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Amos II (Active Mediator Object System) is a distributed mediator sys-
tem that uses a functional data model and has a relationally complete func-
tional query language, AmosQL. Through its distributed multi-database facili-
ties many autonomous and distributed Amos II peers can interoperate. Func-
tional multi-database queries and views can be defined where external data
sources of different kinds are translated through Amos II and reconciled through
its functional mediation primitives. Each mediator peer provides a number
of transparent functional views of data reconciled from other mediator peers,
wrapped data sources, and data stored in Amos II itself. The composition of
mediator peers in terms of other peers provides a way to scale the data inte-
gration process by composing mediation modules. The Amos II data manager
and query processor are extensible so that new application oriented data types
and operators can be added to AmosQL, implemented in some external pro-
gramming language (Java, C, or Lisp). The extensibility allows wrapping data
representations specialized for different application areas in mediator peers. The
functional data model provides very powerful query and data integration prim-
itives which require advanced query optimization.
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1 Introduction

The mediator/wrapper approach, originally proposed by [43], has been used for
integrating heterogeneous data in several projects, e.g. [16, 42, 14, 5]. Most me-
diator systems integrate data through a central mediator server accessing one
or several data sources through a number of ’wrapper’ interfaces that translate
data to a common data model (CDM). However, one of the original goals for
mediator architectures [43] was that mediators should be relatively simple dis-
tributed software modules that transparently encode domain-specific knowledge
about data and share abstractions of that data with higher layers of mediators or
applications. Larger networks of mediators would then be defined through these
primitive mediators by composing new mediators in terms of other mediators
and data sources.

The core of Amos II is a open, light-weight, and extensible database man-
agement system (DBMS) with a functional data model. Each Amos II server
contains all the traditional database facilities, such as a storage manager, a re-
covery manager, a transaction manager, and a functional query language named
AmosQL. The system can be used as a single-user database or as a multi-user
server to applications and to other Amos II peers.

Distribution

Amos II is a distributed mediator system where several mediator peers com-
municate over the Internet. Each mediator peer appears as a virtual functional
database layer having data abstractions and a functional query language. Func-
tional views provide transparent access to data sources from clients and other
mediator peers. Conflicts and overlaps between similar real-world entities being
modeled differently in different data sources are reconciled through the media-
tion primitives [18, 17] of the multi-mediator query language AmosQL. The me-
diation services allow transparent access to similar data structures represented
differently in different data sources. Applications access data from distributed
data sources through queries to views in some mediator peer.

Logical composition of mediators is achieved when multi-database views in
mediators are defined in terms of views, tables, and functions in other mediators
or data sources. The multi-database views make the mediator peers appear to
the user as a single virtual database. Amos II mediators are composable since
a mediator peer can regard other mediator peers as data sources.

Wrappers

In order to access data from external data sources Amos II mediators may con-
tain one or several wrappers which process data from different kinds of external
data sources, e.g. ODBC based access to relational databases [11, 4], access to
XML files [28], CAD systems [25], or Internet search engines [22]. A wrapper
is a program module in Amos II having specialized facilities for query process-
ing and translation of data from a particular class of external data sources. It
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contains both interfaces to external data sources and knowledge of how to ef-
ficiently translate and process queries involving accesses to a class of external
data sources. In particular external Amos II peers known to a mediator are also
regarded as external data sources and there is a special wrapper for accessing
other Amos II peers. However, among the Amos II peers special query opti-
mization methods are used that take into account the distribution, capabilities,
costs, etc. of the different peers [20].

The name server

Every mediator peer must belong to a group of mediator peers. The mediator
peers in a group are described through a meta-schema stored in a mediator
server called name server. The mediator peers are autonomous and there is
no central schema in the name server. The name server contains only some
general meta-information such as the locations and names of the peers in the
group while each mediator peer has its own schema describing its local data
and data sources. The information in the name server is managed without
explicit operator intervention; its content is managed through messages from
the mediator peers. To avoid a bottleneck, mediator peers usually communicate
directly without involving the name server; it is normally involved only when a
connection to some new mediator peer is established.

AmosQL

AmosQL is functional language having its roots in the functional query lan-
guages OSQL [31] and DAPLEX [38] with extensions of mediation primitives
[18, 17], multi-directional foreign functions [29], late binding [13], active rules
[39], etc. Queries are specified using the select - from - where construct as in
SQL. AmosQL furthermore has aggregation operators, nested subqueries, dis-
junctive queries, quantifiers, and is relationally complete.

Query optimization

The declarative multi-database query language AmosQL requires queries to be
optimized before execution. The query compiler translates AmosQL statements
first into object calculus and then into object algebra expressions. The object
calculus is expressed in an internal simple logic based language called ObjectLog
[29], which is an object-oriented dialect of Datalog. As part of the translation
into object algebra programs, many optimizations are applied on AmosQL ex-
pressions relying on its functional and multi-database properties. During the
optimization steps, the object calculus expressions are re-written into equivalent
but more efficient expressions. For distributed multi-database queries a multi-
database query decomposer [20] distributes each object calculus query into local
queries executed in the different distributed Amos II peers and data sources. For
better performance, the decomposed query plans are rebalanced over the dis-
tributed Amos II peers [17]. A cost-based optimizer on each site translates

3



the local queries into procedural execution plans in the object algebra, based
on statistical estimates of the cost to execute each generated query execution
plan expressed in the object algebra. A query interpreter finally interprets the
optimized algebra to produce the result of a query.

Multi-directional foreign functions

The query optimizer is extensible through a generalized foreign function mech-
anism, multi-directional foreign functions. It gives transparent access from
AmosQL to special purpose data structures such as internal Amos II meta-
data representations or user defined storage structures. The mechanism allows
the programmer to implement query language operators in an external language
(Java, C or Lisp) and to associate costs and selectivity estimates with different
user-defined access paths. The architecture relies on extensible optimization of
such foreign function calls [29]. They are important both for accessing external
query processors [4] and for integrating customized data representations from
data sources.

