

This work is part of the Applications Program of the Australian Telecommunications
Cooperative Research Centre (ATcrc) http://www.telecommunications.crc.org.au.

Application Adaptation through Transparent and
Portable Object Mobility in Java

Caspar Ryan1, Christopher Westhorpe1

1 RMIT University, School of CS & IT
PO Box 71, Bundoora

Melbourne, Australia, 3083
{caspar,cwesthor}@cs.rmit.edu.au

Abstract. This paper describes MobJeX, an adaptive Java based application
framework that uses a combination of pre-processing and runtime support to
provide transparent object mobility (including AWT and Swing user interface
components) between workstations, PDAs and smartphones. Emphasis is
placed on the mobility subsystem (MS), a mobile object transport mechanism
providing a high level of transparency and portability from the perspective of
the system and the developer. The MS is compared to its most similar prede-
cessor FarGo, demonstrating the advantages of the MS in terms of transparency
and portability. Furthermore, a series of laboratory tests are conducted in order
to quantify the runtime performance of the MS and two other systems, FarGo
and Voyager.

Keywords. Application Adaptation, Mobile Objects, Resource Awareness

1 Introduction

Traditional web based systems, and many first generation mobile applications, are
based on a thin-client approach, with a dedicated server servicing many clients. In
most cases clients are ‘thin’ in that they serve only as a presentation layer for inter-
preting a user interface specification delivered in the form of a markup language such
as XML, HTML or WAP. Any other client processing is usually limited to simple
authentication or preliminary data manipulation provided by a scripting language
such as JavaScript or VBScript.

The relative advantages and disadvantages of such an approach are covered in de-
tail in [1], but briefly, the principle outcome of the review and empirical study by
Ryan and Perry is that there are substantial benefits to be realised by end-users and
application service providers, through better utilisation of the computing power of
client side devices. The primary caveat to such an approach is minimising the addi-
tional developer effort required to produce applications with fatter or adaptive smart

clients that can take advantage of increasing client-side computing resources. This
difficulty is exacerbated in a heterogeneous environment, such as the emerging Next
Generation Internet (NGI) [2], where device capabilities diverge along dimensions
such as screen size, form factor, processing speed, permanent storage capacity, and
power consumption.

Furthermore, rapid advances in hardware technology have given current desktop
machines the processing power of servers only a few years old. Mobile devices such
as Intel XScale based PDA’s now have CPU’s running at hundreds of megahertz with
64MB or more of program memory. Phone technology is also rapidly advancing with
current generation phones able to run application code using standardised platforms
such as Java 2 Micro Edition (J2ME) [3], Symbian OS [4], and Microsoft.NET Com-
pact Framework [5]. A significant point of this standardisation is that all of these
potential application clients, namely desktop PCs, PDAs and smartphones are capable
of running object oriented application code in a virtual machine environment, and
thus potentially participate as active clients in a mobile object system operating in a
heterogenous ad-hoc mobile environment.

In order to take advantage of this emerging computing power and to test the feasi-
bility of declarative distributed system configuration and deployment using transpar-
ent object mobility, a system called MobJeX is being developed within the applica-
tions program of the Australian Telecommunications Co-operative Research Centre
(ATcrc). MobJeX is a Java based mobile object framework that provides transparent
adaptation services to Java applications, thereby facilitating the distribution of appli-
cations amongst heterogeneous clients, as long as clients provide Java VM support
and an appropriate implementation of the MobJeX runtime system. The current im-
plementation of the runtime is written for compatibility with Personal Java and J2ME
Personal Profile. It has currently been tested in Java J2SE [6] on Linux and Microsoft
Windows workstation environments; and on the IBM WME implementation of J2ME
Personal Profile [7] and the Jeode implementation of PersonalJava [8] for Pocket PC
[9].

The heterogeneity of devices and the ad-hoc nature of host and network topologies
are the two principle factors providing a rationale for MobJeX, a system in which
decisions regarding the distribution, grouping and specific implementations of appli-
cation objects are deferred until run-time. One of the principle aims of MobJeX is to
remove the responsibility of object management (e.g. object placement to hosts/target
devices, object grouping and co-locality constraints) from the source code that im-
plements the application logic. As such, MobJeX has been designed to allow the pre-
processing of an existing Java application (provided a few small constraints are met),
in order to generate the proxies and stubs required for deployment in a distributed
heterogeneous environment. Achieving this goal required the development of a mo-
bility subsystem and object/proxy [10] structure that appears transparent to existing
applications but provides an external interface to a separate system controller.

The rest of this paper is organised as follows: Section 2 provides a literature re-
view of application adaptation and object mobility. Emphasis is placed on describing
existing Java based frameworks, providing a point of comparison with the work pre-
sented in this paper. Section 3 gives an overview of the MobJeX framework, concen-
trating on areas of the system which are relatively complete, and discussing research

opportunities and future work for aspects of the system that are still under develop-
ment. Section 4 describes the implementation of the MobJeX mobility subsystem
(MS), a complete and operational subsystem encapsulating mobility management
services and mobile object support, whilst providing a high level of transparency,
particularly from the perspective of the developer and the system. Section 5 continues
the treatment of the MS, describing the methodology behind a series of empirical
studies comparing the MS to Fargo [11, 12] and Voyager [13]. Section 6 concludes
the paper with a summary of findings and contributions, and a discussion of opportu-
nities for future work.

2 Literature Review

2.1 Application Adaptation

In the general sense, application adaptation refers to the ability of an application to
modify its behaviour in response to a change in the application’s environment, thus
presupposing some form of resource monitoring as described in section 3. There are
several ways an application can adapt, including applying different algorithms or
providing differentiated service levels [14-16], and moving processing responsibility
to different parts of the system [11, 12, 17-22].

Jing et al. [23], identify three possible adaptation strategies:
Laissez-faire Adaptation - Each application handles its own adaptation, providing

applications with the greatest flexibility in terms of monitoring and adapting to their
environment. Nevertheless, such an approach requires substantial development effort
and is thus rarely used in practice.

Application Aware Adaptation - Applications co-ordinate their own adaptation
policies, with system support providing middleware services to facilitate the adapta-
tion process. This provides a halfway point between laissez-faire and application
transparent adaptation, but still requires a significant amount of programmer effort in
order to code the adaptation behaviour that specifies how the application reacts to
specific changes in the environment.

Application Transparent Adaptation - All adaptation is performed by a supporting
service, and is transparent to applications running on the system. This is the most
desirable option from the perspective of the programmer since the software can be
developed using conventional techniques whilst still realising the potential benefits of
adaptation. The goal of MobJeX is to provide application transparent adaptation.

2.2 Object Mobility

The idea of distributing code to multiple machines (code mobility) to best utilise
available resources is not new. Process Migration [24], which involves the movement
of an entire application process and its execution context, has been used to perform
load balancing of distributed systems. The movement of execution state is termed
strong mobility compared with weak mobility in which only data state is moved. Mo-
bile agent systems, in which an agent is an active, autonomous, goal driven code

entity [25], also rely extensively on the mobility of self-contained modules through-
out the system.

