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ABSTRACT: We review a class of new computer simulation methods for polymeric fluids and other soft
condensed matter systems that are based on an underlying field-theoretic description. These methods,
while still in an early stage of development, show considerable promise for studying the equilibrium
properties of many-component systems capable of intricate self-assembly, such as solutions and blends
containing block and graft copolymers. Field-theoretic simulation methods also provide a great deal of
flexibility in model building and coarse graining, and appear to be particularly well suited to treat systems
with soft, long-range interactions, such as polyelectrolytes. We attempt to connect various related
theoretical approaches, such as self-consistent field theory and dynamic density functional theory, within
a common framework.

I. Introduction

Many practical applications of polymers and other soft
condensed matter systems involve mixtures that through
equilibrium self-assembly or nonequilibrium processing
steps develop complex, multiphase morphologies. The
desirable and marketable properties of such materials,
which include plastic alloys, block and graft copolymers,
and polyelectrolyte solutions, complexes, and gels, de-
pend critically on the ability to control and manipulate
morphology by adjusting a combination of molecular and
macroscopic variables. For example, styrene-butadiene
block copolymers can be devised that serve either as
rigid, tough, and transparent thermoplastics or as soft,
flexible, and thermoplastic elastomers, by appropriate
control of copolymer architecture and styrene/butadiene
ratio.1 In this case, the property profiles are intimately
connected to the relationship between the molecular
parameters and the extent and type of nanoscale self-
assembly that takes place within the materials. Unfor-
tunately, such relationships are traditionally deter-
mined by trial and error experimentation that is both
laborious and costly. In the design of new materials, it
would obviously be highly desirable if theoretical meth-
ods could be used to anticipate nano- and microscale

self-assembly and further relate such morphological
characteristics to properties of interest in specific ap-
plications.

Unfortunately, theoretical techniques for anticipating
the structure and equilibrium phase behavior of complex
polymeric fluids are still in their infancy. Nonequilib-
rium methods for predicting structural evolution and
properties of multiphase systems under realistic pro-
cessing conditions are even less developed. Neverthe-
less, progress is being made and current theoretical tools
have met with sufficient success to justify use in many
of the R&D organizations of leading polymeric materials
suppliers.

Modern computer simulation methods for polymers
and other soft materials2-13 can be grouped into three
major categories: atomistic, coarse-grained particle-
based, and field-theoretic. Fully atomistic methods typi-
cally involve building classical (as opposed to quantum)
descriptions of a polymeric or complex fluid with atomic
resolution. Interactions in such models are described by
some combination of bonded and nonbonded potential
functions, typically parametrized at the two-body and/
or three-body level. In principle these potentials can be
obtained by quantum chemical calculations, so that first
principles parametrization of new systems is possible.
Determination of equilibrium or nonequilibrium proper-
ties involves carrying out a computer simulation, usu-
ally by employing Monte Carlo (MC) or molecular
dynamics (MD) techniques. The major drawback of
atomistic methods is that, except in rare instances, it
is very difficult to equilibrate sufficiently large systems
of polymers at realistic densities in order to extract
meaningful information about structure and thermo-
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dynamics. This limitation is particularly acute for
multiphase, inhomogeneous systems, which are often
those of primary interest.

A reasonable alternative to a fully atomistic computer
simulation is a coarse-grained, particle-based approach2

in which atoms or groups of atoms are lumped into
larger “particles”. At the lowest level this could simply
amount to a “united atom” approach where, e.g., each
CH2 unit in a polyethylene chain is replaced by a single
effective particle. Interactions in such a model are then
effective interactions between lumped CH2 particles and
standard MC or MD simulation methods can be em-
ployed. Often even more extensive coarse graining is
carried out. For example, bead-spring polymer chains
are often employed in which each bead might represent
the force center associated with 10 or more backbone
atoms. A difficulty with such models is that the effective
interactions between beads (particles) are often difficult
to parametrize accurately. Moreover, they remain ex-
pensive to simulate, especially at melt densities and for
heterogeneous systems that exhibit nanoscale or mac-
roscale phase separation.9,13 One solution to speed up
the simulations is to introduce artificially soft repulsive
interparticle potentials, as is conventionally done in
dissipative particle dynamics (DPD),14 but this has a
number of adverse effects including artificially high fluid
phase compressibilities, loss of topological constraints
between chains, and often loss of connection to the
atomic/chemical details of the underlying complex fluid.

In both of the above modeling strategies, the funda-
mental degrees of freedom to be sampled in a computer
simulation are the generalized coordinates (including
bond and torsional angles) associated with the atoms
or particles. As we shall describe below, an alternative
approach, at least for computing equilibrium properties,
is to integrate out the particle coordinates in the
partition function, replacing them instead with func-
tional integrals over one or more fluctuating chemical
potential fields that are confined to a simulation domain.
In constructing such field-theoretic models it is often
convenient from the start to smear the particle force
centers uniformly along the polymer backbones, so that
a discrete bead-spring chain model becomes a continu-
ous chain described by a space curve R(s).15

Starting with Edwards,16 field theory models have
been extensively used as the basis for approximate
analytical calculations on a variety of important systems
including polymer solutions, melts, blends, and copoly-
mers.17-21 Until very recently, however, field-theory
models have not been the basis of a computer simulation
strategy for polymers or other soft condensed matter
systems. This is particularly surprising given the rich
history of lattice gauge simulation methods22,23 applied
to field theories in nuclear, high energy, and hard
condensed matter physics. It is our belief that adaption
and improvement of these “field-theoretic simulation”
(FTS) methods to enable direct numerical sampling of
field theory models of complex fluids (without ap-
proximation beyond numerical error) will provide a
powerful suite of tools for exploring the equilibrium
properties of a wide range of important soft materials
systems. In the specific case of polymers, we anticipate
that such “field-theoretic polymer simulation” (FTPS)
methods24 will be competitive with more conventional
particle-based simulation methods, especially when
applied to dense, multiphase systems with many com-
ponents. Future development of the methods may also

provide access to nonequilibrium properties.
In the present review, we survey this approach and

attempt to unify and classify the various field-theoretic
methods that are currently in use. While we have made
no attempt to be comprehensive and have drawn heavily
from our own work, we have tried to connect with
ongoing activities in several of the leading research
groups in the area. Nonetheless, we apologize in ad-
vance for our failure to cite all of the relevant and
important literature.

Overall, the general FTS/FTPS strategy for calculat-
ing equilibrium properties involves four steps that are

Figure 1. Summary of the “field-theoretic polymer simula-
tion” (FTPS) method. In step 1 a microscopic model (atomistic
or mesoscale) is constructed in which the degrees of freedom
are 3n particle coordinates, rn, representing positions of
monomers, solvents, solutes, etc. In step 2, the microscopic
model is converted by formally exact methods to a field theory
involving one or more chemical potential fields w(r). Step 3
involves meshing the simulation domain to facilitate either a
finite difference or finite element representation of the relevant
fields. The degrees of freedom at this stage are the Ng
components of the discretized chemical potential fields, cor-
responding to values of w on the nodes or lattice sites as
appropriate. Step 4 involves a numerical procedure to sample
states in this Ng-dimensional w-space with complex statistical
weight ∼ exp(-H[wNg]).
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depicted in Figure 1: (1) development of a suitable
particle-based model, (2) conversion of the particle-based
model into a field theory, (3) discretization of the
simulation domain, and (4) numerical sampling of the
discretized field theory. Step 1 requires some “art”
because the starting model may either be atomistic or
coarse-grained; moreover, steps 1 and 2 may be omitted
in situations where the starting model is already a field
theory. Step 2 is carried out by using exact analytical
methods as described below. Step 3, like step 1, is highly
flexible and can be accomplished by conventional finite
difference or finite element representations of the fields.
Alternatively, modern adaptive, unstructured finite
element methods25 could in principle be applied, or
various spectral methods could be used. Step 4 will
receive special attention in this review because we shall
see that the discretized field theories relevant to simple
and complex fluids have a nonpositive definite statistical
weight, which would seem to rule out standard sampling
methods such as Monte Carlo (MC). We argue that a
complex Langevin dynamics (CLD)26-28 method origi-
nally developed in the context of lattice gauge theory is
a particularly convenient strategy for overcoming this
difficulty.

The present review is organized as follows. In section
II, we discuss the general strategy for building field-
theoretic models and provide several examples in the
context of simple monatomic fluids, polymer solutions,
polymer blends, and block copolymers. This section
addresses steps 1 and 2 above. Section III discusses the
general mathematical structure of the field theories
when extended to the complex plane and the represen-
tation of observables in the field-theoretic language. We
shall see a close connection between saddle points of the
field theories and a familiar mean-field theory known
as self-consistent field theory (SCFT) that has been
widely applied to polymers. Section IV discusses various
implementations of SCFT, as well as a related mean-
field theory known as dynamic density functional theory
(DDFT). Section V then addresses how to go beyond the
mean-field approximation and to implement full nu-
merical sampling of a field theory model, i.e., to imple-
ment a FTPS. Finally, in section VI we provide our
current thoughts on the advantages and limitations of
the field-theoretic simulation methods, as well as dis-
cuss extensions and future developments.

II. Model Building
There are many possible approaches to building field

theory models of soft materials that can be studied by
the methods of this review. A fundamental starting
point is an atomistic model that can be converted to a
field theory by standard methods. We illustrate with a
simple model of a classical monatomic fluid.