Organization

Next the distributed mediator architecture of Amos II is described. Then the
functional data model used in Amos II is described along with its functional
query language followed by a description of how the basic functional data model
is extended with data integration primitives. After that there is an overview
of the distributed multi-mediator query processing. Finally, related work is
discussed followed by a summary.

2 Distributed Mediation

Groups of distributed Amos II peers can interoperate over a network using
TCP/IP. This is illustrated by Fig. 1 where an application accesses data from
two distributed data sources through three distributed mediator peers. The
thick lines indicate communication between peers where the arrows indicate
peers acting as servers.

The name server is a mediator peer storing names, locations, and other
general data about the mediators in a group. As illustrated by the dotted lines,
mediators in a group communicate with the name server to register themselves
in the group or obtain information about other peers.

The figure furthermore illustrates that several layers of mediator peers can
call other mediator peers. Notice, however, that the communication topology
is dynamic and any peer can communicate directly with any other peer or data
source in a group. It is up to the distributed mediator query optimizer to
automatically come up with the optimal communication topology between the
peers for a given query. The query optimizers of the peers can furthermore
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Figure 1: Distributed mediator communication

exchange both data and schema information in order to produce an optimized
distributed execution plan.

In the figure, the uppermost mediator defines mediating functional views
integrating data from them. The views include facilities for semantic reconcili-
ation of data retrieved from the two lower mediators.

The two lower mediators translate data from a wrapped relational database
and a web server, respectively. They have knowledge of how to translate
AmosQL queries to SQL [11] through JDBC and, for the web server, to web
service requests.

When an Amos II system is started, it initially assumes stand-alone single-
user mode of operation in which no communication with other Amos II systems
can be done. The stand-alone system can join a group by issuing a registration
command to the name server of the group. Another system command makes
the mediator a peer that accepts incoming commands from other peers in the
group.

In order to access data from external data sources Amos II mediators may
contain one or several wrappers to interface and process data from external
data sources. A wrapper is a program module in a mediator having specialized
facilities for query processing and translation of data from a particular kind
of external data sources. It contains interfaces to external data repositories
to obtain both meta-data (schema definitions) and data. It also includes data
source specific rewrite rules to efficiently translate and process queries involving
accesses to a particular kind of external data source. More specifically the
wrappers perform the following functions:

• Schema importation translates schema information from the sources into
a set of Amos II types and functions.

• Query translation translates internal calculus representations of AmosQL
queries into equivalent API calls or query language expressions executable
by the source.

• Source statistics computation estimates costs and selectivities for API calls
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or query expressions to a data source.

• Proxy OID generation executes in the source query expressions or API
calls to construct proxy OIDs describing source data.

• OID verification executes in the source query expressions or API calls
to verify the validity of involved proxy OIDs, in case they have become
invalid between different query requests.

Once a wrapper has been defined for a particular kind of source, e.g. ODBC
or a web service, the system knows how to process any AmosQL query or view
definition for all such sources. When integrating a new instance of the source
the mediator administrator can define a set of views in AmosQL that provide
abstractions of it.

Different types of applications require different interfaces to the mediator
layer. For example, there are call level interfaces allowing AmosQL statements
to be embedded in the programming languages Java, C, and Lisp. The call-
in interface for Java has been used for developing a Java-based multi-database
object browser, GOOVI [6].

The Amos II kernel can also be extended with plug-ins for customized query
optimization, fusion of data, and data representations (e.g. matrix data). Of-
ten specialized algorithms are needed for operating on data from a particular
application domain. Through the plug-in features of Amos II , domain oriented
algorithms can easily be included in the system and made available as new
query language functions in AmosQL. It is furthermore possible to add new
query transformation rules (re-write rules) for optimizing queries over the new
domain.

3 Functional Data Model

The data model of Amos II is an extension of the Daplex [38] functional data
model. The basic concepts of the data model are objects, types, and functions.

3.1 Objects

Objects model all entities in the database. The system is reflective is the sense
that everything in Amos II is represented as objects managed by the system,
both system and user-defined objects. There are two main kinds of representa-
tions of objects: literals and surrogates. The surrogates have associated object
identifiers (OIDs), which are explicitly created and deleted by the user or the
system. Examples of surrogates are objects representing real-world entities such
as persons, meta-objects such as functions, or even Amos II mediators as meta-
mediator objects.

The literal objects are self-described system maintained objects which do
not have explicit OIDs. Examples of literal objects are numbers and strings.
Literal objects can also be collections, representing collections of other objects.
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The system-supported collections are bags (unordered sets with duplicates) and
vectors (order-preserving collections). Literal are automatically deleted by an in-
cremental garbage collector when they are no longer referenced in the database.

3.2 Types

Objects are classified into types making each object an instance of one or several
types. The set of all instances of a type is called the extent of the type. The
types are organized in a multiple inheritance, supertype/subtype hierarchy. If
an object is an instance of a type, then it is also an instance of all the supertypes
of that type; conversely, the extent of a type is a subset of all extents of the
supertypes of that type (extent-subset semantics). For example if the type
Student is a subtype of type Person, the extent of type Student is also a subset
of the extent of type Person. The extent of a type which is multiple inherited
from other types is a subset of the intersection of its supertypes’ extents.

There are two kinds of types, stored and derived types. Derived types are
used mainly for data reconciliation and are described in the next section. Stored
types are defined and stored in an Amos II peer through the create type
statement, e.g.:

create type Person;
create type Student under Person;
create type Teacher under Person;
create type TA under Student, Teacher;

The above statements extend the database schema with four new types: A TA
object is both a Student and a Teacher. The extent of type Person is the
union of all objects of types Person, Student, Teacher, and TA. The extent
of type TA is the intersection of the extents of types Teacher and Student.

