Towards NIC-based Intrusion Detection

M. Otey, S. Parthasarathy, A. Ghoting, G. Li, S. Narravula, D. Panda

Department of Computer and Information Science, The Ohio State University
Contact Email: {otey,srini}@cis.ohio-state.edu

ABSTRACT

We present and evaluate a NIC-based network intrusion detec-
tion system. Intrusion detection at the NIC makes the system
potentially tamper-proof and is naturally extensible to work in
a distributed setting. Simple anomaly detection and signature
detection based models have been implemented on the NIC
firmware, which has its own processor and memory. We em-
pirically evaluate such systems from the perspective of quality
and performance (bandwidth of acceptable messages) under
varying conditions of host load. The preliminary results we
obtain are very encouraging and lead us to believe that such
NIC-based security schemes could very well be a crucial part
of next generation network security systems.

Keywords

network security, network interface cards, NICs, network in-
trusion detection, data mining

Categories and Subject Descriptors

1.5.2 [Pattern Recognition]: Design Methodology - classifier
design and evaluation

1. INTRODUCTION

In today’s information age, where nearly every organiza-
tion is dependent on the Internet to survive, it is imperative
to guarantee the privacy and security of the information be-
ing exchanged. This issue has been brought further into the
foreground by the recent thrust toward cyber-space security
and the almost omnipresent deployment of network intrusion
detection systems. The goal of an intrusion detection system
is to detect inappropriate, incorrect, and unusual activity on a
network or on the hosts belonging to a local network by mon-
itoring network activity.

How do we know if an attack has occurred or if one has
been attempted? This typically requires sifting through huge

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. SIGKDD ’03, August 24-27, 2003, Washington,

DC, USA.
Copyright 2003 ACM 1-58113-737-0/03/0008 ...$5.00.

723

volumes of data gathered from the network, host, or file system
to find suspicious activity. There are two general approaches
to this problem: signature detection (also known as misuse
detection), where we look for patterns signaling well-known
attacks, and anomaly detection, where we look for deviations
from normal behavior. Most work on signature and anomaly
detection has relied on detecting intrusions at the host proces-
sor level, even those that detect intrusions occurring only at the
network layer and below. A problem with these approaches
is that even if anomalous/intrusion activity is detected, one is
often unable to prevent the anomalous packets from causing
havoc in the form of disrupting the system and over utilizing
the system CPU (e.g. via denial-of-service attacks). This pa-
per targets the emerging application of network intrusion de-
tection using Network Interface Cards (NICs). Specifically, we
study a novel architecture for network intrusion detection us-
ing NICs, and empirically evaluate its feasibility.

The primary role of NICs in computer systems is to move
data between the system’s components and the network. A
natural extension to this role would be to actually police the
packets forwarded in each direction by examining packet head-
ers and simply not forwarding suspicious packets. The ratio-
nale for NIC-based intrusion detection coupled with conven-
tional host-based intrusion detection can be stated as follows:
First, functions such as signature-based and anomaly-based
packet classification can be performed on the NIC, which has
its own processor and memory. This makes the system vir-
tually impossible to bypass or to tamper with as can be the
case with software-based systems that rely on the host oper-
ating system to function. Second, if the host is loaded (with
other programs running simultaneously), an intrusion detec-
tion system that relies on host processing capability may be
slowed down, thereby adversely affecting the bandwidth avail-
able for acceptable network transmissions. A NIC-based strat-
egy will not be affected by the load on the host and there-
fore will not suffer the same slowdown. Third, there is a
potential to naturally handle the scalability problem associ-
ated with centralized intrusion detection systems, since each
individual NIC can handle the in-bound and out-bound traf-
fic of the particular processor/local area network it is con-
cerned with, thus effectively distributing the work concerned.
Fourth, NIC-based strategies provide better coverage (one-to-
one mapping between hosts and intrusion detection systems)
and functional separation (e.g. internal NICs can detect port-
scans while NICs at the firewall can detect host-scans). Fi-
nally, the NIC-based scheme is inherently flexible, dynami-

