
Conjunctive Query Evaluation by Search-Tree Revisited

Albert Atserias
�

Universitat Politècnica de Catalunya
Barcelona, Spain

atserias@lsi.upc.edu

Abstract

The most natural and perhaps most frequently used method for testing membership of an individ-
ual tuple into a conjunctive query is based on searching trees of partial solutions, or search-trees. We
investigate the question of evaluating conjunctive queries with a time-bound guarantee that is mea-
sured as a function of the size of the minimal search-tree. We provide an algorithm that, given a
database

�
, a conjunctive query � , and a tuple � , tests whether ������� holds in

�
in time bounded by

�
	��������� ����������	��������� ��� � ��� !"� , where � is the size of the domain of the database, # is the number of bound
variables of the conjunctive query, and 	 is the size of the optimal search-tree. In many cases of inter-
est, this bound is significantly smaller than the �$���%�&� bound provided by the naive search-tree method.
Moreover, our algorithm has the advantage of guaranteeing the bound for any given conjunctive query.
In particular, it guarantees the bound for queries that admit an equivalent form that is much easier to
evaluate, even when finding such a form is an NP-hard task. Concrete examples include the conjunctive
queries that can be non-trivially folded into a conjunctive query of bounded size or bounded treewidth.
All our results translate to the context of constraint-satisfaction problems via the well-publicized corre-
spondence between both frameworks.

'
Partially supported by CICYT TIC2001-1577-C03-02

1

1 Introduction and Summary of Results

The foundational work of Chandra and Merlin [CM77] identified the class of conjunctive queries in re-
lational database systems as an important and fundamental class of queries that are repeatedly “asked in
practice”. These are the queries of first-order logic that are built from atomic formulas by means of con-
junctions and existential quantification only. Thus, the generic conjunctive query takes the form

���������
	�	�	������
������������������������

where
�����������������

are atomic formulas built from the relations of the database with the variables
���������������

.
Conjunctive queries may also have free variables, but for the sake of simplicity we will focus on Boolean
conjunctive queries in this introduction. Alternatively, it is known that the class of conjunctive queries
coincides with the class of queries of the relational algebra that use selection, projection, and join only.

Evaluating conjunctive queries is such a common task that it is no surprise that a huge amount of work
has focused on its algorithmic and complexity-theoretic aspects. The most obvious algorithm is perhaps
the one that exhaustively checks for the existence of an assignment of values to the variables in such a way
that all relations in the body of the query (the quantifier-free part) are satisfied. Obviously, if the domain of
the database has cardinality ! , this algorithm takes time roughly !

, which is exponential in the number of

variables of the query. But, can we do better?
Unfortunately, unless P " NP, we cannot expect an algorithm that is polynomial in both ! and # since

the problem is NP-complete. This was already noticed by Chandra and Merlin [CM77]. To make things
worse, more recent work on the parameterized complexity of query languages by Papadimitriou and Yan-
nakakis [PY99] indicates that the situation might be even more dramatic. Namely, we cannot even expect
an algorithm that, while arbitrarily complex in # , remains polynomial in ! . Thus, we cannot expect an
algorithm of complexity $�%�&'!(% , say, unless certain widely believed assumptions in complexity theory are
violated. These theoretical results indicate that the algorithmic problem is just too hard to be addressed in
its wider generality.

Luckily, the situation in real database applications is not as catastrophic. Conjunctive queries that are
asked in practice usually have some structure that makes them more tractable. The paradigmatical example is
the class of acyclic conjunctive queries identified by Yannakakis [Yan81]. These are the conjunctive queries
whose underlying hypergraph is acyclic, that is, the hypergraph that has the variables of the query as ver-
tices, and the tuples of the variables appearing in the atomic formulas as hyperedges, is acyclic. Yannakakis
showed that such queries could be evaluated in polynomial time by an efficient dynamic programming tech-
nique. The exact complexity of acyclic conjunctive queries was later studied in [GLS98], and generalized
in several other directions [CR97, KV00]. The most interesting generalization is perhaps the one based on
treewidth, to which we will get back later.

1.1 Search-trees and backtracking algorithms

Let us return now to the most obvious algorithm that checks for all possible assignments of values to the
variables. Clearly, this algorithm can be modestly improved by a backtracking algorithm that considers
the variables one-at-a-time and backtracks whenever the current partial assignment forces the body of the
query to be either false because some atomic formula is falsified, or true because all atomic formulas are
satisfied. Such a search-based algorithm can be remarkably fast in certain cases, especially if a good heuristic
is used for choosing the next splitting variable. As a matter of fact, backtracking is probably the most
frequently used method for solving constraint-satisfaction problems, which is essentially the same problem
as conjunctive query evaluation as noticed by Kolaitis and Vardi [KV00], and is well-known by now.