Of most relevance to MobJeX is object mobility, in which individual system com-
ponents, potentially down to the discrete object level, can migrate through the system
whilst maintaining location transparency via remote object references. Several tech-
niques for maintaining remote references have been proposed, with those of relevance
to the mobility subsystem presented in this paper, being described in the context of
the following subsections.

2.3 Resource Aware Adaptive Code Mobility

Of the many existing papers describing the various forms of code mobility in Java
e.g. [18-22], two systems are most directly comparable with MobJeX. These systems,
which would be described as providing resource aware adaptive code mobility, are
FarGo [11, 12] and Sumatra [17]. Since FarGo is newer than Sumatra, and aims to
address many of the same issues as MobJeX, it is reviewed in the following section
and its performance evaluated empirically in section 5. Furthermore, since FarGo is
the successor to the HADAS system [26], HADAS is not considered separately in the
review.

2.4 FarGo

FarGo [11, 12] is a Java based framework, using a standard Java Virtual Machine
(JVM), which aims to provide ‘dynamic layout’ of applications in addition to re-
source aware adaptive code mobility. This means that applications can automatically
reconfigure themselves via runtime object migration based on changes in the execu-
tion environment. The level of migration granularity in FarGo is the complet [11],
which also serves as an object grouping strategy. The aggregate structure of the com-
plet (i.e. the grouping of objects that migrate together) is coded into the application
and therefore cannot change during the execution of the application. This is some-
what of a limitation, since the efficiency of grouping certain objects is dependent on:
1) the nature and frequency of inter-object communication, and 2) the network band-
width available in the communication channels interconnecting the various applica-
tion components. One way to circumvent this limitation would be to make all move-
able objects complets, and specify scripting rules (see below) for all the inter-complet
co- and re-location constraints. However, doing so would require substantial effort,
making it unattractive to distributed application developers.

FarGo provides a runtime environment called the core, which is present on all ma-
chines participating in a FarGo application. The core provides mobility management
using a chain based reference strategy, with each complet having its own tracker.
This tracker holds the last known location of the complet, forwarding method invoca-
tions to the new location upon the first attempt to access a moved complet. The
tracker chain is then optimised to point directly to the new location, which speeds
subsequent accesses to the complet.

The specification of adaptation rules, i.e. how applications dynamically adapt to
reported changes in the computational environment, is done programmatically using

an API. A custom high level scripting language has also been proposed but not im-
plemented.

2.5 Voyager

In contrast to MobJeX and Fargo, Voyager [13] is a commercial middleware product
combining web services and asynchronous messaging, with an object request broker
(ORB) that supports the mobility of objects and autonomous agents. Although Voy-
ager does not provide resource awareness, or explicit support for object grouping or
adaptation rules, it is briefly described here, since it is tested in section 5 in order to
provide a benchmark for performance testing of the MobJeX mobility subsystem.

Again, unlike MobJeX and FarGo, the precise workings of its internal algorithms
have not been published and therefore Voyager is considered mostly from a behav-
ioural and performance perspective. Perhaps the most notable difference between the
mobility support of MobJeX and FarGo is that Voyager does not require any pre-
compilation, since the proxies required for object mobility are automatically gener-
ated at runtime. Finally, Voyager achieves some level of code transparency, but re-
quires mobile classes to be interface based and remote exceptions to be explicitly
handled by the application.

3 MobJeX: A Declaratively Configurable Java Based Framework
for Dynamic Resource Aware Object Mobility

An initial proposal of the MobJeX system was introduced in [27]. The system at its
conception was modelled on a client/server approach and a distributed model of sys-
tem control. This design has been superseded as the result of the agile development
approach [28] followed during the implementation of the system. Although the prin-
cipal ideas and rationale have not substantially changed, the system now provides
peer-to-peer support and is based on a centralised control structure.

3.1 System Overview

Fig. 1 shows the major system components of MobJeX: the administration console,
the system controller (SC), and the mobility subsystem (MS) responsible for the trans-
parent migration of application objects between hosts. An overview of the behaviour
of the system as a whole is given below, and a description of the implementations of
the administration console and the system controller, provided in the following sub-
section. Since the mobility subsystem is currently the most developed and tested
aspect of MobJeX, and because it requires the greatest level of portability in order to
run on a range of target mobile devices, it is discussed separately in sections 4 and 5.
Section 4 emphasises the design and implementation of the MS, whereas section 5 is
concerned with testing and evaluation.

A MobJeX system has a collection of hosts or targets, with each host running one
or more mobjex runtimes (MR) in separate Java VMs. Each MR executes one or more
applications, depending upon whether a per-thread or per-process model is chosen.

Since each has relative advantages and disadvantages, both approaches have been
implemented in the current prototype. The application per thread approach, as used in
systems such as the Apache Tomcat J2EE Web Container, provides high performance
but less resilience to container/runtime failure. The application per process approach
is more resource intensive and has lower performance but is more robust since if one
runtime fails then only one application fails.

Each MR has one or more transport managers (TMs). An MR has one TM in-
stance for each application for which it hosts objects. For example in Fig. 1, both
host1 and host2 have a TM for application 1 (app 1) since it has objects distributed
across both hosts. This provides a suitable level of granularity and provides scalabil-
ity for large applications and systems, as described in more detail in section 4. Note
that in the current version, applications have a home host where their thread of execu-
tion resides, with support for weak mobility provided using Java’s synchronization
mechanism to ensure that objects cannot be moved whilst they are executing. This
introduces two limitations: Firstly, multithreaded objects cannot be mobile since the
synchronization mechanism would interfere with thread scheduling. Secondly, mobile
objects (mobjects) performing lengthy tasks must use a working loop scenario so that
the objects will periodically stop executing so that they can be moved. This limitation
is common to all Java mobile object systems that run on a standard virtual machine
since Java does not provide a standard mechanism other than explicit code instrumen-
tation [19] for capturing the execution state (stack frames, program counter etc.) re-
quired to facilitate strong mobility in which a currently executing object is moved.

Fig. 1. Structural View of the MobJeX Architecture

The transport manager is responsible for managing mobjects, that is objects that
have been made mobile through the automatic generation of proxies and stubs,
thereby allowing them to migrate from host to host (see section 4). The TM initiates
moves based on instructions from the system controller and provides forwarding
services [29] to proxies when they must locate a mobject that has moved. The TM
also provides remote classloading, memory management and garbage collection ser-
vices. The garbage collection is based on reference counting and leveraging the un-
derlying distributed garbage collection scheme, again described in more detail in
section 4.

3.2 System Controller and Administration Console

The system controller provides a model of the system described in the previous sec-
tion, by encapsulating an abstract model that contains references to the various ele-
ments such as hosts, MRs and TMs. The system model is built by communicating
with MobJeX services, a single instance of which runs on each host in the system,
providing information about runtimes and applications operating on that device. Once
the model has been constructed, all communication with components of the mobility
subsystem is done directly via remote references maintained in the model. For exam-
ple the system controller can initiate object migration (i.e. the movement of a mob-
ject) or the swapping of a mobject’s implementation, in order to adapt to changing
environmental conditions reported by the resource monitor via the service.

