
1

On Identifying a Methodology for the Integration of
Commercial-Off-The-Shelf Products into Research

Software Systems

Stephane Collignon1,2
Stephen Cook2

1DSTO Edinburgh, PO Box 1500, Edinburgh SA 5111, Australia
2SEEC, University of South Australia, Mawson Lakes SA 5095, Australia

Email: stephane.collignon@dsto.defence.gov.au

ABSTRACT

For the purposes of this paper we consider project-specific research software to be
software that is produced in a research laboratory for specific purposes to support
what in Defence terms are known as capability systems. It is different in character to
the production software that is embedded in capability systems in that it is produced
in a laboratory environment for specific purposes such as experimentation, concept
exploration, or risk reduction. It normally has a limited lifetime, is maintained by the
development team, and is built using Commercial Off The Shelf (COTS) components
to the greatest possible extent. The paper opens by introducing the current Australian
Defence Capability Development model that shows six lifecycle phases. We use this
to define three types of research software that map onto three of the phases: concept
development software, system demonstration software, and midlife upgrade support
software. For each of these types, we define the software quality attributes that are
most important and use these to identify the types of methodologies most appropriate
to the development of each type of research software.

Keywords: COTS, defence, methodology, research software

Introduction

The Defence Capability Lifecycle Management Guide (2001) introduced the two-pass
approval process into the Australian Defence Organisation. It is currently being
refined as a consequence of the Australian Government accepting the
recommendation of the Kinnaird Report (2003) and is shown at the highest level of
abstraction in Figure 1 below. The first phase seeks to establish the Defence need for
new or enhanced capabilities and the subsequent two phases define the capability
system to be acquired.

2

Figure 1: The Australian Defence Capability Development Process (Kinnaird, 2003).

The paper is organised as follows. Firstly, the paper will categorise the research
activities that are conducted in support of capability development and where each is
most prevalent. Secondly, the paper will define the likely properties of each research
software category to help guide the selection of software components. Thirdly, the
paper will describe a meta-methodology that can help guide the selection of an
appropriate methodology to conduct the development of research software systems.

Software and Research Environment

The research sector, like the industrial sector uses Commercial-Off-The-Shelf (COTS)
products. According to Brownsword et al (2000) the term COTS refers to a product
that is:

• Sold, leased, or licensed to the general public;
• Offered by a vendor trying to profit from it;
• Supported and evolved by the vendor, who retains the intellectual property

rights;
• Available in multiple, identical copies; and
• Used without source code modification.

It is useful to note that COTS software used in research can be divided into two broad
categories:

• Commercially-oriented software such as operating systems and application
packages that are widely used in industry; and

• Research-dedicated software, such as Matlab, Simulink (2004), or Labview
(2004).

This paper uses the notion of “context” (Smith, 2004). Context can be viewed as a
combination of quality attributes in the context of a particular system development
acquisition.

We have identified three quite different contexts in which COTS software can be
applied in the research environment:

• Type I: Research exploration that seeks to either examine the potential
of new technology or elicit user requirements from a military need;

3

• Type II: The construction of system concept demonstrators; and
• Type III: The investigation of operational upgrades to fielded

(operational) systems and the integration of legacy systems into systems of
systems.

Table 1 characterises the three different contexts.
TYPE I: USE OF COTS IN

RESEARCH EXPLORATION
PHASE

TYPE II: BUILDING A
SYSTEM DEMONSTRATOR

FROM COTS
COMPONENTS

TYPE III: OPERATIONAL
UPGRADES USING COTS

COMPONENTS

Desirable
COTS
Software
Properties

• Support elicitation of the
research requirements

• Controllable (programmable
by user)

• Monitorable
• Properties generally

associated with research-
dedicated software
(Matlab/Labview type)

• Rapid prototyping

• Supports rapid prototyping
• Supports integration

investigation with other
system components and
sibling systems

• Contemporary technology
with existing support base

• Must support the
integration of the research
software with the fielded
system.

• Supports the integration of
legacy fielded systems

• Contemporary technology
with existing support base
that interoperates with
legacy technology

Number of
Software
Iterations
to
Complete
Research
Stage

Generally multiple, as dictated by
the researcher modus operandi.
Stops when final requirements
are met

Development cycle normally
defined in the contract: single or
sometimes double when the
system requirements are
gradually refined during the
system acquisition process.