A. Monatomic Fluids. Consider a monatomic fluid
in the canonical ensemble.29 For a collection of n
particles in a three-dimensional volume V, the 3n-
dimensional configurational phase space can be denoted
by rn ) (r1, r2, ..., rn), where rj is the position of the jth
particle in the volume. If the potential energy can be
pairwise decomposed, the configurational partition func-
tion can be written

where v(r) is the familiar pair interaction potential.

Subsequently we work in energy units where â ≡ 1/(kBT)
) 1. For cases in which the potential is singular at the
origin, we regularize it by the replacement v(r) f v(r +
ε), and later take ε f 0+. Upon introduction of the
microscopic particle density F̂(r) ) ∑jδ(r - rj), the
partition function can be rewritten as Z ) ∫ drn exp[-
U(rn)], where

and we have ignored a configuration-independent, mul-
tiplicative factor of exp[nv(ε)/2] in Z, which represents
a constant shift in free energy due to particle self-
interactions. In eq 2, we have expressed the potential
energy as a quadratic form in the microscopic density;
a more general fluid model with three-body potentials
would contribute cubic terms in F̂, etc.

Our next step is to insert a δ functional identity,
namely ∫ D[F] δ(F - F̂) ) 1, in the integrand of the
partition function, where ∫ D[F] denotes a functional
integral over a real density field F(r) defined within the
volume V.30 We then give the functional δ, which
constrains the fields F(r) and F̂(r) to be the same at each
point r, an exponential representation: δ(F - F̂) )
∫ D[w] exp[i ∫ dr w(F - F̂)], where i ≡ x-1. This
introduces a second functional integral over a real scalar
field w(r) that can be interpreted as a fluctuating
chemical potential field. These two steps have the net
effect of eliminating all particle-particle interactionss
replacing them instead with interactions between in-
dividual particles and the fluctuating field w. As a
result, the ∫ drj coordinate integrals are the same for
each particle j and factor, leading to

where the “effective Hamiltonian” is given by

and

is the partition function of a single particle in the purely
imaginary potential iw(r). In writing eq 3, we have
again dropped configuration-independent terms such as
Vn, which produce constant shifts in the free energy (in
this case contributing to the ideal gas free energy). It is
also understood that the limit ε f 0+ is to be taken at
the end of any thermodynamic calculation.

Equations 3 and 4 constitute the field theory model
that corresponds to the atomistic particle-based model
of eq 1. With an eye toward computing equilibrium
properties, the focus has changed from evaluating a 3n-
dimensional configurational integral over the particle
coordinates to the problem of computing two functional
integrals over density and chemical potential fields.
There are two important differences between the po-
tential energy function U(rn) appearing in the original
theory and the effective Hamiltonian functional H[F, w]
appearing in the corresponding field theory:

Z ) ∫ drn exp(-(â/2) ∑
j(*k)

∑
k

v(|rj - rk|)) (1)

U(rn) ) 1
2 ∫ dr ∫ dr′ F̂(r)v(|r - r′| + ε)F̂(r′) (2)

Z ) ∫ D[F] ∫ D[w] exp(-H[F, w]) (3)

H[F, w] ) 1
2 ∫ dr ∫ dr′ F(r)v(|r - r′| + ε)F(r′) -

i ∫ dr wF - n ln Q[iw] (4)

Q[iw] ) V-1 ∫ dr exp[-iw(r)] (5)
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•H[F, w] contains an entropy term -n(ln Q) and so
has a “free energy” character, while U represents only
potential energy.

•H[F, w] is complex, implying a nonpositive definite
statistical weight exp(-H); in contrast, U is purely real.

Both of these differences prove to be very important
in the development of field-theoretic simulation meth-
ods. The second point deserves special mention. While
H is complex and can be decomposed into real and
imaginary parts according to H ) HR + iHI, the fields
F and w are real, as is the partition function Z. It follows
that Z can alternatively be expressed as Z ) ∫D[F] ∫
D[w] exp(-HR) cos(HI), where the integrand is explicitly
real, but is not positive definite, due to the phase factor
cos(HI). This feature is also encountered in lattice gauge
theories, where it is referred to as the “sign problem.”31

A final comment is that very similar steps can be
followed to transform the partition functions of particle-
based models in other ensembles, e.g., the grand ca-
nonical ensemble,32 to suitable field theories. For sim-
plicity, we discuss only the canonical ensemble in the
present review.

In the most general case of potential energy functions
U containing three-body or higher-order potentials, the
functional H[F, w] is not a quadratic form in F, so it is
not possible to further simplify eq 3. However, if the
interactions are pairwise and the potential v has only
real, positive eigenvalues so that an inverse v-1 defined
by ∫ dr′′ v(|r - r′′| + ε)v-1(|r′′ - r′|,ε) ) δ(r - r′) exists,
the Gaussian integral over F can be explicitly carried
out. In this case eqs 3 and 4 simplify to Z ) ∫D[w]
exp(-H[w]), with

and where we again discard normalizing factors in Z.
This last step cannot be performed for many realistic
potentials that are harshly repulsive at short distances
(e.g., the Lennard-Jones 6-12 potential). However, the
simplification does apply for several important cases
including the Coulomb potential, the Yukawa (or De-
bye-Huckel) potential, and a repulsive δ function
pseudo-potential, v(r) ) u0δ(r), u0 > 0.

B. Homopolymer Solutions. Having demonstrated
how an atomistic model of a simple fluid can be
converted to a field theory, we now turn to consider the
development of models for homopolymer solutions. It is
apparent that one approach would be to simply retrace
the steps of the previous section, starting with a fully
atomistic model of both polymers and solvent. However,
frequently one is primarily concerned with polymer
solution structure and thermodynamics associated with
length scales much larger than atomic dimensions, in
which case a better starting point is to treat the solvent
as a continuum and employ a coarse-grained polymer
model. For the case of flexible polymers, a convenient
choice of chain model is the “Gaussian thread model,”
which corresponds to the continuum limit of harmonic
bead-spring chains as described earlier. In this model,
polymers are represented by continuous space curves
RR(s), where R ) 1, ..., n indexes the different polymers
and s is an arc length variable running from 0 to 1 along
each chain contour.15 We again consider a canonical
ensemble in which n polymers are confined to a volume
V. Conformations of noninteracting polymers are given
a Gaussian statistical weight, exp(-U0), with a har-

monic stretching (free) energy given by (units of kBT):

The quantity Rg0 is the unperturbed radius-of-gyra-
tion of a chain, Rg0

2 ) Nb2/(2d), where b is the statis-
tical segment length, N is the polymerization index,
and d is the space dimension (d ) 3 in three dimen-
sions).

Nonbonded interactions of mean force between mono-
mers on the same polymer and between monomers on
different polymers, in both cases mediated by the
solvent, are typically represented by a pairwise pseudo-
potential.15 The appropriate energy function U1[R] is
obtained from eq 2 by the replacement v(r) f u0δ(r).
The microscopic monomer density in this case is defined
by F̂(r) ) N∑R ∫0

1 ds δ(r - RR(s)). Under good solvent
conditions, u0 > 0, pair interactions are sufficient; for
poor solvents, u0 < 0, a stabilizing three-body potential
term is required.

Because the δ function pair potential is invertible for
the case of good solvents, it is possible to retrace the
steps of the last section and transform the starting
microscopic model defined by Z ) ∫D[R] exp(-U0 - U1)
to an equivalent field theory involving a single fluctuat-
ing chemical potential field, Z ) ∫D[w] exp(-H[w]). The
notation ∫ D[R] denotes n path integrals over all
possible space curves describing the conformations of
the chains. The effective Hamiltonian of the resulting
field theory reduces to (for ε f 0+)

where Q[iw] is now interpreted as the partition function
of a single polymer in the purely imaginary potential
iw(r).

The evaluation of Q is more complicated for flexible
polymers than for point particles, cf. eq 5. Formally, we
can express Q as a path integral17,33

where only one polymer chain need be considered. The
normalization is the same as in eq 5, i.e., Q[0] ) 1. A
convenient way to evaluate this path integral is to
express it in terms of a restricted partition function q(r,
s;[w]) that satisfies a complex diffusion equation. (We
will subsequently drop the functional dependence on w
to simplify the notation.) This equation is analogous to
the Feynman-Kac formula familiar in the path integral
description of quantum mechanics.34 In particular, q(r,
s) is obtained as the solution of the equation

subject to the “initial condition” q(r, 0) ) 1. The single-
chain partition function, which can be viewed as a
functional of the field w(r), is computed by integrating
eq 10 forward along the chain contour from s ) 0 to s )
1 and then performing a volume average:

H[w] ) 1
2 ∫ dr ∫ dr′ w(r)v-1(|r - r′|,ε)w(r′) -

n ln Q[iw] (6)

U0[R] )
1

4Rg0
2
∑
R)1

n ∫0

1
ds|dRR(s)

ds
|2

(7)

H[w] ) 1
2u0

∫ dr w2 - n ln Q[iw] (8)

Q[iw] )
∫ D[R] exp[-U0 - iN ∫0

1 ds w(R(s))]

∫ D[R] exp[-U0]
(9)

∂

∂s
q(r, s) ) Rg0

2∇2q(r, s) - iNw(r)q(r, s) (10)
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The structure of eqs 10 and 11 implies that for general
w(r), both q(r, s) and Q are complex quantities.