Conventional Security Setup

Adding NIC-based security

Legend
|:| Host (+ host-based security) I Firewall I NIC-based Intrusion Detection System

Figure 1: Motivation for adding NIC-based Security

cally adaptive, and can work in conjunction with a host-based
intrusion detection system. The host-based intrusion detec-
tion system can download new rules/signatures into the NIC
on the fly, making the detection process adaptive. Figure 1
represents the overall architecture for NIC-based security. The
above advantages notwithstanding, the current disadvantage
to NIC-based intrusion detection is that processing capabil-
ity on the NIC is much slower and the memory sub-system is
much smaller when compared with the host itself. The task
of implementing algorithms on the NIC presents several new
challenges. For example, the NICs we used were not capa-
ble of performing floating point operations. As a result, we
were forced to eliminate those operations or resort to estimates
based on fixed-point operations. We also need to limit the
impact on bandwidth and latency for non-intrusive messages.
Given this fact, the question now becomes how best to use the
NIC’s processing capabilities for intrusion detection? This is
the key question that this paper seeks to answer.

We describe several intrusion detection strategies (designed
with the memaory and processor limitations of current-day NICs
in mind) and evaluate the performance of these schemes. We

compare the NIC-based schemes with a purely host-based schemes

while varying the load on the host processor. We evaluate each
scheme based on the quality (how effective are such schemes
for detecting intrusions) of detection, and the performance (in
terms of bandwidth supported).

The rest of this paper is organized as follows. In section 2
we document some of the related work in intrusion detection,
NIC-based computing, NIC-based security and data stream
processing. Section 3 documents our intrusion detection strate-
gies. We report on the experimental evaluation of above strate-
gies in section 4. Finally we conclude with some directions for
future research in section 5.

2. RELATED WORK

In this section we present the related work in intrusion de-
tection and NIC-based computing most relevant to our work.

Intrusion Detection Systems: There are two general ap-
proaches to the problem of intrusion detection: signature de-
tection (also known as misuse detection), where we look for
patterns signaling well-known attacks, and anomaly detection,
where we look for deviations from normal behavior. Signature
detection works reliably on known attacks, but has the obvious
disadvantage of not being able to detect new attacks. Though
anomaly detection can detect novel attacks, it has the draw-
back of not being able to discern intent. It can only signal that
some event is unusual, but not necessarily hostile, thus gener-
ating false alarms.

724

Signature detection methods are better understood and widely
applied. They are used in both host based systems, such as
virus detectors, and in network based systems such as SNORT
[21] and BRO [19]. These systems use a set of rules encod-
ing knowledge gleaned from security experts to test files or
network traffic for patterns known to occur in attacks. A limi-
tation of these systems is that as new vulnerabilities or attacks
are discovered, the rule set must be manually updated. An-
other disadvantage is that minor variations in attack methods
can often defeat such systems.

Anomaly detection is a harder problem than signature detec-
tion because while signatures of attacks can be very precise,
what is considered normal is more abstract and ambiguous.
Rather than finding rules that characterize attacks, we wish to
find rules that characterize normal behavior [6]. Since what is
considered normal could vary across different environments, a
distinct model of normalcy can be learned individually. Much
of the research in anomaly detection uses the approach of mod-
eling normal behavior from a (presumably) attack-free training
set. Because we cannot predict all possible non-hostile behav-
ior, false alarms are inevitable. Forrest et al. [7], making the
connection between anomaly detection systems and biological
immunology, found that when a vulnerable UNIX system pro-
gram or server is attacked (for example, using a buffer over-
flow to open a root shell), that the program makes sequences
of system calls that differ from the sequences found in normal
operation [6].

