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Introduction

Model life table systems [1] [2] [3] are extensively used in demographic, epidemiological
and economic analyses.  Probably the most widespread use is to infer age patterns of
adult mortality, about which comparatively little is known in developing countries, from
levels of child mortality, which are much more reliably documented [4].  Yet, substantial
evidence has accumulated that these widely used model life table systems do not
adequately represent the range of age-specific patterns that are empirically observed. 
The routine use of split-level modifications of the Coale-Demeny and the United Nations
model life table systems is one manifestation of the inadequacy of the original models for
current estimation purposes.  Concomitantly, there has been a major expansion of
empirically observed data on age-specific mortality in countries with complete or very
nearly complete registration systems over the last 30 years [4].   These data provide an
opportunity to improve the widely used model life table systems through a reappraisal of
age patterns of mortality that have been observed in such populations.

In this paper, we present the development and testing of a new model life table system
based on a modification of the Brass Logit life table system [2].  The paper is divided into
six sections.  The first section briefly reviews some of the main uses of model life tables
and consequently the requirements for a good model life table system.  Section two
reviews the main two-parameter model life table systems, emphasizing the Coale-
Demeny, United Nations and Brass systems.  In the third section, we present the logic
and mathematical foundation for a modification of the Brass Logit life table system.  The
WHO dataset of high quality life tables which provides the empirical basis for the
development of the WHO system is reviewed in Section 4.   The empirical estimation of
the Modified Logit life table system is developed in section 5, including basic information
on the robustness of the model.   Section 6 provides a direct empirical assessment of the
adequacy and predictive power of the Coale-Demeny and Modified Logit systems for a
random sample of life tables.   Some limitations and implications of this work are
presented in the final section.

I.  Uses and Required Properties for Model Life Table Systems

Understanding the strengths and weaknesses of model life table systems and thus the
direction for an improved system should start with a clear articulation of the multiple
uses of model life tables.  Model life tables are extensively used for smoothing data,
incorporating age-specific mortality patterns in various indirect estimation techniques
such as sibling or parental survival, and forecasting age-specific mortality rates [1] [3] [5].
  One of the most important uses of model life tables is in routine demographic estimation
work in settings where complete vital registration is not available.  A complete life table
often is estimated with information only on child mortality or child mortality and some
measure of adult mortality experience.  Another important use of model life tables is in
the economic appraisal of health interventions when the benefits of an intervention must
be modelled in the context of general levels of mortality.

Model life tables are not models in the usual sense of the word.  They are not causal
theories or statistical models.  Rather, model life tables can be thought of as
representation theorems.   The central thesis is that the complex phenomenon of age-
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specific mortality rates can be adequately represented by two or three parameters such as
model family and level.  Being able to represent a full schedule of mortality by age with
two or three pieces of information simplifies understanding mortality patterns and has
proven to have multiple analytical uses in many fields.  Thinking of model life tables as
representation theorems may help in formulating appropriate empirical tests of the
adequacy of a model life table system.

We propose at least three required properties for a model life table system.  The first
required property is that it be simple and easily used.  In practice, this probably means
that a model life table system should at most use two parameters to define a unique life
table.  More complicated systems may do better on the second and third criteria
described below but the fact remains that such systems have not been widely used in
applied work.   We include in the category of two parameter systems: the Coale-Demeny
family of life tables, the United Nations models, the Brass Logit system and the
Ledermann system [6].  The Coale and Demeny and United Nations systems are de facto
two parameter systems, the choice of family is one parameter and the level is the second
parameter.  The Brass logit system when a single global standard is used has two
parameters, � and �.  When multiple standards are used, it becomes a three parameter
system.

Second, any two-parameter model life table system should also adequately capture the
true range of age-specific mortality patterns seen in real populations.  In other words,
model life table systems should not under-represent the extent to which mortality by age
can vary across populations.  For example, if one looks at the scatterplot of child
mortality measured using 5q0 and adult mortality measured using 45q15 in populations
with good vital registration data, how much of the diversity of this pattern is captured in
the model life table system? 

Third, when a model life table system is used to select a life table to represent mortality
by age for a population, how close a fit is there between the predicted mortality rates and
actual mortality rates?  The fit between predicted and actual can be assessed in many
ways such as the root mean square error in the death rates (or log of death rates), the
explained variance or the average relative error in age-specific death rates.  Formal
assessment of the predictive power of a model life table system should be an absolute
requirement to judge its adequacy. 

There are other uses and therefore other criteria that can be proposed to evaluate a model
life table system.  For this paper, however, we focus on two-parameter systems and more
formally assess the range of age-specific mortality patterns they capture and their
predictive power.
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II.  Two Parameter Model Life Table Systems

The basic objective in the creation of any model life table is to construct a system that
gives mortality rates by sex and age, defined by a small number of parameters that
capture the level as well as the age pattern of mortality.  If a particular model adequately
represents reality, the characteristics of a given population can be summarized by the
parameters of that model, thereby facilitating the study of variation among populations
or within a population over time.  The principles underlying each of the existing model
life tables are discussed below.

The first set of model life tables was published by the United Nations in 1955 [7]. This
was a relatively simple one- parameter system indexed on infant mortality levels.
Subsequently, the United Nations published  a revised set of model life tables in 1981
which attempted to construct regional models, as did Coale and Demeny, but using data
from developing countries judged adequate for inclusion in the empirical dataset. The
underlying data consisted of 36 life tables covering a wide range of mortality levels from
developing countries, by sex. Sixteen pairs of life tables came from 10 countries in Latin
America, 19 pairs from 11 countries in Asia, and one pair from Africa.  Five families of
models were identified, each with a set of tables ranging from a life expectancy of 35 to 75
years for each sex.  Each family of models covers a geographical area: Latin American,
Chilean, South Asian, Far Eastern and a General Pattern.  The general model was
constructed as an average of all the observations.