In summary, for a simple microscopic model of flexible
polymers in a good solvent, the partition function can
be transformed into a field theory of the form Z ) ∫D[w]
exp(-H[w]), where the effective Hamiltonian is defined
by eqs 8, 10, and 11. By expressing all lengths in units
of Rg0 and introducing a rescaled potential field, W(r)
≡ Nw(r), it is apparent that all intensive thermody-
namic properties of the model can be expressed in terms
of just two parameters:

The first parameter C is a dimensionless polymer
concentration, while the second B ∼ N(4-d)/2 is a dimen-
sionless excluded volume parameter that is encountered
in perturbation theories of the excluded volume effect.
This field theory has been known for many years to be
a good starting point for approximate analytical calcula-
tions at various values of B, C > 0 that traverse the
dilute, semidilute and concentrated polymer solution
regimes.15,16,19-21 To our knowledge, however, this field
theory model has not been previously viewed as the basis
for a computer simulation method. For completeness,
we summarize the model equations in dimensionless
form:

In the above, L denotes the length of the system in units
of Rg0, i.e., Ld ≡ V/Rg0

d.
Our overall philosophy on model building is that one

should start with the simplest possible model that
captures the essence of molecular structure and interac-
tions for a system of interest, and add more details only
if warranted by comparison with experiment. For ex-
ample, the two-parameter model outlined above pro-
vides a satisfactory model of many solutions of flexible
polymers in good solvents. At least one more parameter
is required, however, to describe flexible polymers in
theta or poor solvents.35 For semi-flexible polymer
solutions, the wormlike chain model (Kratky-Porod
model)36 is often more appropriate than the Gaussian
thread model of eq 8. In this case, a diffusion equation
approach to computing Q is also available. A tendency
for nematic ordering can be incorporated by adding an
anisotropic Maier-Saupe or Onsager-type interaction
term to the overall potential energy of the model.37

Finally, it is also possible to build field theory models
of polymer solutions that reflect more atomic-level detail
of polymer, solvent, or the interactions between the two.
For example, the rotational isomeric state (RIS) model38

can be substituted for either the Gaussian thread or
wormlike chain model, in which case transfer matrix
methods could be used in place of diffusion equations

to compute the single-chain partition function. It is also
possible to evaluate the functional Q by Monte Carlo or
other stochastic simulation methods,39 although such an
approach is computationally very expensive relative to
the deterministic methods of computing Q described
here.

C. Polymer Blends and Block Copolymers. Hav-
ing discussed the description of polymer solutions, we
now turn to heterogeneous melts of flexible polymers.
For simplicity, we focus on two cases: (i) a binary blend
of a type A homopolymer with a second type B ho-
mopolymer and (ii) an AB diblock copolymer melt.
Again, if one is interested primarily in mesoscale and
macroscale structure and thermodynamics, a coarse-
grained starting point is appropriate. A typical model17

invokes the Gaussian thread model to describe the
bonded interactions for both A and B species, e.g., for a
binary polymer blend

where RRK(s) denotes the space curve describing the
conformations of the Rth type-K chain, nK is the number
of chains of species K (A or B), and Rg0,K ) bK[NK/(2d)]1/2

is the unperturbed radius-of-gyration of a type-K chain.
The nonbonded interactions can again be expressed in
terms of microscopic monomer densities defined by
F̂K(r) ) NK∑R)1

nK ∫ 0
1ds δ(r - RRK(s)). There are two

types of nonbonded interactions that are important to
capture. The first is the tendency for a preference of
similar (A-A and B-B) binary monomer contacts over
dissimilar (A-B) contacts in a blend, which arises pri-
marily from attractive (cohesive) intermonomer forces.
This tendency can be described by a simple quadratic
form

familiar in regular solution (and Flory-Huggins) theory,
where ø is the Flory parameter.35 We have conveniently
defined monomers (statistical segments) so that they
occupy the same volume in the melt, i.e., vA ) vB ≡ v0.
The total average monomer density is given by F0 ≡ 1/v0
) (nANA + nBNB)/V ≡ FA0 + FB0.

The second type of nonbonded interactions that are
important to capture in a model of polymer melts are
the harshly repulsive (“hard core”) interactions that lead
to small variations in total monomer density on meso-
and macroscales. A simple way to incorporate such
interactions is through a strict “incompressible melt”
approximation, which is imposed by a functional δ, δ-
(F̂A + F̂B - F0), that forces the sum of the two microscopic
densities, F̂A(r) + F̂B(r), to be equal to the average total
density F0 at each point r in the system. Assembling all
three types of interactions produces the following “mi-
croscopic” model of a molten binary polymer blend:

Q[iw] ) 1
V ∫ dr q(r, 1) (11)

C ) nRg0
d/V, B ) u0N

2/Rg0
d (12)

Z ) ∫ D[W] exp(-H[W]) (13)

H[W] ) 1
2B ∫ dr W2 - CLd ln Q[iW] (14)

Q[iW] ) 1
Ld ∫ dr q(r, 1) (15)

∂

∂s
q(r, s) ) ∇2q(r, s) - iW(r)q(r, s), q(r, 0) ) 1

(16)

U0[RA,RB] )
1

4Rg0,A
2
∑
R)1

nA ∫0

1
ds |dRRA(s)

ds
|2

+

1

4Rg0,B
2
∑
R)1

nB ∫0

1
ds |dRRB(s)

ds
|2

(17)

U1[RA,RB] ) v0ø ∫ dr F̂AF̂B (18)

Z ) ∫ D[RA] ∫ D[RB] δ(F̂A + F̂B - F0) ×
exp(-U0 - U1) (19)
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Our final task is to convert this model involving nA
+ nB chain conformation path integrals into a field
theory where the fundamental degrees of freedom are
fluctuating chemical potential fields. To this end, it is
convenient to express the microscopic densities appear-
ing in Z in terms of the linear combination fields

Because of the δ function constraint on the plus field,
F̂+(r) ) F0, the interaction term U1 can be rewritten as

where we have made a constant shift in the free energy
by adding (configuration independent) terms that are
zeroth and first order in the F̂- field. The next step is to
introduce two real, fluctuating chemical potential fields,
w-(r) and w+(r), which serve, respectively, to decouple
the quadratic F̂- interactions manifest in U1 and to give
the δ functional an exponential representation:

The field w- is a type of “exchange chemical potential”,
since it appears conjugate to the density difference F̂-.
In contrast, w+ is a total chemical potential, or “pres-
sure,” that is conjugate to the total monomer density
F̂+ and enforces incompressibility.

Collecting the above results, one can reexpress eq 19
as a field theory in the two real chemical potential fields
w(

where

The functionals QK[ψK] (K ) A or B) represent the
partition functions of a single type-K polymer in a
(generally complex) chemical potential field ψK(r). These
can be obtained by the same strategy as in the previous
section; i.e., QK[ψK] ) V-1 ∫ dr qK(r, 1), where qK(r, s)
satisfies

subject to the initial condition qK(r, 0) ) 1.
Apart from the linear terms in the w( fields, which

have no thermodynamic significance, the above field
theory for an incompressible binary polymer blend is
quite similar in structure to those derived previously
for monatomic fluids (eq 6) and polymer solutions (eq
8). In the present case we see that the “pressure” field
w+ is most similar to the w fields introduced previouslys
all are conjugate to the total monomer/atom density.
Moreover, we see that the effective Hamiltonian H[w+,
w-] acquires an imaginary part due to the pressure field
w+, which is a manifestation of the repulsive interac-

tions. In contrast, the attractive interactions are de-
coupled by an exchange potential w- that makes real
contributions to H. In general, because realistic models
of fluids always contain repulsive interactions, the
sampling problem associated with a complex effective
Hamiltonian (described in detail in section V) cannot
be avoided.

It is straightforward to adapt the above model to
describe an incompressible melt of AB diblock copoly-
mers.40 In the simplest version, we ignore differences
in statistical segment length between the two blocks,
bA ) bB ≡ b, and consider n diblock molecules of total
polymerization index N in a volume V. The volume
fraction of type A segments on each molecule is denoted
f and coincides with the global volume fraction of type
A segments: f ) FA0/F0. By following the same steps as
above, it can be shown that the partition function for
such a model can be written in the form of eq 24, but
with a slightly modified version of the effective Hamil-
tonian:

In this expression, Q[ψA,ψB] is the partition function of
a single diblock copolymer experiencing a (complex)
chemical potential field ψA(r) acting on the type A
monomers and a complex field ψB(r) acting on the type
B monomers.