Other models of normal system call sequences have been
used, such as finite state automata [22] and neural networks [8].
Lane and Brodley [11] use instance-based methods and Se-
queira and Zaki [23] use clustering methods for detecting anoma-
lous user commands. Current network anomaly detection sys-
tems such as NIDES [1], ADAM [3], and SPADE [4] model
only features of the network and transport layer, such as port
numbers, IP addresses, and TCP flags. Models built with these
features could detect probes (such as port scans) and some de-
nial of service (DOS) attacks on the TCP/IP stack, but would
not detect attacks of the type detected by Forrest, where the
exploit code is transmitted to a public server in the applica-
tion payload. Most current anomaly detectors use a stationary
model, where the probability of an event depends on its aver-
age rate during training, and does not vary with time. How-
ever, using the average rate could be incorrect for many pro-
cesses. Paxon and Floyd [20] found that many network pro-
cesses, such as the rate of a particular type of packet, have
self-similar (fractal) behavior. Events do not occur at uniform
rates on any time scale. Instead they tend to occur in bursts.
Hence, it is not possible to predict the average rate of an event
over a time window by measuring the rate in another window,
regardless of how short or long the windows are. While most
research in intrusion detection has focused on either signature
detection or anomaly detection, most researchers have realized
that the two models must work hand-in-hand to be most effec-
tive [3, 2].

NIC-based Computing and Security: Recently there has
been a fair amount of activity in the area of NIC-based com-
puting. More closely related to our work is the use of NICs for
firewall security [15]. The idea is to embed firewall-like se-
curity at the NIC level. Firewall functionality, such as packet
filtering, packet auditing, and support for multi-tiered security
levels, has been proposed. While most of these ideas are in

their infancy, a couple of simple ideas have been commercial-
ized (e.g. 3Com’s embedded firewall).

Data Stream Processing: The past few years have wit-
nessed the emergence of application domains wherein data
elements arrive in the form of a continuous stream. Exam-
ples of such streaming datasets include stock tickers and click
streams. Often, these data streams can be characterized as
infinite streams that have no pre-defined size. This require-
ment has motivated online processing of data streams as and
when they arrive and by developing algorithms that bound
memory usage. Existing algorithms have been re-designed
to process the stream in one pass using a summary structure,
which stores an approximate representation of the data stream
in memory [10, 13, 9, 14]. When processing network data for
network intrusion detection, essentially, we process each in-
coming packet at a time, and never get a second look. This
makes data stream related research highly relevant to NIC-
based network intrusion detection. However, the key differ-
ence is that NIC-based stream processing is even more con-
strained when it comes to processing capabilities and memory
usage. As a result, several data stream processing algorithms
are rendered inapplicable for network intrusion detection un-
der real-time processing requirements.

3. ALGORITHMS

In this section we describe the basic algorithms (anomalous
client detectors and hybrid models) we evaluated. Additional
algorithms (e.g. a port scan detector) are discussed in [16].
Each of these algorithms were implemented both on the NIC
as well as on the host processor. However, they have all been
designed keeping the memory and processing limitations of
the NICs in mind.

NIC Programming Difficulties: NICs are typically very
limited in their computing resources. They typically have a
relatively small amount of memory, and a slow, limited proces-
sor. Any algorithm designed to run efficiently on a NIC must
take these facts into account. For example, the NIC on which
the following algorithms were implemented have no floating-
point capabilities, and so any floating-point operations must
either be eliminated, or estimated using fixed-point implemen-
tations. Likewise, array sizes must be constrained so that they
fit within the limited memory available on the NIC.

3.1 AnomalousClient Detectors

P(SrclP | DstIP) Anomalous Client Detector: The P(SrclP
| DstIP) anomalous client detector algorithm (see figure 2) is
loosely based on one of the models used in the non-stationary
application layer anomaly detection (ALAD) algorithm pro-
posed by Chan and Mahoney [12]. The objective of this model
is to determine the anomaly score of a given packet based on
previous interactions between a particular client and the partic-
ular destination host in question. The anomaly score is based
on the value of P(SrcIP | DstIP), the probability that a client
machine connects to a given host. The set of normal clients for
a host are those for which P(SrcIP | DstlP) > threshold(DstIP).
A value of P(SrcIP | DstIP) that is lower than the threshold
may be indicative of suspicious behavior.

