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ABSTRACT

This thesis presents a steganalysis of additive noise modelable information hiding[1].

The process of information hiding is modeled in the context of additive noise. Under

an independence assumption, the histogram of the stegotext is a convolution of the

noise probability mass function (PMF) and the original histogram. In the frequency

domain this convolution is viewed as a multiplication of the histogram characteristic

function (HCF) and the noise characteristic function. Least significant bit, spread

spectrum, and DCT hiding methods for images are analyzed in this framework.

It is shown that these embedding methods are equivalent to a lowpass filtering of

histograms that is quantified by a decrease in the HCF center of mass (COM).
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Table 1: Notation

α fraction of pixels used for embedding
hα[n] stegonoise histogram with embedding rate α
hs[n] stegonoise histogram
hc[n] coverimage histogram
f∆[n] stegonoise probability mass function

f∆ (x) stegonoise probability density function
Hs[k] stegoimage histogram characteristic function
Hc[k] stegoimage histogram characteristic function
F∆[k] stegoimage histogram characteristic function
C (·) center of mass
Ck (·) center of mass along kth axis

DFT (·) Discrete Fourier Transform
Pr{·} probibility of event ·

N (µ, σ2) normal distribution with mean µ and variance σ2

|·| magnitude of ·

ix



A man can hide all things, excepting twain–

That he is drunk, and that he is in love.

- Antiphanes of Macedonia, Fragmenta
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CHAPTER 1

Introduction

1.1 Why Steganography?

Since the beginnings of human communication, the desire to communicate in

secrecy has existed. Whether planning a surprise birthday party or overthrowing a

government, exchanging data in secret is essential. There have been many solutions

to this problem, the most widely used and investigated being cryptography [2][3][4].

Historically, sensitive information has been protected using encryption. En-

cryption uses powerful mathematics to map plaintext into an unreadable cyphertext

that is sent over a channel to the recipient. When a message is encrypted it is done

so using a secret key. To decrypt a message, the secret key is used to reverse the

process. For an easedropper to defeat the system he or she must acquire the se-

cret key. Typically it is assumed that this must be done by searching over the

entire keyspace; a so called “brute-force” attack. As this is a very time consuming

endeavor, the encrypted message is considered safe.

A second method of communication, called steganography offers data pro-

tection in a somewhat different manner. Steganography offers security similar to

cryptography in that, if an adversary does not know information is being trans-

fered, he cannot intercept and read it. While keeping the contents of a message

secret is desirable in many cases, steganography has a much more powerful use:

steganography hides the very fact that a communication is taking place.

The distinction between cryptography and steganography is an important one,

and is summarized by the following:

Encryption prevents an unauthorized party from discovering the con-

tents of a communication. Steganography prevents discovery of the very

existence of a communication.

A simple example shows where the use of a covert channel is applicable.

1
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1.1.1 Alice and Bob

Consider our old friends Alice and Bob. Alice and Bob have been placed in

a jail guarded by Warren the Warden. Alice and Bob are planning an escape, with

Alice digging out a tunnel under the fence. If Alice sends Bob an encrypted message

about the progress of the escape plan:

IM AHEAD → ORRETBBQ

Warren will easily see the message “ORRETBBQ” but, it may be extremely hard

interpreting nonsensical digits.

The oddity of Alice and Bob sending seemingly random letters back and forth

may be enough to make Warren suspect something is amiss. If Alice and Bob had

been using steganography, they would have concealed the existence of a communica-

tion. For example, in the phrase: “it may be extremely hard interpreting nonsensical

digits,” if Bob takes the first letter of each word, he receives Alice’s message “IM

BEHIND”.

1.1.2 History

Steganography literally means covered writing. Herodotus provides the first

records of steganography in Greece [5]. To communicate Greeks would etch the

message they wished to send into the wax coating of a wooden tablet. The tablet

would then be transported to the recipient who would read the message, then remelt

the wax to etch their reply. In order to communicate in secret, the army would

remove the wax completely, carve the secret message into the wood, and re-coat the

tablet with wax. The apparently unused tablet would then be sent to the recipient

who would remove the wax to view the message.

In another primitive example of steganography from Persia, a messenger’s head

would be shaved and a message tattooed onto the scalp. Once the messengers hair

had re-grown, he or she was able to pass by unsuspecting sentries to deliver the

message.
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1.2 Modern Steganography

Modern uses of steganography fall into one of two broad categories, water-

marking and communication. While watermarking has enjoyed a great deal of use

in digital rights management, steganographic communication systems are only now

receiving academic attention.

1.2.1 Watermarking

There has been a large amount of work in embedding data to maintain own-

ership of digital media[6][7][8]. In this case the watermark should be as resistant

to as many distortions as possible. These distortions include both intentional and

unintentional alterations of the media. For example, in a collusion attack, numer-

ous parties with different copies of the same watermarked media, may perform an

averaging operation to try and estimate the original media.

Another type of watermark is used to determine if a file has been altered[9].

These watermarks are different in the respect that they are very fragile; any changes

in the media should cause them to break. These fragile watermarks can be used to

detect malicious tampering.

1.2.2 Communication

Using steganography as a viable form of communication has been propelled

largely by the growth of the Internet. The Internet offers an opportunity to exchange

large amounts of digital information over great distances. The prevalence of media

such as audio, video, and images on the Internet provides an ideal channel for

steganographic communication.

1.3 Steganalysis

The broad goal of steganalysis is to understand the effects of hiding data into

a medium. This knowledge is typically used to either strengthen the hiding system

or detect the use of data hiding.

In order to develop a hiding scheme which is difficult to detect, it is necessary

to analyze the results of prospective methods. This is typically done by comparing
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statistical changes introduced when embedding data. If a method causes distinct

predictable changes it will be fairly easy to detect and should be modified.

The detection of steganographic communication is a very important applica-

tion of steganalysis. The loss of sensitive data, by both civilian and military entities,

is very undesirable. As steganography provides a means for covertly transferring in-

formation, it is especially well suited to an insider sneaking information out.

1.3.1 Steganographic Stealth

The concept of the performance of a hiding scheme is a difficult concept. There

have been numerous theories on defining steganographic performance [10][11][12][13].

In cryptography, the encryption strength of a method is usually cited as con-

veying this information. For example, a system that is computationally difficult to

break is considered to be a “strong” system. Analogously, we introduce the term

steganographic stealth to represent the relative performance of a steganographic sys-

tem. A scheme which is difficult to detect is denoted as a “high stealth” or “stealthy”

scheme. Of course these terms are defined in relation to the detection methodolo-

gies. For example, under visual detection, Least Significant Bit embedding has a

high stealth, whereas under statistical analysis it is very low[14].