Currently the SC is controlled by a graphical user interface based administration
console that enumerates the components of the system in a tree structure, allowing
mobjects to be moved between hosts and the substitution of runtime mobject imple-
mentations. Fig. 2 and Fig. 3 show a sample application deployed on a desktop PC
and a PocketPC PDA. The application represents a basic data gathering and manipu-
lating scenario. Specifically, the collection of information related to analogue photo-
graphs taken with a 35mm film camera. The application has been configured with a
coarse granularity of only two mobjects, one representing a model and the other a
combined view/controller using the MVC paradigm. This application is intended to
demonstrate the portability of the system and the scope of applications that can run on
current generation PDAs. It also serves to demonstrate how the model object can be
moved to the PDA before network disconnection occurs (e.g. leaving the office on a
photography assignment) and then moved back to the desktop upon return thus re-
moving the need for explicit data synchronisation. Alternatively, where IP communi-
cation is available outside the office (e.g. GPRS or 3G network), the model could
remain on the desktop and assuming that the statistics of each film frame could im-
mediately be utilised, they would upon entry be transparently sent back over the net-
work via remote object interaction.

Note that MobJeX also seamlessly facilitates the movement of Java AWT and
Swing graphical user interface (GUI) components provided the VM versions are
sufficiently compatible. In Fig. 2 and Fig. 3, both the desktop PC and the PDA are
running IBM’s j9 Java VM to ensure correct serialisation and deserialisation of the
java.awt.Frame and its sub-components when the view is moved.

One component of the SC that is still under development, and thus not described in
detail in this paper, is the rule engine (RE). The RE is responsible for evaluating
declaratively specified rules, on a per application basis, using information provided
by the resource monitor implementations of individual hosts. Based on the outcome
of the rule evaluation, the SC may choose to initiate object movement in order to
better satisfy the rules.

Fig. 2. & Fig. 3. Admin Console and Sample App with two mobjects on PC and PocketPC

Fig. 4. Mobile Object Structure in the MobJeX Mobility Subsystem (UML 2.0 diagram)

4 Implementing the MobJeX Mobility Subsystem (MS)

As discussed in section 3, the MS is essentially a collection of hosts, with each host
running one or more mobjex runtimes (MR) and each MR executing one or more
applications. An MR has one TM instance for each application for which it hosts
objects. The transport manager is responsible for managing mobile objects (mob-
jects), that is any object for which the system has generated proxies and stubs,
thereby allowing it to migrate within the system.

Although the TM initiates moves based on instructions from the system controller
and provides support for forwarding services, garbage collection and memory man-
agement, much of the object distribution functionality of the MS is precompiled into
the application using the MobJeX pre-compiler mobjexc. Mobjexc is based on XML
transformation of the original source code to produce modified source code based on
the class diagram shown in Fig. 4. Where source code is not available, Java reflection
on the original class is used to extract the information required by the transform. In
this case, one extra level of local method call indirection is required since the gener-
ated code must perform an invocation on the original class. The generated source
code is then compiled into final executable Java bytecode using the standard javac
and rmic compilers, after which it is usually deleted but may be kept for debugging
purposes using a command line switch. This approach was chosen in preference to
runtime proxy and stub generation using bytecode transformation, because of the
performance impact of the latter. Nevertheless, one potential limitation of the pre-
compiler approach is that the deployer must make an a priori decision about any
object that can potentially move within the system, so that the appropriate proxy, stub
and interface classes can be generated. Once the proxies/stubs have been generated
the deployer would experiment with different system configurations using the system
controller described in section 3, without the need for recompilation. Note that this
need not be a severe limitation since the deployer may initially choose to be liberal
with the generation of proxies, and later remove those proven to be redundant during
the tuning of the system.

The class and object level mobility described in Fig. 4 has been designed with both
transparency and efficiency in mind. These two factors are considered further in the
following two subsections.

4.1 Source Code Transparency

There has been debate [12] concerning the extent to which remote behaviour in a
system can be made transparent to the developer. The present authors are well aware
of the impact of remote object distribution on system performance, but argue that in
many cases, the decision of whether or not a call should be remote depends upon
environmental context beyond the control of the programmer. Furthermore, respond-
ing to remote exceptions can be handled by strategies external to the application.
Nevertheless, an application designed with distribution in mind is clearly going to
perform better than an application that was not, however this issue is independent of
where and how the object distribution and error handling is done. Therefore, one of
the principal aims of the mobility subsystem is to provide greater transparency at the

system, and particularly at the source code level, than has been achieved by previous
systems such as FarGo, Sumatra and Voyager.

Transparency at the source code level is achieved by generating a Domain1 inter-
face which matches the name and public method signature of the original class. The
Domain interface is implemented (realized in UML terms) by the DomainProxy
which is in turn referenced by the original code in place of the original Domain
class. The proxy in turn has a reference to the newly generated DomainImpl class
that provides both a local and remote implementation of the original Domain meth-
ods, which are substituted intact from the original Domain class. This allows meth-
ods to be called directly via local reference call-through when the caller is in the same
address space as the callee, or remotely via a stub when this is not the case. Java RMI
was chosen as the remote object protocol since it is a natural choice for a Java system
and is supported across the desired target platforms (Jeode/j9 on PocketPC, Personal-
Java/Symbian on a range of Smartphones). Note that the implementation of the gen-
erated remote interface performs additional marshalling beyond that of standard RMI
in order to copy and uncopy parameters so as to simulate the parameter by reference
semantics of local calls. This marshalling, which is done by reflective deep copy, was
provided to ensure that application semantics did not change when deploying existing
applications on MobJeX. i.e. existing applications may assume that non primitive
objects would be handled by reference and thus the MS simulates this via additional
marshalling. This approach has the added benefit of being more efficient for small
mutable objects such as a java.lang.StringBuffer, where it would be im-
practical to call an operation such as append() via remote reference. If parameter
marshalling is not required, the deployer can disable it on a per class basis via a con-
figuration setting and use mobjects as remote parameters, thus ensuring true pass by
reference semantics where appropriate.

A further challenge to source code transparency is maintaining class hierarchies
and allowing the mobility of objects which already extend domain specific or system
classes. This is achieved by having a parallel hierarchy of proxies for each of the
classes in the original hierarchy with the ‘superproxy’ class (the proxy at the top of
the proxy hierarchy) extending AbstractProxy in order to gain the functionality
required to transparently resolve local and remote references and facilitate garbage
collection via reference counting. For example a class X might extend the
javax.swing.JFrame class in order to provide a user interface. In this case
JFrameProxy extends AbstractProxy, and XProxy extends JFrameProxy,
thereby providing a mobile interface to both the methods of X and JFrame. As with
all proxy and stub code, it is generated by mobjexc in conjunction with standard Java
tools javac and rmic.