Before writing an explicit expression for Q in the case
of a diblock melt, it is convenient to implement the
scalings applied previously in the polymer solution
casesnamely, we express all lengths in units of the
unperturbed overall copolymer radius-of-gyration, Rg0,
and rescale the fields according to W( ≡ Nw(. This leads
to the following dimensionless field theory model for an
incompressible diblock copolymer melt

where

and C ) nRg0
d/V is the dimensionless chain concentra-

tion introduced earlier. The single-chain partition func-
tion can be expressed as Q[iW+ - W-, iW+ + W-] ) L-d

∫ dr q(r, 1), where q(r, s) satisfies

subject to q(r, 0) ) 1 and with

This completes the field-theoretic description of an
incompressible AB diblock copolymer melt. We note that
the model involves four dimensionless parameters: the
chain concentration C, an effective strength of repulsion
between the A and B blocks øN, the copolymer composi-
tion f, and the system size L. The intensive thermody-
namic quantities of a bulk system depend only on the
first three parameters. Because the parameter C mul-

F̂((r)≡F̂A(r)(F̂B(r) (20)

U1[RA,RB] ) - v0ø/4 ∫ dr [F̂-(r) - (FA0 - FB0)]
2 (21)

exp(-U1) ) ∫ D[w-] exp(∫ dr [(F̂- - FA0 +

FB0)w- - 1/(øv0)w-
2]) (22)

δ(F̂+ - F0) ) ∫ D[w+] exp(-i ∫ dr w+[F̂+ - F0]) (23)

Z ) ∫ D[w+] ∫ D[w-] exp(-H[w+, w-]) (24)

H[w+, w-] ) ∫ dr [(FA0 - FB0)w- - iF0w+ +

F0ø-1w-
2] - nA ln QA[iw+ - w-] -

nB ln QB[iw+ + w-] (25)

∂

∂s
qK(r, s) ) Rg0,K

2∇2qK(r, s) - NKψK(r)qK(r, s) (26)

H[w+, w-] ) ∫dr [F0(2f - 1)w- - iF0w+ +

F0ø-1w-
2] - n ln Q[iw+ - w-, iw+ + w-] (27)

Z ) ∫ D[W+] ∫ D[W-] exp(-H[W+, W-]) (28)

H[W+, W-] ) C ∫ dr [(2f - 1)W- - iW+ +

1/(øN)W-
2] - CLd ln Q[iW+ - W-, iW+ + W-] (29)

∂

∂s
q(r, s) ) ∇2q(r, s) - ψ(r, s)q(r, s) (30)

ψ(r, s) ≡ {iW+(r) - W-(r), 0 < s < f
iW+(r) + W-(r), f < s < 1 (31)
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tiplies all terms in the effective Hamiltonian H, we shall
see that it plays a special role in the theory.

Clearly, similar methods can be used to construct field
theory models of much more complicated polymer blends
with arbitrary numbers of components, and with com-
ponents that are themselves copolymers. Models of more
complicated block, graft, and star copolymers are also
straightforward to build. Charged species can be incor-
porated to create models of electrolytes, polyelectrolytes,
and block and graft co-polyelectrolytes.41,42 It is also
possible to develop models with chemical disorder in the
form of chain length polydispersity or sequence disorder
(statistical copolymers).43,44 Finally, one can combine
different chain models (e.g., wormlike chains and Gauss-
ian thread chains) to create field-theoretic descriptions
of systems such as rod-coil block copolymers, liquid
crystalline side-chain polymers and copolymers, etc.45

III. Field Theory Models: General Features and
Observables

In the above sections we have provided several
examples of how field theory models of simple and
complex fluids (including polymers) can be constructed.
It is now appropriate to discuss some general features
of these models and describe how to formally obtain
expressions for physical observables of interest.

A. Observables. It is convenient to work in the
context of the polymer solution model and examine how
thermodynamic averages of various physically signifi-
cant quantities are calculated. As will be described in a
subsequent section, FTS simulations involve numerical
sampling of chemical potential field configurations, i.e.,
the W field for polymer solutions, with field configura-
tions assigned a statistical weight proportional to
exp(-H[W]) Thus, to compute ensemble averages of
physical observables in such a scheme, it is necessary
to make explicit the functional dependence of these
quantities on the field W.

We begin by considering monomer density correlation
functions. For this purpose, it is convenient to generalize
the polymer solution model to include a source term
µ(r):30

Clearly the original partition function is given by Z )
Z[0]. However, density correlation functions can be
generated by taking functional derivatives with respect
to µ. For example

and

The averages denoted 〈...〉 on the left-hand side of eq 34
represent equilibrium ensemble averages with respect
to the R(s) variables and with the Boltzmann statistical
weight exp(-U0 - U1) of the starting model. If we
transform eq 32 into a form analogous to eq 8, it follows
that the average density can be expressed as

The averages on the right-hand side of these two
expressions now denote equilibrium ensemble averages
with respect to the w field, i.e., 〈(...)〉 ≡ Z-1 ∫ D[w]
exp(-H[w])(...), with H[w] given in eq 8. It follows that
we can define a complex monomer density operator

such that the average monomer density is given by 〈F̂(r)〉
) 〈F(r;[w])〉. For a particular (real) w field configuration,
the density operator F(r;[w]) is complex; in contrast, the
average density is purely real. For a bulk homogeneous
polymer solution, evidently the equilibrium average
monomer density is given by 〈F(r;[w])〉 ≡ F0 ) nN/V.

It is clear from eq 36 that the monomer density
operator can be computed strictly from knowledge of the
single chain partition function Q[iw]. By invoking a well-
known factorization property of the single chain path
integral,17,33,34 it is possible to rewrite the right-hand
side of eq 36 in terms of the restricted partition function
already encountered in eq 10

For practical computations of the density operator
F(r;[w]), it is convenient to decompose both F and q into
real and imaginary parts, e.g., q ) qR + iqI. Given some
potential field w(r), eq 10 is decomposed into two real
diffusion equations for qR and qI, which are integrated
forward in s, starting from qR(r, 0) ) 1, qI(r, 0) ) 0.
These solutions are then inserted into eq 37 and
numerical quadratures performed to approximate the
s integral and obtain the real and imaginary parts of
the density operator.

Similar formulas can be derived for pair correlation
functions of the monomer density. However, instanta-
neous values (at one particular w field configuration)
of second order correlation functions require a funda-
mental (point source) solution of the diffusion equation,
which is rather expensive to compute. Fortunately,
ensemble averages of complex correlation function
operators (representing the observables) can be easily
obtained by constructing appropriate correlation func-
tions of w(r). Specifically, using eq 8 and eq 36, the
average density can be written

Integrating this equation by parts (assuming the bound-
ary terms can be neglected) yields

which provides an alternative expression for the first

Z[µ] ) ∫ D[R] exp(-U0 - U1 - ∫ dr µF̂) (32)

〈F̂(r)〉 ) -
δ ln Z[µ]

δµ(r) |
µ)0

(33)

〈F̂(r)F̂(r′)〉 - 〈F̂(r)〉 〈F̂(r′)〉 )
δ2 ln Z[µ]

δµ(r) δµ(r′)|µ)0
(34)

〈F̂(r)〉 ) - n〈δ ln Q[iw + µ]
δµ(r) |

µ)0
〉

) in〈δ ln Q[iw]
δw(r) 〉 (35)

F(r;[w]) t in
δ ln Q[iw]

δw(r)
(36)

F(r;[w]) ) F0
Q ∫0

1
ds q(r, s)q(r, 1 - s) (37)

〈F(r;[w])〉 ) i
Z ∫ D[w] exp[- 1

2u0
∫ dr w2] δ

δw(r)
×

exp(n ln Q[iw]) (38)

〈F(r;[w])〉 ) - i
Z ∫ D[w] exp(n ln Q[iw]) δ

δw(r)
×

exp[- 1
2u0

∫ dr w2] ) i
u0

〈w(r)〉 (39)
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moment of the monomer density. (Note that 〈w(r)〉 turns
out to be pure imaginary.) In a similar manner, one can
derive an expression for the two point density correla-
tion function. Explicitly, we utilize the identity

where A[w] and B[w] are arbitrary functionals (provided
the boundary terms vanish). The choice A ) exp[-1/
(2u0) ∫ dr w2] and B ) exp(n ln Q[iw]) can be used to
derive the following expression for the monomer density
pair correlation function:

The first term proportional to δ(r - r′) is a spurious
monomer self-interaction term that is normally dis-
carded.

Next we turn to consider the osmotic pressure of a
polymer solution in the field-theoretic framework. The
thermodynamic definition of the osmotic pressure is π
≡ - ∂F/∂V)n,T,15 where F is the Helmholtz free energy.
By explicitly forming this derivative in the starting
polymer solution model, it is possible to derive an
expression closely related to the “virial equation” from
liquid state theory:29

In this expression, we have restored the “ideal gas” term
n/V corresponding to the infinite dilution limit of non-
interacting polymers (u0 ) 0) and employed the notation
〈(...)〉0, denoting an ensemble average with statistical
weight exp(-U0). Upon introduction of the reduced
variables of the polymer solution model and a dimen-
sionless osmotic pressure Π ≡ âπRg0

d, we find

where now all averages on the right hand side denote
ensemble averages over W field fluctuations. The func-
tional P[iW] can be expressed as P[iW] ) L-d ∫ dr p(r,
1), where p(r, s) satisfies

The above examples for the polymer solution model
have illustrated how density correlation functions and
the osmotic pressure can be related to the W field
configurations that are directly sampled in a field-
theoretic simulation. It is straightforward to generalize
these connections to cover a broader range of physical
observables, to properties in other ensembles such as
the grand canonical and isothermal-isobaric, and to

other models of polymers and complex fluids. While we
avoid further elaboration of such formulas here, it is
convenient to present the generalization of the density
operator formula eq 37 for the case of the incompressible
AB diblock copolymer model. Specifically, we introduce
a (complex) reduced species density operator (K ) A or
B), φK(r;[W(]) ≡ FK(r;[W(])/F0, whose ensemble average
over the W( field configurations is the (real) average
volume fraction of species K:

The volume fraction operators are obtained from a
composition formula similar to eq 37. Because diblock
copolymers are not symmetric with respect to inter-
change of the two ends, however, the factorization of
the copolymer path integral introduces a second re-
stricted partition function q†(r, s;[W(]).40 In the func-
tional q, s is the contour distance measured from the
free end of the A block, while in q†, s is measured away
from the free end of the B block. [Despite the misleading
(conventional) notation, q† is a distinct functional from
q and does not represent the Hermitian conjugate of q.
Both are complex quantities.] The composition formulas
are as follows:

The auxiliary functional q† satisfies

subject to q†(r, 0) ) 1 and with

B. Saddle Points. A very important characteristic
of the models described in the above sections is the
identification of stationary field configurations that
correspond to extrema of the complex effective Hamil-
tonian H.30 For a real field theory, such a configuration
can be a local minimum, maximum, or a saddle point
in the field configuration space. However, when the field
variables are extended to the complex plane, the energy
surface is generally saddle shaped in the vicinity of an
extremum, so we shall refer to stationary field configu-
rations as saddle points.