1.3.2 Current Detection Schemes

Many current detection methods rely on detecting the “thumbprint” of a par-

ticular embedding method [15][16][17][14][18][19]. Generally speaking, specific hid-

ing methods are analyzed for the changes they make to the image or anomalies in a

resulting file. These methods suffer from a very fundamental flaw, that being they

are always one step behind. In order to implement a detection scheme, the hid-

ing method must be known and well understood. When considering a steganalysis

scheme applicable in the real world, one needs to consider the possibility that an

adversary will use an unpublished algorithm. While the casual steganographer may

be content to use off the shelf tools, one would certainly expect that an agent for a

government with greater resources would take advantage of the additional security

in an unpublished scheme.
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This creates the potential for an adversary to use an unknown hiding scheme to

avoid detection. For these reasons a different model should be used in steganalysis.

This thesis investigates using statistics found naturally in images to form a model

of a “natural” image. Once we have this model, we can assume that modifying an

image will noticeably alter these statistics. If this is the case, we can flag an image

as being abnormal. Once this is done, expanded efforts can be focused toward

extracting the message.

1.3.3 Contributions of this thesis

This thesis begins by taking the position that steganalysis should be separated

from the hiding algorithms. With this goal in mind, a class of data hiding algorithms

called additive noise modelable is defined. These hiding algorithms are character-

ized by an equivalence to the independent addition of noise to a coverimage. This

broad definition allows for the generalization of the analysis to a number of hiding

algorithms.

The first order statistical changes caused by these algorithms are derived using

probability theory. Descriptions of the histogram of a stegoimage in relation to the

coverimage and additive noise are presented. In addition a center of mass metric is

shown to be sensitive to additive noise embedding, and bounds on this metric are

proved for certain classes of additive noise.

Finally the theoretical results are verified experimentally by creating two de-

tection schemes. The first detection scheme allows for detection when the embedding

method is known, while a second method is presented using only an estimate of the

coverimage properties.



CHAPTER 2

Data Hiding as Additive Noise

The motivation to model the steganographic process as the addition of noise arises

from a number of factors. In the process of sampling and transmitting signals there

are numerous sources of noise such as quantization[20], sensor[21], and channel[22].

A number of steganographic hiding schemes have used these noise sources as a

foundation for noise based data hiding. The goal is to disguise the message as a

naturally present noise and add it to the coverimage. To this extent a generalized

additive noise scheme has been developed in [23] that is able to embed data with

any given distribution.

While the additive noise framework is especially well suited to schemes which

rely on noise based embedding, it may be easily generalized to any method that

results in the addition of independent and identically distributed noise. Sampled

signals have a large amount of correlation present- both from the natural statistics

of the original signal and the sampling device. If data is hidden without regard to

this correlation, it can be considered as an foreign disturbance which corrupts the

image. This formulation allows us to model many hiding methodologies which do

not directly rely on additive noise.

2.1 Modeling

A model of a general steganographic system is shown in Figure 2.1. The

embedding process begins with the selection of a coverimage, in which the message

Coverimage

Message

StegoimageEmbedding

Key

Figure 2.1: Overview of the embedding process

6
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hs[n]

hc[n]

f∆[n]

xc xs

Stegonoise

Coverimage Stegoimage

Figure 2.2: NM Steganography Model

will be hidden. The coverimage can be any type of image and is chosen to resemble

a typically transmitted image, so to avoid raising suspicion. The information to be

transfered is called the message and assumed to be a general stream of binary values.

The message is placed in the coverimage through the process of embedding. During

embedding a keying variable, or key may be used. This key is available to both the

sender and the recipient and is used to synchronize the hiding and recovery process.

The result of embedding the message in the coverimage is called the stegoimage.

The additive noise model seeks to represent this general system as one shown

in Figure 2.2. Again we begin with the coverimage, having histogram hc[n]. The

stegonoise is a representation of the message as a psuedo-random sequence that

is constructed to resemble noise. In the additive noise model the stegonoise is

i.i.d. and is completely characterized by it’s probability mass function (PMF), f∆[n].

The embedding process in the additive noise model is simply the addition of the

stegonoise to the coverimage. The resulting stegoimage has a histogram hs[n].

The justification for the additive noise model will be presented in Chapter 4,

where a number of hiding algorithms are placed in the context of this model.

2.1.1 Stegonoise Probability Mass Function

The stegonoise probability mass function is the distribution of the additive

noise defined as,

f∆[n] � p(xs − xc = n), n = 0,±1,±2, . . . (2.1)

Where xs is the pixel value after embedding, and xc is the pixel value prior to

embedding. Generally speaking, f∆[n] is the probability that a pixel will be altered
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−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
f∆(x)

f∆[n]

Figure 2.3: f∆ (x) and f∆[n] for N (0, 1)

by n. In this model it is assumed that the noise acts independently on each pixel.

So f∆[0] is the probability that, after embedding, a pixel is unchanged. Whereas

f∆[−1] is the probability that the pixel is decreased by one.

2.1.2 Discretization

Many times it is more convenient to work with a continuous probability density

function, f∆ (x), rather than the discrete probability mass function. Of course, when

digital media is stored, the values must be quantized to a finite number of bits. If

this quantization occurs, we assume that a rounding operation is used to minimize

the quantization error. When this is the case, we can consider transforming the pdf

into a PMF using,

f∆[n] =

n+0.5∫
n−0.5

f∆ (x) dx. (2.2)

The continuous f∆ (x) and discretized f∆[n] for N (0, 1) are shown in Fig-

ure 2.3.
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2.2 Effects Of Additive Noise

We are interested in the effect which additive noise has on the statistics of a

signal. We are primarily interested in these changes and how they can be used to

flag suspicious images. The histogram, h[n], of an image is the frequency count of

the pixel intensities present in an image, defined as,

h[n] =
∑
n1,n2

I (n, x (n1, n2)) , (2.3)

where

I (n, x (n1, n2)) =

 1, n = x (n1, n2)

0, else.

We use h[n] as an estimate for of the PMF that generated the pixel intensities in

an image as the histogram is simply the PMF multiplied by the number of pixels in

the image.

When the stegonoise is added to the image it is assumed that it alters each

pixel. The amount by which each pixel is modified is a discrete random variable

with PMF f∆[n]. Using the stegonoise PMF f∆[n], and the cover histogram hc[n]

we can form an estimate of the stegoimage histogram, hs[n]. Theorem 2.2.1 gives

this relation.