However, perhaps the most widely used model life table system has been the Coale-
Demeny regional model life tables.  First published in 1966, they were derived from a set
of 326 life tables, by sex, from actual populations. This set included life tables from
several time periods (23 from before 1870 and 114 from after the Second World War) and
mostly from Western countries.  Europe, North America and Oceania contributed a total
of 246 tables. Three were from 32 from Asia, 33 from Latin America and 15 from Africa. 
All of the 326 selected life tables were derived from registration data, and were subjected
to stringent standards of accuracy.  In addition to discarding life tables which lacked
separate treatment of the sexes or breakdown into five year age groups (with separate
age groups for age 0 and age 1-4), an effort was made to avoid repetition by excluding
sub-national life tables as well as life tables referring to consecutive intercensal years
routinely calculated in some countries.  The researchers also eliminated tables covering
years in which a major war occurred [1].

 

Further analysis of the underlying relationships identified four typical age patterns of
mortality, determined largely by the geographical location of the population, but also on
the basis of their patterns of deviations from previously estimated regression equations.
Those patterns were called: North, South, East, and West.  Each had a characteristic
pattern of child mortality.  The East model comes mainly from the Eastern European
countries, and is characterized by high child mortality in relation to infant mortality.  The
North model is based largely on the Nordic countries, and is characterized by
comparatively low infant mortality, high child mortality and low old age mortality
beyond age 50.  The South model is based on life tables from the countries of Southern
Europe (Spain, Portugal, and southern Italy), and has a mortality pattern characterized
by (a) high child mortality in relation to infant mortality at high overall mortality, and (b)
low child relative to infant mortality at low overall mortality. The West model is based on
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the residual tables not used in the other regional sets (i.e., countries of Western Europe
and most of the non-European populations).   It is characterized by a pattern intermediate
between North and the East patterns.  Because this model is derived from the largest
number and broadest variety of cases, it is believed to represent the most general
mortality pattern.  In this system, any survivorship probability, whether from birth or
conditional on having attained a certain age, uniquely determines a life table, once a
family has been selected.  Although technically a one parameter system, it could be
argued that the choice of a family constitutes a separate dimension. The system was
updated in 1989, primarily to include extensions of the model life tables to age 100+ [8].

The Ledermann system of model life tables was first published in 1959 and was
subsequently revised over the course of the following decade [6].  This system is based on
a factor analysis of some 157 empirical tables.  The method of selection was less rigid than
that of the Coale-Demeny tables, but they represent more developing country
experiences.  Analysis of the tables disclosed five factors that apparently explained a
large proportion of the variability in mortality among the life tables.  The extracted
factors were related to 1.) the general level of mortality, 2.) the relation between child and
adult mortality, 3.) mortality at older ages, 4.) mortality under age five, and 5.) the sex
difference in mortality between the ages of 5 and 70 years.  Ledermann then developed a
series of one- and two- parameter model life tables based on these results.

 A different approach to constructing life table systems was first proposed by Brass in
1971 [2]. This relational system of life tables was built up from the observed structural
relationship of survival curves among life tables. This system provides a greater degree
of flexibility than the empirical models discussed above. It rests on the assumption that
two distinct age-patterns of mortality can be related to each other by a linear relationship
between the logit of their respective survivorship probabilities. Thus for any two
observed series of survivorship values, lx and lsx, where the latter is the standard, it is
possible to find constants � and � such that

 

for all age x between 1 and �. If the above equation holds for every pair of life tables, then
any life table can be generated from a single standard life table by changing the pairs of
(�,�) values used.  In reality, the assumption of linearity is only approximately satisfied
by pairs of actual life tables.  However, the approximation is close enough to warrant the
use of the model to study and fit observed mortality schedules.  The parameter � varies
the mortality level of the standard, while � varies the slope of the standard, i.e., it governs
the relationship between the mortality in children and adults. Figure 1 shows the result of
varying � and �.  As � decreases, there is higher survival in the older ages relative to the
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standard, and vice versa.  Higher values of � at a fixed � lead to lower survival relative to
the standard.

Figure 1. Effect of Changing α and β on Pattern of Observed Mortality Relative
to Standard

  

Shortcomings of the Empirical Model Life Table Systems

There are three major criticisms of the original one-parameter UN model life tables.  First,
the fact that they are one-parameter systems makes them relatively inflexible.   Such a
single parameter model cannot adequately describe the complex mortality patterns
available.  In some cases, they have failed to describe adequately life tables that were
known to be accurate [9].  Second, because the estimate of mortality in each age group is
ultimately linked to the infant mortality rate through the chaining process, measurement
errors are easily accentuated.  The third criticism concerns the poverty of developing
country life tables in the original design of the model. Additionally, some of the empirical
tables included were of dubious quality.

The two-parameter UN model life tables for developing countries, while clearly an
improvement over the one-parameter system, also suffer from some of these limitations. 
Perhaps the main criticism of the two-parameter UN system is that the strict selection
criteria reduced the underlying set of empirical life tables to 72 (out of 286 originally
retained).  This relatively small number limits the applicability of the models to other
populations.  Moreover, the life tables are now outdated.
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The Coale-Demeny model life tables had much higher standards of accuracy for the
empirical tables.  This demand, however, limited the number of non-European countries
represented.  As such, the Coale-Demeny tables may not cover patterns of mortality
existing in the contemporary developing world. In fact, there are examples of well-
documented mortality patterns that lie outside the range of the Coale-Demeny tables. In
particular, Demeny and Shorter found no table within the family that adequately
reflected the Turkish mortality experience [10].  The fact that one of the parameters of the
Coale-Demeny system (the “family”) is discrete restricts the flexibility of the system,
certainly in comparison to other systems where both parameters are continuous.

 

The Ledermann system is criticized primarily for its relative complexity which essentially
precludes its use in most developing countries. Even though it does provide some
flexibility through a wider variety of entry values, in practice most of these values are not
easily estimated for most developing countries.  This drawback reduces its relative
advantages over the UN and the Coale-Demeny models.   A second major limitation is
that the independent variables used in deriving the model refer, with only one exception,
to parameters obtained from data on both sexes combined.  The user is, therefore, forced
to accept the relationships between male and female mortality embodied in the model
even when there is evidence to the contrary.  For instance, it is near impossible to
estimate a Ledermann model life table in which the male expectation of life exceeds that
of females.