The model is capable of detecting two types of anomalous
behavior. One behavior is when a new or existing client (some-
one the system has not seen before) attempts to connect to a
host that it has not connected to before. The second behavior is

725

function DetectAnomalousClient(Srcl P, DstlP)
begin
SDTable: A two dimensional hash table with one
axis indexed by DstIP and the other by
SrclP, which holds the number of packets each
DstIP receives from each SrclP.
DstTable: A one dimensional table holding the
number of packets received by each DstIP
H: Hash function for the SrclIP axis in the SDTable
DstTable[DstIP]++;
SDTable[DstIP][H(SrcIP)]++; /* conflict resolution
is handled using standard approaches*/
if ((SDTable[DstIP][H(SrclP)] / DstTable[DstIP]) >
threshold(DstIP)
return "Normal Client”;
else
return "Possible Anomalous Client”;
end

Figure 2: Anomalous Client Detector - P(SrcIP | DstIP)
version

when the amount of a client’s interaction with a particular host
radically changes over time. Note that the system can only de-
tect anomalies in the quantity of the interactions between the
host and the client; it cannot detect anomalies in the character
of the interactions.

To model the first scenario we need to model an anomaly
score or surprise factor, for such a scenario unfolding. Ba-
sically, a new client accessing a well known world wide web
portal is less surprising than a new client accessing a particular
internal machine that is typically accessed only by a handful of
trusted client machines. To model this surprise factor, we rely
on incrementally keeping track of a threshold function that is
inversely proportional to the entropy of accesses to a particular
destination host. The entropy for the web based example (low
threshold value) would be much higher than the entropy for the
trusted client example (high threshold value). This threshold
function (by the very definition of how entropy is computed) is
dependent on the number of different client connections for a
given host as well as the frequency of client connections. We
incrementally maintain the threshold by adopting ideas from
our previous research [17]. Note that a destination host which
receives connections from a large number of sources (clients),
is more likely to be accessed by a new source (client), than
by a host which typically receives connections from just a few
sources (clients). To model the second scenario, we monitor
the rate of change of P(SrclP | DstIP) over temporal windows.
This would allow us to detect large fluctuations in the con-
ditional probabilities which would trigger a possible anomaly
alarm.

The basic algorithm stores information in a set of hash ta-
bles. Again we use hash tables so that one can save on mem-
ory utilization, at a (hopefully small) cost to accuracy of the
model. Upon receiving a new packet, it simply computes the
conditional probability P(SrclP | DstIP) and if this conditional
probability is less than the threshold determined from the train-
ing data, then the algorithm considers the source host to be an
anomalous client. In the current implementation of the algo-
rithm the thresholds are adjusted according to the Gini index
instead of entropy, as the computation of a Gini index is better
suited to the capabilities of the NIC than the computation of
entropy is; computing a Gini index requires squaring proba-
bilities, whereas computing an entropy value requires taking
logarithms of probabilities, a function that is not efficient on

function DetectAnomalousClient(Srcl P, DstPort)
begin
SDDTable: A three dimensional hash table with one
axis indexed by DstPort, one by DstIP, and the third by
SrclP, which holds the number of packets each (DstPort, DstIP)
pair receives from each SrclP.
DstTable: A two dimensional table holding the number of
packets received by each (DstPort, DstIP) pair
H: Hash function for the SrclIP axis in the SDTable
DstIP = Localhost.IPAddress;
DstTable[DstPort][DstIP]++;
SDDTable[DstPort][DstIP][H(SrcIP)]++; /* conflict resolution is
handled using standard approaches*/

if ((SDDTable[DstPort][DstIP][H(SrclP)] / DstTable[DstPort][DstIP])

> threshold(DstPort, DstIP)
return "Normal Client”;
else
return "Possible Anomalous Client”;
end

Figure 3: Anomalous Client Detector - P(SrcIP | DstPort,
DstlIP) version

the NICs.