This leads immediately to the concept of search-tree which is a key concept in our paper. A search-tree
is an ! -ary tree that is produced by such a backtracking procedure for an arbitrary choice of variables at

2

each branch. Here, ! is the cardinality of the domain of the database. Notice that search-trees provide an
enumeration of all possible solutions for the bound variables of the query since we backtrack even when
the body of the query is satisfied. This permits us capturing the notion of optimal search-space through
the concept of minimal search-tree. Intuitively, the size of the minimal search-tree for a given instance
provides an ideal benchmark against which all search-based algorithms should be compared. For example,
a backtracking algorithm that spends time � � !

 �
on an instance admitting a search-tree of size � � #�! �

should be considered inefficient: it spends much more time than what is, in principle, necessary. Clearly, we
would prefer an algorithm whose running time is bounded by a modest function of the size of the minimal
search-tree. The ideal case would be an algorithm that is polynomial in that quantity.

The idea of comparing the efficiency of an algorithm with the size of the minimal search-tree originates
in the field of propositional proof complexity, and, as far as we know, was not considered before in the fields
of database theory and constraint-satisfaction problems. In proof complexity, the efficiency of a proof-
search algorithm on a given propositional tautology is compared with respect to the size of its minimal
proof in the proof system. A proof system admitting a proof-search algorithm that runs polynomially in the
minimal proof is called automatizable [BPR00]. The connection shows up when the proof system under
consideration is tree resolution and the instance is an unsatisfiable propositional formula � in conjunctive
normal form. In that case, a minimal proof becomes a minimal search-tree for the constraint-satisfaction
instance given by � , by simply turning it upside down (see also [BKPS02]).

1.2 Results of this paper

The main contribution of this paper is the observation that the concepts and techniques that were developed
for automatizability of tree resolution carry over, to some extent, to the more general case of conjunctive
query evaluation and constraint-satisfaction problems. By adapting an algorithm that was developed for
tree resolution, we exhibit an algorithm for conjunctive query evaluation whose complexity is bounded by a
non-trivial function of the size of the minimal search-tree.

More concretely, we provide an algorithm that, given a database � of cardinality ! , a tuple � of � ,
and a conjunctive query � with # bound variables, determines whether the Boolean conjunctive query � � � �
holds in � in time that is polynomial in

��� ! ���
	��
 ��� ! ��
	����
	���� , where

�
is the size of the minimal search-tree

for testing whether � � � � holds in � . While we do not achieve the desired polynomial bound on
�
, we note

that the running time of our algorithm is remarkably good, compared to the obvious !

bound, when the
minimal search-tree is small.

Then we go on to analyze our algorithm. We first consider the class of conjunctive queries whose
underlying graph is a tree, or is similar to a tree in the sense of having small treewidth. We note that if
� � � � has treewidth � and does not hold on � , then the size of the minimal search tree is bounded by
!������

�� �
	��
. Surprisingly perhaps, the hypothesis that � � � � does not hold on � seems essential for our

proof. Nonetheless, this does not prevent us from showing that our algorithm works correctly for any
query of bounded treewidth in time !�� ��� �
	��

 �����
! �
	����
	���� . Indeed, if the algorithm does not stop within the

prescribed time bound, then we know that � � � � holds in � , although the algorithm gives no clue why.
It follows from this discussion that for queries of known treewidth � , our algorithm can be used for

deciding whether � � � � holds in � within a time-bound that is far better than the worst case !

, when # is

large. Obviously, our bound is also far worse than the � ��� � � ! � � bound of the known ad-hoc algorithms for
evaluating queries of treewidth � [GLS98, KV00]. It is quite interesting, nonetheless, that our algorithm
achieves a non-trivial bound in that case despite it is not specialized for that purpose. As a matter of fact,
our algorithm does not even compute a tree-decomposition of the query!

Another remarkable consequence is the following. In their seminal paper [CM77], Chandra and Merlin
showed that for every conjunctive query there is a minimal equivalent query, unique up to isomorphism, that

3

can be obtained from the original one by identifying variables and deleting atomic formulas (see Theorem
12 and the discussion preceding it in [CM77]). In turn, Chandra and Merlin showed that finding such a
minimal equivalent query is NP-hard. More recently, Dalmau, Kolaitis, and Vardi [DKV02] noticed that the
problem remains NP-hard even when the minimal equivalent query is of constant size (and in particular has
bounded treewidth). Thus, on the one hand, queries whose minimal equivalent query has bounded size admit
search trees of size !�� �

��
on databases on which they fail. The reason for this is that the minimal equivalent

query is a subquery, so a search-tree for the minimal query is also a search-tree for the query itself, when the
query evaluates to false. On the other hand, there is no efficient way of finding such a minimal equivalent
query since the problem is NP-hard. Hence, it is perhaps surprising that, on those instances, our algorithm
achieves complexity ! � � �
	��

 �
! �
	����
	���� without ever worrying about minimal equivalent queries at all.

Finally, we also provide some lower bounds on the size the minimal search-trees for certain conjunctive
queries of interest. First, it is relatively easy to show that the minimal search-trees for the conjunctive query
expressing the existence of a # -clique on graphs of size ! may require !