Rather than extending a superclass, the object mobility code in the object imple-
mentation (DomainImpl) is derived from a delegate class called MobileDele-
gate that implements the Mobile interface. The DomainImpl itself also imple-
ments Mobile but simply calls-through to the functionality provided by the delegate.
The approach is necessary for two reasons: Firstly, Java does not provide the multiple

1 Domain refers to ‘problem domain’ and the fact that application classes generally implement

problem domain specific code

inheritance mechanism required for an inheritance based solution, since mobjects
may already extend another domain or system class. Secondly, Java does not provide
a transparent delegation model and thus it must be simulated via call-through.

Finally, there are a few constraints that must be placed on code that is to operate
within the model: Firstly, all access to data members must be done through accessor
methods. Secondly, mobile code cannot contain non-final static member variables
(final static variables can be accessed via the Domain interface). This is due to the
prohibitive overhead and complexity of keeping such variables synchronised between
objects of the same class residing in different VMs. Finally, static methods, even
those that do not access static member variables, are not supported by mobjects. This
is because the Java specification does not support the declaration of static methods in
interfaces.

4.2 Dynamic Object Mobility

The process of migration is a co-operative effort which happens over time between
the proxy, the mobject and the TM. In general terms a number of steps occur in the
following order:

// original class to be converted to mobject
// this class will no longer be used following generation
public class Domain
{
 public int domainMethod(StringBuffer param1)
 {
 param1.append("mobjex");
 return 99;
 }
}

// generated by mobjexc: same name and matching interface of
// original Domain class
public interface Domain
{
 public int domainMethod(StringBuffer param1);
}

// generated by mobjexc: same name as original class
// plus suffix 'Remote'
// matches interface of original Domain class but returns
// marshalling Hashtable and throws remote exception
public interface DomainRemote extends java.rmi.Remote
{
 public Hashtable domainMethodRemote(StringBuffer param1)
 throws java.rmi.RemoteException;
}

Fig. 5. Original class Domain and generated Domain and DomainRemote interfaces

1. The system controller issues a migration command for any mobject between any
two MobJeX runtimes (MR) on any two hosts. This differs from FarGo where
an object move can only be programmatically initiated from the host on which
the object currently resides [30].

2. The object is serialized and transported to the destination TM. If the object is
currently executing, this process does not occur until execution has finished, as
described in section 3.1.

3. Classes are requested from the source TM via remote classloading if not already
available.

4. References to the moved object are updated upon the next call, via collaboration
between proxies, TMs and mobjects, as described in the following paragraphs.

Fig. 5 through Fig. 7 show the effect of pre-processing a simple class with mobjexc
that has one method called domainMethod(). These source code excerpts serve as
a basis for discussing the migration strategy used by the MS, thereby demonstrating
the following benefits:

• The design provides a clear separation between application behaviour and mo-
bile functionality because the generated code is both transparent to the callee,
and an object move can be externally initiated between any host and TM.

• The code can be generated via pre-processing, as shown by the mobjexc com-
piler, which is more efficient than runtime bytecode transformation.

• The design provides a number of performance advantages over previous ap-
proaches such as FarGo (section 2.4) as discussed in context in the following
paragraphs explaining the explicit mobility behaviour of the MS. These per-
formance advantages are further illustrated by the empirical tests in section 5.

Fig. 5 shows the original class Domain and the two generated interfaces Domain
and DomainRemote. Note that once the generation has been done, the Domain
class is no longer used, with client code instead referring to an implementation of the
newly generated Domain interface. The principle benefit of using the original name
is that code referring to the original Domain class need not be modified or pre-
processed to refer to the new mobile enabled code since the mobility code is insulated
by the proxy class.

Fig. 6 shows the generated proxy class named DomainProxy. The proxy serves
two main purposes. Firstly, it maintains either a local or remote reference to the target
object (DomainImpl). Secondly, whenever the source or target object of this refer-
ence moves, the proxy is responsible for updating the reference according to the fol-
lowing possibilities:

// generated by mobjexc: same name as original class plus suffix 'Proxy'
// implements Domain interface to match original Domain class
public class DomainProxy extends ProxySupport implements Domain
{
 public DomainProxy() { }

 public int domainMethod(StringBuffer param1)
 {
 try
 {
 // call locally or remote
 if (local)
 return ((Domain)object).domainMethod(param1);
 else
 {
 // call remote implementation and retrieve marshalled
 // return and parameter values
 java.util.Hashtable results=((DomainRemote)stub)
 .domainMethodRemote(param1);
 // deep copy results from mashalling Hashtable to param1
 Duplicator.deepCopy(results.get("param1"),param1);
 // unbox the return value
 return ((Integer)results.get("mobjexReturnValue")).intValue();
 }
 }
 // thrown when previously local target has moved
 catch (MovedException me)
 {
 // update stub/object link
 updateObjectLocation();
 // call recursively
 return domainMethod(param1);
 }
 // thrown when remote target has moved and been unexported
 catch (java.rmi.NoSuchObjectException nse)
 {
 updateObjectLocation();
 return domainMethod(param1);
 }
 // system level communication error
 catch (RemoteException re)
 {
 // unchecked exception allows source code transparency
 // exception handled by MobJeX runtime
 throw new ProxyException("Cannot connect to remote object", re);
 }
 catch (DuplicationException de)
 {
 throw new ProxyException("Could not deepCopy object", de);
 }
 }
}

Fig. 6. Generated class DomainProxy

// generated by mobjexc: same name as original class
// plus suffix 'Impl'
// implements Domain and DomainRemote interfaces for local or
// remote call
// implements Mobile to provide call-through to MobilityDelegate
//
public class DomainImpl implements Domain, DomainRemote,
 Mobile, Serializable
{
 private MobilityDelegate mobilityDelegate
 = new MobilityDelegate();

 // remote interface to the domain method
 public Hashtable domainMethodRemote(StringBuffer param1)
 throws java.rmi.RemoteException
 {
 // Hashtable contains changed parameters for return
 // for simulation of pass by reference semantics
 Hashtable results = new Hashtable();
 results.put("param1",param1);
 // call actual method implementation and
 // place return value into hashtable
 results.put("mobjexReturnValue",
 new Integer(domainMethod(param1)));
 return results;
 }

 // local/domain interface to the domainMethod
 public int domainMethod(StringBuffer param1)
 {
 // initiate update in proxy if object has moved
 if(mobilityDelegate.isMoved())
 {
 throw new MovedException("Object has moved");
 }
 // set/return dummy values
 // this comes from the original class
 param1.append("mobjex");
 return 99;
 }

 // call through implementation to MobilityDelegate
 public synchronized void setMoved(boolean moved)
 {
 mobilityDelegate.setMoved(moved);
 }