P(SrclP | DstPort, DstIP) Anomalous Client Detector:
The P(SrclP | DstPort, DstIP) anomalous client detector algo-
rithm (see figure 3) is also loosely based on one of the models
used by Chan and Mahoney [12]. The objective of this model
is to determine the anomaly score of a given packet based on
previous interactions between a particular client and the partic-
ular service (port) it is accessing on a given host. This model
is designed to be used in a distributed manner: this algorithm
runs on the NIC of each host in the network, instead of run-
ning on the central firewall NIC. As such, the value of DstIP
is constant (it is the IP address of the host), and so the hash
table is only two-dimensional. Running this algorithm on the
host NICs leaves the firewall NIC free to run other detectors.
This algorithm can operate on the firewall NIC, but its mem-
ory requirements are much higher, as the hash table must be
three-dimensional since it must take into account the value of
DstIP, which it takes directly from the packet header.

3.2 HybridModelsFor Anomaly Detection

We have also developed hybrid models that use resources at
both the host and NIC level. Operations that cannot be per-
formed at the NIC level due to memory or speed constraints
can be performed at the host level, and their results can be sent
to the NIC to aid in detection. Below we discuss anomaly de-
tection using frequent itemsets. A model using clustering is
discussed in [16].

Anomaly Detection Using Frequent Itemsets: This algo-
rithm uses the concept of frequent itemsets to discover anoma-
lies (see figure 4). This is a hybrid system: The frequent item-
sets are computed at the host level and periodically passed
down to the NIC, since the NIC itself does not have sufficient
resources to compute frequent itemsets. The frequent itemsets
are computed using features found in the headers of packets
sampled by the host machine.

The intuition behind this algorithm is that since intrusions
occur only rarely, by sampling the packets to find the frequent
itemsets, few if any intrusion packets will be incorporated into
the model. Also, many intrusion packets have little in com-
mon with normal packets, and so the number of frequent item-
sets found in an intrusion packet will be relatively small. Fi-

726

function DetectAnomaly(Packet)
begin
I: The set of frequent itemsets found in
the headers of normal packets
Count: The number of frequent itemsets
found in the current packet
SizeSum: The sum of the sizes of the frequent
itemsets found in the current packet
CountThreshold: Threshold for the number
of itemsets that must be found
SizeThreshold: Threshold for the average
size of the itemsets found
if i is present in Packet
Count++;
SizeSum := SizeSum + Size(i);
end if
end for
if (Count > CountThreshold
or (SizeSum/Count) > SizeThreshold)
return "Possible Anomalous Client”;
else
return "Normal Client”;
end

Figure 4: Anomaly Detection Using Frequent Itemsets

Anomalous Client Detector Performance

Bandwidth (KB/s)

9 10 11 12 13

Load

Figure 5: Quantitative Comparison of NIC-based and
Host-Based Intrusion Detection for the Anomalous Client
Detector

nally, the size of those itemsets will be relatively small since
small itemsets usually have high supports and so these item-
sets are shared by all packets, whether they are intrusions or
not. Hence, in the algorithm, two thresholds (CountThreshold
and SizeThreshold) are used to determine which are intrusion
packets and which are not. CountThreshold separates those
packets in which only a few itemsets are found from those in
which many are found. SizeThreshold separates those pack-
ets with itemsets that are, on average, smaller from those with
larger itemsets.