All objects in the database are typed, including meta-objects such as those
representing the types themselves. The meta-objects representing types are also
stored types and instances of the meta-type named Type. In the example the
extent of the type named Type is the meta-objects representing the types named
TA, Teacher, Student, and Person.

The root in the type hierarchy is the system type named Object. The
system type Userobject is the root of all user defined types and the extent of
type Userobject contains all user-defined objects in the database.

The major root types in the type hierarchy are illustrated by the function
diagram on Fig. 2 where ovals denote types, thin arrows denote functions, thick
arrows denote type inheritance, and literal function result types are omitted for
readability. The type Datasource and its subtypes and functions are explained
later in Sect. 4.2.

Every object has an associated type set, which is the set of those types that
the object is an instance of. Every object also has one most specific type which is
the type specified when the object is created. The full type set includes the most
specific type and all types above the type in the type hierarchy. For example,
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objects of type TA have the most specific type named TA while its full type set
is {TA, Teacher, Student, Person, Userobject, Object}.

The type set of an object can dynamically change during the lifetime of the
object through AmosQL statements that change the most specific type of an
object. The reason for such facilities is because the role of an object may change
during the lifetime of the database. For example, a TA might become a student
for a while and then a teacher.

3.3 Functions

Functions model the semantics (meaning) of objects. They model properties
of objects, computations over objects, and relationships between objects. They
furthermore are basic primitives in functional queries and views. Functions are
instances of the system type Function.

A function consists of two parts, the signature and the implementation:
The signature defines the types, and optional names, of the argument(s) and

the result of a function. For example, the signature of the function modeling
the attribute name of type Person would have the signature:

name(Person)->Charstring

Functions can be defined to take any number of arguments, e.g. the arithmetic
addition function implementing the infix operator ’+’ has the signature:

plus(Number,Number)->Number

The implementation specifies how to compute the result of a function given a
tuple of argument values. For example, the function plus computes the result by
adding the two arguments, and name obtains the name of a person by accessing
the database. The implementation of a function is normally non-procedural,
i.e. a function only computes result values for given arguments and does not
have any side effects. The exception is database procedures defined through
procedural AmosQL statements.

8



Furthermore, Amos II functions are often multi-directional meaning that the
system is able to inversely compute one or several argument values if (some part
of) the expected result value is known [29]. Inverses of multi-directional func-
tions can be used in database queries and are important for specifying general
queries with function calls over the database. For example, the following query,
which finds the age of the person named ’Tore’, uses the inverse of function name
to avoid iterating over the entire extent of type Person:

select age(p) from Person p where name(p)=’Tore’;

Depending on their implementation the basic functions can be classified into
stored, derived, and foreign functions. In addition, there are database procedures
with side effects and proxy functions for multi-mediator access as explained later.

• Stored functions represent properties of objects (attributes) locally stored
in an Amos II database. Stored functions correspond to attributes in
object-oriented databases and tables in relational databases.

• Derived functions are functions defined in terms of functional queries over
other Amos II functions. Derived functions cannot have side effects and
the query optimizer is applied when they are defined. Derived functions
correspond to side-effect free methods in object-oriented models and views
in relational databases. AmosQL has an SQL-like select statement for
defining derived functions and ad hoc queries.

• Foreign functions provide the low level interfaces for wrapping external
systems from Amos II. For example, data structures stored in external
storage managers can be manipulated through foreign functions. Foreign
functions can also be defined for updating external data structures, but
foreign functions to be used in queries must be side effect free.

Foreign functions correspond to methods in object-oriented databases.
Amos II furthermore provides a possibility to associate several implemen-
tations of inverses of a given foreign function, multi-directional foreign
functions, which informs the query optimizer that there are several ac-
cess paths implemented for the function. To help the query processor,
each associated access path implementation may have associated cost and
selectivity functions. The multi-directional foreign functions provide ac-
cess to external storage structures similar to data ’blades’, ’cartridges’, or
’extenders’ in object-relational databases.

• Database procedures are functions defined using a procedural sublanguage
of AmosQL. They correspond to methods with side effects in object-
oriented models and constructors. A common usage is for defining con-
structors of objects along with associated properties.

Amos II functions can furthermore be overloaded meaning that they can have
different implementations, called resolvents, depending on the type(s) of their
argument(s). For example, the salary may be computed differently for types
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Student and Teacher. Resolvents can be any of the basic function types1.
Amos II’s query compiler chooses the resolvent based on the types of the argu-
ment(s), but not the result.

The extent of a function is a set of tuples mapping its arguments and its
results. For example, the extent of the function defined as

create function name(Person)-> Charstring as stored;

is a set of tuples < Pi, Ni > where Pi are objects of type Person and Ni are their
corresponding names. The extent of a stored function is stored in the database
and the extent of a derived function is defined by its query. The extents are
accessed in database queries.

The structure of the data associated with types is defined through a set of
function definitions. For example:

create function name(Person) -> Charstring as stored;
create function birthyear(Person) -> Integer as stored;
create function hobbies(Person) -> Bag of Charstring as stored;
create function name(Course) -> Charstring as stored;
create function teaches(Teacher) -> Bag of Course as stored;
create function enrolled(Student) -> Bag of Course as stored;
create function instructors(Course c) -> Bag of Teacher t as

select t
where teaches(t) = c; /* Inverse of teaches */

The above stored function and type definitions can be illustrated with the
function diagram of Fig. 3.

The function name is overloaded on types Person and Course. The function
instructors is a derived function that uses the inverse of function teaches.
The functions hobbies, teaches, and enrolled return sets of values. If ’Bag
of’ is declared for the value of a stored function it means that the result of the
function is a bag (multiset)2, otherwise it is an atomic value.