For the polymer solution model described by eq 14,
saddle point field configurations, denoted W*(r), are
obtained from

Considering the explicit form of eq 14 and noting the
definition of the complex density operator in eq 36 leads
to the following saddle point equation:

This equation has a unique, homogeneous solution W*
) - iBC that lies on the negative imaginary axis (note
B, C > 0) in the complex W plane.

∫ D[w] A[w] δ2

δw2
B[w] )

- ∫ D[w] δ
δw

A[w] δ
δw

B[w] )

∫ D[w] B[w] δ2

δw2
A[w] (40)

〈F̂(r)F̂(r′)〉 - 〈F̂(r)〉 〈F̂(r′)〉 ) 1
u0

δ(r - r′) -

1
u0

2
[〈w(r)w(r′)〉 - 〈w(r)〉〈w(r′)〉] (41)

âπ ) n/V + 1
V

〈U1〉 - 2
3V

(〈U0〉 - 〈U0〉0) (42)

Π ) C - 1
2BLd ∫ dr 〈W2(r)〉 + 2

3
C〈P[iW]

Q[iW]〉 (43)

∂

∂s
p(r, s) ) ∇2[p(r, s) - q(r, s)] - iW(r)p(r, s),

p(r, 0) ) 0 (44)

φK(r) ) 〈φK(r;[W(])〉 (45)

φA(r;[W(]) ) 1
Q ∫0

f
ds q(r, s) q†(r, 1 - s) (46)

φB(r;[W(]) ) 1
Q ∫f

1
ds q(r, s) q†(r, 1 - s) (47)

∂

∂s
q† (r, s) ) ∇2q†(r, s) - ψ†(r, s) q†(r, s) (48)

ψ†(r, s) t {iW+(r) + W-(r), 0 < s < 1 - f
iW+(r) - W-(r), 1 - f < s < 1 (49)

δH[W]
δW(r) |W*

) 0 (50)

W*(r)/B + iCF(r;[W*])/F0 ) 0 (51)
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The significance of the saddle point W* is that it
represents a mean-field approximation to the polymer
solution model of eq 13. This connection between saddle
points and mean field theory is textbook material in
field theory and condensed matter physics,30 and it has
been known for quite some time in the polymer physics
literature.17,46 To explain the connection for the polymer
solution model, we refer to Figure 2, which depicts the
complex plane for the chemical potential field W(r) at
some fixed position r within the volume Ld. Because W
was introduced as a real field, the path of integration
in eq 13 is along the real W axis in Figure 2. We refer
to this path as the “physical path of integration.” The
saddle point, denoted by an “×”, lies on the negative
imaginary axis. Because the integrand of eq 13 is
analytic in W (note that exp(n ln Q[iw]) ) Q[iw]n, where
n is an integer), we can invoke Cauchy’s theorem to
deform the path of integration from the physical path
onto the dashed “deformed path” in Figure 2 that passes
through the saddle point. This deformation can be
accomplished by the simple shift of field to W̃(r) ) W(r)
+ iBC, which transforms the polymer solution model
into

The integral on W̃ is now along the real axis and the
saddle point lies at the origin. If we decompose H̃[W̃]
into real and imaginary parts according to H̃ ) H̃R +
iH̃I and expand about the origin to quadratic order in
W̃, it is possible to show that H̃R ) ∫ dr ∫ dr′ K(r,r′)
W̃(r)W̃(r′) + O(W̃4) and H̃I ) O(W̃3), where K(r,r′) is a
real, symmetric, positive definite kernel. This demon-
strates that, to quadratic order about the saddle point,
the deformed path of integration is a constant phase
path (i.e., H̃I is constant) and that H̃R has a local
minimum along the deformed path at the saddle point.

The purpose of the above discussion has been to argue
that, in this simple case of the polymer solution model,
it is possible to deform the path of integration so that
the saddle point configuration of the chemical potential
field lies on a constant phase (or steepest) path of the
functional integral defining the partition function.

Because C appears as a prefactor in the nontrivial terms
of eq 53, the method of steepest descent47 can thus be
used to carry out an asymptotic analysis of the partition
function for C f ∞. To leading order, it follows that

where HR denotes the real part of H, and we have
restored the previously neglected multiplicative pref-
actors through a factor of Z0, representing the partition
function of an “ideal gas” of noninteracting polymers.
It follows that the saddle point configuration of the field
recovers the familiar mean-field approximation for the
excess Helmholtz free energy F - F0 ) - ln(Z/Z0):15

Our method of deriving the mean-field approximation
also makes clear the fact that it is the leading term in
an asymptotic expansion of F - F0 for C f ∞.

We have just demonstrated in the context of the
polymer solution model an explicit connection between
the saddle point chemical potential field configuration
of the model and a corresponding mean-field approxi-
mation to the free energy. This proves to be a general
feature of statistical field theory models.17,30,46 The
polymer solution model is particularly simple in that it
possesses only a single saddle point, W* ) - iBC, which
is homogeneous and located on the imaginary axis in
the W-plane. Other models can possess multiple saddle
points, both homogeneous and inhomogeneous, and can
be located at arbitrary positions in the relevant field-
plane. For example, a simple fluid with a purely
repulsive Yukawa potential, v(r) ) (a/r) exp(-κr), a, κ
> 0, which can be described by the field theory of eq 6,
has a number of saddle points. It can be shown for this
model that all saddle points are located on the imagi-
nary axis of the w-plane and that a distinct saddle point
exists for each possible thermodynamic phase of the
system. In particular, the repulsive Yukawa model has
a homogeneous saddle point corresponding to the fluid
phase (liquid and gas are indistinguishable), with much
the same character as the saddle point of the polymer
solution model discussed above. This saddle point
represents a mean-field approximation to the thermo-
dynamic properties of the fluid phase. The repulsive
Yukawa model, however, also possesses a number of
inhomogeneous saddle points describing mean-field ap-
proximations for various crystal phases. In three dimen-
sions, saddle points with simple cubic (sc), body-centered-
cubic (bcc), and face-centered-cubic (fcc) symmetries (as
well as others) in principle all exist for the model. If we
order these saddle points according to the corresponding
real parts of H[w] (for a specific temperature, density,
and set of model parameters), i.e., HR[w1

/] < HR[w2
/] <

HR[w3
/] ..., then clearly saddle point 1 represents a

stable equilibrium crystal, while saddle points 2, 3, ...
are metastable or unstable for the prescribed conditions,
at least within the mean-field approximation.

The AB diblock copolymer model described in section
II.C is another interesting case. The model is formulated
in terms of two fields, W+ and W-, that were introduced
to decouple repulsive and attractive interactions, re-
spectively. Saddle points correspond to solutions of

Figure 2. Complex plane for the W(r) field in the polymer
solution model at a fixed value of r. The physical path of
integration in the starting model is along the real axis. By
deforming the path of integration onto the dashed path that
passes through the saddle point (denoted by “×”), and is locally
a constant phase path, it is possible to carry out a steepest-
descent evaluation of the partition function. At leading order,
such a procedure recovers mean-field theory.

Z ) exp(-H[W*]) ∫ D[W̃]exp(-H̃[W̃]) (52)

H̃[W̃] ) 1
2B ∫ dr W̃2 - iC ∫ dr W̃ - CLd ln Q[iW̃]

(53)

Z≈Z0 exp(-HR[W*]) ) Z0 exp(-LdBC2/2), C f ∞
(54)

F - F0 ≈ HR[W*] ) 1
2

LdBC 2 (55)
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which are actually a set of four equations, since H is
complex. It is possible to show that all saddle points of
the model, both homogeneous and inhomogeneous, have
W+

/ located on the imaginary axis and W-
/ purely real.

A single homogeneous saddle point existssrepresenting
a mean-field approximation for the disordered phase of
a diblock copolymer melt. As shown in Figure 3, this
disordered phase saddle point is located at the origin,
W+

/ ) W-
/ ) 0, which is a consequence of the various

shifts in free energy that we made in formulating the
model. It follows that the reference state of free energy,
F0, is the disordered phase in the mean-field ap-
proximation. The various ordered mesophases, e.g.,
lamellar, hexagonal cylindrical, and bcc spherical phases,
can be associated with distinct inhomogeneous saddle
points having the appropriate crystallographic sym-
metries. Each of these inhomogeneous saddle points
represent mean-field solutions of the model that can be
characterized as stable, metastable, or unstable, just as
in the repulsive Yukawa system.