4. EXPERIMENTAL RESULTS

In this section we detail the experimental results we ob-

Method Total Total Flagged Total Total
Flagged Week 2 Intrusion Intrusions
Packets Packets Packets Detected
P(SrcIP | DstiP) 1021 593 197 10
P(SrcIP | DstIP) Sample 79 63 41 9
P(SrcIP | DstlP) Window 182 30 15 10
P(SrclP | DstIP, DstPort) 259 182 89 10
Frequent |temsets N/A 124434 N/A 10

Figure 6: Results of different algorithms

Frequent
Itemsets

land-1 (DOS)
ipsweep-1 (Probe)
ipsweep-2 (Probe)

neptune-1 (DOS)
neptune-2 (DOS)

pod-1 (DOS)
pod-2 (DOS)

satan (Probe) back (DOS)

eject (UZ2R)
loadmodule (U2ZR),

NTinfoscan (Probe)
land-2 (DOS) crashis (DOS)

P(SrcIP | DstIP, DstPort)

Figure 7: Different intrusions are detected by different al-
gorithms

tained. We first start by describing the experimental setup (the
machine configurations, data sets used and evaluations per-
formed) for the algorithms. We then examine the qualitative
and quantitative aspects of the algorithms. The quantitative
study focuses on the comparing the host-based and NIC-based
schemes while the quality study focuses on the quality of the
algorithms as measured by the accuracy of detection. Due
to space constraints, we only present the results concerning
the anomalous client detectors and the detector using frequent
itemsets. Further results can be found in [16].

Setup: All host-based experiments, unless otherwise noted,
were evaluated on dual-processor 300 MHz Pentium Il ma-
chines with 128 MB of memory. All NIC-based evaluations
were done on Myrinet NICs, each of which had a 66MHz
LANai 4 processor and 1 MB of memory.

To test each algorithm, we used both synthetic and real data
sets. The synthetic data sets were generated using a program
available at http://www.cis.ohio-state.edu/~otey/NIC/. The real
data set is the 1999 DARPA Intrusion Detection Evaluation
data set. The size of the packets, unless otherwise noted, is
2048 bytes. Each packet is composed of four protocol bits,
four flag bits, four source IP bytes, four destination IP bytes,
two source port bytes, two destination port bytes, one TTL
byte, two packet size bytes and 2032 bytes for the data. We
set it up so that the network packet generator sends roughly 1
packet every 0.001 seconds for a net theoretical throughput of
2MB per second. However, the actual measured throughput
is 1796 KB per second. We used the first three weeks of tcp-
dump data from the DARPA data sets. Weeks one and three
contain normal network traffic. Week two contains four days
of data containing 34 intrusions (Tuesday’s tcpdump file was
unreadable). For the anomalous client detectors we used the
data from weeks one and two to do testing, and for the frequent
itemset-based detector we used weeks one and three to build
the itemsets and week two to test it.

Quantitative Experiments: We next compared the perfor-
mance of the host-based and NIC-based strategies. The results
are documented in Figure 5. The X-axis represents the load
on the host on a log scale. The Y-axis is the net throughput of

727

valid packets (allowed to filter through). Re-call that the max-
imum throughput is limited by the incoming data rate which
is 1796 KB per second. For the P(SrcIP | DstIP) anomalous
client detector algorithm we notice that the NIC-based and
Host-based strategies perform comparably until the host be-
comes overloaded. The NIC-based strategy is unaffected by
the load and performs at a relatively constant rate allowing for
a 95% throughput efficiency.