 // further Mobile interface callthroughs omitted for brevity
 ...
}

Fig. 7. Generated class DomainImpl

1. Object X has a reference to a DomainImpl object via a DomainProxy. X and
DomainImpl are co-located, therefore the proxy refers directly to the Do-
mainImpl via a local reference.
a. If X moves then the boolean variable local is set to false as part of the seri-
alization process of the proxy. When X next tries to call a method through Do-
mainProxy, it is serviced using the stub that was created with the proxy since
local is no longer true. If the target object has not moved in the meantime, the
stub call is successful and no further updating is necessary. This provides a per-
formance improvement over FarGo, in which explicit updating must be done as a
result of the single tracker per host approach [11, p.4]. If the target has moved
then a NoSuchObjectException will be caught by the proxy, resulting in a
call to the TM of the runtime where the moved object was last located. This TM
will either return a stub to the mobject at its new location or will forward the re-
quest to the next TMs in a chain if the mobject has moved through more than one
MR since it was last called.
b. If DomainImpl moves, a serialized copy of DomainImpl is moved to the
target and the local copy of DomainImpl is set to moved in order to react when a
call is next made through the proxy. Note that no updating of references is done
until a call is made, in order to reduce unnecessary updates when an object mi-
grates again before it is used. When the call is made, the local DomainImpl
throws a MovedException which is caught by the proxy, with updateOb-
jectLocation() performing the chain of calls through TMs (as described
above) to retrieve a stub to the remote DomainImpl at its new location.

2. Object X has a reference to a DomainImpl object via a DomainProxy. X and
the DomainImpl are NOT co-located and thus the proxy refers to the Do-
mainImpl remotely via the stub.
a. If X moves, the DomainProxy and stub reference are serialized as part of the
migration and no further updating is necessary since the stub still points to the
original DomainImpl that has not moved. Upon deserialization of the proxy at
the new host, a query is made to the local TM to detect whether the target object is
local. If so, the boolean local variable is set to true and subsequent calls are
made locally rather than via a stub.
b. If DomainImpl moves, a serialized copy of DomainImpl is sent to the tar-
get TM on the target host. In the current implementation, the original copy of Do-
mainImpl is unexported (made available for RMI distributed garbage collec-
tion) or if unexport is not available (e.g. pre 1.2 Java implementation), the original
object is set to moved in order to initiate a reaction when a call is next made
through the proxy to the old object, as was the case with local references in sce-
nario 1.b. Again, no updating of references is done until a call is made, at which
time a NoSuchObjectException is thrown if the remote object was unex-
ported, or a MovedException if not. Either exception is caught by the proxy,
thereby initiating an update as described previously. Again, if the object is now
local, the variable local is set to true and direct referencing used.

5 Testing and Evaluation of the MobJeX Mobility Subsystem

5.1 Overview

This section describes a series of empirical tests designed to compare the performance
of FarGo, Voyager and the MobJeX mobility subsystem (MS). As described in sec-
tion 2.4, FarGo is the most comparable resource aware adaptive framework for object
mobility, and its design has been described in detail in a number of publications [11,
12]. Voyager serves as an example of a commercial ORB that supports transparent
object mobility and although the specifics of its algorithms are not publicly available,
it provides a useful target for benchmarking the performance of the MS.

All tests were performed under Windows XP on a pair of 2.8GHz Pentium 4 com-
puters with 512MB RAM and 100Mbit Ethernet connected directly via a crossover
cable to avoid the confounding effect of varying network traffic and system load. All
testing was done using a common Java code base that was instrumented with timing
code. Subclassing and template methods [31] provided the system dependent object
creation and mobility code. Fargoc and mobjexc were used to generate stub code for
the FarGo and MobJeX tests respectively, whereas Voyager generates proxies at
runtime. To ensure a consistent amount of memory, the Java VM heap size was set to
384MB using a command line switch. All test classes were made available on both
the source and target host, thereby simplifying the test procedure by removing the
need for remote class-loading.

5.2 Limitations

The main limitation, by design, of this study, is that it aims only to compare rela-
tive system performance, since the study of a real application in realistic operating
conditions would be beyond the scope of this paper.

Furthermore, FarGo appears to no longer be under development and runs only on
Java JDK 1.1.8, thus providing two moderate limitations to the study. Firstly, the
native timing library used on the other two systems was not available under JDK
1.1.8. According to the documentation of the standard timing library used in its place,
accurate results below 15ms are not possible, whilst 1ms resolution is provided for all
times above this threshold. This was evidenced in the local method invocations on 10
objects but was not considered a substantial limitation. Secondly, JDK 1.4 was used
to run the tests on the other two systems, since this was a tested platform in both
cases. Note that because remote procedure call overhead contributes most signifi-
cantly to the duration of each operation, any differences resulting from code optimisa-
tion of the later JDK is not expected to unduly influence the results.

5.3 Methodology

Test 1 – object movement and method call performance
The first test involved object movement and method invocation on collections of 10,
100 and 1000 mobile objects respectively. The tests were repeated for method calls
involving non-mobile (pass by copy) object parameters of ≈100bytes (104), 1kB,

10kB and 100kB. The test involved a number of distinct operations as described be-
low.
Creation – The time taken to create the collection of objects locally.
First Call – An initial method call used to test the overhead of resolving references

via comparison with the duration of the following local get/set calls. This test was
not necessarily expected to show notable results but was provided for consistency
with the behaviour of the move operations described below.

Local Get/Set – These two operations involved calling a get and set accessor method.
Used to identify if locally created objects were called via local or remote reference.

Move Away – The complete collection of objects is moved one at a time to the re-
mote host.

First Call – Used for the same purpose as the previous first call. This test was in-
tended to identify and compare lazy updating of references using the following
set/get methods.

Remote Set/Get – Same as local set/get but used to measure remote procedure call
times.

Move Back – The complete collection of objects is moved one at a time back to the
original host.

First Call – As above.
Local Set/Get – Used to establish whether remote references are resolved back to

local ones.

Test 2 – Link traversal and link integrity test.
This test started with the local creation of a linked list of 10, 100, and 1000 objects
respectively. This was followed by the execution of the following operations, with
times recorded via instrumentation of the source code at each stage.
Traverse Links – Iterate through all the links of the list. This first call is done to test

lazy updates, as in the previous test.
Traverse Links - Iterate through all the links of the list once the references are re-

solved.
Stagger – Every second object in the list is moved to the remote host. This tests link

integrity and provides two-way referencing between hosts.
Traverse Links – Test the overhead of link resolution.
Traverse Links – Test the performance and integrity of remote link traversal.
Destagger Remote – Remaining objects are moved to remote host.
Traverse Links – As above.
Traverse Links - As above.
Stagger Back – Every second object is moved back to source host.
Traverse Links – As above.
Traverse Links – Test the performance of calling after multiple moves.
Destagger Local – Remaining objects are moved back to the source host.
Traverse Links – As above.
Traverse Links – Test if remote references are resolved to local ones.