For the diblock copolymer model as formulated, the
physical path of integration is along the real axis in both
the complex W+ and W- planes. As shown in Figure 3
for the W+ plane, the disordered phase saddle point lies
along this path at the origin. For small values of the
parameter øN, this is the thermodynamically relevant
saddle point (i.e., it is associated with the smallest value
of HR), and the path of integration can be shown to be
a constant phase path to quadratic order near the origin.
The parameter C is clearly relevant to controlling the
accuracy of the mean-field approximation, since it
multiplies all terms in the effective Hamiltonian of the
model, eq 29. Thus, we can again invoke the steepest-
descent method to argue that the excess Helmholtz free
energy is given asymptotically for large C by F - F0 ≈
HR[W+

/ , W-
/ ] ) HR[0, 0] ) 0, recovering the mean-field

approximation.17 Fluctuation corrections, important for
smaller values of C, can be investigated by systemati-
cally extending the asymptotic expansion to include
higher order terms. At larger values of øN, the disor-
dered phase saddle point becomes metastable or un-
stable, and one of the inhomogeneous saddle points in
Figure 3 dominates the functional integral defining the
partition function. In principle, it is then possible to
identify a deformed path (dashed path in Figure 3) that
passes through the relevant saddle point (e.g., LAM in
Figure 3) on a trajectory that is locally a constant phase
path. This would permit formal justification of the
mean-field approximation as being asymptotically exact
for C f ∞ and provide a steepest-descent framework
for developing finite-C fluctuation corrections to the
thermodynamic properties of the inhomogeneous mes-
ophases of the model. Unfortunately, the identification
of an appropriate deformed path of integration in the
complex W( planes for arbitrary values of the model
parameters øN and f turns out to be nontrivial. We will
return to discuss this point further when we address
sampling techniques in a later section.

It is important to emphasize that in the case of
polymer models, it is well-known that mean-field solu-
tions corresponding to inhomogeneous saddle points are
identical to those obtained using a theory known as self-
consistent field theory (SCFT).17,46-49 This theory has

been widely applied in the analysis of the excluded
volume effect, polymer brushes, block copolymer mes-
ophases, polymer blends and emulsions, and polymer-
polymer interfaces and in many other situations where
inhomogeneous polymeric phases are present. Indeed,
we will show in the next section that the saddle point
conditions, eq 56, can be directly reduced to the familiar
SCFT equations for a diblock copolymer melt.40

In summary, SCFT is an approximate mean-field
theory that can be viewed as a saddle point approxima-
tion to a field theory model of a polymer or complex
fluid. Indeed, it is useful to classify numerical algo-
rithms for implementing SCFT as algorithms for finding
saddle points. This will be the subject of the next section.

IV. Finding Saddle Points: Implementation of
SCFT

A. General Issues. When confronted with a new field
theory model of a polymer or complex fluid, an impor-
tant first step is to locate and classify the saddle points
of the theory. By comparing values of HR for a full set
of saddle points and tracking how these change with
the parameters of the model, it is possible to construct
a phase diagram in the mean-field approximation. This
amounts to an implementation of SCFT. Besides the
obvious benefit of a mean-field solution, we shall see
that a global understanding of the location of saddle
points in the complex plane and the local behavior of
the complex functional H in their vicinity is key to
implementing field-theoretic simulation (FTS/FTPS)
methods. In the case of homogeneous saddle points, such
as the saddle point of the polymer solution model,
analytical methods can generally be applied. Numerical
methods are usually required to locate inhomogeneous
saddle points.

The task of computing inhomogeneous saddle points
can be viewed as a type of nonlinear optimization

δH[W+, W-]

δW+(r) |
W

(
/

) 0,
δH[W+, W-]

δW-(r) |
W

(
/

) 0 (56)

Figure 3. Complex plane for the W+(r) field in the AB diblock
copolymer model at a fixed value of r. The physical path of
integration in the starting model is along the real axis, which
passes through the disordered phase (homogeneous) saddle
point denoted DIS. The model also possesses inhomogeneous
saddle points located along the imaginary W+ axis that have
the symmetry of the various copolymer mesophases, including
LAM (lamellar), HEX (cylindrical), BCC (spherical), and GYR
(gyroid). By deforming the path of integration onto a dashed
path that passes through an inhomogeneous saddle point (e.g.,
LAM shown), and that is locally a constant phase path, it is
possible to carry out a steepest-descent evaluation of the
partition function for an ordered mesophase. At leading order,
such a procedure recovers mean-field theory.
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problem: specifically, what are the chemical potential
field configurations in the complex plane for which the
effective Hamiltonian is stationary? Associated with
such problems are a number of important issues:

1. How does one find all the relevant saddle points of
a model?

2. How does one locate the most thermodynamically
significant saddle points, i.e., those with the smallest
values of HR?

3. How does one accomplish 1 and 2 in the most
computationally efficient manner?

In item 1 we note that an uncountable number of
inhomogeneous saddle points can often be associated
with continuous translations or rotations (“Goldstone
modes”), or with topological defects in an unbounded
periodic structure. Normally, however, there are a finite
number of saddle points that differ in energy and are
not related by simple rotations or translations and that
are defect free. These are considered to be the “relevant”
saddle points. Unfortunately, there appears to be no
definitive theoretical answer to any of the above ques-
tions. Nevertheless, the field of nonlinear optimization
is quite advanced and many practical numerical strate-
gies have been devised.50,51 The application of these
methods to field theory models of polymers and complex
fluids is in its infancy, however, so much room exists
for improvements in the strategy and numerical imple-
mentation of SCFT.

Before discussing particular techniques for finding
inhomogeneous saddle points, it is helpful to make use
of some of the general features of the field theory models
that were described in section III. For this purpose we
consider the model of an incompressible AB diblock
copolymer melt summarized by eqs 28-31. The saddle
point equations for this model are given in eq 56 and
because of the complex nature of H, represent a set of
four real equations. We first consider the two equations
associated with δH/δW+. Explicitly forming this deriva-
tive leads to

where the φK are the complex reduced monomer density
operators defined by eqs 46-47 and we have made use
of a formula similar to eq 36. It follows that the first
complex equation in 56 corresponds to the following two
real equations:

where we again employ subscripts R and I, respectively,
to denote the real (Re) and imaginary (Im) parts of a
complex quantity. Because the parameter C appears as
a prefactor in H, it drops out of the saddle point
equations. Thus, the intensive thermodynamic proper-
ties of an incompressible block copolymer melt in mean-
field theory depend on only two parameters: f and øN.
Repeating the same procedure for the second complex

equation in 56 leads to

At this point, the four coupled equations 58-61 are
simply an explicit expansion of the content of eqs 56.
While these are sufficient to solve for the four field
components (W+,R

/ , W+,I
/ , W-,R

/ , W-,I
/ ) (subject to suitable

boundary conditions), we can invoke our general un-
derstanding of the location of the saddle points to reduce
the computational effort in half. Specifically, we expect
saddle point solutions for W+

/ to be purely imaginary,
because that field is associated with the repulsive
interactions of the model, while W-

/ is associated with
the attractive interactions and should be real. By
introducing a real “pressure” field, ¥(r) ≡ iW+

/ (r) ) -
W+,I(r), it is thus clear that eqs 58 and 61 can be
discarded, leaving two equations, eqs 59 and 60, to
determine the two real fields ¥(r) and W(r) ≡ W-,R

/ (r).
These two equations are exactly those used in SCFT
studies of AB diblock copolymers.40

Overall, we see that it is possible to use general
knowledge of the location of saddle points in the complex
plane to halve the computational effort required to
compute them. There is an important and subtle point,
however, associated with this reduction in size of the
problem. The transformation iW+

/ f ¥ with ¥ real
implies that one is searching for saddle points along the
imaginary W+ axis in Figure 3. This is orthogonal to
the physical (real) path of integration in the starting
model. While HR would have a local minimum at a
saddle point along some permissible deformation of the
physical path (e.g., the dashed path in Figure 3), HR
has a local maximum when the saddle point is ap-
proached along the ¥ direction. This feature is obviously
very important to take into account when devising
computational algorithms.

B. Spectral Methods. There are two general classes
of techniques that have been applied to solving SCFT
equations and hence to the numerical computation of
inhomogeneous saddle points. The first are spectral
methods, which attempt to represent the various spa-
tially varying fields in a truncated Fourier-like basis.
Alternatively, the nonlinear equations can be tackled
in real space by suitable finite difference or finite
element discretization of a computational domain. For
the purpose of explaining the various methods, it is
convenient to continue to work in the context of the
incompressible AB diblock copolymer model.

A spectral method was first applied to the solution of
the SCFT equations for AB diblock copolymers by
Matsen and Schick in 1994.40 Since that time, the
method has been used to treat a large number of
systems including block and graft copolymers of various
architectures, copolymer blends, ABC triblock copoly-
mers, three-component polymer emulsions, and polymer-
polymer interfaces.48,52-54 Other than the application to
a wide variety of systems and extension to other

δH[W+, W-]

δW+(r)
) iC[φA(r;[W(]) + φB(r;[W(]) - 1] (57)

Re[δH[W+, W-]

δW+(r) ]
W

(
/

) - φA,I(r;[W(
/ ]) -

φB,I(r;[W(
/ ]) ) 0 (58)

Im[δH[W+, W-]

δW+(r) ]
W

(
/

) φA,R(r;[W(
/ ]) +

φB,R(r;[W(
/ ]) - 1 ) 0 (59)

Re[δH[W+, W-]

δW-(r) ]
W

(
/

) 2f - 1 - φA,R(r;[W(
/ ]) +

φB,R(r;[W(
/ ]) + (2/øN)W-,R

/ ) 0 (60)

Im[δH[W+, W-]

δW-(r) ]
W

(
/

) - φA,I(r;[W(
/ ]) + φB,I(r;[W(

/ ]) +

(2/øN)W-,I
/ ) 0 (61)
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ensembles, the method has undergone little conceptual
development in recent years. Nevertheless, it remains
one of the most powerful and versatile techniques for
the numerical computation of saddle points arising from
field theory models of polymers and complex fluids.