Very likely to employ multiple
cycles possibly in an
evolutionary way.

Nature
of
Knowledge
Base
Used

• Defined by the scientists’
knowledge and experience

• Derived from existing
architectures, tools,
platforms and prototypes
that are available in the
current research
environment

• Uses a target architecture
• Commercial tools
• Research results from

exploration phase
• Low-level programming

techniques such as adding
technical glue code.

• Enterprise architecture and
DODAF

• Metalanguages such as
UML

• Low-level programming
techniques, such as adding
technical glue code
between software modules.

Research
Output:

• Proven concept
• Results and advice
• Prototype system

component
• Information to commence

next phase

• Useful demonstrator to
influence ADF capability
development decision-
making

• COTS-based system
component

• Useful system upgrade that
provides the information
required for an acquisition
project

• System-of-Systems (SoS)
capability for a major
deployment or exercises

Table 1: Three contexts in which COTS software can be employed to support research
activities.

These three types are used in all capability lifecycle phases but certain types tend to
predominate as shown in Table 2 below.

4

Table 2: Relationship between capability systems lifecycle phases and likely research software
types.

The three types of research software have common requirements:

• The software must be able to produce the information required for project
decision-making;

• The results produced by the software must be credible; and
• The internal state of the software is likely to need to be more observable and

controllable than in production systems.

This paper will now proceed to describe a software engineering meta-methodology
that can be used to create research systems that possess the properties listed above.
The process will be illustrated for a Type I context.

Multi-methodology Selection

There is a large range of methodologies available for development of information
systems. Rather than select a single methodology, Avison and Fitzgerald (1995, 2003)
use social theory to categorise a problem domain to help identify appropriate
methodologies from the set available. Cropley et al (2003) extended this approach by
identifying the problem context and its position in the product lifecycle, to further
assist in the selection of methodologies that are particularly well suited to the problem
context. From these, Cropley selects a small set of methodologies that can be used in
parallel, the synthesis of which, can provide a profound insight into the problem. The
process for selecting software development methodologies is shown in Figure 2 and
each process is described below. The heart of the process is a modified multi-variate
value analysis that chooses the function that maximizes the objective function
function v(x):

Where xi is the numeric value of the attribute i, vi(xi) is a user-defined value function
that translates xi into a value and where wi is the weighting value for attribute i,
(Buede, 2000).

The Australian Capability Systems
 Lifecycle Phase

Research Activity Stages

Capability Need Definition Type I
Concept Exploration and Option Refinement

 (First Pass)
Type 1 and some Type II

Project Definition and Risk Reduction
(Second Pass)

Type II and some Type I

Acquisition Type II and some Type I
In Service and Upgrade Type III and some of Type II

∑
=

=
n

i
iii xvwv

1
)()(x

5

Figure 2: Proposed methodology selection plan

Determination of product type

Table A1, in Appendix A1 shows the mapping between software developments
phases and generic systems engineering phases (Blanchard and Fabrycky, 1998). This
mapping shows that the complete set of methodology phases is needed when the
output expected from research is an integrated capability or a system-of-systems.
When the output is less integrated, for example when the output is advice or a concept
demonstrator, the number of methodology phases required decreases.

Table 3: Research outputs sorted by research context.

It should be noted that in this generic approach, not all of the phases are sequential, as
described in the Waterfall model. In a research environment, these phases may be
overlapping and be iterative. Also when the research environment is a cooperative

Development
Context

Nature
of Output Product

I
RESEARCH

EXPLORATION
PHASE

II
SYSTEM

DEMONSTRATOR

III
OPERATIONAL

UPGRADES

Advice
Model

Prototype
Independent System

component

Single system that
supports

experimentation

Integrated System
Component

 in System-of-
Systems

Modified Existing
System Component

of a
System-of-systems

6

effort between industry and defence, the research phases may be disjointed or even
parallel, depending on the resources allocated for these phases.

The first step in determining appropriate methodologies is to identify the output of the
research program. The output can be identified from the research contract
deliverables, in conjunction with the shaded areas in Table 3.