Te
st

 1
Fr

am
ew

or
k

O
pe

ra
tio

n
10

0
1k

B
10

kB
10

0k
B

10
0

1k
B

10
kB

10
0k

B
10

0
1k

B
10

kB
10

0k
B

M
ob

Je
X

C
re

at
io

n
25

.2
1

11
.8

0
9.

81
5.

32
36

.8
4

31
.7

8
68

.6
8

10
3.

02
20

1.
43

17
5.

11
26

0.
37

64
3.

75
Fi

rs
t C

al
l

0.
05

-
-

-
0.

10
-

-
-

0.
54

-
-

-
Lo

ca
l S

et
0.

01
0.

01
0.

01
0.

01
0.

04
0.

04
0.

04
0.

04
1.

41
0.

21
0.

26
1.

29
Lo

ca
l G

et
0.

01
0.

00
0.

00
0.

00
0.

04
0.

03
0.

03
0.

03
0.

38
1.

19
0.

15
0.

10
M

ov
e

A
w

ay
22

.6
1

40
.8

8
49

.9
6

17
4.

15
12

7.
07

14
2.

52
25

2.
12

62
6.

00
10

61
.7

0
94

4.
44

15
36

.7
6

55
62

.7
0

Fi
rs

t C
al

l
82

.2
5

-
-

-
50

2.
89

-
-

-
27

82
.7

1
-

-
-

R
em

ot
e

Se
t

6.
96

10
.5

5
12

.2
5

51
.1

2
39

.9
4

52
.2

5
69

.5
2

23
4.

60
19

4.
70

21
8.

93
37

6.
12

37
33

.2
3

R
em

ot
e

G
et

7.
65

7.
73

7.
71

28
.3

7
56

.4
1

49
.0

3
11

9.
07

24
4.

42
22

4.
73

24
7.

32
40

9.
55

35
55

.4
4

M
ov

e
B

ac
k

47
.0

4
49

.4
5

52
.4

8
16

7.
12

25
8.

10
26

7.
58

40
5.

14
70

2.
83

17
29

.7
0

15
67

.3
1

21
69

.9
2

66
11

.2
8

Fi
rs

t C
al

l
61

.6
7

-
-

-
32

9.
58

-
-

-
26

28
.2

2
-

-
-

Lo
ca

l S
et

0.
01

0.
01

0.
01

0.
01

0.
05

0.
72

0.
03

0.
01

0.
15

0.
05

0.
05

0.
05

Lo
ca

l G
et

0.
01

0.
00

0.
00

0.
00

0.
02

0.
04

0.
02

0.
02

0.
04

0.
04

0.
04

0.
04

Fa
rG

o
C

re
at

io
n

16
.0

0
15

.0
0

16
.0

0
32

.0
0

32
.0

0
15

.0
0

31
.0

0
79

.0
0

12
5.

00
14

0.
00

28
2.

00
15

63
.0

0
Fi

rs
t C

al
l

15
.0

0
-

-
-

31
.0

0
-

-
-

20
3.

00
-

-
-

Lo
ca

l S
et

0
0

16
.0

0
31

.0
0

0
15

.0
0

62
.0

0
21

9.
00

79
7.

00
37

5.
00

92
2.

00
19

07
.0

0
Lo

ca
l G

et
0

0
0

31
.0

0
32

.0
0

32
.0

0
31

.0
0

14
1.

00
20

3.
00

29
7.

00
34

3.
00

14
84

.0
0

M
ov

e
A

w
ay

63
.0

0
47

.0
0

93
.0

0
10

9.
00

43
7.

00
48

5.
00

59
4.

00
98

4.
00

99
85

.0
0

97
18

.0
0

92
96

.0
0

12
84

3.
00

Fi
rs

t C
al

l
16

.0
0

-
-

-
78

.0
0

-
-

-
12

19
.0

0
-

-
-

R
em

ot
e

Se
t

15
.0

0
16

.0
0

15
.0

0
47

.0
0

78
.0

0
79

.0
0

10
9.

00
35

9.
00

89
0.

00
95

3.
00

12
03

.0
0

45
78

.0
0

R
em

ot
e

G
et

0
0

16
.0

0
62

.0
0

62
.0

0
78

.0
0

94
.0

0
40

6.
00

87
5.

00
93

8.
00

11
41

.0
0

50
78

.0
0

M
ov

e
B

ac
k

62
.0

0
78

.0
0

94
.0

0
17

2.
00

53
2.

00
57

8.
00

67
1.

00
10

94
.0

0
13

12
5.

00
13

93
8.

00
14

71
9.

00
18

70
4.

00
Fi

rs
t C

al
l

31
.0

0
-

-
-

28
2.

00
-

-
-

44
22

.0
0

-
-

-
Lo

ca
l S

et
16

.0
0

16
.0

0
16

.0
0

63
.0

0
62

.0
0

93
.0

0
12

5.
00

48
5.

00
10

62
.0

0
10

47
.0

0
14

07
.0

0
50

47
.0

0
Lo

ca
l G

et
15

.0
0

0
15

.0
0

62
.0

0
63

.0
0

63
.0

0
10

9.
00

53
1.

00
95

3.
00

10
31

.0
0

13
43

.0
0

53
91

.0
0

Vo
ya

ge
r

C
re

at
io

n
16

.8
3

5.
29

7.
91

31
.7

0
29

.2
6

14
.1

4
53

.7
3

13
9.

78
Fi

rs
t C

al
l

18
.6

3
-

-
-

35
.7

8
-

-
-

Lo
ca

l S
et

2.
90

3.
32

5.
73

45
.7

3
28

.9
7

25
.2

2
53

.7
9

21
1.

02
Lo

ca
l G

et
5.

54
5.

29
3.

27
9.

49
23

.5
0

22
.1

1
23

.0
4

53
.7

2
M

ov
e

A
w

ay
20

6.
73

15
6.

99
16

6.
30

23
1.

86
92

2.
42

86
1.

21
10

39
.3

6
12

22
.2

0
Fi

rs
t C

al
l

12
.4

6
-

-
-

74
.9

9
-

-
-

R
em

ot
e

Se
t

9.
82

11
.3

5
16

.7
2

67
.9

1
65

.7
3

72
.6

1
90

.7
0

33
2.

92
R

em
ot

e
G

et
9.

94
7.

00
9.

60
31

.5
9

74
.1

6
66

.0
3

13
2.

93
22

9.
55

M
ov

e
B

ac
k

14
7.

29
13

0.
24

13
3.

54
13

3.
75

70
0.

11
62

6.
52

84
3.

45
98

5.
61

Fi
rs

t C
al

l
2.

63
-

-
-

6.
81

-
-

-
Lo

ca
l S

et
2.

01
1.

70
1.