The essence of the Matsen-Schick method is to
expand the various spatially varying functions in the
saddle point equations in a restricted Fourier basis. For
example, in a SCFT study of incompressible diblock
melts, eqs 59 and 60 are rewritten in terms of the fields
¥ and W, and these fields expanded according to

The basis functions fj(r), j ) 1, ..., ∞ are a complete
orthogonal basis that are selected on two criteria: (i)
the functions are eigenfunctions of the Laplacian opera-
tor ∇2, and (ii) the functions have the same crystal-
lographic symmetries as the complex fluid phase whose
saddle point is being computed. Thus, for example, the
basis functions corresponding to a lamellar phase of a
block copolymer system (one-dimensional field varia-
tions) are the usual sines and cosines of trigonometric
Fourier series. In contrast, the basis functions of the
bicontinuous cubic “gyroid” phase (symmetry group
Ia3hd) for AB diblocks are considerably more compli-
cated, but are tabulated in standard crystallography
texts.55 In practice, the series in eq 62 are truncated
after a finite number of terms, Nc, which leaves 2Nc
expansion coefficients, (gj and wj for j ) 1, ..., Nc) to be
determined. The required 2Nc equations for these coef-
ficients are obtained by projecting eqs 59 and 60 onto
this truncated basis and invoking orthogonality.

The set of algebraic equations that arises from the
above procedure is highly nonlinear because of the
complicated functional relationships between the po-
tential fields W,¥ and the reduced density operators
φA,φB. These relationships are summarized by eqs 30
and 46-48. Because of the choice of basis functions,
terms such as ∇2q in the diffusion equations are local
in the spectral representation, while the terms ψq and
ψ†q† are local in real space, but are highly nonlocal in
the spectral representation. Nevertheless, the s-depen-
dence can be explicitly integrated out of the diffusion
equations once expressed in the Fourier basis. Overall,
the computational effort involved in relating the expan-
sion coefficients of the φK operators to the {gj, wj}
coefficients is comparable to the effort required to invert
a matrix of rank 2Nc that is not narrow band diagonal,
i.e., on the order of Nc

3 operations for large Nc.50 This
is the most expensive step in the calculation.

The details of converging the solution of the 2Nc
nonlinear equations are not explicitly described in the
papers of Matsen and Schick, but they apparently use
a type of quasi-Newton algorithm similar to the Broyden
method.51 Shi and Noolandi56 and Shull57 describe an
alternative Picard iteration procedure. In devising such
methods it is important again to emphasize that the
energy functional is to be maximized with respect to the
gj coefficients and minimized with respect to the wj
coefficients.

Overall, the Matsen-Schick spectral method is very
powerful. By restriction of the search for saddle points
in a restricted partition of function space with the
crystallographic symmetries of a particular mesophase,
the computational effort can be reduced (i.e., less basis

functions need be employed) relative to other methods.
Periodic boundary conditions with the appropriate sym-
metry are also naturally incorporated, so that computa-
tions of bulk system properties are devoid of finite-size
effects. Moreover, in cases of weak to intermediate
segregation (øN < 50) calculations of very high accuracy
can be performed. This is particularly important in
sorting out the mean-field phase diagrams of block
copolymers, where small differences in HR among the
various saddle points are often encountered. As an
example of such calculations, we reproduce in Figure 4
the SCFT phase diagram obtained by Matsen and Bates
by applying the spectral method to the AB diblock
copolymer model described here.58 These and related
calculations have proved extremely useful in guiding
experiments on a variety of block and graft copolymer
systems.

The Matsen-Schick method has two principal limita-
tions. The first is that it requires that the symmetry of
a mesophase be specified in advance so that a proper
set of basis functions can be utilized. In simple AB block
and graft copolymer systems, there are normally a small
number of competing structures (i.e., lamellae, cylin-
ders, spheres, and gyroid), so one simply computes
saddle points for all of them and uses the relative values
of HR to sort out relative thermodynamic stability.
However, in the case of more complicated ABC type
copolymers (or even ABCD copolymers!) the possibilities
for self-assembly are enormous. Thus, it is necessary
to use some physical intuition in limiting the selection
of relevant saddle point structures to a reasonable
number. Such a procedure, however, is bound to over-
look some interesting and potentially useful forms of
self-assembly. The second limitation of the Matsen-
Schick method is encountered under stronger segrega-
tion conditions (øN > 50) or for complex three-dimen-
sional structures, where many basis functions are
required to obtain accurate numerical results. The
computational effort evidently scales as Nc

3Niter, where
Niter is the number of iterations required to converge a
solution to the set of 2Nc nonlinear algebraic equations.
Evidently Niter ) O(Nc) with the quasi-Newton conver-
gence scheme, so the overall effort scales as Nc.4 When
Nc grows beyond about 500, supercomputer-like re-
sources are required to implement the method.

The Matsen-Schick method has been extended to
thin films59 and to the study of topological defects in

¥(r) ) ∑
j)1

∞

gj fj(r), W(r) ) ∑
j)1

∞

wj fj(r) (62) Figure 4. Mean-field phase diagram for the incompressible
AB diblock copolymer model described in eqs 28-31, computed
using the spectral method of Matsen and Schick. Regions
denoted L, G, C, S, and Scp correspond, respectively, to regions
of stability of lamellar, gyroid, cylindrical, spherical (bcc), and
spherical (close-packed) mesophases. Reprinted from ref 58.
Copyright 1996 American Chemical Society.
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copolymer mesophases,60 where basis functions satisfy-
ing particular boundary conditions are required. While
there has been very little work carried out with non-
Fourier bases, Chebyshev polynomials, wavelets, or
other strategies for representing the relevant fields,
such approaches could prove to be useful in extending
and/or improving spectral methods. Overall, we expect
to see further developments in this proven methodology
for implementing SCFT.

C. Real Space Methods. One of the earliest real
space attempts to numerically compute inhomogeneous
saddle points of field theory models of polymers was by
Helfand and Wasserman in the context of AB diblock
and ABA triblock copolymers.61 These authors ap-
proximated the Wigner-Seitz cells of the lamellar,
cylindrical, and spherical mesophases by rectangles,
circles, and spheres, respectively, so that the SCFT
equations could be reduced to one-dimensional form in
Cartesian, polar, and spherical coordinates, respectively.
The resulting equations were solved within a single
Wigner-Seitz cell by a finite difference scheme. This
strategy is computationally very advantageous, but it
introduces unnecessary approximations and again re-
quires the symmetry of the mesophase to be known in
advance. Moreover, the Helfand-Wasserman approach
would be difficult to apply to a complex, three-dimen-
sional phase such as the gyroid structure. In more
recent years, this general strategy has been extended
and applied extensively by Whitmore, Noolandi, and co-
workers,62 Shull,57 and Balazs.63 Another popular vari-
ant of the Helfand-Wasserman method, which has been
extensively applied in colloid and interfacial science, is
the lattice formulation of Scheutjens and Fleer.64

A promising alternative real space strategy for imple-
menting SCFT is the dynamic density functional theory
(DDFT) method of Fraaije and co-workers.65-67 Similar
approaches have been adopted by Hasegawa and Doi,68

Yeung and Shi,69and Reister et al.70 Another closely
related formalism is the lattice mean field theory of
Coalson and Duncan,42,71 which has primarily been
applied to charged polymer systems. While DDFT is
normally presented as a strategy for modeling structural
evolution in inhomogeneous polymers, if run to equi-
librium, the algorithm converges to saddle points of the
field-theory models described here. Thus, equilibrium
structures computed with DDFT in fact represent solu-
tions of the SCFT equations. In simplest form, say
applied to an AB diblock copolymer melt, the DDFT time
evolution equations are written as diffusion equations
for the average species-K monomer densities, FK(r, t),
(K ) A or B):66

where the DK are species diffusion coefficients. The
“intrinsic” chemical potentials µK(r, t) are linearly
related to (in our notation) Im[δH/δW+] and Re[δH/δW-]
and amount to linear combinations of the monomer
densities FK and their conjugate (real) mean-field chemi-
cal potentials WK(r, t). In our notation, ¥ ) WA + WB
and W ) WA - WB. When equilibrium is achieved in
the DDFT method, the two intrinsic chemical potentials
µK achieve r- and t-independent constant values. The
equilibrium equations µK(r,∞) ) CK, where the CK are
constants, are exactly those of SCFT.

The DDFT algorithm proceeds by discretizing the
various fields within a simulation box on a regular

lattice. Finite difference approximations are applied.
Fraaije and co-workers integrate eq 63 forward in time
with a semi-implicit Crank-Nicholson scheme.50 At
each time step, the chemical potentials WK entering µK
must be deduced by inverting the functional relationship
FK(r, t;[WA, WB]) that is manifest in eqs 46 and 47.
Specifically, guesses are made for the WK fields, the
diffusion equations for q and q† are solved numerically,
and formulas like eqs 46 and 47 are used to construct
the FK. This procedure is iterated until WK fields are
obtained that produce the FK fields at the current time
step in the dynamical evolution. Fraaije and co-workers
employ an explicit scheme for integrating the diffusion
equations for the chain propagators.

The above implementation of DDFT has been fruit-
fully applied to a large number of polymeric systems,
and a commercial version of the software is now avail-
able under the name of MesoDyn.72 An important
advantage of the DDFT method over the spectral
method previously discussed is the fact that no sym-
metry assumption about the mesophase being computed
is requiredsthe partial differential equations are solved
by simply imposing periodic boundary conditions on the
overall simulation cell. As in a conventional particle-
based computer simulation, one must be careful of
finite-size effects, but provided that the cell dimension
L exceeds the period of the mesophase structure by a
factor of approximately 10, mesophases appear in the
center of the cell quite independent of the shape or size
of the system. (While finite-size effects are reduced upon
increasing L, defects become more prevalent and more
costly to anneal out of a simulation cell.) Thus, it is
possible to use the DDFT technique to explore the phase
diagrams of complicated types of polymer solutions,
melts, or blends, e.g., ABC block copolymer alloys, where
a rich variety of possibilities for self-assembly exist and
where experimental results are lacking.