 

Another shortcoming common to all three empirical models is their dependence on the
type of data that generated them.  The datasets upon which they were built exclude a
significant proportion of possible mortality schedules.   Although the UN set of model
life tables attempted to address this issue, there were serious flaws in the selection of life
tables as well as the criteria of acceptance.

 

It is clear, therefore, that there are serious technical issues that complicate the use of
existing empirical models in describing mortality patterns in contemporary developing
countries.  We are proposing a new modified two-parameter system of model life tables
anchored on the logit system.  The choice of the logit system was based on a careful
comparative evaluation of the logit and the Coale-Demeny systems.  This evaluation
process is presented in a subsequent section.
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Modified Logit Life Table System

Principle of the Brass Logit Life Table System

The Brass Logit life table system [2] belongs to a category of mortality models called
relational models.  It features a standard life table and two parameters which, through a
mathematical transformation, relate the standard life table to any life table.  The general
shape of the survivorship functions is captured through the mortality standard while the
parameters help to capture deviations from the standard.

One problem with Brass’ original relational model is that the relationship between two
survivorship functions in logits is not always linear.  Deviations from linearity appear to
be particularly large when the observed mortality of a population is far from that of the
standard.  Thus the complexity of variations in levels and age patterns of mortality is not
fully captured by the logit model.  This observation led several authors to modify Brass’
original model by including additional parameters that allow for bends in the
survivorship function [11] [12].  This modification, however, is of little practical use,
because the additional parameters are difficult to estimate empirically and complicate the
applied use of the models.

Our modification of Brass’ transformation is based upon some simple but powerful
observations.  The basic observation is that deviations from linearity follow some specific
regularities which can be modelled in relation to the amount of mortality change between
the standard and the observed life table.

These shifts in the structure of mortality can be illustrated by plotting a series of logit life
table values against logit values taken from an earlier life table, and examining how the
resulting curves depart from linearity.  This is shown in Figure 2, which presents data for
US males.  In this figure, annual logit life table values from 1990 to 1995 are plotted
against logit values for 1900, taken as a standard.  It is clear that mortality change over
time leads to a change in the age pattern of mortality that is not fully captured by the
logit relational model.  Indeed, if the logit transformation were fully appropriate, the
successive plots in the figure would remain linear over time.
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Figure 2:  Annual Logit Life Table Values (1900-95)  vs. 1900 Logit Values (US
Males)

Our modification of Brass’ logit transformation is based upon the observation that
differences between observed and predicted logit values follow a pattern that is
predictable as the mortality level of the observed life table deviates from that of the
standard.  That is, deviations from linearity in the original Brass model are linked to the
relative difference between the mortality level of the standard and the mortality of the
actual life table being estimated.

We can generalize the principle underlying Brass’ approach to postulate that there is
some transformation of the survivorship function such that all transformed survivorship
functions are linear functions of each other.  If this transformation can be identified then
all survivorship functions can be expressed as a two-parameter transformation of all
other survivorship functions.  Formally:
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The problem is that the logit transformation does not make most survivorship functions
completely linear.  To develop the modified model life table system, we have sought to
identify a transformation that will do a better job of linearizing survivorship functions.

Modifying the Logit Transformation

Several authors have modified the Brass Logit life table system by including extra
parameters that allow for bends in the survivorship function [11] [12].  With more
parameters the model life table system is more flexible but difficult in practice to use. 
Using the extensive dataset of high quality life tables for many countries at WHO, we
have sought to try and identify alternative transformations, �, that would come closer to
linearizing the relationship between most survivorship functions and thus having a two
parameter model life table system with better predictive power.  This search has been
driven by empirical investigation of the differences between observed and predicted
survivorship at each age.  In this section, we provide the mathematical form of the
transformation that we have found to give the best predictive power.  The empirical
fitting of the model is described below.  

Comparison of observed and predicted age-specific mortality rates using the Brass logit
transformation with a global standard reveals that as a population’s mortality moves
farther away from the standard systematic errors appear.  Exploratory analysis revealed
that this systematic error at each age was related to both the level of child mortality
relative to the standard and the level of middle-age adult mortality relative to the
standard.  Based on this finding, a variety of alternative transformations have been
investigated.  Ultimately, based on multiple tests, the transformation that we have
selected is:

Eq.3  ))
)(
)((1())

)(
)((1()()(

60

60

5

5
sxsxxx lLogit

lLogit
lLogit
lLogitlLogitl ������ ��

The parameter γx is a constant across populations with a different value for each age
group as is the parameter �x .   The transformation is defined with respect to a single
global standard.  This standard is defined as the lx values from the simple, unweighted
average of all age-specific death rates from the 1802 populations retained in the final
dataset.  The set of γx and �x are, accordingly, defined with reference to this global
standard and are presented along with the parameter values in Table 3.

The effect of this transformation on a set of survivorship functions is shown in Figure 3.
In the top panel, the deviations (residuals) by age between the logits of the observed lx

and those predicted from the original Brass system are plotted for four populations
covering a range of mortality experiences.  Substantial deviations are evident in all four
populations, particularly at ages 0-4 and among older adults.  In the bottom panel, the
deviations based on this new transformation are shown for the same four populations. 
Clearly the fit is much better. Because this transformation makes the relationship between
survivorship functions more linear with respect to age, a two parameter fit on the
transformed standard will perform much better than the original simple logit
transformation.
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It is important to note that γx and �x do not vary across countries or years.  Because of this,
each life table can still be uniquely defined with this transformation as a linear function of
a standard using only two parameters.   It is more advantageous to use the parameters of
l5 and l60 to define a unique life table rather than � and � since values of these are more
readily interpretable than values of � and �.   It remains an empirical task to estimate the
set of γx and �x which is developed below.

Figure 3a:  Deviations Between Observed and Predicted Logits by Age Using
the Original Brass Logit Model, Selected Countries.