�� �
nodes. Second, it requires a

slightly more complicated argument showing that the minimal search-trees for the conjunctive query ex-
pressing the existence of a path of length # on graphs of size ! may require ! �
	��

�� �
nodes. This result

shows that the ! �����
�� �
	��

upper bound for queries of treewidth � is essentially optimal. This is because
the path-of-length- # query has treewidth

�
. Quite remarkably, our algorithm behaves in time polynomial in

! � �
	��
 � �
! �
	�� �
	���� on such queries, which is nearly optimal with respect to search-tree size (for # ’s larger than����� !).

2 Preliminaries and Definitions

Databases, structures, and conjunctive queries We view databases as finite structures over finite rela-
tional vocabularies with constants. A relational vocabulary with constants 	 is a set of relation symbols,
each of a specified positive arity, and a set of constant symbols. A 	 -structure, or database, consists of a
domain
 , a relation

����
�� for each relation symbol
�

in 	 of arity � , and an individual � ���
 for
each constant symbol � in 	 . Structures are denoted by

� " �
 ��� � � ����������� �� � � � � ��������� � �� � �
where

� � �������'��� � are the relation symbols of 	 , and � � ��������� � � are the constant symbols of 	 .
Atomic formulas are formulas of the form

� � � ���������'���
�
�

where
�

is a relation symbol of arity � , and� � �����������
� are first-order variables or constants. A conjunctive query is a formula of the form

���������
����� �����'���� �
where

� ���������'���'
are first-order variables, and

�
is a conjunction of atomic formulas. The quantifier-free

part
�

is called the body. The variables
� ���������������

are called bound variables. The rest of variables of
�

are
called free variables. The total size of a conjunctive query is the number of atomic formulas in

�
. Let � be

an atomic formula with free variables
�����������������

. If � is a 	 -structure and � " ���
������������� � �
is a tuple of � ,

we write � � " � � � � if viewing
�"!

as a constant interpreted by
� !

satisfies � in � in the standard sense of
first-order logic.

Treewidth Let # " �%$ ��& �
be a finite graph. A tree-decomposition of # is a pair

��')(*!,+.-��0/21 �43 "��/ � � ��� with
')(5!6+�-7�8/91

a family of subsets of
$

, one for each node of
3

, and
3

is a tree such that:

1. : !<;>= (5! " $
2. for all edges

�<?
� � �@�A&
, there exists an

-B�8/
with

')? � � 1C0(D!

4

3. for all
-������ # �8/

: if
�

is on the path from
-

to # in
3

, then
(D!�� (0(��

.

The width of a tree-decomposition is ���
	 !<;>= � (5! ��� �
. The treewidth of # is the minimum width over all

possible tree-decompositions of # .
The treewidth of a 	 -structure � is the treewidth of its Gaifman graph, that is, the graph whose set of

vertices is
 , and whose edges relate each pair of vertices that appear together in some tuple of the relations
of � . The Gaifman graph of a conjunctive query � is the graph whose set of vertices is the set of variables
of � , and whose edges relate every pair of variables that appear together in an atomic formula (note that
constants are ignored here). The treewidth of a conjunctive query is the treewidth of its Gaifman graph.

Search-trees Let � be a finite 	 -structure with universe
 " '�� ���������'��� � 1 . Let +�$��
 be a partial
mapping of the first-order variables to the universe
 of � . Extend to the constant symbols of 	 in the
natural way. Let

� � � � �������'��� �
be an atomic formula. If

� ! ��� � � � � for every
- � ' � �������'� # 1 , we say

that decides
�

. If decides
�

and
� � � ��� �������'� � � ����D� � �

, we say that satisfies
�

. If decides�
and

� � ����� �������'� � � ������� � �
, we say that falsifies

�
. Let

��� ���������������
��
be a conjunction of atomic

formulas. We say that satisfies
�

if it satisfies every atomic formula in
�

. We say that falsifies
�

if it
falsifies some atomic formula in

�
. In those cases we say that decides

�
. Otherwise, we say that does

not decide
�

.
A search-tree for

� � � ���������'���
��
in � is a labeled rooted tree

� 3 ��� �
whose nodes are labeled by partial

assignments + $��
 , and for which the following conditions are satisfied:

1. If
?

is the root of
3

, then
� �<? �

is the empty partial assignment � .
2. If

?
is an internal node of

3
, then

� �<? �
does not decide

�
.

3. If
?

is a leaf of
3

, then
� �<? �

decides
�

.

4. If
?

is an internal node of
3

and
� �<? � "� , then there exists an

������ � � � � such that
?

has exactly
! successors

?������������ ? � such that
� �<?���� "��� ' � ��������� 1

for every
�D� ' � ��������� ! 1 .

The variable
�

that is guaranteed to exist in clause 4 will be denoted by
���<? �

. We say that
���<? �

is the splitting
variable at node

?
. Notice that there may be several search-trees for a given conjunction of atomic formulas

and a given finite structure. A search-tree for
�

in � is minimal if every other search-tree for
�

in � is at
least as large in size. For a finite 	 -structure � , a tuple � of � , and a conjunctive query � , a search-tree for
testing whether � � " � � � � is a search-tree for the body of � � � � .