44
39

.5
8

4.
86

8.
00

11
.1

3
10

4.
49

Lo
ca

l G
et

1.
19

3.
23

1.
46

6.
56

5.
31

5.
04

8.
97

46
.5

7

N
ul

l P
oi

nt
er

 E
xc

ep
tio

n
@

 6
29

D
id

 N
ot

 C
om

pl
et

e

10
00

10
10

0

Table 1. Times for Object Mobility and Method Calls with Variable Size Parameters (ms)

5.4 Results

Test 1 - For this test, Voyager was unable to complete the test with 1000 objects due
to unhandled exceptions. The raw data is provided in Table 1 and discussed below.
Creation – The times here are similar between systems, showing the overheads of

using indirection and Java reflection in the creation of objects. MobJeX is slightly
slower overall, identifying this as an area where optimisation could be performed.

First Call – The results here are somewhat inconclusive, but do demonstrate that
MobJeX immediately resolves to local references. Furthermore, there may be some
minor setup involved in the initial call to mobile objects in the other two systems.

Local Set/Get – MobJeX provides the best performance here because of its imple-
mentation allowing a mobile object to be transparently called via local or remote
interface, in this case locally via direct call-through to the implementation. Voyager
has better performance than FarGo, possibly due to its custom remote procedure
call implementation, compared with FarGo that uses standard Java RMI.

Move Away – Again MobJeX has the best performance since lazy updating is used to
update references on demand.

First Call - MobJeX is notably slower since it must perform two remote procedure
calls for each method call: one to update the link and retrieve a remote stub from the
remote TM, and the second to perform the actual call. Note that provided the pa-
rameter size is < 100k (which in practice is a very large object) MobJeX is faster
with the combined move/call than Voyager but slightly slower than FarGo after a
single move (Note: this is no longer the case with the first call following the move
back below). Also note that MobJeX scaled better in test 2 which is also evidenced
by the inability of Voyager to complete test 1 with 1000 objects.

Remote Set/Get – After the initial update MobJeX provides the best performance for
the remote procedure calling with variable parameter sizes, followed by Voyager
then FarGo. This suggests that the serialisation mechanism of MobJeX is more effi-
cient than that of Voyager, however Voyager’s actual call times are superior due its
custom implementation versus Sun RMI, as further shown in test 2.

Move Back – These times are similar to the move away, reflecting the difference in
update strategies.

First Call – Here FarGo shows an overhead in updating references, comparable
though slightly less at 100 objects, and becoming slower at 1000, than MobJeX.
This shows that FarGo’s tracker based mechanism is not as efficient at updating
references after more than one move. Again Voyager is clearly updating its refer-
ences immediately and therefore has the slowest move times, and again may indi-
cate why its solution was not as scalable and was unable to complete this test with
1000 objects.

Local Set/Get –This shows a similar result to the local get/set showing that MobJeX
is able to transparently resolve back to local references providing significantly
faster performance than both Voyager and FarGo. FarGo appears to still be calling
through the remote tracker even after multiple calls.

Test 2 In this test, all of the systems were able to perform the test for 1000 objects,
demonstrating object integrity and providing the following results in terms of link
resolution and call performance. The raw data is provided in Table 2 and discussed
below.
Traverse Links (x 2) – The local referencing of MobJeX is again clearly visible here.

Voyager is notably faster than FarGo, presumably due to the performance of its cus-
tom RPC mechanism compared with Sun’s RMI implementation.

Stagger and Traverse Links (x 2) – The performance of MobJeX and Voyager are
quite similar when the move and first call are considered together, with the per-
formance of the second call through the linked list chain being very close. FarGo
does not scale as well for large numbers of objects.

Destagger Remote and Traverse Links (x 2) – Voyager is the clear leader in this
test where all of the calls are remote and its RPC mechanism is not slowed by the
serialisation of large parameters (since only a link reference is returned) as was the
case in test 1. Again FarGo is comparable for smaller collections but does not scale
as well for 1000 objects.

Stagger Back and Traverse Links (x 2) – After the move and a number of calls,
Voyager is again in front as a result of its very fast procedure calling, with MobJeX
still notably faster than FarGo.

Destagger Local and Traverse Links (x 2) – In the final test, MobJeX resolves back
to local references and is now considerably faster. As in test 1, FarGo has devel-
oped a tracker chain due to the staggering effect and is not able to optimise its refer-
ences, apparently still calling through the remote tracker even after two calls.

6 Summary and Future Work

This paper has described MobJeX, a framework under development within the ATcrc,
which aims to provide dynamic application adaptation based on runtime resource

Test 2 10 100 1000 10 100 1000 10 100 1000
Traverse Links 0.01 0.05 0.36 16.00 94.00 1188.00 7.92 79.88 323.74
Traverse Links 0.00 0.02 1.18 15.00 78.00 1203.00 7.46 59.43 221.87
Stagger 234.39 508.46 2162.40 110.00 531.00 6266.00 325.74 911.83 4985.05
Traverse Links 59.95 426.65 2187.50 47.00 391.00 4750.00 20.07 135.40 894.44
Traverse Links 13.08 139.50 816.17 31.00 218.00 3984.00 19.09 112.09 842.65
Destagger Remote 39.36 223.78 1448.95 47.00 407.00 6766.00 78.89 535.76 3994.92
Traverse Links 65.99 445.49 3202.65 31.00 453.00 5109.00 25.82 161.90 1198.44
Traverse Links 46.54 379.05 2981.38 31.00 437.00 5594.00 25.67 172.71 1154.77
Stagger Back 62.91 240.59 1791.10 110.00 578.00 5578.00 129.24 527.67 3507.46
Traverse Links 65.78 416.82 3654.86 62.00 672.00 7422.00 12.28 91.63 722.80
Traverse Links 21.56 188.02 1537.99 31.00 469.00 5344.00 17.42 89.38 714.48
Destagger Local 25.95 134.83 1205.82 32.00 516.00 6593.00 74.47 478.05 3340.68
Traverse Links 33.97 304.51 2505.90 47.00 531.00 9735.00 7.67 29.44 222.12
Traverse Links 0.01 0.05 0.15 15.00 469.00 5656.00 5.55 28.04 216.67

MobJeX FarGo Voyager

Table 2. Operation Times for Linked List Stagger and Traversal (ms)

monitoring, in order to support the transparent distribution of Java application objects
(including AWT/Swing user interface objects) to desktop, PDA and smartphone de-
vices in a heterogenous Internet environment. The MobeX Mobility Subsystem (MS)
has been described in detail, with its performance compared to FarGo and Voyager in
a series of laboratory tests. The results illustrate the scalability of the new proxy and
interface model and the benefit of allowing mobile objects to be transparently re-
solved to local references, even after a chain of moves and method calls. However,
the results also illustrate the advantage of the custom remote procedure call imple-
mentation of Voyager, a commercial ORB providing transparent object mobility, thus
demonstrating that Sun’s RMI implementation is not the most efficient way of sup-
porting the mobility of objects.

Future work on the MS will involve optimisation of the remote procedure call
mechanism as well as the implementation and testing of a declarative authentication
and security mechanism using functionality that is transparently embedded in the
proxy and object implementation. Development of the not yet realised Rule Engine
component of the MobJeX system is also underway. This will allow a high level of
separation of application layout, object grouping and adaptation strategies. This in
turn will complement current research being done in the ATcrc, involving an analysis
of distributed mobile object systems and the correlation between object based soft-
ware metrics such as method invocation overhead and relative execution time, and
environmental parameters such as network and computational resources. This will
lead to an analysis of the impact of such variables on the design, deployment and
performance of mobile object systems.