Figure 3b:  Deviations Between Observed and Predicted Logits by Age Using
the Modified Logit Model, Selected Countries.
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Dataset of Life Tables

The transformation selected to modify the original Brass Logit system includes three
standard functions, lx, �x and γx  which are age- and sex-specific, but invariant across
populations. These functions need to be estimated from a dataset of life tables which are
considered to adequately reflect the age-sex patterns of mortality in as many countries as
possible.  Beginning in the 1960’s, WHO began to systematically collect vital registration
data on causes of death in countries, making every effort to complete the series back to
1950.  For most countries, the most recent data refer to the period 1998-2000 [4].  The data
for most countries contain the number of deaths by age, sex and cause, classified
according to the Revision of the International Classification of Diseases in use.  Data are
collected by the conventional 5 – year age groups (0,1-4, 5-9, …, 85+), although in recent
years the terminal age group has been extended to 100+.  For each year, mid-year
population estimates by age and sex are also provided by reporting countries. These data
have been screened for completeness using standard demographic tests, and only those
country-years for which mortality was considered complete have been retained for this
analysis.

This dataset was supplemented by life tables from two other sources.  The historical
compilation of life tables by Preston, Keyfitz and Schoen [13] were added to the data set
for years not covered by the WHO mortality dataset.  The mortality data underlying
these life tables had been adjusted, where necessary, for under-reporting.  To improve the
coverage of developing countries in the dataset, the adjusted national life tables used by
the United Nations [3] to produce their model life tables were also added.

Apart from the criteria of completeness and age- and sex-specific detail, we also applied
criteria to exclude life tables of populations during periods of war or those affected by the
Spanish influenza pandemic of 1918-19. Data for years prior to 1900 were excluded since
the age patterns of mortality tended to be atypical. Small populations with a total size of
less than one million people (both sexes combined) were also excluded to minimize the
effects of random fluctuations in death rates.

The resulting set of 1,802 life tables used to develop the model are shown in Table 1.
There is, of course, a preponderance of countries from Europe, North America and
Australasia, but among the 63 countries represented, about one-third belong to
developing regions. For several developed countries, historical datasets back to the
beginning of the century have been included.

Table 2 summarises the characteristics of the life tables included in the dataset.  The mean
life expectancies are relatively high (67.5 years for males, 73.4 for females), reflecting the
developed country bias, although the range of life expectancies (27 to 77 years for males,
29 to 84 years for females) certainly encompass the experience of all countries [4]. 
Average levels of child and adult mortality are not too dissimilar to what is observed in
many developing countries today and again the range of values more than encompasses
estimated levels across all developing countries, with the exception of a few countries in
Africa (Namibia, Botswana, Zambia) where female mortality from HIV is extreme.
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Table 1:  Life Tables Comprising the Empirical Dataset

Country Year(s)

Argentina 1966-70, 77-79, 82-97

Australia 1911, 1921, 1950-97

Austria 1955-99

Belarus 1981-98

Belgium 1954-98

Bangladesh (Matlab Region) 1975

Bulgaria 1964-98

Canada 1921, 1950-97

Chile 1909, 1920, 1930, 1940, 1950, 1955-82, 1984-98

Colombia 1960, 1964

Costa Rica 1956-83, 1985-98

Croatia 1982-98

Cuba 1970-98

Czech Republic 1934, 1982-99

Denmark 1921, 1930, 1952-98

El Salvador 1950, 1971

Estonia 1981-98

Finland 1952-98

France 1900-13, 1920-39, 1946-97

Georgia 1981-96

Germany 1969-98

Greece 1928, 1956-98

Guatemala 1961, 1964

Honduras 1961, 1974

Hungary 1955-99

India 1971

Iran 1974

Ireland 1950-98

Israel 1975-98

Italy 1901, 1910, 1921, 1931, 1951-97

Japan 1950-98

Korea, Rep. of 1973

Latvia 1980-98

Lithuania 1981-98
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Table 1:  Life Tables Comprising the Empirical Dataset (continued)

Country Year(s)

Macedonia 1982-97

Mauritius 1990-98

Mexico 1958-59, 1969-73, 1981-83, 1985-98

Netherlands 1950-98

New Zealand 1901, 1911, 1950-98

Norway 1910, 1920, 1951-98

Panama 1960

Peru 1970

Philippines 1964, 1970

Poland 1959-98

Portugal 1920, 1930, 1940, 1955-98

Republic of Moldova 1981-98

Romania 1963, 1969-98

Russian Federation 1980-98

Singapore 1955-98

Slovakia 1982-98

Slovenia 1982-98

South Africa 1941, 1951, 1960

Spain 1930, 1940, 1951-69, 1971-98

Sri Lanka 1946, 1953

Sweden 1900-17, 1920-98

Switzerland 1951-98

Thailand 1970

Trinidad and Tobago 1990-97

Tunisia 1968

Ukraine 1981-98

United Kingdom 1901, 1911, 1921, 1931, 1950-98

United States of America 1900-16, 1920-41, 1945-98

Yugoslavia 1982-97
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Table 2:  Characteristics of Life Tables Comprising the Empirical Dataset

Sex Parameter Mean Std. Dev. Minimum Maximum

Males: e0 67.46 6.16 26.64 77.29

5q0 0.039 0.047 0.005 0.439

45q15 0.208 0.076 0.087 0.762

20q60 0.636 0.078 0.422 0.906

Females: e0 73.39 6.81 29.20 84.00

5q0 0.033 0.043 0.003 0.427

45q15 0.121 0.066 0.049 0.656

20q60 0.478 0.099 0.222 0.833

Empirical Fitting of the Modified Logit Life Table System

A. Estimating �x and γx

By rewriting equations 3 and 1, we can express the age-specific �x and γx and � and �  for
each country (i)-year(j) in a way that we can estimate the parameter values using OLS
regression:

Eq.4  ))
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The last two terms of Equation 4 are designed to control for the mortality differential
between the standard life table and the actual life table.  The first one captures differences
in child mortality while the second captures differences in adult mortality up to age 60. 
We have estimated �ij and �ij  for each country-year life table and the set of �x and γx,
separately by sex, using OLS regression.  The standard life table used is a sex-specific
global standard calculated by taking the average of all sex-specific life tables included in
the dataset.  Due to computational limitations which prevented estimation of these
parameters in one single regression using the entire dataset, we took 1000 random
samples each of 100 life tables from the dataset and estimated �x and γx in each case.  As
the typical deviation from the standard neither in the same direction nor of the same
magnitude across age groups, �x and γx are constants with different values for each age
group. The estimates of �x and γx were significant at the 95% confidence level for each age
group except one, which was significant at the 90% level.  The distributions of the
resulting �x and γx are summarised in Table 3 and Figure 4.  Table 3 provides a summary
of the estimated values at different percentiles of the distribution.  These results are
illustrated more fully in Figure 4 which presents standard box-whisker plots of the
distribution of the estimates at each age.  As the Figure shows,  the age pattern for both
parameters in males and females follows a consistent pattern.  In all cases, we used the
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50th percentile value of the distribution for �x and γx, except for males at ages 65 and over
for whom the 25th percentile values were used in order to improve the fit of the model at
older ages.