3 Booleanization and Algorithm

The purpose of this section is to develop the algorithm that achieves the promised performance. Let us start
by announcing the result:

Theorem 1 Let 	 be a relational vocabulary of maximum arity � and cardinality � . There exists a deter-
ministic algorithm that, given a finite 	 -structure � of cardinality ! , a conjunctive query � with # bound
variables and total size , and a tuple � from � , determines whether � � " � � � � in time polynomial in , � ,
! � , # , and

��� ! ��
	��
 ��� ! ��
	����
	���� , where

�
is the size of a smallest search-tree for testing whether � � " � � � � .

The proof of this theorem requires some preparation. The first thing we do is a Booleanization of the
problem that will simplify the design and the analysis of the algorithm. Let
 " '�� � ����������� � 1 be the
universe of � . Each element of the universe

� !��
 can be encoded by a string of
����� ! bits. In turn, by

using this encoding, each relation on
 of arity � can be identified with a relation on the Boolean domain

5

'�� � � 1
of arity � � ��� ! in the most obvious way. For a finite 	 -structure � , let � � �

�
denote its Booleanization;

that is, the universe of � � �
�

is
'�� � � 1

, and each relation of � of arity � is encoded in the obvious way into a
relation of � � �

�
of arity � � ��� ! . For an � -tuple � , let � � �

�
be the � � ��� ! -tuple encoding � over

'�� � � 1
.

The Booleanization can also be carried out over a conjunctive query. If � is a conjunctive query with #
bound variables, its Booleanization � � �

�
is the conjunctive query with # ����� ! bound variables that results

from using
����� ! new variables for each original variable in � , and replacing the atomic formulas by their

Booleanization. The following Lemma is obvious.

Lemma 1 Let � be a finite 	 -structure of cardinality ! , let � be a tuple of � , and let � be a conjunctive
query. Then � � " � � � � if and only if � � �

� � " � � �
� � � � �

� �
. Moreover, if there exists a search tree for testing

whether � � " � � � � of size
�
, then there exists a search tree for testing whether � � �

� � " � � �
� � � � �

� �
of size

$ � ! .

Proof : Take the search tree for � � " � � � � and replace each internal node by a complete binary tree of
height

����� ! . This blows up the tree by a factor of at most $�! . �
The Booleanization allows us focus on the Boolean case, which is nothing else but a generalized sat-

isfiability problem. Now we can apply the techniques that were developed for propositional logic and tree
resolution [BP96, BKPS02].

Let � be a Boolean 	 -structure, that is, a 	 -structure with Boolean domain
 " '�� � � 1
. Let � be a tuple

of � , and let � be a conjunctive query. The algorithm takes a partial assignment +�$��
 as parameter
and performs as follows: First, the algorithm checks whether decides the body of � � � � , in which case it
returns the leaf-tree that consists of a single node labeled by . Otherwise, for every variable

���� � � � � �
and every value

�0� '�� � � 1
, the algorithm calls recursively itself on input � ' � ����� � 1

. These recursive
calls are run in parallel, either by executing one step from each in parallel rounds, or by applying a doubling
technique that executes $

!
steps of each call, sequentially, for increasing values of

-
. As soon as one of

the recursive calls terminates, say, the one with input � ' � ����� � 1
, the rest of calls are aborted except for

�� ' � � � � � � � 1
which is run to completion. Let

3��
and

3�� � �
be the search-trees returned by the only two

recursive calls that are run to completion. The output is the search-tree
� �43�� �43 � � ; that is, the search-tree

whose root is labeled by , whose left subtree is
3 �

, and whose right subtree is
3��

.

Lemma 2 Let 	 be a relational vocabulary of maximum arity � and cardinality � . Let � be a Boolean 	 -
structure, let � be a tuple of � , and let � be a conjunctive query with # bound variables and total size . The
algorithm, when run with parameter " � , returns a search-tree testing whether � � " � � � � . Moreover, if
there exists such a search-tree of size

�
, then the algorithm runs in time polynomial in , � , $ � , # and

� �
	��
.

Proof : The correctness of the algorithm is easily proved by induction on # . For the running time we proceed
as follows. Let

�
be the body of � . Let

3 �<-�� � �
be the minimum upper bound to the running time of the

algorithm for every such that
� � � � � � ��� # � -

and the smallest search-tree for
�
	 � � �� has size at most�

. When
- " �

, the running time of the algorithm is bounded by some value � that depends on 	 and �
only. More precisely, we can take � to be linear in
��$�� . Consider now the case

-���
. Consider a smallest

search-tree of size at most
�
. If

��� �
, the running time is again bounded by � , since necessarily, � decides�
	 � � �� . If

��� $, one of its two subtrees has size at most
��� $. It follows that at least one of the $ - recursive

calls terminates after at most
3 �<- � � � ��� $ � steps. Each parallel round takes � - steps to execute for some

constant � . The other recursive call that is left will take at most
3 �<- � � � � �

steps to complete. All in all, the
running time of the algorithm is bounded by

3 �<-�� � ��� ����� - 3 �<- � � � ��� $ � � 3 �<- � � � � � �

6

if
- � �

and
� � $, and

3 �<-�� � � � � if either
- " �

or
��� �

. For solving this recurrence we expand the last
term repeatedly, until we reach

3 � � � ����� � , and obtain

3 �<- � ��� � � �<- � � � ���
!�
��� � ��3 � ��� � � ��� $ � �

Now we use the fact that
3 � ��� � � $ � � 3 � � � � � � � $ � which follows directly from the definition of