Specific quality criteria determination

This second step starts with the determination of the generic methodology phases
necessary for the realisation of the product from the shaded areas in Table 4.

Research
Output

Phase
Methodology

Advice Proven
Concept

or
Model

Prototype Single system
that supports

experimentation

Integrated
System

Component
in System-
of-Systems

Modified
Existing
System

Component of a
System-of-

systems
Strategy (S)

Feasibility (F)
Analysis (A)

Logical Design
(LD)

Physical Design
(PD)

Programming
(P)

Testing &
Evaluation

(T&E)
Implementation

(I)
Maintenance

(M)
Table 4: Mapping between research outputs and generic methodology phases.

Next, having determined the methodology phases necessary for the realisation of the
research output, we need to select the quality criteria related to the methodology
phases identified above.
Table 5 (adapted from Cropley et al, 2003) shows the quality criteria attributes for
each of the methodology phases: (S = strategy, F = feasibility, A = analysis, LD =
logical design, PD = physical design, P = programming, T = testing1 , I =
implementation, E = evaluation (*), M = maintenance).

1 Cropley et al (2003) merged both test and evaluation phases in the mapping of the system engineering activities
and phases (Table A1). As these two phases have different quality criteria, this paper will keep the original
distinction from Avison and Fitzgerald, 2003 for methodology selection purposes. It should also be noted that
Cropley et al (2003) modified Avison and Fitzgerald’s (2003) original list of criteria by replacing “portability”
with “scalability” and “ease of learning” with “usability” and we have elected to retain the new criteria.

7

Methodologies
Phases

Quality
Criteria

S F A LD PD P T I E M

Acceptability
Availability

Cohesiveness
Compatibility

Documentation
Economy

Effectiveness
Efficiency

Fast development
Flexibility

Functionality
Implementability

Low coupling
Maintainability

Reliability
Robustness
Scalability
Security

Simplicity
Testability
Timeliness
Usability
Visibility

Table 5: Matching methodologies phases and quality criteria.

By jointly considering Tables 4 and 5 it is possible to extract the relevant quality
attributes for each of the research contexts. For example, if the product were to be
advice, the list of quality criteria will be shown in Table 6. Note that Table 6 is a
subset of the total list of quality criteria of Table 5.

Methodologies Phases
Quality Criteria

S F A

Acceptability
Availability

Cohesiveness
Compatibility

Documentation
Economy

Effectiveness
Fast development

Flexibility
Implementability

Low coupling
Reliability
Security

Simplicity
Testability
Timeliness
Usability
Visibility

8

Table 6: Quality criteria necessary for the realisation of a Type 1 product (advice).
Quality criteria weighting determination

Table 7 gives the definition of each quality criterion and an importance ranking that
we have assigned to it. The rank value was determined by the principal author on the
basis of the relative importance of each criterion to the success of a Type I software
development.

Software Specific
Quality Attribute

Rank Criterion Description

Acceptability 2 Whether the researcher finds the research software system
usable and whether it fulfils their information needs.

Availability 3 Whether the research software system is accessible when
required.

Cohesiveness 1 Whether the research software system allows efficient
interaction between the researcher area specific knowledge it
contains and other the information systems linked to the
production of the research outputs.

Compatibility 7 Whether the research software system fits with other systems
and parts of the organisation.

Documentation 9 Whether the research software system is sufficiently
documented to allow communication between the researchers
and sponsors.

Economy 17 Whether the research software system already exists or, if
purchased can be re-used in future projects.

Effectiveness 4 Whether the research software system performs and operates
well to support the production of the required research
output.

Fast
development

16 Whether the use of research software system can be created
quickly.

Flexibility 15 Whether the research software system is easy to learn, use
and adapt to the research process.

Implementability 5 Whether the implementation of the research software system
is feasible in technical, social, economic and organizational
senses.

Low coupling 18 Whether research software system can be used without
affecting the other interacting subsystems.

Reliability 8 Whether the research software system dependent error rate is
minimized and outputs are consistent and correct.

Security 11 Whether the research software system is robust against
misuse

Simplicity 10 Whether research software system causes little ambiguities or
complexities.