B. Estimating the models

Having estimated �x and γx, we can proceed to developing model life tables using the
modified transformation.  Firstly, we have constructed the global standard set of lx values
for males and females by simply amalgamating all countries in the dataset using the un-
weighted average.  Because the Modified Logit transformation includes two indices, one
based on l5 and the other on l60,  which change as a survivorship function moves away
from the global standard, it is more convenient to use l5 and l60 as the two parameters for
the life table system.  Any pair of l5 and l60 uniquely defines a life table because �ij and �ij

are a function of l5 and l60. It can be shown that:

Eq.5 

Eq.6

We proceed to use the transformation and these equations to generate model life tables
for a wide range of combinations of l5 and l60.  We create the set of model life tables by
sampling systematically from l5 and l60  and discarding combinations that are logically
impossible (e.g., l5 < l60) .   Through this procedure, we generated approximately 50,000
life tables, each defined by a unique combination of l5 and l60.  The corresponding set of l5

and l60 values from these 50,000 life tables are shown in Figure 5.  Since similar values of
l5 and l60 imply implausibly low levels of 45q15, there are no sample points close to the 45°
axis.

Figure 4a:  Box-Whisker Plots of Estimated γx by Age
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Figure 4b:  Box-Whisker Plots of Estimated θx by Age

Using this collection of 50,000 life tables, we can visualize various life table parameters 
such as nqx and ex in the two dimensional space defined by l5 and l60.   Figure 6a shows life
expectancy at birth isoclines corresponding to given values of l5 and l60.  Each point on the
isocline corresponds to a constant level of life expectancy generated by different age-
patterns of mortality.   The same life expectancy is possible with low child mortality and
high adult mortality or higher child and lower adult mortality.   The isoclines
demonstrate that the same life expectancy can occur with widely varying age-patterns. 
This is illustrated more clearly in Figure 7 for an isocline with male life expectancy of 65
years.  The figure shows the logarithm of death rates for four points on that isocline.  The
very substantial variation among the four sets of death rates illustrates the heterogeneity
of age-patterns of mortality that we are trying to better capture with the Modified Logit
life table system.

Figure 5:  Values of l5 and l60 from the Modified Logit System, Males

l5
0 .2 .4 .6 .8 1

0

.2

.4

.6

.8

1

l60

l5

Males

Age

Females

Age

-1

0

1

2

0
1

5
10

15
20

25
30

35
40

45
50

55
60

65
70

75
80

85
-1

0

1

2

0
1

5
10

15
20

25
30

35
40

45
50

55
60

65
70

75
80

85



18

Figure 6:  Isoclines of e0, 45q15 and 20q60, Selected Values, Males

Figure 7:  Log Mx for Four Populations with Male e0 = 65 Years
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One can similarly visualize variation in other derivative life table measures based on the
collection of 50,000 life tables according to levels of l5 and l60.  Figures 6b and 6c show,
respectively, how adult mortality (45q15) and mortality among the elderly (20q60) vary
according to the two index life table parameters, l5 and l60.  Consider Figure 6b.  Each
isocline corresponds to a fixed level of 45q15 which can be obtained from specified values
of l5  and l60.  At a given level of child mortality, the gap between successive isoclines
remains relatively constant, since mortality at ages 5-14 is low in all populations and
relatively invariant.  Figure 6c, on the other hand, indicates that the impact on older age
mortality of declining levels of child and adult mortality is much less apparent, with only
a modest overall level effect between child mortality and 20q60.  Rather, levels of 20q60 are
much more strongly determined by levels of adult mortality, as one would expect.

A key advantage of the Modified Logit system is that any two life table parameters define
a unique life table.  The contour lines in Figures 6 demonstrate how there are an infinite
set of combinations of l5 and l60 and thus complete life tables for any given level of a
mortality measure such as life expectancy at birth.  If two life table indices are known
such as 5q0 and e0 then a unique life table is defined in this system at the point where the
different contours intersect.  For example, referring to Figure 6a, if we know 5q0 is 100 per
1000 and life expectancy at birth is 60 years, then the unique life table is defined by an l5

of 0.900 and an l60 of  0.652.

Because the contours cannot easily be defined analytically, we have developed two
methods to identify the life table in the model life table system that matches any two life
table parameters.   Using the first method, we identify the full life table from a previously
generated dataset of 50,000 life tables that provides the closest match to the estimated 5q0

and 45q15.  The second method requires generating a 10x10 matrix of life tables across the
entire range of l5/l60 space, whose parameters are then compared with the observed (or
estimated) input values.  After selecting the life table whose values of 5q0 and 45q15 match
most closely with the inputs, a second 10x10 matrix of life tables is generated, centered on
the values of l5 and l60 corresponding to the matching life table from the first set.  The
five-fold repetition of this process provides a degree of precision comparable to the first
method and does not require the underlying dataset of 50,000 life tables.
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TABLE 3a:  2.5, 25, 50, 75 and 97.5 Percentile Values of �x and γx , Males

             �x                     �x     

                        Percentile           Percentile

Standard Age(x) 2.5 25 50 75 97.5 2.5 25 50 75 97.5

1.0000 0 - - - - - - - - - -

0.9695 1 0.1261 0.1583 0.1767 0.1948 0.2276 -0.0375 -0.0203 -0.0103 0.0002 0.0194