3
, and

obtain 3 �<-�� ����� � �<- � � � � � - % 3 �<- � ��� $ � �
Solving this recurrence of a single variable

�
is now a routine task. The solution satisfying equality is

�
� �<- � � � � � - % ��
	���� � � � �

� - % � � � � � - % � �
	����	� �
Noting that

� � - % ��
	���� " � % �
	��
!
� �
	��

�
and recalling that � is linear in
� $ � , we see that the running time

3 � # � � �
is bounded by a polynomial in , � , $ � , # and

� �
	��
. �

With this Lemma in hand we are ready to prove Theorem 1.

Proof of Theorem 1: It suffices to Booleanize 	 , � , � and � , and run the algorithm that we just described
for the Boolean case. By Lemma 1, if � � " � � � � has a search-tree of size

�
, then � � �

� � " � � �
� � � � �

� �
has

a search-tree of size $ � ! . On the other hand, the number of bound variables of � � �
�

becomes # ����� ! , and
the maximum arity of the Booleanization of 	 becomes � � ��� ! . The result follows by plugging these values
into the bounds of Lemma 2. �

Let us note that, the way we described it, the algorithm does not produce a search-tree for � � " � � � � .
This is because it is not necessarily possible to convert a search-tree for � � �

� � " � � �
� � � � �

� �
, which is what

the algorithm gives, into a search-tree for � � " � � � � , while preserving the bounds. Let us note, however,
that a search-tree for � � �

� � " � � �
� � � � �

� �
gives all the essential information. We do not know whether it

is possible to have an algorithm with similar performance that avoids the Booleanization and produces a
search-tree for � � " � � � � .

4 Search-Trees for Queries of Bounded Treewidth

The aim of this section is to investigate the size of search-trees for conjunctive queries whose underlying
graph is a tree or is similar to a tree in the sense of having small treewidth. The key to the argument is that
graphs of treewidth � have separators of size ��� �

.
A
 -separator of a graph # " �%$ ��& �

is a set � $
such that each connected component of # � �

contains at most
 vertices. The following fact is known about the relationship between treewidth and
separator size (see [Bod98, Theorem 19]).

Lemma 3 Let # be a graph of cardinality ! . If the treewidth of # is at most � , then # has a
�
%
� ! � � � -

separator of size at most � � �
.

We use this fact in the proof of the following Theorem. The proof of this result makes use of an idea
that Moshe Vardi shared with the author.

7

Theorem 2 Let 	 be a relational vocabulary of maximum arity � and cardinality � . Let � be a finite 	 -
structure of cardinality ! , let � be a tuple of � , and let � be a conjunctive query with # bound variables. If
� � � � has treewidth at most � and � �� " � � � � , then there exists a search-tree for testing whether � � " � � � �
of size ! �����

�� �
	��
.

Proof : We proceed by induction on # . If # " �
then the claim is obvious because the search-tree has size

�
(we convey here that

����� � " �
). Consider the case # �

. Assume that � � � � has treewidth at most � and
� �� " � � � � . Let # be the Gaifman graph of � � � � . Since # has treewidth at most � , it has a

�
%
� # � � � -

separator � " '������������'����� 1
of size at most � � �

. Let ��� ��� ����������������� be the conjunctive query that results
from � � � � when the variables in � are left free. Since � is a

�
%
� # � � � -separator of # , we may assume

that ��� ��� �'��������������� is the conjunction of several conjunctive queries ��� � ����������������� � � ��������� ��� � ��� ����������������� with
at most

�
%
� # � � � bound variables each. Since � �� " � � � � , we have � �� " � � � ������� ��������� ����� ��� for every

partial assignment for which
� � � � � "�� . In turn, necessarily � �� " � �! � ��� � � �������'� ��� � ��� for some- � ' � ��������� � 1 . Let

- � �,�0' � �������'� � 1 be such that � �� " ���! ���
� � ��� ��� �������'� ��� � ��� . Notice that the number

of bound variables of � �! �	�
�

is less than
�
% #�
 # . We apply the induction hypothesis and obtain a search-tree

for testing whether � � " ���! ���
� � ��� � � �������'� ��������� of size ! �����

�� �
	�� �
�
%
�
. The search-tree for � � " � � � � can

now be built by first querying the � � � � �
variables in the separator � , in sequence, and then, for each

partial assignment at the leaves of this partial search-tree, plugging in the search-tree for testing whether
� � " ���! ���

� � ��� � � �������'� ��������� that is given by the induction hypothesis. The size of the resulting tree is
bounded by

! ���
� 	 ! � � �

�� �
	�� �
�
%
� � ! � � �

�� �
	��

as was to be shown. �
In Section 5 we will show that the bound provided by Theorem 2 is essentially optimal even when the

underlying graph of the query is a very simple tree. It is important to notice the extra hypothesis � �� " � � � �
in Theorem 2. As a matter of fact, we do not know whether the hypothesis is necessary. In other words, we
do not know if conjunctive queries of bounded treewidth always have search-trees of size ! � � �
	��

 �
.