Theorem 2.2.1. In a hiding system where the additive noise is i.i.d. and indepen-

dent of the coverimage, the histogram of the stegoimage is equal to the convolution

of the stegonoise PMF and the coverimage histogram,

hs[n] = hc[n] ∗ f∆[n]. (2.4)

Proof. Consider the histogram as a probability mass function multiplied by a con-

stant. From probability theory [24], we know the addition of two independent ran-

dom variables results in a convolution of their probability mass functions.

From Theorem 2.2.1 we see that the effect of the additive noise on the image

histogram is equivalent to a convolution of the stegonoise PMF and the cover his-

togram. Figure 2.4 shows hc[n] (original histogram), hest
s [n] (estimated histogram),
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Figure 2.4: Original Histogram (top), Estimate Noisy Histogram and
Actual (bottom)

and hact
s [n] (actual histogram) with additive noise, N (0, 1) for the image shown in

Figure 2.5.

Using the Discrete Fourier Transform[25], given in (2.5), we can gain insight

into the frequency components of a histogram.

X [k] = DFT (x [n]) =
N−1∑
n=0

x [n] e−
2πjnk

N . (2.5)

Here, N equals the largest value possible in the intensity of the image. For example,

in an 8 bit grayscale image N would be 28 or 256.

By taking the DFT of the PMFs involved, we have the characteristic functions
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Figure 2.5: Pout.tif

defined as,

F∆[k] � DFT (f∆[n]) , (2.6a)

Hc[k] � DFT (h[n]) , (2.6b)

Hs[k] � DFT (hs[n]) . (2.6c)

It should be noted that these are only approximations of the characteristic functions,

just as the histogram is an approximation of the PMF.

These characteristic functions will be central in additive noise steganalysis. In

particular the DFT of a histogram will be referred to as the histogram characteristic

function, or HCF .

We can rewrite (2.4) in the frequency domain as the following corollary,

Corollary 2.2.1 (HCF Multiplication). In a hiding system where the additive

noise is i.i.d. and independent of the coverimage, the HCF of the stegoimage is equal

to the multiplication of the stegonoise characteristic function and the coverimage

HCF ,

Hs[k] = F∆[k]Hc[k]. (2.7)

Proof. Taking the DFT of (2.4) the convolution becomes a multiplication in the

frequency domain.
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This formulation gives us an insight into how embedding a message alters the

HCF of an image. This will be particularly useful in the steganalysis of images

explored in Section 4.

Thus far it has been assumed that the additive noise has operated on each

pixel in the image. In practice the embedding rate may be reduced for a number of

reasons. The most likely is to increase the stealth of a hiding method. The following

assumes that when only a fraction, α, of the pixels are used for embedding, these

pixels are randomly chosen from the entire image. This prevent spatial-statistical

attacks such as those discussed in [26].

Theorem 2.2.2 (α-Bitrate Embedding). In a system where α is the fraction of

pixels chosen at random for embedding and the stegonoise is i.i.d. and independent

of the coverimage. The stegoimage histogram is given by,

hα[n] = α (hs[n]) + (1 − α) hc[n]. (2.8)

Proof. Letting C be the number of pixels in the image, Pr{xα = n} be the proba-

bility that a pixel in the α rate stegoimage is valued n, and denoting an embedding

pixel as “e.p.” and an unchanged pixel as “u.p.”, we have,

hα[n] = CPr{xα = n} (2.9a)

= C {Pr{xα = n|e.p.}Pr{e.p.} + Pr{xα = n|u.p.}Pr{u.p.}} (2.9b)

= C {αPr{xα = n|e.p.} + (1 − α)Pr{xα = n|u.p.}} (2.9c)

= α (f∆[n] ∗ hc[n]) + (1 − α)hc[n] (2.9d)

= αhs[n] + (1 − α)hc[n]. (2.9e)

An illustration of this linearity is shown in Figure 2.6. In this figure we observe

the contents of three histogram bins, (115, 125, and 135), as the embedded pixel

rate, α, is varied from 0.0 to 1.0. The embedding method used is SSIS described in
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Figure 2.6: Various values of hα[n] as embedding rate α changes.

Section 4.2. Here we see that the alterations of the histogram are roughly linear as

predicted by Thm. (2.2.2).

Equation 2.8 is easily extended to the frequency domain in the following.

Corollary 2.2.2 (α−HCF Multiplication). In a system where α is the fraction

of pixels chosen at random for embedding and the stegonoise is i.i.d. and independent

of the coverimage, the stegoimage HCF is given by,

Hα[k] = αHc[k]F∆[k] + (1 − α) Hc[k] (2.10)

Proof. Taking the DFT of (2.8) the convolution becomes a multiplication in the

frequency domain.

To represent the addition of noise at any bitrate, as a single convolution we

use the following Theorem.

Theorem 2.2.3 (Unified α-Bitrate Embedding). In a system where α is the

fraction of pixels chosen at random for embedding and the stegonoise is i.i.d. and
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independent of the coverimage, the stegoimage histogram is given by,

hα[n] = fα
∆[n] ∗ hc[n], (2.11)

with,

fα
∆[n] � αf∆[n] + (1 − α)δ[n].

Proof.

hα[n] = α (f∆[n] ∗ hc[n]) + (1 − α) hc[n] (2.12a)

= α (f∆[n] ∗ hc[n]) + (1 − α) (δ[n] ∗ hc[n]) (2.12b)

= (αf∆[n] + (1 − α) δ[n]) ∗ hc[n] (2.12c)

= fα
∆[n] ∗ hc[n]. (2.12d)

With (2.4) and more generally (2.8) as well as an assumption about the cov-

erimage, we are able to analyze image histograms for evidence of processing by

f∆[n].



CHAPTER 3

The Histogram Characteristic Function

This section deals with the histogram characteristic function (HCF). The HCF
is a representation of the image histogram in the frequency domain. Much of the

natural correlation as well as that introduced by the capturing device is apparent in

the frequency domain. The histogram characteristic function center of mass (COM)

is introduced as a measure of the energy distribution in an HCF .

3.1 HCF Center of Mass

The HCF COM a simple metric that will be used in the steganalysis of images.

We would like to use a metric which will show evidence of processing by f∆[n] or

equivalently F∆[k]. From this we choose to look at the center of mass of the HCF ,

C (H[k]) �

∑
k∈K

k |H[k]|∑
i∈K

|H[i]| . (3.1)

Where K = {0, . . . , N
2
− 1} and N is the DFT length. The HCF COM gives

a general information about the energy distribution in the histogram characteristic

function. The following provides a useful result for a class of additive noise modelable

steganographic schemes.