0.9612 5 0 0 0 0 0 0 0 0 0 0

0.9578 10 -0.0380 -0.0252 -0.0184 -0.0115 0.0029 -0.0101 -0.0024 0.0017 0.0056 0.0129

0.9550 15 -0.0469 -0.0272 -0.0171 -0.0067 0.0145 -0.0140 -0.0020 0.0038 0.0102 0.0209

0.9491 20 0.0009 0.0357 0.0538 0.0730 0.1079 -0.0284 -0.0094 0.0017 0.0128 0.0334

0.9404 25 0.0578 0.1084 0.1371 0.1631 0.2159 -0.0669 -0.0378 -0.0209 -0.0050 0.0252

0.9314 30 0.1049 0.1630 0.1966 0.2283 0.2890 -0.1028 -0.0712 -0.0519 -0.0338 0.0006

0.9209 35 0.1570 0.2161 0.2499 0.2818 0.3463 -0.1414 -0.1088 -0.0891 -0.0709 -0.0361

0.9072 40 0.2077 0.2618 0.2922 0.3227 0.3812 -0.1714 -0.1421 -0.1252 -0.1087 -0.0807

0.8879 45 0.2398 0.2861 0.3114 0.3365 0.3849 -0.1852 -0.1608 -0.1479 -0.1336 -0.1100

0.8598 50 0.2268 0.2625 0.2808 0.2997 0.3360 -0.1678 -0.1487 -0.1394 -0.1292 -0.1107

0.8185 55 0.1499 0.1704 0.1802 0.1907 0.2101 -0.1062 -0.0958 -0.0907 -0.0849 -0.0737

0.7592 60 0 0 0 0 0 0 0 0 0 0

0.6760 65 -0.2817 -0.2620 -0.2523 -0.2412 -0.2177 0.0991 0.1138 0.1195 0.1250 0.1350

0.5664 70 -0.6357 -0.6010 -0.5821 -0.5616 -0.5163 0.2174 0.2512 0.2625 0.2726 0.2925

0.4306 75 -1.0848 -1.0328 -1.0048 -0.9735 -0.9051 0.3601 0.4039 0.4210 0.4363 0.4672

0.2816 80 -1.6637 -1.5887 -1.5501 -1.5032 -1.3984 0.5131 0.5750 0.5991 0.6224 0.6664

0.1437 85 -2.4635 -2.3398 -2.2721 -2.2022 -2.0441 0.6729 0.7707 0.8094 0.8460 0.9185
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TABLE 3b:  2.5, 25, 50, 75 and 97.5 Percentile Values of �x and γx, Females

             �x   �x

                       Percentile           Percentile

Standard Age(x) 2.5 25 50 75 97.5 2.5 25 50 75 97.5

1.0000 0 - - - - - - - - - -

0.9753 1 0.0216 0.0809 0.1077 0.1367 0.1919 0.0024 0.0459 0.0678 0.0919 0.1425

0.9675 5 0 0 0 0 0 0 0 0 0 0

0.9647 10 -0.0140 0.0039 0.0133 0.0224 0.0396 -0.0484 -0.0346 -0.0272 -0.0196 -0.0051

0.9626 15 0.0055 0.0321 0.0462 0.0615 0.0913 -0.0911 -0.0671 -0.0547 -0.0425 -0.0203

0.9591 20 0.0726 0.1136 0.1363 0.1598 0.2064 -0.1730 -0.1345 -0.1155 -0.0964 -0.0616

0.9547 25 0.1180 0.1763 0.2075 0.2408 0.3074 -0.2581 -0.2035 -0.1758 -0.1509 -0.1041

0.9496 30 0.1405 0.2116 0.2470 0.2839 0.3609 -0.3103 -0.2483 -0.2168 -0.1870 -0.1324

0.9434 35 0.1699 0.2423 0.2793 0.3158 0.3969 -0.3406 -0.2765 -0.2455 -0.2151 -0.1601

0.9352 40 0.2016 0.2694 0.3027 0.3384 0.4109 -0.3527 -0.2924 -0.2639 -0.2353 -0.1865

0.9239 45 0.2397 0.2905 0.3187 0.3480 0.4099 -0.3367 -0.2848 -0.2601 -0.2358 -0.1947

0.9075 50 0.2252 0.2654 0.2879 0.3117 0.3593 -0.2742 -0.2377 -0.2181 -0.2006 -0.1691

0.8835 55 0.1499 0.1732 0.1870 0.2000 0.2269 -0.1626 -0.1436 -0.1330 -0.1229 -0.1053

0.8488 60 0 0 0 0 0 0 0 0 0 0

0.7968 65 -0.3447 -0.3157 -0.3018 -0.2880 -0.2620 0.1613 0.1807 0.1913 0.2024 0.2231

0.7195 70 -0.8187 -0.7653 -0.7372 -0.7111 -0.6592 0.3894 0.4264 0.4462 0.4674 0.5066

0.6050 75 -1.4493 -1.3691 -1.3254 -1.2835 -1.2051 0.6803 0.7372 0.7658 0.8000 0.8587

0.4504 80 -2.2708 -2.1548 -2.0926 -2.0302 -1.9138 1.0335 1.1171 1.1586 1.2042 1.2865

0.2713 85 -3.3132 -3.1398 -3.0473 -2.9540 -2.7769 1.4257 1.5469 1.6083 1.6801 1.8066
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Comparing the Coale-Demeny and Modified Logit Systems

How well do these model life table systems capture the observed range of mortality
experience?  As noted above, one important criterion for a model life table system is that
it adequately represents the known range of mortality experience across countries. 
Figures 8-10 make three types of comparisons: 5q0 and e0, 5q0 and 45q15, and 45q15 and 20q60,
respectively.  In each figure the observed points from the underlying dataset are shown
and compared with the Coale-Demeny model life table values.   It is clear that the range
of mortality experience captured in the Coale-Demeny system is much smaller than the
observed range in the empirical life tables, particularly at medium levels of mortality.