Functions (attributes) are inherited so the above statement will make objects
of type Teacher have the attributes name, birthyear, hobbies, and teaches.

We notice here that single argument Amos II functions are similar to rela-
tionships and attributes in the entity-relationship (ER) model and that Amos II
types are similar to ER entities. The main difference between an Amos II func-
tion and an ER relationship is that Amos II functions have a logical direction
from the argument to the result, while ER entities are direction neutral. Notice
that Amos II functions normally are invertible and thus can be used in the in-
verse direction too. The main difference between Amos II types and the entities
in the basic ER model is that Amos II types can be inherited.

1A resolvent cannot be overloaded itself, though.
2DAPLEX uses the notation ->> for sets.
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Multi-directional foreign functions

As a very simple example of a multi-directional foreign function, assume we
have an external disk-based hash table on strings to be accessed from Amos II.
We can then implement is as follows:

create function get_string(Charstring x)-> Charstring r
as foreign "JAVA:Foreign/get_hash";

Here the foreign function get string is implemented as a Java method get hash
of the public Java class Foreign. The Java code is dynamically loaded when
the function is defined or the mediator initialized. The Java Virtual Machine is
interfaced with the Amos II kernel through the Java Native Interface to C.

Multi-directional foreign functions include declarations of inverse foreign
function implementations. For example, our hash table can not only be ac-
cessed by keys but also scanned, allowing queries to find all the keys and values
stored in the table. We can generalize it by defining:

create function get_string(Charstring x)->Charstring y
as multidirectional

("bf" foreign "JAVA:Foreign/get_hash"
cost {100,1})

("ff" foreign "JAVA:Foreign/scan_hash"
cost "scan_cost");

Here, the Java method scan hash implements scanning of the external hash
table. Scanning will be used, e.g., in queries retrieving the hash key for a given
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hash value. The binding patterns, bf and ff, indicate whether the argument or
result of the function must be bound (b) or free (f) when the external method
is called.

The cost of accessing an external data source through an external method
can vary heavily depending on, e.g., the binding pattern, and, to help the query
optimizer, a foreign function can have associated costing information defined
as user functions. The cost specifications estimate both execution costs in
internal cost units and result sizes (fanouts) for a given method invocation. In
the example, the cost specifications are constant for get hash and computed
through the Amos II function scan cost for scan hash.

The basis for the multi-directional foreign function was developed in [29],
where the mechanisms are further described.

3.4 Queries

General queries are formulated through the select statement with format:

select <result>
from <type extents>
where <condition>

For example:

select name(p), birthyear(p)
from Person p
where birthyear(p) > 1970;

The above query will retrieve a tuple of the names and birth years of all persons
in the database born after 1970.

In general the semantics of an AmosQL query is as follows:

1. Form the cartesian product of the type extents.

2. Restrict the cartesian product by the condition.

3. For each possible variable binding to tuple elements in the restricted carte-
sian product, evaluate the result expressions to form a result tuple.

4. Result tuples containing NIL are not included in the result set; queries are
null intolerant.

It would be very inefficient to directly use the above semantics to execute a
query. It is therefore necessary for the system to do extensive query optimization
to transform the query into an efficient execution strategy. Actually, unlike in
SQL, AmosQL permits formulation of queries accessing indefinite extents and
such queries are not executable at all without query optimization. For example,
the previous query could also have been formulated as:
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select nm, b
from Person P, Charstring nm, Integer b
where b = birthyear(p) and

nm = name(p) and
b > 1970;

In this case, the cartesian product of all persons, integers, and strings is infinite
so the above query is not executable without query optimization.

Some function may not have a fully computable extent, e.g. arithmetic
functions have an infinitely large extent. Queries over infinite extents are not
executable, e.g. the system will refuse to execute this query:

select x+1 from Number x;

4 Functional Mediation

For supporting multi-database queries, the basic data model is extended with
proxy objects, types, and functions. Any object, including meta-objects, can be
defined by Amos II as a proxy object by associating with it a property describing
its source. The proxy objects allow data and meta-data to be transparently
exchanged between mediator peers.

On top of this, reconciliation of conflicting data is supported through regular
stored and derived functions and through derived types (DTs) [18, 19] that define
types through declarative multi-database queries.

4.1 Proxy objects

The distributed mediator architecture requires the exchange of objects and
meta-data between mediator peers and data sources. To support multi-database
queries and views, the basic concepts of objects, types, and functions are gen-
eralized to include also proxy objects, proxy types, and proxy functions:

• Proxy objects in a mediator peer are local OIDs having associated descrip-
tions of corresponding objects stored in other mediators or data sources.
They provide a general mechanism to define references to remote objects.

• Proxy types in a mediator peer describe types represented in other media-
tors or data sources. The proxy objects are instances of some proxy types
and the extent of a proxy type is a set of proxy objects.

• Analogously, proxy functions in a mediator peer describe functions in other
mediators or sources.

The proxy objects, types and functions are implicitly created by the system
in the mediator where the user makes a multi-database query, e.g.:

select name(p) from Personnel@Tb p;
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This query retrieves the names of all persons in a data source named Tb.
It causes the system to internally generate a proxy type for Personnel@Tb in
the mediator server where the query is issued, M . It will also create a proxy
function name in M representing the function name in Tb. In this query it is
not necessary or desirable to create any proxy instances of type Personel@Tb in
M since the query is not retrieving their identities. The multi-database query
optimizer will here make such an optimization.

Proxy objects can be used in combination with local objects. This allows for
general multi-database queries over several mediator peers. The result of such
queries may be literals (as in the example), proxy objects, or local objects. The
system stores internally information about the origin of each proxy object so it
can be identified properly. Each local OID has a locally unique OID number
and two proxy objects are considered equal if they represent objects created in
the same mediator or source with equal OID numbers.