Testability 6 Whether the research software system used can be tested
thoroughly to avoid failure while supporting the research
effort.

Timeliness 14 Whether the research software system operates in a sustained
and identical manner in every step of the research.

Usability 13 Whether the knowledge required for use of research software
system is easy to acquire.

Visibility 12 Whether it is possible for research software system user to
trace the causes of every result obtained with the software.

Table 7: Specific quality attributes for context – Type 1 products.

The rank order of Table 7 is between 1 (highest) and 18 (lowest), for each of the 18
software quality criterion relevant to the research software output product.

9

Table 8 is an example of weighting determination table for the example Type 1
research software using the rank-order centroid procedure, (Buede, 2000), where the
weights wi can be derived as follows:

While one could argue the about the ranking order chosen above, the table illustrates
the trade-off weights derived.

Quality
Criteria

Ri wi

Cohesiveness 1 0.194173
Acceptability 2 0.138617
Availability 3 0.110839

Effectiveness 4 0.092321
Implementability 5 0.078432

Testability 6 0.067321
Compatibility 7 0.058062

Reliability 8 0.050125
Documentation 9 0.043181

Simplicity 10 0.037008
Security 11 0.031452
Visibility 12 0.026402
Usability 13 0.021772

Timeliness 14 0.017499
Flexibility 15 0.01353

Fast development 16 0.009827
Economy 17 0.006354

Low coupling 18 0.003086

Table 8: Distribution of the software quality attributes for a Type I product.

The next step is to rank the relative importance of the lifecycle phases appropriate to
the problem context. For our example, these are the strategy, feasibility, and analysis
phases and the results are given in Table 9.

./)/1...000(

/)/1...3/100(
/)/1...3/12/10(

/)/1...3/12/11(

11

3

2

1

nnw

nnw
nnw

nnw

rnw

n

n

ij j
i

++++=

++++=
++++=

++++=

= ∑

=

M

10

Methodologies
Phases
Quality
Criteria

Strategy Feasibility Analysis

Acceptability 0.14
Availability 0.11 0.11 0.11

Cohesiveness 0.19 0.19 0.19
Compatibility 0.058 0.058 0.06

Documentation 0.043 0.043 0.04
Economy 0.0063

Effectiveness 0.092 0.092 0.092
Fast

development

0.0098
Flexibility 0.014

Implementability 0.078 0.078 0.078
Low coupling 0.0031 0.0031 0.0031

Reliability 0.050 0.050
Security 0.031 0.031

Simplicity 0.037 0.037 0.037
Testability 0.067 0.067 0.067
Timeliness 0.018
Usability 0.022 0.022
Visibility 0.026 0.026

Sum 0.68 0.81 1.00

Table 9: Weight distribution for lifecycle phases relevant to Type I products.

In the following steps, the sum of each column will be used to assign weights in
calculating the score for each methodology.

11

Methodology selection
Having determined the weights corresponding to each quality attributes relevant to Type I products, we shall next evaluate the methodology
candidates proposed by Avison & Fitzgerald (2003) and listed in Appendices A and B.

Table 10 adapted from Avison & Fitzgerald (2003: p567) gives the relevance of each methodology to each lifecycle phase where:

• 0 Methodology does not cover the stage.
• 1 Areas mentioned but not associated to any process or rule.
• 2 Methodology addresses the area but not in depth or detail.
• 3 Methodology covers the area with techniques, methods and support.

Methodologies and their Focus Areas

Process Blended Object-
oriented

People Organisational RDM
Methodologies

Phases STRADIS YSM JSD SSADM MERISE IEM OOA RUP ETHICS SSM PI ISAC DSDM

Strategy 0 1 0 1 2 3 0 1 0 3 3 0 2
Feasibility 3 3 0 3 3 2 0 2 2 2 2 2 3
Analysis 3 3 2 3 3 3 3 3 3 3 3 3 3

Logical Design 3 3 3 3 3 3 3 3 3 0 0 3 3
Physical Design 3 3 3 3 3 3 2 3 2 0 0 2 3
Programming 2 0 3 0 0 2 0 2 0 0 0 0 2

Testing 2 0 2 0 0 3 0 3 0 0 0 0 2
Implementation 1 0 1 2 2 2 0 3 2 0 1 0 2

Evaluation 1 0 0 1 0 2 0 2 2 0 0 0 0
Maintenance 0 0 0 0 0 1 0 0 0 0 0 0 0

Table 10: Coverage of the candidate methodologies by software development phases.

