linked by the following rules. 

ART. and ART~ 
ART° and ART~ are fast-learn ART 1 modules. Inputs to 

ART° may, optionally, be in the complement code form. Embed- 
ded in an A R T M A P  system, these modules operate as outlined 
above, with the following additions. First, the ART,  vigilance 
parameter p, can increase during inter-ART reset according to 
the m a t c h  t r a c k i n g  rule. Second, the Map Field F "b can p r i m e  
ARTh. That is, if F "h sends nonuniform input to F~ in the absence 
of an F~ --, F~ input b, then F~ remains inactive. However,  as 
soon as an input b arrives, F~ chooses the node K receiving the 
largest F "~ ~ F~ input. Node K ,  in turn. sends to F~ the top-down 
input z~,.. Rules for match tracking and complement coding are 
specified below. 

Let x" =- (x7 • • . x~,) denote the F'~ output vector; let y" = 
(y~  . . . y%,)  denote the F~ output vector: let x h = (x~ . . . x~6h) 
denote the F~ output vector; and let yh = ( y ? . . .  Y(4~,) denote the 
F~ output vector. The Map Field F "b has Nb nodes and binary 
output vector x. Vectors x", y",  x h, yh, and x are set to 0 between 
input presentations. 

Map Field learning 
Weights wi~, where j = 1 . . . N, and k = 1 , . . N~.. in F~---, 

F "b paths initially satisfy 

wik(0) : I. ( A l l )  

Each vector (w~, . . . . .  w,xD is denoted wj. During resonance 
with the ART,, category J active, wj ~ x. In fast learning, once 
J learns to predict the ARTb category K, that association is per- 
manent; i.e., w~ = 1 for all times. 

Map Field activation 
The F "b output vector x obeys 

[ y~ n wj if the J th F~ node is active and F~ is active 
wj if the J th F~ node is active and F~ is inactive 

x = yb if F~ is inactive and F~ is active 
0 if F~ is inactive and F~ is inactive. 

IAI2) 

Match tracking 
At the start of each input presentation the ART, vigilance 

parameter p,, equals a baseline vigilance/57,,. The Map Field vigi- 
lance parameter is p. If 

[xl < ply~l. (A13) 

then p, is increased until it is slightly larger than [ a n  z~llal 
Then 

Ix"l = la n z;I < p,,lal, (A14) 

where a is the current ART, input vector and J is the index of 
the active F~ node. When this occurs, ART,, search leads either 
to activation of a new F~ node J with 

Ix"l = [a n zj[ -> p,,lal (A15) 

and 

Ixl = [y~ n w,4 -> PlY'q; (A16) 

or, if no such node exists, to the shut-down of F'.,' for the remainder 
of the input presentation. 

Complement coding 
This optional feature arranges ART,, inputs as vectors 

(a, w) = -  ( a ,  . . . a , , , ,  a'~ . . . a ~ , ) ,  (AI7) 

where 

a', -=-- 1 a,. (A18) 

Complement coding may be useful if the following set of circum- 
stances could arise: an ART, input vector a activates an F~ node 
J previously associated with an F) node K; the current ARTb input 
b mismatches z}; and a is a subset of zL These circumstances 
never arise if all lal -= constant. For the simulations in this article, 
lal --- 22. With complement coding, ](a, a')l =-- Mo. 

A2. ARTMAP Processing 

The following nine cases summarize fast-learn A R T M A P  system 
processing with choice at F~ and F~ and with Map Field vigilance 
p > 0. Inputs a and b could appear alone, or one before the other. 
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Input  a could make  a prediction based on prior learning or make 
no prediction. If a does make  a prediction, that  prediction may 
be confirmed or disconfirmed by b. The  system follows the rules 
outl ined in the  previous section assuming,  as in the simulations,  
that all la[ ~ constant  and that  complement  coding is not  used. 
For each case, changing weight vectors zJ, z~, and w~ are listed. 
Weight vectors Z~ and Z~: change accordingly, by (A10). All o ther  
weights remain constant.  