There is one important consequence of Theorem 2 that is worth noticing. Fix a relational vocabulary
	 of maximum arity � and cardinality � . Suppose we run the algorithm of Section 3 on a 	 -structure �
of cardinality ! and a query � � � � with # bound variables, total size , and treewidth at most � . Let� " ! �����

�� �
	��
. By Theorem 1 and Theorem 2, we know that if � �� " � � � � , then the algorithm finishes

in a number of steps that is a fixed polynomial of , � , ! � , # , and
��� ! ��
	��

 ��� ! ��
	����
	���� , and reports so.
Consequently, if the algorithm does not succeed in finishing within that number of steps, we can conclude
that � � " � � � � , although we get no clue why.

It follows from this discussion that for queries of known treewidth, our algorithm can be used for de-
ciding whether � � " � � � � within a time-bound that is far better than the worst case !

, when # is large.

Obviously, our bound is also far worse than the � � �! � � bound of the known ad-hoc algorithms for evaluat-
ing queries of bounded treewidth. As discussed in the introduction, this is interesting because our algorithm
is not special purpose for bounded treewidth queries.

5 Bounds on Search-Tree Size

In this section we prove lower bounds for the minimal search-trees for particular queries of interest. The
first lower bound is relatively easy, but we include the proof as a warm-up for the second, which is more
difficult. The second lower bound shows that the ! �����

�� �
	��
bound for queries of treewidth � in Theorem 2

is essentially optimal.

8

5.1 Lower bound for the general case

Consider the vocabulary of graphs 	 " '�& 1
, where

&
is a binary relation symbol. For # � $, let CLIQUE

be the conjunctive query expressing the existence of a # -clique. More specifically, CLIQUE

is the following

conjunctive query:

�����(� �
	�	�	���� �
��
� ���
!����� & � � ! ��� ������ �

We aim for a family of graphs 	 � for which the size of the minimal search-trees for testing whether 	 � � "
CLIQUE

is nearly as large as it can be.

The graph 	 � that we need is the complete
� # � � �

-partite graph with all color-classes of cardinality ! .
More precisely, the set of vertices of 	 � is

$ � " ' �<- ��
 � + � �0-�� # � � � � ��
 � ! 1 �

and the set of edges of 	 � is

& � " ' ���<- ��
 � �'� ��� ? ��� + � �0- ��� � # � � � � ��
 � ? � ! � - �" ��1 �

Each set of vertices of the form
' �<-���
 � + � �
 � ! 1 is called a color-class. Clearly, 	 � does not contain

any # -clique, so the query CLIQUE

does not hold on 	 � . Note that 	 � has #�! vertices in total, and
CLIQUE

has # bound variables. Hence, the obvious upper bound for any search-tree is

� #�! �

. We see next

that when ! is much bigger than # , then this is essentially the best one can do. The proof is quite simple but
we give it as it will serve as a warm-up for a more difficult proof in the next section.

Theorem 3 Every search-tree for testing whether 	 � � " CLIQUE

has at least !
�� �

nodes.

Proof : The idea of the proof is to describe an adversary argument that, given a purported search-tree of size
less than !

 � �
, finds a leaf that is labeled by a partial assignment that does not decide the body of CLIQUE

.

Since this contradicts the definition of search-tree, no such search-tree can exist.
Suppose that

� 3 ��� �
is a search-tree testing whether 	 � � " CLIQUE

. We construct a path � � ���������

through
3

, starting at the root, with the following properties:

1.
� � ��� does not decide the body of CLIQUE

.

2. The subtree rooted at � has size less than !
 � � � �

.

The idea behind the construction is to set
��� � � to a node of a different color-class; for example, we hope to

set
��� �'� to a node in color-class

� � �
. Let � be the root of

3
. Suppose next that � �������'� � have already

been defined, and that � is not a leaf. We claim that among the ! vertices in color-class
� � �

, there must
exist at least one, say

� � � � ��
 �
, for which the subtree rooted of � labeled by

� � �'� � ' � ��� ��� �'� � � � ��
 ��� 1
has size less than !

 � � � � � �
. Indeed this is the case since otherwise the size of the subtree rooted at � would

be at least ! 	 !
 � � � � � � " !