12

In Table 11 we finally complete the multi-attribute value analysis. By summing the product of the phase coverage score by the weight for each
phase from Table 9

Table 11: Methodology scoring according to the focus area.

Preferred methodologies
Table 12 shows the preferred methodology candidates for a Type I product:

Position Methodology Type
Merise Blended

1st position Dynamic Systems Development Methods
Rapid

Development
Methodology

Information Engineering Blended
Soft System Methodology Organisational2nd position

Process Innovation Organisational

Table 12: Selected methodologies selection for a Type I product.

Methodologies and their Focus Areas

Process Blended Object-oriented People Organisational RDM

Phases STRADIS YSM JSD SSADM Merise IE OOA RUP ETHICS SSM PI ISAC DSDM

Strategy 0*0.68 1*0.68 0*0.68 1*0.68 2*0.68 3*0.68 0*0.68 1*0.68 0*0.68 3*0.68 3*0.68 0*0.68 2*0.68
Feasibility 3*0.81 3*0.81 0*0.81 3*0.81 3*0.81 2*0.81 0*0.81 2*0.81 2*0.81 2*0.81 2*0.81 2*0.81 3*0.81
Analysis 3*1 3*1 2*1 3*1 3*1 3*1 3*1 3*1 3*1 3*1 3*1 3*1 3*1

Sum 5.43 6.11 2 6.11 6.79 6.66 3 5.3 4.62 6.66 6.66 4.62 6.79

13

The selected methodology candidates have close scores despite the fact they come
from different methodology groups. A preferred solution can be built with the
selected methodology candidates on the basis of their respective complementarities
and their suitability to the research context.

For instance, possible options could be:

1. Merise or PI, both with a very large ‘soft’ focus approach; and
2. DSDM or SSADM, with a ‘soft’ focus approach, applied to rapid development.

Summary
This paper proposed a methodology using a context-based differentiation of the
research outputs. This methodology is based on a Waterfall-like conceptual
organisational separation of the research phases, as shown in figure 3.

Figure 3: The three research contexts.

Conclusion

This paper has described how to select software development methodologies suited to
the integration of COTS products into larger software systems being constructed to
meet research needs. The following questions will be addressed in future work:

• “How to design an interactive software tool using this proposed methodology
to deal with the multiple contexts of a research environment?” and

• “How can research knowledge be captured, stored and reused efficiently in the
multiple contexts of a research environment?”

Further work is needed to complement this approach to:

• Extend the coverage of this selection process to research outputs developed for
contexts not considered in this paper; and

• To include in the selection process knowledge development process model
(Hanakawa et al. 1998) to support and facilitate the transition and evolution of
a product from one context to another.

14

Appendix A Methodology Phases Equivalence

For reference, Table A1 extracted from Cropley (2003) lists the Avision and
Fitzgerald phases and their conventional systems engineering equivalent.

Methodology Phases

Summary of
Characteristics

SE Process and Lifecycle
Equivalent

Strategy (S) Organisational context, system
purpose and planning.

SE process input to conceptual
and preliminary design

Feasibility (F) Economic, social and technical
evaluation of target system.

SE process input to conceptual
and preliminary design

Analysis (A) User requirements, other? Requirements analysis
Logical design (LD) Functional architecture Requirements analysis and

functional analysis
Physical design (PD) Physical architecture Functional allocation

Programming (P) Physical system development Synthesis
Testing & Evaluation (T&E) Planning and process of T&E System T&E

Implementation (I) Planning and implementation of
technical, social, organisational

aspects of the system.

Development, production,
construction

Maintenance (M) Specific tasks and planning for
maintenance.

Use and support

Table A1: Methodology phases mapped to conventional SE activities and phases (Cropley, 2003).

Appendix B

Avison and Fitzgerald (2003) have gathered a wide range of methodologies under
different themes, as showed in Table 12. To ease the understanding of this table, this
paper presents brief definitions of each of the methodologies.