Proxy types can be used in function definitions as any other type. In the
example one can define a derived function of the persons located in a certain
location:

create function personnel_in(Charstring l) -> Personnel@Tb
as select p from Personnel@Tb p

where location(p) = l;

In this case the local function personnel in will return those instances of the
proxy type for Personnel in mediator named Tb for which it holds that the value
of function location in Tb returns 1. The function can be used in local queries
and function definitions, and as proxy functions in multi-database queries from
other mediator peers.

Multi-database queries and functions are compiled and optimized through a
distributed query decomposition process fully described in [20] and summarized
later. Notice again that there is no central mediator schema and the compilation
and execution of multi-database queries is made by exchanging data and meta-
data with the accessed mediator servers. If some schema of a mediator server is
modified, the multi-database functions accessing that mediator server become
invalid and must be recompiled.

4.2 Data source modeling

Information about different data sources is represented explicitly in the Amos II
data model through the system type Datasource and its subtypes (Fig. 2).
Some subtypes of Datasource represent generic kinds of data sources that share
common properties, such as the types Relational and SearchEngine [22] rep-
resenting the common properties of all RDBMSs and all Internet search engines,
respectively. Other subtypes of Datasource like ODBC DS and JDBC DS repre-
sent specific kinds of sources, such as ODBC and JDBC drivers. In particular
the system type Amos represents other Amos II peers. Instances of these types
represent individual data sources. All types under Datasource are collectively
called the datasource types.
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Since wrappers and their corresponding datasource types interact tightly,
every wrapper module installs its corresponding types and functions whenever
initialized. This reflexive design promotes code and data reuse and provides
transparent management of information about data sources via the Amos II
query language.

Each datasource type instance has a unique name and a set of imported
types. Some of the (more specific) subtypes have defined a set of low-level ac-
cess functions. For example the type Relational has the function sql that
accepts any relational data source instance, a parameterized SQL query, and its
parameters. Since there is no generic way to access all relational data sources
this function only defines an interface. On the other hand the type ODBC DS
overloads this function with an implementation that can submit a parameter-
ized query to an ODBC source. These functions can be used in low-level me-
diator queries which roughly corresponds to the pass-through mode defined in
the SQL-MED standard [32]. However normally the low-level data access func-
tions are not used directly by the users. Instead queries that refer to external
sources are rewritten by the wrapper modules in terms of these functions. In
addition datasource types may include other functions, such as source address,
user names, and passwords.

4.3 Reconciliation

Proxy objects provide a general way to query and exchange data between me-
diators and sources. However, reconciliation requires types defined in terms of
data in different mediators. For this, the basic system is extended with derived
types (DTs), which are types defined in terms of queries defining their extents.
These extent queries may access both local and proxy objects.

Data integration by DTs is performed by building a hierarchy of DTs based
on local types and types imported from other data sources. The traditional
inheritance mechanism, where the corresponding instances of an object in the
super/subtypes are identified by the same OID, is extended with declarative
query specification of the correspondence between the instances of the derived
super/subtypes. Integration by sub/supertyping is related to the mechanisms
in some other systems as, e.g., the integrated views and column adding in the
Pegasus system [9], but is better suited for use in an object-oriented environ-
ment.

The extents of derived subtypes are defined through queries restricting the
intersection of the extents of the constituent supertypes. For example:

create derived type CSD_emp under Personnel p
where location(p)=’’CSD’’;

This statement creates a derived type CSD emp whose extent contains those
persons who work in the CSD department. When a derived type is queried the
system will implicitly create those of its instance OIDs necessary to execute the
query.
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An important purpose of derived types is to define types as views that rec-
oncile differences between types in different mediator servers. For example, the
type Personnel might be defined in mediator Tb while Ta has a corresponding
type Faculty. The following statement executed in a third mediator, M , de-
fines a derived type Emp in M representing those employees who work both in
Ta and Tb.

create derived type Emp
under Faculty@Ta f, Personnel@Tb p
where ssn(f)=id_to_ssn(id(p))

Here the where clause identifies how to match equivalent proxy objects from
both sources. The function ssn uniquely identifies faculty members in Ta, while
the function id in Tb identifies personnel by employee numbers. A (foreign)
function id to ssn in M translates employee numbers to SSNs.

The system internally maintains the information necessary to map between
OIDs of a derived type and its supertypes.

An important issue in designing object views is the placement of the DTs in
the type hierarchy. Mixing freely the DTs and ordinary types in a type hierarchy
can lead to semantically inconsistent hierarchies [24]. In order to provide the
user with powerful modeling capabilities along with a semantically consistent
inheritance hierarchy, the ordinary and derived types in Amos II are placed in
a single type hierarchy where it is not allowed to have an ordinary type as a
subtype of a DT. This rule preserves the extent-subset semantics for all types
in the hierarchy. If DTs were allowed to be supertypes of ordinary types, due
to the declarative specification of the DTs, it would not have been possible to
guarantee that each instance of the ordinary type has a corresponding instance
in its supertypes [24].

The DT instances are derived from the instances of their supertypes ac-
cording to an extent query specified in the DT definition. DT instances are
assigned OIDs by the system, which allows their use in locally stored functions
defined over the DTs in the same way as over the ordinary types. A selective
OID generation for the DT instances is used to avoid performance and storage
overhead.

The concept of derived types and its use for data integration is fully described
in [18].

The regular DTs, defined by subtyping through queries of their supertypes,
provide means for mediation based on operators such as join, selection, and
projection. However, these do not suffice for integration of sources having over-
lapping data. When integrating data from different mediator servers it is often
the case that the same entity appears either in one of the mediators or in both.
For example, if one wants to combine employees from different departments,
some employees will only work in one of the departments while others will work
in both of them.