 � � � �
which contradicts the inductive construction. Let � �

�
be any of these

successors.
Notice that after a certain number of steps � no larger than # ���

, we will reach a leaf �� because the
size of the subtree will become less than $. It remains to be seen that our construction guarantees that the
label

� � �� � of this leaf does not decide the body of CLIQUE

. However, this is clear from the construction

because the partial assignment that is built assigns each variable to a different color-class. Therefore,
� � �� �

does not falsify any atomic formula, and it cannot satisfy all either because its domain is not all
'�� ���������'��� 1

.
Hence,

� � � � does not decide the body of CLIQUE

as was to be shown. �

9

5.2 Lower bound for the bounded treewidth case

Consider the vocabulary of directed graphs 	 " '�&51
, where

&
is a binary relation symbol. For # � $,

let PATH
 � � ��� �

be the conjunctive query expressing the existence of a path of length # from
�

to
�

. More
specifically, PATH

 � ����� �
is the following conjunctive query:

�����(���
	�	�	���� �
 � � ����& � ���������(� & � �(�����
%
����������� & � �
 �

%
���
 � � � � & � � � � ��� ��� �

It is trivially seen that the treewidth of PATH
 � � ��� �

is one because the underlying Gaifman graph is a path,
and hence a tree. We aim for a family of directed graphs # � , with two distinguished nodes

�
and � , for which

the size of the minimal search-trees for testing whether # � � " PATH
 ��� � � � nearly matches the upper bound

provided by Theorem 2. Moreover, we will choose our graphs so that the hypothesis # � �� " PATH
���� � � � in

that theorem is satisfied.
The construction of the directed graphs # � is as follows. The set of vertices of # � is

$ � " ' �<-���
 � + � �0-�� # � � � � ��
 � ! 1 � ' � � � 1 �

The vertices of the type
�<-���
 �

need to be thought as arranged into # � �
levels of ! vertices each. We call

them middle vertices. The source vertex
�

is at level
�

and the target vertex � is at level # . Each middle
vertex

�<-���
 �
at level

-
is connected precisely to the vertices at level

- � �
whose second components have the

same parity as

. The source
�

is connected precisely to the vertices at level
�

whose second component is
even, and the target � is connected precisely to the vertices at level # � �

whose second component is odd.
More formally, the arcs of # � are

& � " ' ���<-���
 � �'�<- � � � ? ��� + � � - � # � $ � � ��
�� ? � ! �
�� ? �
mod $ � 1 �' ��� �'� � ��
 ��� + � �
 � ! �
�� � � mod $ � 1 �' ��� # � � ��
 � � � � + � ��
 � ! �
�� � �

mod $ � 1 �

It is readily seen from the definition, that there is no path of length # from
�

to � in # � . In other words,
� �� " PATH

 ��� � � � . This is because the only middle vertices reachable from
�

are those whose second
component is even, and the only middle vertices that reach � are those whose second component is odd.

Theorem 4 For ! � # � $ � $, every search-tree for testing whether # � � " PATH
 ��� � � � has at least

! �
	��
 � �

nodes.

Proof : As in Theorem 3, the idea of the proof is again to describe an adversary argument. For simplicity
we assume that ! is an even number; the general case is similar. Suppose that

� 3 ��� �
is a search-tree testing

whether # � � " PATH
 ��� � � � . Before we start the argument we need some terminology. Every internal node

 of
3

has an associated level � � � in
' � ��������� # � � 1

defined as follows. Let
��� � " �"!

; that is,
��!

is the
splitting variable at node . Then we define � � � " -

.
We construct a path � � ��������� through

3
, starting at the root, with the following properties:

1.
� � � � does not decide the body of PATH

 ��� � � � .
2. The subtree rooted at � has size less than $

�
! �
	��

 � � � �
.

Each internal � will also have an associated parity
 �A� '�� � � 1
that will be defined on the fly. Let � be

the root of
3

. The parity
 � is defined
�

if $ � � �'�
 # and
�

otherwise. Intuitively,
 � is
�

if level � � �'�
is closer to level

�
than to level # . Suppose next that � �������'� � and
 � �������'�
 � have already been defined,

and that � is not a leaf. First we define the parity
 � � � as follows. Intuitively,
 � � � will be defined in

10

such a way that the minimum distance, in terms of number of levels, between any two elements of different
parity in the sequence is at most halved. More formally, consider the level � � ��� " -

of � and the level- � in
' � � � � ��������� � � � � � � � � � # 1 that minimizes

� - � � - �
(break ties arbitrarily). If

- � " �
, let
 � � � " �

. If- � " # , let
 � � � " �
. Otherwise, let

� � be such that
- � " � � ��� � , and let
 � � � "
 ��� . Next we define � �

�
.

We claim that among the ! � $ middle vertices at level
-

whose second component is congruent to
 � � � mod
$, there must exist at least one, say

�<-���
 �
, for which the subtree rooted at the successor of � labeled by� � �'� � ' � ��� ��� �'�<- ��
 ��� 1 has size less than $
�
�
�
! �
	��

 � � � � � �
. Indeed this is the case because otherwise the

size of the subtree rooted at � would be at least

!
$
	 $
�
�
�
! �
	��

 � � � � � � " $
�
! �
	��

 � � � �

which contradicts the inductive construction. Let � �
�

be any of these successors.
Notice that after a certain number of steps � no larger than

� ��� # � $, we will reach a leaf �� because
the size of the subtree will become less than $. It remains to be seen that our construction guarantees that
the label