Theorem 3.1.1. For an embedding scheme with a nonincreasing |F∆[k]| for k =

(0, . . . , N
2
− 1), the HCF COM decreases or remains the same after embedding,

C (Hs[k]) ≤ C (Hc[k]) , (3.2)

with equality if and only if |F∆[k]| = 1, ∀ k = 0, . . . , N
2
− 1.

Proof. By the discrete Čebyšev inequality [27], for a nondecreasing sequence, a =

(a0, . . . , an), a nonincreasing sequence, b = (b0, . . . , bn), and a non-negative sequence,

15
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p = (p0, . . . , pn),
n∑

k=0

pk

n∑
k=0

pkakbk ≤
n∑

k=0

pkak

n∑
k=0

pkbk. (3.3)

Letting ak = k, bk = |F∆[k]|, pk = |Hc[k]| and K = {0, . . . , N
2
− 1} we have,

∑
k∈K

|Hc[k]|
∑
k∈K

k |F∆[k]| |Hc[k]| ≤
∑
k∈K

k |Hc[k]|
∑
k∈K

|F∆[k]| |Hc[k]| , (3.4)

or, ∑
k∈K

k |F∆[k]| |Hc[k]|∑
k∈K

|F∆[k]| |Hc[k]| ≤
∑
k∈K

k |Hc[k]|∑
k∈K

|Hc[k]| . (3.5)

Note that (3.4) holds with equality if and only if |F∆[k]| = 1, ∀ k ∈ K. In the

spatial domain, the equality condition is satisfied if f∆[n] = δ[n].

There exists a number of distributions having monotonically decreasing char-

acteristic function magnitudes, these include the Gaussian and Laplacian.

3.2 HCF of Color Images

The above arguments can easily be extended for use with RGB color images

as follows. We consider a pixel, x (n1, n2), as a vector of RGB intensities,

x (n1, n2) = [xr (n1, n2) xg (n1, n2) xb (n1, n2)].

We define an RGB histogram as,

h[n] =
∑
n1,n2

I (k,x (n1, n2)) (3.6)

with

I (n, x (n1, n2)) =

 1, n = x (n1, n2)

0, else

where n is a vector of the RGB intensities, and the value of the histogram

evaluated at n is the number of pixels with that RGB triplet. Taking the 3

dimensional discrete Fourier transform of h[n] we define the histogram characteristic
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function, HCF for an RGB image as

H[k] � DFT3h[n] (3.7)

Since the length N DFT is of real data its magnitude is symmetric about N
2

such that we only need to observe [0, N
2
− 1]3 of the [0, N − 1]3 DFT coefficients.

We now consider the centers of mass for H[k] along each of it’s three axes,

Ck1 (H[k]) � 1

β

∑
k∈K

k1 |H[k]| , (3.8a)

Ck2 (H[k]) � 1

β

∑
k∈K

k2 |H[k]| , (3.8b)

Ck3 (H[k]) � 1

β

∑
k∈K

k3 |H[k]| . (3.8c)

Where K is the set of first octant indices, i.e. k ∈ [0, N
2
− 1]3 and the normal-

ization constant,

β =

(∑
k

|H[k]|
)

.

Combining the values of each of (3.8) we can define a point in 3 dimensional space

to be a “center of mass” for the RGB HCF .

3.3 Moments

To gain further insight into the structure of the HCF we consider observing

higher order central moments. These moments represent fundamental properties of

the HCF . For example, the first moment was used in the previous section as the

mean of the HCF , while the higher order moments capture the variance, kurtosis,

skewness, etc...

These moments are defined as,

mr1r2r3 =
1

β

∑
k∈K

3∏
n=1

(kn − Ckn (H[k]))rn |H[k]| (3.9)
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Again, β =

(∑
k

|H[k]|
)

, a normalization constant and K is the set of first octant

indices, i.e. k ∈ [0, N
2
−1]3. These higher order moments will be used in the detection

algorithms of Sections 5.5 and 5.6 to improve accuracy.



CHAPTER 4

Modeling Systems

In this section a number of information hiding methodologies are analyzed. The

goal in each analysis is to derive the probability mass function of the stegonoise.

Once we have this expression we use Theorem 2.2.1 to estimate the stego image

histogram.

4.1 LSB

Least significant bit (LSB) steganography is the most simplistic form of steganog-

raphy. It hides information by replacing the least significant bit of a pixels in-

tensity with a message bit[28]. This system can be approximated as an addi-

tive noise scheme. First we consider the message bits (mb) to be i.i.d. with

Pr{mb = 0} = Pr{mb = 1} = 1
2
. Likewise we assume that the LSBs of the

cover image (xLSB
c ) are i.i.d. with Pr{xLSB

c = 0} = Pr{xLSB
c = 1} = 1

2
. It is then

easily shown,

f∆[−1] = Pr{mb = 0}Pr{xLSB
c = 1} = 0.25, (4.1a)

f∆[0] = Pr{mb = 0}Pr{xLSB
c = 0}

+ Pr{mb = 1}Pr{xLSB
c = 1} = 0.5, (4.1b)

f∆[1] = Pr{mb = 1}Pr{xLSB
c = 0} = 0.25. (4.1c)

The LSB |F∆[k]| and f∆[n] for a DFT length N = 256 are shown in Figure 4.1.

Notice that this scheme acts as a lowpass filter on the histogram of the image.

This filtering causes the histogram bins to “bleed” together, resulting in more unique

intensities, as well as more close intensity pairs. These results are exploited in [14]

to detect the presence of LSB steganography. In addition to being lowpass, |F∆[k]|
is monotonically decreasing, which allows us to use Theorem (3.1.1).

In this analysis, f∆[n] approximates the alterations caused by LSB embedding

as an additive noise. The actual embedding is not independent of the coverimage,

19
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Figure 4.1: |F∆[k]| and f∆[n] for LSB

for example,

f∆[n = −1] �= f∆[n = −1|xLSB
c = 0] = p(xs − xc = −1|xLSB

c = 0) = 0,

because when xLSB
c = 0, only the addition of 0 or 1 can result.

4.2 Spread Spectrum Image Steganography

In this discussion we analyze spread spectrum image steganography (SSIS)[29].

The SSIS scheme hides data in a Gaussian stegonoise that is added to the cover

image. This additive noise signal is equivalent to a direct-sequence spread spectrum

system [30] wherein the PN-code is distributed as N (µ, σ2) with a chip period of

every pixel. The details of the SSIS algorithm may be found in Appendix A.