Figure 8:  Comparison of Observed Patterns of 5q0 and e0 vs. Coale-Demeny
Model Values, Males

Figure 9:  Comparison of Observed Patterns of 5q0 and 45q15 vs. Coale-Demeny
Model Values, Males

0 .2 .4 .6 .8 1
0

.1

.2

.3

.4

.5

5q0

Observed Life Tables Coale-Demeny Model

5q0

45q15

Observed Life Tables Coale-Demeny Model

0 1
20 30 40 50 60 70 80 90

0

.1

.2

.3

.4

.5

e0

0

0.1

0.2

0.3

0.4

0.5

20 30 40 50 60 70 80 90

5q0

e0

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

5q0

45q15



23

Figure 10:  Comparison of Observed Patterns of 45q15 and 20q60 vs. Coale-
Demeny Model Values, Males

The limited range of mortality patterns captured in the Coale-Demeny model life table
systems can, in part, be explained by the emergence of the high adult mortality and low
child mortality pattern now observed in parts of Eastern Europe and the Newly
Independent States.  When their system was developed little data was available on this
pattern.  Even excluding these countries, the range captured in this system is much
smaller than the real variation seen worldwide.  

In contrast, our Modified Logit life table system can capture the entire range of mortality
patterns illustrated in Figures 8-10 as illustrated in the contour figures shown earlier.  On
this criterion, the Modified Logit system is clearly better able to capture the diverse array
of mortality patterns now seen.

Predictive Ability of the Modified Logit System

A key use of a model life table system is to create a full life table given information on
only two life table indices such as life expectancy and child mortality or, more probably,
adult mortality and child mortality.   A strong test of this predictive use of a model life
table system is to take empirical life tables, select a model life table using two aggregates
from an empirical life table, and then compare the model life table age-specific death
rates to the observed age-specific death rates.  We have conducted two such tests for both
model life table systems: choosing model life tables on the basis of 5q0 and e0, and
choosing on the basis of 5q0 and 45q15.

First, for a random sample of 200 life tables from the life table dataset, we have used the
Coale-Demeny and Modified Logit systems to select a model life table on the basis of 5q0

and e0.  The Coale-Demeny model has been selected by first matching each e0 on all
families and then selecting the family with the closest 5q0.  The life table from the
Modified Logit system has been selected using the matching algorithm described above. 
After repeating this procedure for each of the 200 selected life tables, the fit between
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predicted and observed mortality rates has been summarized using the root mean square
error in the log of the death rates, since the logarithm of the death rates allows a more
meaningful comparison of death rates across age-groups.

Table 4 summarizes the goodness of fit statistics (root mean square error of the log death
rates) from the two model life table systems.  The upper panel gives the results for the
first type of test described above where life tables were selected on the basis of 5q0 and e0.
 As the Table clearly demonstrates, the Modified Logit system gives much better
predictions of age-specific death rates than the Coale-Demeny system on the basis of this
sample of 200 empirical life tables, particularly for females. Average root mean square
errors from the Modified Logit system are typically about 60-65% of those from the
Coale-Demeny system.

Table 4:  Comparison of Root Mean Square Error of ln(mx) from Fitting 200 Life
Tables Using the Coale-Demeny and the Modified Logit Systems

Life Tables Selected on the Basis of e0 and 5q0: Coale-Demeny Modified Logit

Males 0.3282 0.2156

Females 0.2476 0.1464

Life Tables Selected on the Basis of 45q15 and 5q0:

Males 0.4042 0.1975

Females 0.1846 0.1207

The second test that we have used to assess the predictive power of these systems is to
select model life tables on the basis of 5q0 and 45q15, a situation that is likely to be more
commonly encountered.  This is a more difficult test as the selection of the model life
table is based on indices of mortality that cover a smaller age-range than life expectancy
at birth.  For each observed life table in the random sample of 200 life tables from the life
table dataset, the Coale-Demeny model life table has been selected by matching on 45q15

and then choosing among the families on the basis of the 5q0.    The life table from the
Modified Logit system has been selected by matching on the 5q0 and 45q15.   The predicted
age-specific death rates have again been assessed using the root mean square error for the
log death rates.  Again, the Modified Logit system clearly outperforms the Coale-Demeny
system, with average root mean square errors being about 50% of those from the Coale-
Demeny system for males, and about one-third lower for females.  This sex differential in
relative performance of the two approaches may relate to the fact that the variance in
adult male mortality is greater than for females.  Hence, methods which reduce
deviations in death rates at older ages will be of greater relevance to males where
variability is greatest.

Figures 11 and 12 show the relative performance of the two model life table systems in
predicting the actual observed probability of adult death (45q15) (Figure 11) and life
expectancy at birth (Figure 12) based on a random sample of 200 life tables from the
empirical data set.  These are two life table parameters which any model life table system
would be most often required to predict.  The observed values of l5 and l60 were input
into the model and the full life table predicted.  If a system could exactly predict the true
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life table values, then all sample points would lie on a straight line. As Figure 11
illustrates, the Modified Logit system more successfully predicts the true probability of
adult death (for males) than the closest match from the Coale-Demeny system, selected
on the basis of 5q0  and e0, as described earlier.  In particular, the Coale-Demeny system
performs relatively poorly for true levels of 45q15 in excess of about 150 per 1000, which
would include much of the contemporary developing world.  A similar pattern is
apparent from Figure 12 which clearly shows the much closer fit between observed and
predicted male e0 for this sample of countries compared with the Coale-Demeny system,
selected on the basis of 5q0  and 45q15, irrespective of the level of true life expectancy.

Figure 11:  Observed vs. Predicted Male 45q15 Using the Coale-Demeny and
Modified Logit Systems, Selecting on the Basis of 5q0 and e0 (n=200)

Figure 12:  Observed vs. Predicted Male e0 Using the Coale-Demeny and
Modified Logit Systems, Selecting on the Basis of 5q0 and 45q15 (n=200)
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In addition to assessing the overall fit between predicted age-specific death rates and
those actually observed, we have tested for any systematic bias in the death rates at
different ages.  Table 5a summarizes the regression results of the observed on predicted
values for various life table parameters, using the 25th and 50th percentiles of the
distribution of �x and γx values.  If the Modified Logit system were able to perfectly
predict the observed life table parameter (e.g.,  45q15 or 20q60),  then the coefficient of the
regression would equal one and the constant would be zero.  As is clear from Table 5a,
this is very nearly the case for all tests conducted on the entire data set of life tables, with
the greatest departures from unity at ages 60-80 years and at 15-60 years for females.  For
females, the 50th percentile performed about as well (ages 60 to 80) or substantially better
(ages 15 to 60) in terms of the coefficient, and hence we have opted to use the median
value of the distribution for women.  For males, however, while the 50th percentile leads
to a better fit on observed death rates at ages 15 to 60, it does much less well at ages 60 to
80.  As a result, we have used the 50th percentile of the distribution at all ages below 65
and the 25th percentile values for �x and γx at all ages 65 and over.