B.1 Process-oriented Theme

STRADIS stands for Structured Analysis and Design of Information Systems.
Structured design is concerned with the selection and organisation of modules and
interfaces that would solve a pre-defined problem. In essence the methodology uses a
wide variety of techniques which are found in other methods and concentrates, as do
others, on functional decomposition and the use of data flow diagrams. It is concerned
mainly with systems analysis, to a lesser extent with systems design and hardly at all
with implementation.

YSM (Yourdon Systems Method) YSM is similar to STRADIS in its use of functional
decomposition, however a middle-out approach is adopted and slightly more
emphasis is placed on the importance of data structures. YSM is based on functional
decomposition, i.e. the breaking down of a complex problem into manageable units in
a disciplined way. The development of a methodology, like Yourdon, stemmed from
the perceived benefits of software engineering. In its environment model, YSM
displays a systems view of understanding the system. This view is not seen as the
main objective of YSM, but as a tool in the analysis stages. It has a clear objective to
develop a computerised information system. It is designed specifically for real time

15

systems. YSM is supported by case tools, which aids in the understanding of real
world processes and in communicating the knowledge acquired.

JSD (Jackson System Development) is a strong semi-formal method: a way of
analysing a situation into a set of independent but connected dynamic objects with a
high degree of information hiding. JSD is unusual in that it was the first method to
focus on the design and simulation of a real system. Additional control and reporting
functions are added to the central simulation. It is suitable for MIS and Real Time
systems.

B.2 Blended Methodologies

SSADM (Structured Systems Analysis and Design Method, a set of standards
developed in the early 1980s for systems analysis and application design widely used
for government computing projects in the United Kingdom. SSADM uses a
combination of text and diagrams throughout the whole life cycle, from the initial
design idea to the actual physical design of the application.
MERISE (Methode d'Etude et de Realisation Informatique pour les Systemes
d'Enteprise) is a method for the study and implementation of business information
systems. The initial purpose of MERISE was to develop an information system design
methodology which could be used by both private firms and civil services to produce
data processing applications which use databases in a real-time environment, and
which will be more reliable. It became a dynamic modelling method, which models
the behavioural aspects of an information system during the analysis and design
phases of information systems. The MERISE method is based on separation of the
data and the treatments to be carried out in several conceptual and physical models.
The separation of the data and the treatments ensures longevity to the model. Indeed,
the fitting of the data does not have to be often altered, while the data treatment is
frequently reviewed.
IEM (Information Engineering Methodology) is a rigorous architectural approach to
planning, analysing, designing, and implementing applications within an enterprise.
Within the IEM, the enterprise carefully and thoroughly analyses its information
requirements before beginning to build the applications that will support these
requirements. The IEM is a flexible methodology that can be used in different
environments and for different purposes. For any given business situation, the IEM
defines an appropriate development path. Rapid Application Development is itself
one such path, to be used for rapid development of stand-alone systems, incorporating
CASE tools and rapid development techniques.
B.3 Object-Oriented Theme
OOA (Object-Oriented Analysis) strives to understand and model, in terms of object-
oriented concepts (objects and classes), a particular problem within a problem domain
(from its requirements, domain and environment) from a user-oriented or domain
expert's perspective and with an emphasis on modeling the real-world (the system and
its context/ user-environment). The product, or resultant model, of OOA specifies a
complete system and a complete set of requirements and external interface of the
system to be built, often obtained from a domain model.

16

RUP (Rational Unified Process) is a software design methodology created by the
Rational Software Corporation. It describes how to effectively deploy software using
commercially proven techniques, and is a heavyweight process (also described as a
Thick methodology), and hence particularly applicable to larger software
development teams working on large projects. The RUP defines the following
guidelines and templates for team members to follow during a product’s lifecycle:

1. Develop Software Iteratively;
2. Manage Requirements;
3. Use Component Based Architecture;
4. Visually model software;
5. Verify software quality and
6. Control changes to software.

B.4 Rapid Development Theme

DSDM (Dynamics System Development Method) is primarily based on continuous
user involvement in an iterative (prototype-based) development process that is
responsive to changing business requirements but still sufficiently defined for use
with a formal quality management system if required.