The use of Gaussian noise in this scheme is motivated by the assumption that

AWGN is a common distortion in images.
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Figure 4.2: |F∆[k]| and f∆[n] for WGN

The distribution function of the pseudo-noise is defined as,

f∆ (x) =
1√

2πσ2
e−

1
2σ2 .(x−µ)2 (4.2)

For this discussion we will assume µ = 0 and σ2 = 1. To determine the

affect this additive noise will have on the histogram of the coverimage we use (2.2)

to find f∆[n]. This yields the coefficients plotted in Figure 4.2 along with their

corresponding frequency response for a DFT length N = 256.

Notice that the effect of the independent additive noise is a monotonically

decreasing lowpass filter on the histogram. This is illustrated in the histogram in

Figure 4.3 as well as the HCF magnitude in Figure 4.4.

To reduce error rate the stegonoise may be multiplied by a scale-factor, β, to

adjust the power. From stochastic theory the variance of a scaled random variable
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Figure 4.3: hc[n] and hs[n] for pout.tif

behaves as,

σ2
scale = E[β (X − µ) β (X − µ)] (4.3)

= β2E[(X − µ)2]

= β2σ2

As the variance of the additive noise increases by β2, the stegonoise PMF will spread

out. This spreading of f∆[n] yields a lower cutoff point in |F∆[k]|. This effect is

plotted in Figure 4.5 for β = {1, 2, 3, 4, 5} and σ2 = 1. The alteration of hc[n]

becomes increasingly pronounced as β increases.

4.3 Discrete Cosine Transform Steganography

To improve robustness and stealth, many steganographic schemes utilize pro-

jections to embed data in an alternate space. In this section we consider the effects
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of hiding information as an additive noise in discrete cosine transform (DCT) coef-

ficients. We choose the DCT as it is a common transform in image processing. The

process we discuss is generally similar to the DCT hiding of [31], with the exception

our model will hide data as an additive noise rather than a quantization.

The actual embedding process begins by decorrelating the image by reordering

the pixels based on a keying variable. Next, the mean of the pixels is subtracted

and an L × L block DCT [32] is taken over the image. The decorrelation of the

pixels serves to whiten the image and increase the energy in the high frequency

DCT coefficients, making them more useful in hiding data. Once in the frequency

domain, an i.i.d. stegonoise is added to each coefficient 1. An L × L block IDCT is

1In [31] the DCT coefficients are quantized to hide information. The error introduced in this
process is a deterministic function of the coefficients. As this error would be considered the
stegonoise in our framework, the heavy dependence between the cover-coefficients and stegonoise
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Figure 4.5: Effect of scaling factor β on |F∆[k]|

performed and the previously subtracted mean is added to each pixel. Finally, the

pixels are rounded to integers and returned to their original order using the keying

variable.

Considering the signals involved we have,

Xc = DCT{xc},

Xs = Xc + stegonoise,

xs = IDCT{Xc + stegonoise} = xc + IDCT{stegonoise}.

The additive noise embedding in the frequency domain is modeled as the addition

of spatial stegonoise, IDCT{stegonoise}.
We now present an informal argument that the spatial stegonoise is i.i.d Gaus-

sian using statistical properties of the DFT. The DCT inherits these same properties.

does not allow for a direct additive noise analysis.



25

In [33] it is shown that for a stationary sequence with finite second-order moments

and mixing, the DFT elements are asymptotically independent. In [34]2 it is shown

that for sequences obeying the Lindeberg condition, the DFT elements asymptoti-

cally approach normal distributions. With this we can consider the spatial stegonoise

to be roughly equivalent to i.i.d. Gaussian. This allows us to consider the addition

of an i.i.d. stegonoise in the frequency domain, as approximately i.i.d. Gaussian ste-

gonoise in the spatial domain. With these assumptions the effect of additive noise in

the frequency domain is modeled as in Section 4.2, in particular the monotonically

decreasing |F∆[k]|.



CHAPTER 5

Detection Schemes

5.1 Overview

This chapter uses the ideas previously developed to build classifiers that are

able to differentiate altered images from original. The method presented in Sec-

tion 5.2 builds a classifier trained on both the coverimages as well as stegoimages.

A second method is presented in Section 5.3 which uses no information about the

hiding method. Section 5.4 presents enhancements in classification using higher

order HCF moments in classification.

5.2 Known Scheme Detection I

In known scheme detection the method of hiding is assumed to be available

in classifier construction. This provides a significant advantage in detection as a

concrete notion of the effects of embedding can be developed.

Using results from 4.2 we create a simple classification scheme. This scheme

will be built specifically to detect the addition of SSIS information into an image.

The classification of a test image will be into one of two categories: containing SSIS

data or unaltered.

Recalling that the addition of noise affects the HCF as a multiplication by

the lowpass filter shown in Figure 4.4 as well as the bound given in Thm. 3.1.1, we

expect C (Hs[k]) to be lower as the higher frequencies are attenuated. Indeed this is

the case as we see in Figure 5.1.

This reduction results in the shifting of the center of mass closer to the origin.

If we extend this result to 3 dimensions we would expect that the center of mass

would move toward the origin.

To verify these results 24 images from the Kodak PhotoCD PCD0992 [35] were

used. These images are 24-bit, 768x512 pixel, truecolor images stored in the PNG

format.

For each image the three dimensional RGB HCF COM was computed for the

26



27

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7
x 10

4

k

|H
c
[k]|

|H
s
[k]|

Figure 5.1: Center of mass for |HCF|

original image as well as a stegoimage with N (0, 1). A 3-D scatter plot of these

points is shown in Figure 5.2. As expected the centers of mass for the stegoimages

are considerably lower than those of the originals.

To create the classifier, we first assume the distribution of COMs is Gaussian

to make use of the maximum likelihood multivariate classifier [36], detailed in Ap-

pendix B. The maximum likelihood multivariate classifier requires that the mean

vectors, µ, and covariance matrices Σ, of the source distributions be known or esti-

mated. For our application we estimate these values using the maximum likelihood

estimators,

µi =
1

S

S∑
j=1

x
(j)
i (5.1)

Σi =
1

S

S∑
j=1

(
x

(j)
i − µi

)(
x

(j)
i − µi

)T

(5.2)
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where x
(j)
i , j = 1 . . . S is the training set of RGB HCF COMs for the ith multivari-

ate.

The general multivariate discriminant functions are then,

gi (x) = xTWix + wT
i x + wi, (5.3)
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with

Wi = −1

2
Σ−1

i , (5.4a)

wi = Σ−1
i µi, (5.4b)

wi = −1

2
µT

i Σ−1
i µi −

1

2
ln |Σi|. (5.4c)

To classify an unknown sample vector x, each discriminant function is evaluated at

x. If g1(x) > g2(x) the pattern is assigned to ω1, else it is assigned as ω2.