For this type of integration requirements the Amos II system features a spe-
cial kind of DTs called Integration Union Types (IUTs) defined as supertypes
of other types through queries. IUTs are used to model unions of real-world
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entities represented by overlapping type extents. Informally, while the regular
DTs represent restrictions and intersections of extents of other types, the IUTs
represent reconciled unions of (possibly overlapping) data in one or more medi-
ator server or data sources. The example in Fig. 4 illustrates the features and
the applications of the IUTs.

Faculty

University A RDBMS

name
ssn

salary dept Ta

Personnel
name
id
pay

locationTbage

University B RDBMS

Full_time
CSD_A_emp CSD_B_emp

CSD_emp M

name

ssn
salary bonus

office

ODBC ODBC

Figure 4: An Object-Oriented view for the computer science department

In this example, a computer science department (CSD) is formed out of the
faculty members of two universities named A and B. The CSD administration
needs to set up a database of the faculty members of the new department in
terms of the databases of the two universities. The faculty members of CSD can
be employed by either one of the universities. There are also faculty members
employed by both universities. The full time members of a department are
assigned an office in the department.

In Fig. 4 the mediators are represented by rectangles; the ovals in the rect-
angles represent types, and the solid lines represent inheritance relationships
between the types. The two mediators Ta and Tb provide Amos II views of
the relational databases University A DB and University B DB. In mediator Ta
there is a type Faculty and in mediator Tb a type Personnel.

The relational databases are accessed through an ODBC wrapper in Ta and
Tb that translates AmosQL queries into ODBC calls. The ODBC wrapper inter-
face translates AmosQL queries over objects represented in relations into calls
to a foreign function executing SQL statements [4]. The translation process is
based on partitioning general queries into subqueries only using the capabilities
of the data source, as fully explained in [20].

A third mediator M is setup in the CSD to provide the integrated view.
Here, the semantically equivalent types CSD A emp and CSD B emp are defined as
derived subtypes of types in Ta and Tb:

create derived type CSD_a_emp
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under Faculty@Ta f
where dept(f) = ’CSD’;

create derived type CSD_b_emp
under Personnel@Tb p
where location(p) = ’Building G’;

The system imports the external types, looks up the functions defined over them
in the originating mediators, and defines local proxy types and functions with
the same signature but without local implementations.

The IUT CSD emp represents all the employees of the CSD. It is defined
over the constituent subtypes CSD a emp and CSD b emp. CSD emp contains one
instance for each employee object regardless of whether it appears in one of
the constituent types or in both. There are two kinds of functions defined over
CSD emp. The functions on the left of the type oval in Fig. 4 are derived from
the functions defined in the constituent types. The functions on the right are
locally stored.

The data definition facilities of AmosQL include constructs for defining IUTs
as described above. The integrated types are internally modeled by the system
as subtypes of the IUT. Equality among the instances of the integrated types is
established based on a set of key attributes. IUTs can also have locally stored
attributes, and attributes reconciled from the integrated types. See [19] for
details.

The type CSD emp is defined as follows:

CREATE INTEGRATION TYPE CSD_emp
KEYS ssn Integer;
SUPERTYPE OF
CSD_A_emp ae: ssn = ssn(ae);
CSD_B_emp be: ssn = id_to_ssn(id(be));

FUNCTIONS
CASE ae
name = name(ae);
salary = pay(ae);

CASE be
name = name(be);
salary = salary(be);

CASE ae, be
salary = pay(ae) + salary(be);

PROPERTIES
bonus Integer;

END;

For each of the constituent subtypes, a KEYS clause is specified. The instances
of different constituent types having the same key values will map into a single
IUT instance. The key expressions can contain calls to any function.
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The FUNCTIONS clause defines the reconciled functions of CSD emp, derived
from functions over the constituent subtypes. For different subsets of the con-
stituent subtypes, a reconciled function of an IUT can have different implemen-
tations specified by the CASE clauses. For example, the definition of CSD emp
specifies that the salary function is calculated as the salary of the faculty mem-
ber at the university to which it belongs. In the case when s/he is employed
by both universities, the salary is the sum of the two salaries. When the same
function is defined for more than one case, the most specific case applies. Fi-
nally, the PROPERTIES clause defines the stored function bonus over the IUT
CSD emp.

The IUTs can be subtyped by derived types. In Fig. 4, the type Full Time
is defined as a subtype of the CSD emp type, representing the instances for which
the salary exceeds a certain number (50000). The locally stored function office
stores information about the offices of the full time CSD employees. The type
Full Time and its property office have the following definitions:

create derived type Full_Time under CSD_emp e
where salary(e)>50000;

create function office(Full_Time)->Charstring
as stored;

5 Query Processing

The description of type hierarchies and semantic heterogeneity using declarative
multi-database functions is very powerful. However, a naive implementation of
the framework could be very inefficient, and there are many opportunities for
the extensive query optimization needed for distributed mediation.

The query processor of Amos II, illustrated by Fig. 5, consists of three main
components. The core component of the query processor is the local query
compiler that optimizes queries accessing local data in a mediator. The multi-
database query compiler, MQC allows Amos II mediators to process queries that
also access other mediator peers and data sources. Both compilers generate
query execution plans (QEPs) in terms of an object algebra that is interpreted
by the QEP interpreter component. The following two sections describe in more
detail the sub-components of the local and the multi-database query compilers.

5.1 Local query processing

To illustrate the query compilation of single-site queries we use the sample ad
hoc query:

select p, name(parent(p))
from person p
where hobby(p) = ’sailing’;

The first query compilation step, calculus generation, translates the parsed
AmosQL query tree into an object calculus representation called ObjectLog [29].
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Figure 5: Query processing in Amos II

The object calculus is a declarative representation of the original query and is
an extension of Datalog with objects, types, overloading, and multi-directional
foreign functions.