Qualitative Experiments: Figure 6 and figure 7 show how
different algorithms fared with the DARPA dataset. In all, 18
of the 34 intrusions present in week two were detected. Fig-
ure 6 show the results for different versions of the anomaly
detectors as well as the frequent itemset-based detector. The
P(SrcIP | DstIP) Window algorithm is a modification of the
the P(SrcIP | DstlIP) algorithm that employs a sliding win-
dow technique that periodically removes older packets from
the hash table. The P(SrcIP | DstIP) Sample algorithm is an-
other modification that only examines a sample of the packets.
In this case we sampled 25% of the packets. The P(SrcIP | Dst-
Port, DstIP) algorithm is implemented here in a non-distributed
fashion: We use a three-dimensional hash table instead of a
separate table for each internal host. For all of these detec-
tors, the threshold used was a constant value of 0.000015.
The frequent itemsets were generated from a 5% sample of
the weeks one and three data with a minimum support of 5%
and a minimum itemset size of 4. CountThreshold was set
to 5 and SizeThreshold was set to 4.05. In figure 6 one can
see that the first four algorithms perform fairly well as far as
false positives are concerned. The Sample algorithm does the
best in this respect, though it only detects 9 intrusions. In the
Venn diagram in figure 7 one can see which intrusions were de-
tected by which algorithms. It is worth noting that the frequent
itemset algorithm can only detect denial-of-service (DOS) and
probing attacks, since these attacks produce anomalies in the
packet headers. Generally, user-to-root (U2R) and remote-to-
local (R2L) attacks cannot be detected by this algorithm since
their signatures are concealed within the payload portion of
the packet, which is ignored by the algorithm. The other al-
gorithms can detect such intrusions, however, because many
intrusions originate from a machine that has had little previ-
ous contact with the host. Therefore the probabilities will be
smaller and the packets will be marked as intrusions.

5. CONCLUSIONS

We present and evaluate a NIC-based network intrusion de-
tection system. We consider embedding both signature detec-
tion algorithms as well anomaly detection algorithms in our
evaluation.

The quantitative improvements we achieve with this approach
relies on the fact that the operating system of the host does
not have to be interrupted with the detection process. Thus
on heavily loaded hosts admissible network traffic proceeds
at a consistent rate provided the computational and memory
resources of the NIC is not stretched. Our preliminary empir-
ical results bear this out. A key element in understanding the
trade-offs involved is the amount of computation and memory
utilization involved in the programs. The larger the compu-
tation cost, the better the performance of a purely host-based
approach.

From the qualitative angle, the downside of using simplified

algorithms is that the quality and detection rate are hampered.
However, the benefit of having the NIC do the policing is that it
can actually prevent network-based intrusions from wrecking
havoc on host systems. Since the intrusive packet, if caught,
never reaches the host operating system, this approach can de-
tect and prevent, unlike host-based systems. In effect, the NIC
acts as a basic shield for the host. If the NIC cannot catch up
with the rate the packets are arriving, it can begin dropping the
packets (this is the default behavior in the Myrinet NICs), as
this may be indicative of a denial-of-service attack. If the NIC
were to become overwhelmed by a such an attack, the host
would be spared from it. We would prefer to sacrifice only the
NIC to the attack rather than the entire host machine.

However, from a technology perspective we are not very far
away from 1GHz NIC processors (with appropriately larger
memory). With those projected systems we anticipate that
NIC-based intrusion detection will do better both from a quan-
titative standpoint and from a a qualitative standpoint (as we
will be able to use less-restrictive algorithms). In terms of
ongoing and future work, we are looking into taking the al-
gorithms proposed and porting them onto the newer Myrinet
cards featuring faster LANai 9 processors that are now avail-
able for use in our group. We are also looking at how to
use existing real intrusion data (for example, the KDDCUP
and DARPA datasets) to evaluate our algorithms. Finally, we
are looking at the problem of implementing incremental tech-
niques[5, 18, 24] on the NIC platform, to update the informa-
tion used to detect intrusions (as described in Section 3).

Acknowledgements: This work was supported by an Ameritech
Faculty Fellowship and NSF grants CCR-0204429 and EIA-
9986052. We would like to thank Darius Buntinus for answer-
ing related questions about NIC-based programming.

6. REFERENCES

[1] D. Anderson, T. Lunt, H. Javitz, A. Tamaru, and
A. Valdes. Detecting unusual program behavior using
the statistical component of the next-generation
intrusion detection expert system (nides). In Technical
Report SRI-CSL-95-06, SRI, 1995.