Finally, although MobJeX aims to provide a model that is transparent to develop-
ers and simplifies the process of implementing distributed applications, there is inter-
est in examining the effects of using asynchronous calls with future objects, as done
in ObjectWeb’s ProActive system [32, 33]. The research question of interest is to
what extent the decision to make a call asynchronous can be done transparently and
declaratively, and thus deferred until runtime. ProActive shows that asynchronous
calls based on future objects can provide block if necessary behaviour to simulate
synchronous call semantics, however more work is required to establish techniques
for determining when a call in an existing application is a good candidate for asyn-
chronous call scheduling.

References
[1] C. Ryan and S. Perry, "Client/Server Configuration in a Next Generation Internet Environment: End-

User, Developer, and Service Provider Perspectives," presented at 2003 Australian Telecommunica-
tions, Networks and Applications Conference (ATNAC), Melbourne, Australia, 2003.

[2] S. Moyer and A. Umar, "The Impact of Network Convergence on Telecommunications Software,"
IEEE Communications, vol. January, pp. 78-84, 2001.

[3] Sun Microsystems, "Java 2 Micro Edition URL: http://java.sun.com/j2me/," 2004.
[4] Symbian Ltd, "Symbian OS URL: http://www.symbian.com/," 2004.
[5] Microsoft Corporation, ".NET Compact Framework URL:

http://msdn.microsoft.com/mobility/prodtechinfo/devtools/netcf/," 2004.
[6] Sun Microsystems, "Java 2 Standard Edition URL: http://java.sun.com/j2se/," 2004.
[7] IBM, "WebSphere Micro Environment URL: http://www-

306.ibm.com/software/wireless/wme/features.html," 2004.
[8] Insignia Solutions Inc., "Jeode Runtime URL: http://www.insignia.com/jeoderuntime.shtml," 2004.

[9] Microsoft Corporation, "Pocket PC URL:
http://www.microsoft.com/windowsmobile/products/pocketpc/," 2004.

[10] M. Shapiro, "Structure and Encapsulation in Distributed Systems: the Proxy Principle," presented at
Proc.6th Intl. Conference on Distributed Computing Systems, Cambridge, Mass. (USA), 1986.

[11] O. Holder, I. Ben-Shaul, and H. Gazit, "System Support for Dynamic Layout of Distributed Applica-
tions," Techinon - Israel Institute of Technology 1191, October, 1998 1998.

[12] O. Holder, I. Ben-Shaul, and H. Gazit, "Dynamic Layout of Distributed Applications in FarGo,"
presented at 21st Int'l Conf. Software Engineering (ICSE'99), 1999.

[13] Recursion Software Inc., "ObjectSpace Voyager URL: http://www.objectspace.com," 2002.
[14] L. Capra, W. Emmerich, and C. Mascolo, "CARISMA: Context-Aware Reflective middleware

System for Mobile Applications," IEEE Transactions on Software Engineering, vol. 29, pp. 929-945,
2003.

[15] P. Bellavista, A. Corradi, and R. Montanari, "Dynamic Binding in Mobile Applications : A Middle-
ware Approach," IEEE Internet Computing, vol. 7, pp. 34 - 42, 2003.

[16] A. T. S. Chan, "MobiPADS: A Reflective Middleware for Context-Aware Mobile Computing," IEEE
Transactions on Software Engineering, vol. 29, pp. 1072-1085, 2003.

[17] A. Acharya, M. Ranganathan, and J. Saltz, "Sumatra: A Language for Resource-aware Mobile Pro-
grams," in Mobile Object Systems: Towards the Programmable Internet, J. Vitek and C. Tschudin,
Eds. Heidelberg, Germany: Springer-Verlag, 1997, pp. 111-130.

[18] M. Fuad and M. Oudshoorn, "AdJava - Automatic Distribution of Java Applications," presented at
Twenty-Fifth Australian Computer Science Conference, Melbourne, Australia, 2001.

[19] S. Fünfrocken, "Transparent Migration of Java-based Mobile Agents," presented at Proceedings of
the Second International Workshop on Mobile Agents (MA'98), Stuttgart, Germany, 1998.

[20] T. Sekiguchi, H. Masuhara, and A. Yonezawa, "A Simple Extension of Java Language for Controlla-
ble Transparent Migration and Its Portable Implementation," in Coordination Models and Lan-
guages, 1999, pp. 211-226.

[21] S. Bouchenak and D. Hagimont, "Zero Overhead Java Thread Migration," INRIA 0261, 2002.
[22] K. Shudo and Y. Muraoka, "Noncooperative Migration of Execution Context in Java Virtual Ma-

chines," presented at Proc. of the First Annual Workshop on Java for High-Performance Computing
(in conjunction with ACM ICS99), Rhodes, Greece, 1999.

[23] J. Jing, A. Helal, and A. Elmagarmid, "Client-Server Computing in Mobile Environments," ACM
Computing Surveys, vol. 31, pp. 118-157, 1999.

[24] D. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou, "Process Migration," ACM
Computing Surveys, vol. 32, pp. 241 -- 299, 2000.

[25] D. Milojicic, F. Douglis, and R. Wheeler, "Mobility - Processes, Computers and Agents." Massachu-
setts, USA: The Association for Computing Machinery, Inc., 1999, pp. 682.

[26] I. Ben-Shaul, A. Cohen, O. Holder, and B. Lavva, "HADAS: A Network-Centric Framework for
Interoperability Programming.," International Journal of Cooperative Information Systems, vol. 3,
pp. 294-314, 1997.

[27] C. Ryan and S. Perry, "MobJeX: A Declaratively Configurable Java Based Framework for Resource
Aware Object Mobility," presented at On The Move Federated Conferences (OTM '03) Workshops,
Catania, Sicily, 2003.

[28] M. Fowler and J. Highsmith, "The Agile Manifesto," Software Development, vol. August, pp. 28-32,
2001.

[29] R. J. Fowler, "The Complexity of Using Forwarding Addresses for Decentralized Object Finding,"
presented at Proc. 5th Annual ACM Symposium on the Principles of Distributed Computing, Cal-
gary, Canada, 1986.

[30] O. Holder and H. Gazit, "FarGo Programming Guide," Technion - Israel Institute of Technology EE
Pub 1194, January 31 1999.

[31] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: elements of reusable object-
oriented software. Massachusetts, USA: Addison Wesley Longman, Inc., 1994.

[32] F. Baude, D. Caromel, F. Huet, and J. Vayssie, "Communicating Mobile Active Objects in Java,"
presented at Proceedings of HPCN Europe 2000, 2000.

[33] ObjectWeb Consortium, "ProActive URL: http://www-sop.inria.fr/oasis/ProActive/," 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