� � �� � of this leaf does not decide the body of PATH
���� � � � . Consider the sequence � ��������� �� . To

every internal � in the path there corresponds a vertex of # � , namely, the image of the variable
��� �'� under� � � �

� �
. Let

? � ��������� ? � � � be the corresponding sequence of vertices in # � . Note that, by construction,
each

?��
is a middle vertex of the form

� � � ��� ��
 � and the parity
 � coincides with the parity of its second
component

. Let us define

? � " �
,
? � �

� "�� ,
 � " �
, and
 � �

� " �
. We claim that any two vertices in')? � �������'� ? � �

� 1
that belong to consecutive levels are connected by an arc. In order to see this, it suffices to

note that the shortest distance between any pair of elements of different parity in the sequence is at least # � $
when

� " �
, and is at most halved when going from

�
to
� � �

. Therefore, by
� " � ��� # � $, the shortest

distance between any pair of elements of different parity is at least $. Hence, any two consecutive vertices
have the same parity, so are connected by an arc. Hence,

� � � � does not falsify any atomic formula, and
it cannot satisfy all either because its domain is not all

'������������'���
 � � 1
. Hence,

� � �� � does not decide the
body of PATH

 ��� � � � as was to be shown. �

6 Conclusions

We have proposed a new way of measuring the complexity of algorithms for conjunctive query evaluation, or
equivalently, for constraint-satisfaction problems. The concept of minimal search-tree wants to capture the
notion of optimal search-space for search-based algorithms. As discussed in the introduction, measuring the
complexity of the algorithm as a function of the minimal search-tree is an idea that originates in propositional
proof complexity. By adapting an automatization algorithm for tree resolution that was developed in that
context, we were able to provide an algorithm that achieves a remarkable theoretical performance. What
remains to be seen is whether the idea can lead to practical algorithms with reasonable behavior.

Our work also suggests several technical open problems. First, our algorithm provides a search-tree
for the Booleanization, but as we discussed, it is not clear that such a search-tree can be converted to a
search-tree for the original conjunctive query. It would be nice to investigate this further. Second, proving
the bounds on search-tree size for bounded treewidth queries seemed to require the hypothesis � �� " � � � � .
We do not know whether it is really needed.

Open Problem Find bounds on the maximum search-tree size of conjunctive queries of bounded treewidth
on structures on which they hold. More concretely: Do conjunctive queries with # variables and bounded
treewidth have search-trees of size ! � � �
	��

 �
on structures of cardinality ! on which they hold? If not, repeat

for bounded pathwidth.

11

Another interesting direction to follow, that looks related to this work, is to establish the precise relation-
ship between the CSP refutations developed in [AKV04] and the refutations provided by the search-trees
when � �� " � � � � . It seems that the techniques that were developed for proof complexity should be useful
here. Ideally, it would be nice to move back and forth and apply techniques from one area to the other.

Acknowledgments I am grateful to José L. Balcázar and Roberto Nieuwenhuis for fruitful discussions, and
also to a referee for comments. I am also grateful to Moshe Vardi for providing useful pointers and for the
discussion of ideas related to Theorem 2.

References

[AKV04] A. Atserias, Ph. G. Kolaitis, and M. Vardi. Constraint propagation as a proof system. To appear
in proceedings of CP 2004, 2004.

[BKPS02] P. Beame, R. Karp, T. Pitassi, and M. Saks. The efficiency of resolution and Davis-Putnam
procedures. SIAM Journal of Computing, pages 1048–1075, 2002.

[Bod98] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical Com-
puter Science, 209:1–45, 1998.

[BP96] P. Beame and T. Pitassi. Simplified and improved resolution lower bounds. In 37th Annual IEEE
Symposium on Foundations of Computer Science, pages 274–282, 1996.

[BPR00] M. L. Bonet, T. Pitassi, and R. Raz. On interpolation and automatization for Frege sys-
tems. SIAM Journal of Computing, 29(6):1939–1967, 2000. A preliminary version appeared
in FOCS’97.

[CM77] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in relational
databases. In 9th Annual ACM Symposium on the Theory of Computing, pages 77–90, 1977.

[CR97] C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. In 6th International
Conference on Database Theory, volume 1997 of Lecture Notes in Computer Science, pages
56–70, 1997.

[DKV02] V. Dalmau, Ph. G. Kolaitis, and M. Y. Vardi. Constraint satisfaction, bounded treewidth, and
finite variable logics. In 8th International Conference on Principles and Practice of Con-
straint Programming (CP), volume 2470 of Lecture Notes in Computer Science, pages 310–326.
Springer, 2002.

[GLS98] G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive queries. In 39th
Annual IEEE Symposium on Foundations of Computer Science, pages 706–715, 1998.

[KV00] Ph. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint satisfaction.
Journal of Computer and System Sciences, 61(2):302–332, 2000.

[PY99] C. H. Papadimitriou and M. Yannakakis. On the complexity of database queries. Journal of
Computer and System Sciences, 58(3):407–427, 1999.

[Yan81] M. Yannakakis. Algorithms for acyclic database schemes. In 7th International Conference on
Very Large Data Bases, pages 82–94, 1981.

12