[2] D. Barbara and S. Jajodia, editors. Applications of Data
Mining in Computer Security. Kluwer, 2002.

[3] D. Barbara, N. Wu, and S. Jajodia. Detecting novel
network intrusions using bayes estimators. In Proc.
SIAM Intl. Conf. Data Mining, 2001.

[4] Silicon Defence. Spade. In
http://www:.silicondefense.com/software/spice/, 2001.

[5] Martin Ester, Hans-Peter Kriegel, Jorg Sander, Micha
el Wimmer, and Xiaowei Xu. Incremental clustering for
mining in a data warehousing environmen t. In Proc.
24th Int. Conf. Very Large Data Bases, VLDB, pages
323-333, 24-27 1998.

[6] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff.
A sense of self for unix processes. In Proc. of 1996
IEEE Symp. on Computer Security and Privacy, 1996.

[7] S. Forrest, S. Hofmeyr, and S. Somayaji. Computer
immunology. In Comm. ACM, 4(10):88-96, 1997.

[8] A. Ghosh, A. Schwartzbard, and M. Schatz. Learning
program behavior profiles for intrusion detection. In
Proc. 1st USENIX Workshop on Intrusion Detection and

728

Network Monitoring, 1999.

[9] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
Clustering data streams. In proceeding of the Annual
Symp. on Foundations of Computer Science, 2000.

[10] G. Hulten, L. Spencer, and P. Domingos. Mining
time-changing data streams. In proceeding of the
seventh International Conference on Knowledge
Discovery and Data Mining, 2001.

[11] T. Lane and C. Brodley. Temporal sequence learning
and data reduction for anomaly detection. In ACM
Trans-actions on Information and system Security, 1999.

[12] M. Mahoney and P. Chan. Learning nonstationary
models of normal network traffic for detecting novel
attacks. In SIGKDD, 2002.

[13] G. Manku and R. Motwani. Approximate frequency
counts over data streams. In proceeding of the 28th
VLDB Conference, Hong Kong, China, 2002.

[14] G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Approximate medians and other quantiles in one pass
and with limited memory. In proceeding of the ACM Intl
Conf. on Management of Data, 1998.

[15] D. Nagle and D. Friedman. Building firewalls with
intelligent network interface cards. In CMU SCS
Technical Report CMU-CS-00-173, 2002.

[16] M. Otey, S. Parthasarathy, A. Ghoting, G. Li,
S.Narravula, and D. Panda. Towards nic-based intrusion
detection. In OSU-CISRC-3/03-TR12, 2003.

[17] S. Parthasarathy and A. Ramakrishnan. Parallel
incremental 2d-discretization on dynamic datasets.
International Conference on Parallel and Distributed
Processing Systems, 2002.

[18] S. Parthasarathy, M. Zaki, M. Ogihara, and
S. Dwarkadas. Incremental and interactive sequence
mining. ACM Confereince on Information and
Knowledge Management (CIKM), Mar 1999.

[19] V. Paxon. Bro: A system for detecting network intruders
in real-time. In Proc. 7th USENIX Security Symp., 1998.

[20] V. Paxon and S. Floyd. The failure of poisson modeling.
In IEEE/ACM Transactions on Networking, 3:226-24,
1995.

[21] M. Roesch. Snort — lightweight intrusion detection for
networks. In USENIX LISA, 1999.

[22] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollinen. A
fast automaton based method for detecting anomalous
behaviours. In proceeding of IEEE Symposium on
Security and Privacy 144-155, 2001.

[23] K. Sequira and M. Zaki. Admit: Anomaly-based data
mining for intrusions. In SIGKDD Conference, 2002.

[24] A. Veloso, W. Meira, M. Carvalho, B. Possas,

S. Parthasarathy, and M. Zaki. Mining frequent itemsets
in evolving databases. SIAM International Conference
on Data Mining, 2002.

	MAIN MENU
	TABLE OF CONTENTS
	AUTHOR INDEX
	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