To evaluate the classifier, the 24 Kodak images are divided into four groups.

Each group is created by randomly selecting (without replacement) the appropriate

number of images. The groups are as follows,

1. 10 Unaltered image COMs used to find µ1 and Σ1 for ω1.

2. 10 SSIS N (0, 1) image COMs embedding used to find µ2 and Σ2 for ω2.

3. 2 Unaltered image COMs classified.

4. 2 SSIS image COMs classified.

Where µ1 and Σ1 are the estimated mean and covariance matrices of the original

HCF COM class, ω1. Likewise, µ2 and Σ2 are the estimated mean and covariance

matrices of the SSIS stegoimage HCF COM class ω2. Using these distributions, the

remaining 4 images are classified by evaluating the discriminant functions of each

class at the test COMs.

The above process was repeated 1000 times giving an average classification rate

of 94.4% correct. As detailed in Table 5.1 this equates to 223 errors in classification.

Of these, 209 were Type I (false alarms), while only 14 of the 223 errors were Type

II (missed signals).

5.3 Unknown Scheme Detection I

In practice it is desirable to detect the presence of a message regardless of

the embedding method. The foremost reason for this is that the algorithm used in
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Table 5.1: Known Scheme Classification Performance

Tests 4000

Errors 223

Correct 94.4%

Original Stegoimage

Tests 2000 2000

Errors 209 14

Correct 89.55% 99.3%

embedding may not be known. With this in mind we now describe an unknown

scheme detection.

In contrast to the previous section where we made use of statistics from both

original and modified images, we now only consider the availability of original im-

ages. It is worth emphasizing that we assume no explicit knowledge of the hiding

method in the classifier construction. We only have what we consider to be “normal”

images available to train on, and knowledge of Theorem (3.1.1).

Again we focus on the HCF COM as our feature in the detection scheme. As

we would like to measure how similar (or dissimilar) a COM in question is to our

trained statistic, we consider the Mahalanobis distance defined as,

d2 = (x − µ)T Σ−1 (x − µ) . (5.5)

Where Σ and µ are the covariance and mean estimates defined in (5.1) and (5.2),

using measurements gathered from a training set.

The Mahalanobis distance essentially gives a statistical measure of how far a

given point is from the estimated mean, with consideration toward the variance of

each variable. Generally speaking, the greater the Mahalanobis distance, the less

likely the test point is of the same distribution as the training set. The surface

defined by d2 = 1 is a surface where each point is one standard deviation away from

the mean.

To evaluate the classifier, the 24 Kodak images are divided into five groups.

Each group is created by randomly selecting (without replacement) the appropriate
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number of images. The groups are as follows,

1. 20 original image HCF COMs used to estimate µ and Σ

2. 1 Unaltered image COM classified

3. 1 SSIS image COM classified

4. 1 DCT image COM classified

5. 1 LSB image COM classified

The 20 unaltered COMs are used to form an estimate of the mean vector and

covariance matrix. The multivariate described by these is considered to be a natural
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Table 5.2: Unknown Scheme Classification Performance

Tests 4000

Errors 24

Correct 96.05%

Original SSIS DCT LSB

Tests 1000 1000 1000 1000

Errors 19 59 75 0

Correct 94.1% 97.6% 92.5% 100%

HCF COM distribution, and any images which differ significantly will be classified

as containing steganographic data. The first test image is the unaltered image in its

original form without any modifications. The SSIS image has a message embedded

in it using the method described in Section 4.2. The stegonoise has a variance of 1

and is equivalent to adding i.i.d. N (0, 1). The DCT images are created using the

general method in Section 4.3. A DCT block size of 4×4, was used to hide one bit in

each coefficient (m = 1) with a quantization step size of 2 (∆ = 2). This embedding

is modeled by adding a uniformly distributed noise over [−2, 2] to each coefficient

in the frequency domain. The LSB image is formed as described in Section 4.1,

by replacing the least significant bit of each pixel with the message bit. Figure 5.3

shows a plot of the HCF COMs for all 24 images with the three types of embedding

and the original images.

A Mahalanobis cutoff of approximately 40 was chosen to yield a Type I, (false

alarm), rate of approximately 5%. As can be seen the classifier performs very well,

with a correct classification rate of approximately 95%.

5.4 Extensions Using Moments

In Section 3.3 the higher order moments of the HCF were defined. In this

section the use of these moments for improving classification is explored.

5.4.1 Choosing the Optimal Moment

In this section we will consider features of the form mi = [mi00 m0i0 m00i],

where mijk is the ith moment of the HCF defined by (3.9). Our goal is to find the
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feature set that results in the best classification performance. To accomplish this

we make use of the Chernoff error bound described in Appendix C.

The Chernoff bound estimates the probability of error in a multivariate max-

imum likelihood classification scheme, such as that described in Section 5.2. To

make use of the Chernoff bound we must first create an estimate of the distribution

of moments for each order. To do this we repeat the following steps for moments

i = 1 . . . 10:

1. Calculate m
(k)
i , the ith HCF moments for k = 1 . . . 24, the 24 original images

using (3.9).

2. Calculate µi, the mean of the ith moments using m
(k)
i , k = 1 . . . 24 and (5.1).

3. Calculate Σi, the covariance of the ith moments using m
(k)
i , k = 1 . . . 24 and

(5.2).

This allows formulatation of the class conditional distribution for the unaltered

image HCF moments: p(mi|ω1). Next we repeat the procedure using SSIS images

created with N (0, 1):

1. Calculate m
(k)
i , the ith HCF moments for k = 1 . . . 24, the 24 SSIS images

using (3.9).

2. Calculate µi, the mean of the ith moments using m
(k)
i , k = 1 . . . 24 and (5.1).

3. Calculate Σi, the covariance of the ith moments using m
(k)
i , k = 1 . . . 24 and

(5.2).

This gives the class conditional distribution for the stegoimage HCF moments:

p(mi|ω2).

Once we have p(mi|ω1) and p(mi|ω2), we make use of the Chernoff bound.

Specifically we seek,

i∗ = arg min
i

P (error|mi), (5.6)

where P (error|mi) is the estimated error of a classifier based on mi.
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Figure 5.4: Center of Mass for Test Images

The Chernoff Bound (C.5) was used to to estimate the error of each classi-

fier. Figure 5.4 shows a plot of P (error|mi) for i = 1 . . . 10. The results for each

moments are listed in Table 5.3. Note the odd moments convey much more informa-

tion regarding the image, with the third moment, kurtosis, representing the lowest

probability of error.