B.5 People-Oriented Theme

ETHICS (Effective Technical and Human Implementation of Computer-based
Systems), devised by Enid Mumford of the Manchester Business School is a
methodology based on a participative approach to information systems development
and people-oriented.

Ethics requires a design approach that covers technology and the organizational
context in which the technology is placed. This implies the total design of
departments, functions or areas using new technology including roles, relationships,
activities, and jobs.

B.6 Organisational-Oriented Theme

SSM (Soft System methodology). The two approaches to system development
are: (1) Hard Systems approach and (2) Soft Systems approach. Hard systems
approach is based on systems engineering and systems analysis. The people are
treated as passive observers of the system development process. However, this
approach is not suitable in organizational environment that involves political, social,
or human activities. Development of such systems require an active involvement of
every stakeholder. The approach that encompasses all the stakeholders of the system
is the soft system approach. SSM is a methodology that adopts such 'soft system
approach'. SSM provides an effective and efficient way to carry out a Systems
Analysis of processes in which technological processes and human activities are
interdependent. It is used when the objectives of the system are hard to define,
decision-taking is uncertain, measures of performance are at best qualitative and
human behaviour is irrational. SSM proposes some alternative solutions and selects
the feasible one.

PI (Process Innovation) is an approach to implement Business Process Re-
engineering, with five recommended stages:

17

• Development of the business vision and process objectives;
• Identification of the processes to be redesigned (through the use of IT);
• Understanding and measurement of the existing process;
• Identification of the information technology levers (those IT capabilities that

can fundamentally influence process redesign) and
• Design and construction of a new process.

ISAC (Information systems work and analysis of change) is a methodology that helps
developing information systems by emphasising cooperation between users,
developers and sponsors. The main techniques applied in ISAC are analysis and
design. The methodology consists of five phases that are broken down in several sub-
steps:

• Change analysis;
• Activity study;
• Information analysis;
• Data system design and
• Equipment adaptation.

References

Avison, D E and Fitzgerald, D (1995), Information Systems Development:
Methodologies, Techniques and Tools, McGraw Hill Book Company Europe. Second
edition. 1995.
Avison, D E and Fitzgerald, D (2003), Information Systems Development:
Methodologies, Techniques and Tools, McGraw Hill Book Company Europe. Third
edition. 2003.

Blanchard B S & Fabrycky W J (1998), Systems Engineering and Analysis, 3rd Ed.,
Prentice Hall, 1998.

Brownsword, L., Oberndorf, T., Sledge, C (2000), Developing New Processes for
COTS Based Systems, IEEE Software July/August 2000.

Buede D., (2000), The Engineering Design of Systems, Wylie, New York 2000.

Cropley D, Yue Y, Cook, S (2003), On Identifying a Methodology for Land C2
Architecture Development, Land Operations Division, DSTO, Edinburgh, 2003.

Hanakawa, N, Morisaki, S, Matsumoto K, (1998), A Learning Curve Based
Simulation for Software Development, Proceedings of the 20th International
Conference on Software Engineering, Kyoto, Japan 1998.

http://www.mathworks.com/ The MathWorks, Inc. 3 Apple Hill Drive Natick, MA
01760-2098, USA Phone: 508-647-7000.

18

http://defweb.cbr.defence.gov.au/home/documents/departmental/manuals/cslcm.htm,
(2002) Capability Systems Life Cycle Management Manual, Department of Defence,
 2002.
ISO/IEC 15288 (2002), System engineering – System life cycle processes, ISO/IEC
2002.
Kinnaird, M. (2003), Defence Procurement Review, 15 August 2003.

Smith, J. (2004), An alternative to TRLs for COTS Software-Intensive Systems,
Carnegie Mellon, Software Engineering Institute, Pittsburgh, PA 15213-3890, 2004.

SSC San Diego Systems Engineering Process Office (2003), Overview of 5000-Series
Acquisition Directives, http://akss.dau.mil, 2003.

US DoD, Interim Defence Acquisition Guidebook (2002). October 30, 2002.

www.ni.com/labview/ National Instruments Corporation11500 N Mopac Expwy
Austin, TX, USA Phone: 78759-3504.