Table 5b summarizes the regression results where the predicted death rates have been
estimated from this age-mix of �x and γx for males.  The value of the coefficient is closer to
unity at ages 60 to 80 and the error in the constant has also been reduced.  The reduction
in the bias of the predicted values of probability of death at higher ages had little or no
effect on the overall R2 for e0 which was very close to 1.

Table 5a:  Results of Regression of Selected Observed Life Table Parameters on
Those Predicted by the Modified Logit System (n=1802)

Males (25th Percentile γx and θx) Males (50th Percentile γx and θx)

α β R2 RMSE α β R2 RMSE

E0 -0.550238 1.008225 0.9995 0.1381 -0.432490 1.006685 0.9995 0.1383

45q15 -0.006151 1.036309 0.9678 0.0136 0.004351 0.980468 0.9742 0.0122

20q60 -0.032150 1.048287 0.9620 0.0151 -0.055391 1.085264 0.9686 0.0137

Females (25th Percentile γx and θx) Females (50th Percentile γx and θx)

α β R2 RMSE α β R2 RMSE

E0 -0.292568 1.003791 0.9995 0.1576 -0.334564 1.004834 0.9995 0.1580

45q15 -0.009056 1.091761 0.9789 0.0097 0.001337 0.990415 0.9855 0.0080

20q60 0.006349 0.985047 0.9802 0.0139 -0.016185 1.033520 0.9850 0.0121
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 Table 5b:  Results of Regression of Selected Observed Life Table Parameters
on Those Predicted by the Modified Logit System Using Mixed γx and θx
Values

Males (Mixed Percentile γx and θx)*

α β R2 RMSE

e0 0.979177 0.985246 0.9994 0.1525

45q15 0.004351 0.980468 0.9742 0.0122

20q60 0.017233 0.972280 0.9481 0.0177

*  Using 50th for ages<65 and 25th for ages>=65 (Males only)

Discussion

In this paper, we have demonstrated that the Modified Logit life table system using a
single global standard can represent the full range of mortality patterns seen across the
high quality life tables available internationally.  This two-parameter model life table
system also generates better predictions of age-specific mortality rates than the Coale-
Demeny system.  Parameterizing this system using l5 and l60 also makes the parameters
easier to understand. Another advantage of this system is that it requires a limited
number of calculations, and it is thus easy to implement. Along with the three sets of
parameters estimated here (lx, γx and θx), the only required data are two empirical life
table values, l5 and l60.  The full life table can then be easily estimated.

The main limitation of this model life table system and the tests of its predictive power is
that the sample of high quality life tables is heavily weighted towards populations with
life expectancies between 60 and 73 (for males) and 66 and 80 (for females).  The addition
of more high quality and recent life tables for high mortality populations might require
further modifications to the life table system. While these would be highly desirable, it is
unlikely that they would alter the predictive ability of the system.

It is also uncertain how the model system would perform in countries with high levels of
HIV.  It is quite possible that in high HIV settings the age pattern of mortality projected
out of sample by the model may not be accurate,  although this cannot be tested due to the
lack of high quality life tables for these countries. For the present, the model can and has
been used to estimate life tables in the absence of HIV, with HIV death rates then added
on a posteriori [4].  A comparison of the life tables for three high-HIV mortality countries
(Zimbabwe, South Africa, and Tanzania) with the predictions from the model, using the l5

and l60 values from these life tables, suggests that the model can reliably reproduce life
tables estimated in this fashion.  In most cases, predicted life expectancy at birth was
within 0.5 years of the value estimated from this two-stage procedure, with an even closer
agreement for levels of adult mortality.

From our empirical fitting of the model to observed data, it is clear that there remains a
slight bias in old age mortality where the modified system has not succeeded in fully
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compensating for the lack of linearity mentioned earlier.  Further work is required to
attempt to improve the model to reduce these deviations at older ages.

The use of the Coale-Demeny and UN systems is so widespread in demographic
estimation that there are often circular arguments about levels and patterns of adult
mortality.  One set of analysts often use the results of other demographic analyses
founded on these model life table systems without realizing that they substantially
underestimate the variation in age-specific mortality patterns seen in the real world.  The
use of models is so deeply embedded in available international datasets that it can be
difficult to formulate real empirical tests of these models.  We have tried to ensure that the
observed life tables used in this analysis have not been modified using model life table
systems, and hence that the modified system is based exclusively on observed data.

One implication of this analysis is that for Sub-Saharan Africa in particular there is much
more uncertainty about levels of adult mortality than implied in currently available
demographic estimates such as the UN Population Division life tables [14].  Often, levels
of adult mortality have been estimated by selecting a life table on the basis of estimated
child mortality and an arbitrary choice of a model life table family (often West by default).
 This has tended towards a one to one mapping of child mortality to adult mortality prior
to the HIV epidemic.  In reality, even the empirical record of countries outside Africa
suggests that there can be much greater variation in levels of adult mortality as compared
to child mortality than captured in the Coale-Demeny and UN model life tables.

The Modified Logit life table system which we have proposed appears to provide the best
possible estimates for countries without good vital registration.  Yet the model depends
on the availability of reliable estimates of child and adult mortality.  While these generally
exist for child deaths [15], there are more than 60 countries, mostly in Sub-Saharan Africa,
where levels of adult mortality are unknown or known poorly from indirect methods [4]. 
There is an urgent need to better measure levels of adult mortality directly in these
countries in order to better guide public policy for health improvement.
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