5.5 Known Scheme Detection II

We now repeat the experiment from Section 5.2 using the 3rd central moment

(kurtosis) found in Section 5.4.1. Note that these results have been obtained by

running the classification in parallel with the experiments in Section 5.2, so the re-

sults are directly comparable. Here the 3rd moment system performs approximately

2.4% better than that of the 1st moment.



35

Table 5.3: Chernoff Error Bounds for Moments

Moment P(error) Bound

1 0.0096

2 0.1767

3 0.0059

4 0.1099

5 0.0073

6 0.573

7 0.0097

8 0.268

9 0.110

10 0.131

Table 5.4: Known Scheme Classification Performance Moment 3

Tests 4000

Errors 128

Correct 96.8%

Original Stegoimage

Tests 2000 2000

Errors 121 7

Correct 93.95% 99.65%

5.6 Unknown Scheme Detection II

We now repeat the experiment from Section 5.3 using the 3rd central moment

found in Section 5.4.1. Note that these results have been obtained by running

the classification in parallel with the experiments in Section 5.3, so the results are

directly comparable. Here the 3rd moment system performs approximately 1.2%

better than that of the 1st moment.
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Table 5.5: Unknown Scheme Classification Performance Moment 3

Tests 4000

Errors 111

Correct 97.22%

Original SSIS DCT LSB

Tests 1000 1000 1000 1000

Errors 57 10 44 0

Correct 94.3% 99% 95.6% 100%



CHAPTER 6

Discussion

To conclude this thesis, a number of “rules” for steganography and steganalysis are

discussed. The relation of this work to trends in steganography and steganalysis

is explored. Finally a commentary on the use of steganalysis for detecting covert

communication is presented.

6.1 Jeremiah’s Rules of Steganography

1. Strength is not stealth

2. Assume the hiding method is known by the adversary

3. Never divulge side information

4. Don’t add noise to a cover image where it doesn’t belong

The first item seems to be a common misinterpretation of the goal of steganog-

raphy. With steganography, the purpose is to communicate without revealing the

existence of that communication. Thus, if any data hiding scheme raises a suspi-

cion that extra information is being transfered, it is a poor data hiding scheme,

irregardless of whether an attacker can read the message.

The second item is essential in creating a steganographic system with a high

stealth and is known as Kerckhkoff’s principle in cryptography. When hiding one

should always assume an adversary knows the method with which you are hiding

information. That is, if there are any tell-tale statistical changes made by an em-

bedding scheme, assume the adversary knows what they are and can test for them.

This is a difficult problem and central to data hiding, as it is difficult to know a

priori what statistics an attacker will concentrate on.

The third item is minimize available side information. If an attacker knows

any additional information about how an image has been captured or what processes

it has undergone, he will be able to exploit that knowledge in analyzing images. For
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example, if the type of camera used in capturing an image is known, a statistical

model of that camera could be used to improve the analysis.

In an extreme case of side information, the attacker would have access to the

coverimage itself, destroying the stealth of the system[13]. This side information

rule can be extended to using images which are very similar. If a steganographer

uses many images of the same scene, the statistics of the original scene or capturing

device could be estimated and the discrepancies caused by embedding detected.

The final item is in regard to additive noise steganography. It states never to

add noise where it doesn’t belong. This echoes the ideas of [12],

“In steganography, the use of noise may make things worse, not better.

One can use the inherent noise in a cover image, but adding additional

noise may cause the steganography to be discovered.”

This thesis substantiates this concept in terms of the bounds of Thm. (3.1.1), as well

as results in Section 5. As the quality of the average consumer grade digital camera

increases, the amount of noise present in the system will be reduced even further.

The assumption that adding small amounts of arbitrary noise will not disturb the

statistics of the image is increasingly a poor one.

6.2 Jeremiah’s Rules of Steganalysis

1. Never assume you know the hiding method

2. Never assume order in the stegonoise

The first rule states that one should never assume that the hiding method is

known. This is very important in real world steganalysis. While security through

obscurity is known not to be dependable, in a properly designed and tested scheme

the secrecy can only tip the game toward the hider.

An ideal analysis scheme should be free from the concept of a stegoimage.

By building a model of natural images, the divergence of a test image from these

statistics should be the only needed indication that the image is suspect.

The second rule is specifically for additive noise information hiding. It is to

never assume that there is an order to the stegonoise. By encrypting a message,
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almost all correlation between the input text and cypher-text is destroyed. Further-

more, with a proper noise generation algorithm it is is computationally difficult to

estimate or extract a spreading sequence.

This rule has an interesting consequence: adhering to it means that we must

flag any image with a large amount of noise. This concept is explored in the next

section.

6.3 The Additive Noise Arms Race

Steganography is a game between the hider and the seeker. The hider wants

to hide as much information as they can without being discovered. This maximum

amount is defined by the tools a seeker is able to analyze data with. As shown in

this thesis it is possible to detect high bitrate embeddings that make use of simple

noise models. This gives a hider using an additive noise algorithm two choices:

to use pseudo-noise models such as Gaussian noise at a lower bitrate or explore

alternatives. As the hider would like to maximize capacity, the second choice is

the most likely option. In this respect a logical step for the hider is to seek systems

containing a large amount of inherent noise for hiding. A system with inherent noise

is characterized by the presence of a persistent, probabilistic distortion. In such a

system, the hider would attempt to model the noise as accurately as possible, then

use it in embedding. The seeker would then be forced to make an attempt at

discerning the source of the noise in a test image. This creates an “additive noise

arms race” with each side attempting to out pace the other. This scenario and

solutions are discussed next.

6.3.1 Would the Real Noise Please Stand Up?

The seeker knows that the hider may be hiding data using a noise model

mimicking naturally present noise. This is a difficult situation for the seeker as the

problem becomes: is the noise natural? This is an interesting problem in that in the

most basic sense, one would need to perform analysis on the noise in an image. In

blind steganalysis the seeker has no access to the coverimage, thus the noise must

be separated from the image. This amounts to the denoising of an image. If the
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hider can generate a pseudo-noise that is sufficiently close to real-world noise, the

differences could be masked by estimation errors in extracting the noise.

In addition, as the noise models improve, the pseudo-noise will approach being

indistinguishable from the real-world noise. Generally, this means if we ignore the

denoising problem and assume we are able to perfectly recover a potential stegonoise,

it will be impossible to determine whether the noise is natural or man-made.