The calculus generator translates the example query into this expression:

{ p, nm |
p = Personnil→Person() ∧
pa = parentPerson→Person(p) ∧
nm = namePerson→Charstring(pa) ∧
′sailing′ = hobbyPerson→Charstring(p)}

The first predicate in the expression is inserted by the system to assert the type
of the variable p. This type check predicate defines that the variable p is bound
to one of the objects returned by the extent function for type Person, Person(),
which returns all the instances (the extent) of its type. The variables nm and
pa are generated by the system. Notice that the functions in the predicates
are annotated with their type signatures, to allow for overloading of function
symbols over the argument types.

The calculus optimizer of the query optimizer first transforms the unopti-
mized calculus expression to reduce the number of predicates, e.g. by exploring
properties of type definitions. In the example, it removes the type check predi-
cate:

20



{ p, nm |
pa = parentPerson→Person(p) ∧
nm = namePerson→Charstring(pa) ∧
′sailing′ = hobbyPerson→Charstring(p)}

This transformation is correct because p is used in a stored function (parent or
hobby) with argument or result of type Person. The referential integrity system
constrains instances of stored functions to be of correct types [29].

The local cost-based optimizer will use cost-based optimization to produce an
executable object algebra plan from the transformed query calculus expression.
The system has a built-in cost model for local data and built-in algebra opera-
tors. Basically the cost-based optimizer generates a number of execution plans,
applies the cost model on each of them, and chooses the cheapest for execution.
The system has the options of using dynamic programming, hill climbing, or
random search to find an execution plan with minimal cost. Users can instruct
the system to choose a particular strategy.

The optimizer is furthermore extensible whereby new algebra operators are
defined using the multi-directional foreign functions, which also provide the basic
mechanisms for interactions between mediator peers in distributed execution
plans.

The query execution plan interpreter will finally interpret the execution plan
to yield the result of the query.

5.2 Queries over derived types

Queries over DTs are expanded by system-inserted predicates performing the
DT system support tasks [18]. These tasks are divided into three mechanisms:
(i) providing consistency of queries over DTs so that the extent-subset semantics
is followed; (ii) generation of OIDs for those DT instances needed to execute
the query; and (iii) validation of the DT instances with assigned OIDs so that
DT instances satisfy the constraints of the DT definitions. The system gener-
ates derived function definitions to perform these tasks. During the calculus
optimization the query is analyzed and, where needed, the appropriate func-
tions definitions are added to the query. A selective OID generation mechanism
avoids overhead by generating OIDs only for those derived objects that are ei-
ther needed during the execution of a query, or have associated local data in
the mediator database.

The functions specifying the view support tasks often have overlapping parts.
[18] demonstrates how calculus-based query optimization can be used to remove
redundant computations introduced from the overlap among the system-inserted
expressions, and between the system-inserted and user-specified parts of the
query.

Each IUT is mapped by the calculus optimizer to a hierarchy of system gen-
erated DTs, called auxiliary types [19]. The auxiliary types represent disjoint
parts of the outerjoin needed for this type of data integration. The reconcilia-
tion of the attributes of the integrated types is modeled by a set of overloaded
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derived functions generated by the system from the specification in the IUT
definition. Several novel query processing and optimization techniques are de-
veloped for efficiently processing the queries containing overloaded functions
over the auxiliary types, as described in [19].

5.3 Multi-database query processing

The Multi-database Query Compiler (MQC) [20, 17] is invoked whenever a query
is posed over data from more than one mediator peer. The goal of the MQC is
to explore the space of possible distributed execution plans and choose a ’rea-
sonably’ cheap one. As the local query compiler, the MQC uses a combination
of heuristic and dynamic programming strategies to produce a set of distributed
object algebra plans.

The distributed nature of Amos II mediators requires a query processing
framework that allows cooperation of a number of autonomous mediator peers.
The MQC interacts with the local optimizer as well as with the query optimizers
of the other mediator peers involved in the query via requests to estimate costs
and selectivities of subqueries, requests to expand the view definitions of remote
views, and requests to compile subqueries in remote mediator peers. The gen-
erated local execution plan interacts with the execution plans produced by the
other mediator peers.

The details of the MQC are described in [20]. Here we will overview its main
sub-components.

• The query decomposer identifies fragments of a multi-database query, sub-
queries, where each subquery can be processed by a single data source.
The decomposer takes as input an object calculus query and produces a
query graph with nodes representing subqueries assigned to an execution
site and arcs representing variables connecting the subqueries. The benefit
of decomposition is twofold. First, complex computations in subqueries
can be pushed to the data sources to avoid expensive communication and
to utilize the processing capabilities of the sources. Second, the multi-
database query optimization cost is reduced by the partitioning of the
input query into several smaller subqueries.

Query decomposition is performed in two steps:

1. Predicate grouping collects predicates executable at only one data
source and groups them together into one or more subqueries. The
grouping process uses a heuristic where cross-products are avoided by
placing predicates without common variables in separate subqueries.

2. Site assignment uses a cost-based heuristics to place those predicates
that can be executed at more than one site (e.g. θ-joins), eventually
replicates some of the predicates in the subqueries to improve the
selectivity of subqueries, and finally assigns execution sites to the
subqueries.

22



• The multi-database view expander expands remote views directly or indi-
rectly referenced in queries. This may lead to significant improvement in
the query plan quality because there may be many redundancies in large
compositions of multi-database views.

The multi-database view expander traverses the query graph to send ex-
pansion requests for the subqueries. In this way, all predicates defined
in the same database are expanded in a single request. This approach
allows the remote site to perform calculus simplifications of the expanded
and merged predicate definitions as a whole and then return the trans-
formed subquery. However, when there are many mediator layers it is
not always beneficial to fully expand all view definitions, as shown in [21].
The multi-database view expander therefore uses a heuristic to choose the
most promising views for expansion, a technique called controlled view ex-
pansion. After all subqueries in the query graph have been view expanded
the query decomposer is called again for predicate regrouping.