Case 1: a only, no prediction. Input  a activates a matching 
F~ node J, possibly following A R T ,  search. All F~ --0 F ~ weights 
w~ = 1, so all x~ = 1. ART~ remains  inactive. With learning 
z~ ---* z~ (°~1 ~ a. 

Case 2: a only, with prediction. Input  a activates a matching 
F~ node J. Weight w~r = 1 while all o ther  w~ = 0, and x = w,. 
F~ is pr imed,  but  remains  inactive. With learning, z~ ~ z~ ~'k~ 
a .  

Case 3: b only. Input  b activates a matching F~ node K, possibly 
following ART~ search. At  the Map Field, x = y~. ART,, remains  
inactive. With learning, z~--~ z ~ ° ~  b. 

Case 4: a then b, no prediction. Input  a activates a matching 
F~ node J. All x~ become 1 and ARTb is inactive, as in Case t. 
Input  b then  activates a matching F~ node K, as in Case 3. At  the 
Map Field x--~ y~; that is, x r  = 1 and other  x~ = 0. With learning 

b{o]d) z~ ~ z~ I°~'~ f3 a, z~: ~ zK A b, and w~ --~ y~: i.e., J learns to 
predict K. 

Case 5: a then b, with prediction confirmed. Input a activates 
a matching  F~ node J, which in turn activates a single Map Field 
node K and primes F),  as in Case 2, When  input b arrives, the 
Kth  F~ node becomes  active and the prediction is confirmed; that 
is. 

[b fq z~ t -> pbtb[. (A19) 

Note that K may  not  be the F~ node b would have selected with- 

out  the F "~ ~ F~ prime. With learning, zj  - -  zj a a n d  
zT~ --* z7 °~d~ n b .  

Case 6: a then b. prediction not confirmed. Input a activates a 
matching F~ node.  which in turn activates a single Map Field node 
and primes F~, as in Case 5. When input b arrives (A19) fails. 
leading to reset of  the F~ node via ART,  reset. A new F~ node 
K that matches  b becomes active. The mismatch between the 
F ~, -~  F "h weight vector and the new F~ vector y~ sends Map Field 
activity x to 0. by (A12),  leading to Map Field reset ,  by (A13L 
By match tracking, 0, grows until (A14) holds. This triggers an 
A R T  search that will cont inue until, for an active F~ node I 
~Jh = 1, and (A15) holds. If such an F~ node does become acnve. 

,',I~,Ld) fq b learning will follow, setting z~ ~ z~ TM n a al~d zT. -~  z~- 
If the F~ node J is uncommit ted ,  learning sets wj --~ yL If no/-"I 
node J that becomes active satisfies (A15) and (A16).  F~ shuts 
down until the inputs go off. In that case. with learning, z~ - -  
zT,' ..... C 'b .  

Case 7: b then a. no prediction. Input b acnvates  a matching 
F~ node K. then x = y°, as in Case 3. Input a then activates a 
matching F~ node J with all wjk - 1 At  thc Map Field. x remam~ 
equal to y". With learning, z~ ~ z~ . . . . . .  a ~ . - ~  y~. and z'~ 

b~old) zh ' qb .  
Case 8: b then a. with prediction confirmed. Input b activates 

a matching F~, node K. then x = y". as in Case 7 Input a then 
activates a matching F~ node J with w ~  ~ and all other  w ,  - 
0. With learning z7 --, z7 ''"~ n a and z~ --, z~ ' c~ h. 

Case 9: b then a. prediction not cow,firmed. Input b actwates 
a matching F~ node K. then  x = yb and input a activates a matching 
F~ node.  as in Case 8. However  (A16) fails and x ---- 0. leading 
to a Map Field reset Match tracking resets p,, a s i n  Case 6. ART 
search leads to activation o f  an F~ node  l f~ that either predicts 
K or makes  no prediction, or  F~ shuts  down With learning z~ --- 
z~ ...... r~ b. If J exists, z~ - ,  z'~ ~°'~ ~ a: and it J initially makes  no 
prediction wj - ,  y . . e . .  J learns to predict K. 