6.3.2 Guilty Until Proven Innocent

In a system where the pseudo-noise is indistinguishable from the real-world

noise, the seeker has no choice but to flag every message containing such noise. This

method would produce a large number of false positives. The hope in this case is

that the number of such systems is fairly low. For example, a specific user sending a

large number of apparently scanned photographs may be suspicious. As data hiding

methodologies continue to advance, it is very likely that the number of systems in

this category will grow.

6.4 The Future of Detection Steganalysis

This section presents a commentary on difficulty of blind steganalysis for de-

tecting covert communications, as well as discussing a paradigm shift for the goals

of such steganalysis.

6.4.1 Seeing Is Not Believing

The cat and mouse game of hiding and seeking presented in the previous

section is not limited to additive noise. The difficulty in steganalysis is that the

seeker only sees what the hider wants them to. This means that any statistic in

the image should be regarded as potentially misleading. I believe that the hider

has an insurmountable advantage in this simple game. In the case where the hider

has complete access to the detection algorithms of the seeker, they will be able to

construct a hiding scheme that is able to evade detection. Fortunately, this goal is

counter to the greedy nature of the hider, in that he would like to stuff as many bits

as possible into each image.
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6.4.2 The New Goal of Detection Steganalysis

By in large the scales are heavily tipped in favor of the hider. So much in fact,

that it is likely there will never be a “catch all” detection scheme. Because of this

it is important to shift the goal of detection steganalysis.

Detection steganalysis should be viewed as a preventative measure. As it

is impossible to catch a well designed scheme carrying a properly sized message,

the goal should be to develop general functions that expose the presence of hidden

information. Each of these functions can be seen as a further constraint on the

hider. With each of these constraints the usable payload is decreased. By adding to

this library of analysis functions, successful information hiding becomes more and

more impractical- although never impossible.

New methods of steganalysis, such as presented in this thesis, should not be

viewed as a nail in a coffin, but rather an additional weight around the neck of covert

messaging.
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APPENDIX A

Spread Spectrum Image Steganography

Spread spectum image steganography (SSIS) was introduced in [29]. It serves to

create a Gaussian sequence that contains the message bits. This sequence is added

to the coverimage to produce the stegoimage. The following discussion describes

the algorithm.

A.1 SSIS Embedding

To embed a message,

m = {m1,m2, . . . ,ml}, mi ∈ {−1, 1}.

We first use the key to create the a sequence of realizations of a uniform random

variable distributed as U(0, 1),

u = {u1, u2, . . . , ul}.

We create a second random sequence based on u as follows,

u′
i =

 ui + 0.5, 0 ≤ ui < 0.5,

ui − 0.5, 0.5 ≤ ui ≤ 1.
(A.1)

The stegonoise sequence, s = {s1, s2, . . . , sl}, is then created as,

si =

 Φ−1(ui), mi = −1,

Φ−1(u′
i), mi = 1.

(A.2)

where Φ−1(·) is defined to be the inverse cumulative distribution function for a

Gaussian variable. The purpose of the transformation of (A.1) is to maximize the

difference between the values of si based on mi. For example, in a direct modulation

scheme, using a pseudo-noise sequence of N (0, σ2) many of the modulated values
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are near zero. This small separation causes decoding errors due to the estimation

step discussed in the recovery section. The transforms seeks to prevent this by

separating the values of the stegonoise.

Finally the stegonoise is added to the coverimage to produce the stegoimage,

Xs = round(Xc + s). (A.3)

A.2 SSIS Recovery

To recover the message, an estimate of the coverimage is made using an alpha-

trimmed mean filter[37],

X̂c = atm (Xs) . (A.4)

This allows for the estimation of the stegonoise,

ŝ = Xs − X̂c. (A.5)

Finally the message bits are recovered as,

m̂i = sign
(
ŝi · Φ−1(u′

i)
)
. (A.6)



APPENDIX B

Gaussian Multivariate

This derivation of the Gaussion Multivariate may be found in further detail in [36].

We begin with the class conditional pdf of the observation, x ∈ 	d, given

it is of class ωi. The distribution is a d dimensional Gaussian with mean µi and

covariance matrix Σi. This is denoted, p(x|ωi),

p(x|ωi) =
1

(2π)d/2 |Σi|1/2
e−

1
2(x−µi)

t
Σ−1

i (x−µi). (B.1)

To classify an observation, x, we will choose the class that maximizes the

posterior probability. That is we choose class ωi where,

ω∗
i = arg max

i
p(x|ωi). (B.2)

As the logarithm function is monotonically increasing we can replace (B.2)

with,

ω∗
i = arg max

i
ln p(x|ωi). (B.3)

We denote the likelihood function of ωi as gi(x). It is defined as the natural

logarithm of p(x|ωi). Using the properties of the natural logarithm we can write the

discriminant as,

gi(x) = ln p(x|ωi) (B.4a)

= −1

2
(x − µi)

t Σ−1
i (x − µi) −

d

2
ln 2π − 1

2
ln |Σi| . (B.4b)

To classify a sample x, the discriminant function for each distribution is eval-

uated with x and the discriminant function yielding the largest value is chosen as

the class.

For two categories, we have two discriminant functions, g1(x) and g2(x). By

evaluating both functions with the observation vector, x, we decide ω1 if g1(x) >
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g2(x), else we decide ω2.



APPENDIX C

Error Bounds

C.1 Average Error

The probability of error is,

P (error|x) =

 P (ω1|x), we decide ω2

P (ω2|x), we decide ω1

(C.1)

As we are using the Bayes decision rule, we choose ω1 if P (ω1|x) > P (ω2|x),

else decide ω2. We have,

P (error|x) = min[P (ω1|x), P (ω2|x)] (C.2)

C.2 Chernoff Bound

To find an upper bound for the error, we make use of,

min[a, b] ≤ aβb1−β ∀ a, b ≥ 0 and 0 ≤ β ≤ 1. (C.3)

Applying the inequality to (C.2) we find,

P (error) ≤ P β(ω1)P
1−β(ω2)

∫
pβ(x|ω1)p

1−β(x|ω2)dx ∀ 0 ≤ β ≤ 1. (C.4)

This can be written as,

P (error) ≤ P β(ω1)P
1−β(ω2)e

−k(β), (C.5)

where,
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k(β) =
β(1 − β)

2
(µ2 − µ1)

t [βΣ1 + (1 − β)Σ2]
−1 (µ2 − µ1) (C.6a)

+
1

2
ln

|βΣ1 + (1 − β)Σ2|
|Σ1|β|Σ2|(1−β)

.

The value of β which maximizes k(β) is found numerically. Evaluating (C.5)

with the optimal β gives an upper bound on the error.