• The multi-database (MDB) query optimizer decides on the order of execu-
tion of the predicates in the query graph nodes, and on the direction of the
data shipping between the peers. Execution plans for distributed queries
in Amos II are represented by decomposition trees. Each node in a de-
composition tree describes a join cycle through a client mediator (i.e. the
mediator where the query is issued). In a cycle, first intermediate results
are shipped to the site where they are used. Then a subquery is executed
at that site using the shipped data as input, and the result is shipped back
to the mediator. Finally, one or more post-processing subqueries are per-
formed at the client mediator. The result of a cycle is always materialized
in the mediator. A sequence of cycles can represent any execution plan.
As the space of all execution plans is exponential to the number of sub-
queries in the input query graph, we examine only the space of left-deep
decomposition trees using a dynamic programming approach. To evaluate
the costs and selectivities of the subqueries the multi-database optimizer
sends compilation requests for the subqueries both to the local optimizer
and the query compilers of the remote mediators.

• The decomposition tree rebalancer transforms the initial left-deep decom-
position tree into a bushy one. To avoid that all the data flows through
the client mediator, the decomposition tree rebalancer uses a heuristic
that selects pairs of adjacent nodes in the decomposition tree, merges the
selected nodes into one new node, and sends the merged node to the two
mediators corresponding to the original nodes for recompilation. From
the merged nodes, each of the two mediators generate different decom-
position sub-trees and the cheaper one is chosen. In this way, the input
decomposition tree is rebalanced from a left-deep tree into a bushy one.
The overall execution plan resulting from the tree rebalancing can con-
tain plans where the data is shipped directly from one remote mediator to
another, eliminating the bottleneck of shipping all data through a single
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mediator. See [17] for details.

• The object algebra generator translates a decomposition tree into a set of
inter-calling local object algebra plans.

6 Related Work

Amos II is related to research in the areas of data integration, object views,
distributed databases, and general query processing. There has been several
projects on intergration of data in a multi-database environment [5, 8, 10, 12,
14, 16, 23, 27, 30, 41, 42]. The integration facilities of Amos II are based on
work in the area of OO views [1, 3, 15, 26, 33, 36, 37, 40].

Most of the mediator frameworks reported in the literature (e.g. [16, 42, 14])
propose centralized query compilation and execution coordination. In [9] it
is indicated that a distributed mediation framework is a promising research
direction, but to the best of our knowledge no results in this area are reported.
Some recent commercial data integration products, as IBM’s Federated DB2,
also provide centralized mediation features.

In the DIOM project [30] a framework for integration of relational data
sources is presented where the operations can be executed either in the mediator
or in a data source. The compilation process in DIOM is centrally performed,
and there is no clear distinction between the data sources and the mediators in
the optimization framework.

The Multiview [36] object-oriented view system provides multiple inheritance
and a capacity-augmented view mechanism implemented with a technique called
Object Slicing [26] using OID coercion in an inheritance hierarchy. However, it
assumes active view maintenance and does not elaborate on the consequences
of using this technique for integration of data in autonomous and dislocated
repositories. Furthermore, it is not implemented using declarative functions for
the description of the view functionality.

One of the few research reports describing the use of functional view mech-
anisms for data integration is the Multibase system [8]. It is also based on a
derivative of the DAPLEX data model and does reconciliation similar to the
IUTs in this paper. An important difference between Multibase and Amos II
is that the data model used in Multibase does not contain the object-oriented
concept of OIDs and inheritance. The query optimization and meta-modeling
methods in Amos II are also more elaborate than in Multibase.

The UNISQL [23] system also provides views for database integration. The
virtual classes (corresponding to the DTs) are organized in a separate class
hierarchy. However, the virtual class instances inherit the OIDs from the corre-
sponding instances in the ordinary classes, which prohibits definition of stored
functions over virtual classes defined by multiple inheritance as in Amos II.
There is no integration mechanism corresponding to the IUTs.

[35] gives a good overview of distributed databases and query processing.
As opposed to the distributed databases, where there is a centralized repository
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containing meta-data about the whole system, the architecture described in
this paper consists of autonomous systems, each storing only locally relevant
meta-data.

One of the most thorough attempts to tackle the query optimization problem
in distributed databases was done within the System R* project [7] where, unlike
Amos II, an exhaustive, cost-based, and centrally performed query optimization
is made to find the optimal plan. Another classic distributed database system
is SDD-1 [2] which used a hill-climbing heuristics as the query decomposer in
Amos II.

7 Summary

We have given an overview of the Amos II mediator system where groups of dis-
tributed mediator peers are used to integrate data from different sources. Each
mediator in a group has DBMS facilities for query compilation and exchange of
data and meta-data with other mediator peers. Derived functions can be de-
fined where data from several mediator peers are abstracted, transformed, and
reconciled. Wrappers are defined by interfacing Amos II systems with external
systems through its multi-directional foreign function interface. Amos II can
furthermore be embedded in applications and used as stand-alone databases.
The paper gave an overview of Amos II’s architecture with references to other
published papers on the system for details.

We described the functional data model and query language forming the
basis for data integration in Amos II. The distributed multi-mediator query
decomposition strategies used were summarized.

The mediator peers are autonomous without any central schema. A special
mediator, the name server, keeps track of what mediator peers are members of
a groups. The name servers can be queried for the location of mediator peers
in a group. Meta-queries to each mediator peer can be posed to investigate the
structure of its schema.

Some unique features of Amos II are:

• A distributed mediator architecture where query plans are distributed over
several communicating mediator peers.

• Using declarative functional queries to model reconciled functional views
spanning over multiple mediator peers.

• Query processing and optimization techniques for queries to reconciled
views involving function overloading, late binding, and type aware query
rewrites.

The Amos II system is fully implemented and can be downloaded from
http://user.it.uu.se/∼udbl/amos. Amos II runs under Windows and Unix.
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