The primary disadvantage of the DDFT method is
that it is a rather inefficient method to compute saddle
points, i.e., equilibrium solutions of the SCFT equations.
This is somewhat counterbalanced by its ability to
provide some information about polymer dynamics,
although its capability in this area is rather limiteds
viscoelastic and hydrodynamic effects and chain en-
tanglements are not properly captured. There are two
sources of inefficiency in the use of DDFT for computing
equilibrium structures. The first is that the WK fields,
appearing in µK and required to determine future
evolution of the structure, are determined by iteratively
solving the diffusion equations for q, q† until the current
FK fields are produced. This is the most computationally
demanding step of the entire procedure. For a lattice
with Ng sites, a numerical solution of the q, q† diffusion
equations requires of order (see below) NgNs operations,
where Ns is the number of s contour steps used to
resolve the chain propagator over 0 < s < 1. This
procedure must be iterated Nw times to find the WK's
that reproduce target FK fields, so the overall cost of this
step in the algorithm is of order NgNsNw. For a cubic
box with 32 lattice sites on a side and assuming crude
chain resolution, Ns ≈ 50, and about 10 iterations to
find the WK’s, Nw ≈ 10, over 1 × 107 operations are
required at each time step!

The second source of inefficiency in the DDFT method
for computing equilibrium structures is that the dif-
fusive dynamics employed in eq 63 inherently limits the
rate of equilibration. While eq 63 is the simplest of the

∂FK

∂t
) DK∇‚[FK(r, t)∇µK(r, t)] (63)
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various dynamical models employed in DDFT, it implies
a local conservation of the species densities that acts to
constrain and slow the dynamical evolution.

A final note is in order regarding the DDFT method.
Practitioners often add a random (thermal) noise term
to the right-hand side of evolution equations such as
eq 63. This noise is usually taken to be Gaussian
distributed with zero mean and with a second moment
selected to satisfy a fluctuation-dissipation theorem.
Naively, one might think that such a stochastic version
of the method would extend its validity beyond the
mean-field approximation. This proves not to be the case.
As is clear from the previous sections, field theory
models of soft materials are intrinsically complex with
statistical weights that are not positive definite. Only
saddle point field configurations can be computed with
purely real methods; a complete theory requires special
sampling methods that are the subject of the next
section. Thus, a stochastic version of a purely real DDFT
cannot generate equilibrium distribution functions that
exactly capture the field fluctuations inherent in a
model like eq 28. It follows that stochastic versions of
DDFT are neither suitable for studying corrections to
mean-field theory (i.e., beyond SCFT) nor suitable for
analyzing fluctuation effects on phase transitions in
complex fluids.

Our group has recently developed alternative real
space strategies for computing saddle points that appear
to be more efficient than the DDFT method.73,74 Like
DDFT, we devise a relaxational dynamics to find equi-
librium solutions of the SCFT equations. Thus, our
methods also do not require the symmetry assumption
inherent in the spectral approach and can be used for
“computational-combinatorial screening” of complex
physical models with large parameter spaces to “pros-
pect” for new phases and types of self-assembly. Unlike
DDFT, we do not attempt to construct dynamical
trajectories that have physical significanceswe simply
view the dynamical evolution as one of many possible
nonlinear optimization strategies.

A clue for how to proceed was suggested by the work
of Maurits and Fraaije.67 They considered an alternative
dynamical evolution strategy, referred to as “external
potential dynamics” (EPD), in which the chemical
potential fields, WK(r, t), are viewed as the fundamental
dynamical variables rather than the monomer densities.
This approach has the advantage that the “intrinsic”
chemical forces driving the dynamics of the WK can be
expressed in closed form in terms of FK(r;[WA, WB]),
which requires only one pass of solving the single-chain
diffusion equations to evaluate at a current value of the
WK fields. The computational effort per time-step is thus
reduced by a factor of Nw (from the DDFT method) to
NgNs operations. This would be expected to produce an
order of magnitude reduction in run time. In presenting
our numerical strategy, we depart from the EPD scheme
as originally formulated in order to sacrifice realistic
polymer dynamics for more rapid convergence to saddle
points. This addresses the second source of inefficiency
in the DDFT method described above.

Our approach is to write nonconserved relaxational
dynamics for the relevant components of the chemical
potential fields. For example, in the case of the AB
diblock copolymer model, we use

where λ( > 0 are arbitrary relaxation rate coefficients.
Clearly, if these dynamics converge to an equilibrium
structure, the SCFT (saddle point) eqs 59 and 60 are
satisfied. The next step is to replace W+,I, W-,R with the
real fields ¥, W, noting that ¥ ) - W+,I, which inverts
the sign of eq 64 and ensures that HR is to be maximized
with respect to the “pressurelike” ¥ coordinates. After
inserting the explicit expressions for the functional
derivatives in the block copolymer model, this leads to

It is straightforward to implement the above relax-
ation scheme. As in the DDFT method, a simulation cell
is discretized using a uniform lattice. Overall periodic
boundary conditions are applied. Continuous functions
of r are sampled at the discrete lattice sites and finite
difference approximations are used to compute spatial
and temporal derivatives. For a lattice with Ng sites,
the potential fields ¥ and W can thus be viewed as Ng-
dimensional vectors; the overall configuration space is
2Ng-dimensional. Simulations are started by initializing
the ¥ and W vectors. This can be done with a random
number generator if “random” initial conditions are
desired. Such a starting point has the advantage of not
biasing the saddle point search procedure toward any
particular mesophase symmetry. Alternatively, an ini-
tial condition for the ¥, W vectors with a particular
inhomogeneous pattern can be used to “template” a
rapid convergence to a saddle point with a desired
symmetry.

Given an initial potential field configuration, the
discretized diffusion equations for q, q† are integrated
forward in the contour variable s from the uniform
initial condition to s ) 1. We have found that an
alternating direction implicit (ADI) scheme,50 which is
a higher dimensional extension of the Crank-Nicholson
method, is particularly effective. Since the diffusion
equations must be solved at every time-step (update of
the ¥, W fields), an efficient algorithm for their solution
is critical. An advantage of the ADI method, which uses
operator splitting, is that it reduces the necessary
matrix algebra to inversion of tridiagonal matrixes,
which can be performed in O(Ng) operations. Overall,
the work to solve the diffusion equations is of order NgNs
operations, as previously indicated.

Having solved the diffusion equations, the reduced
density operators can be composed via eqs 46-47, so
that the right-hand sides of eqs 66 and 67 are specified
at the starting configuration. A simple explicit, first-
order forward time scheme is then used to update the
potential field vectors ¥, W at the next time-step
according to eqs 66 and 67. The relaxation rates λ( can
be chosen independently and ideally as large as possible
to accelerate convergence, but not so large as to cause

∂

∂t
W+, I(r, t) ) - λ+ Im[δH[W+, W-]

δW+(r, t) ] (64)

∂

∂t
W-, R(r, t) ) - λ- Re[δH[W+, W-]

δW-(r, t) ] (65)

∂

∂t
¥(r, t) ) λ+[φA,R(r, t;[¥, W]) + φB,R(r, t;[¥, W]) - 1]

(66)

∂

∂t
W(r, t) ) λ-[φA,R(r, t;[¥, W]) - φB,R(r, t;[¥, W]) +

1 - 2f - 2(øN)-1W(r, t)] (67)
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instability. Finally, this process of solving the diffusion
equations for q, q† and updating the potential fields is
iterated until some convergence criterion is met (e.g.,
changes in HR below some tolerance). The effort involved
to find a saddle point is thus of order NgNsNiter, where
Niter is the number of iterations (time-steps) required
to obtain convergence. In practice, it appears that for
the present relaxation scheme, Niter is approximately
independent of the lattice resolution Ng and the chain
contour resolution Ns.

Given that saddle points can be located by such a
method, how can one address the questions of section
IV.A? In particular, can we find all relevant saddle
points with the algorithm and can we be sure that we
have located all the thermodynamically significant ones?
The short answer, based on our experience with the
algorithm and a variety of models,73,74 seems to be that
by starting from random initial conditions and by
sufficient variations of those initial conditions, all
thermodynamically relevant saddle points can be com-
puted. We have seen a few instances where (at fixed
parameter values) a particular random seed would lead
to a metastable saddle point, while most random seeds
would lead to a stable saddle point (lower value of HR).
Evidently, this indicates that the basin of attraction in
configuration space is larger for the thermodynamically

relevant saddle points. Nevertheless, with all such
nonlinear optimization algorithms, one must be very
careful about claiming to have found the optimal solu-
tion, i.e., a global as opposed to local minimum. Our
experimental counterparts, however, have much the
same problemsABC block copolymers are notorious for
their propensity to form metastable structures!

Some examples of saddle points (mean-field solutions)
computed with the above algorithm are shown in
Figures 5-7. Figure 5 shows panels of the time evolu-
tion (top to bottom), starting from random initial condi-
tions, leading to converged three-dimensional lamellar
(a), cylindrical (b), and spherical (c) phases for an
incompressible AB diblock copolymer melt. The periodic
simulation cell consisted of a lattice of 323 sites and with
side length varying from L ) 4.8 to L ) 6.4. The
computational effort per converged structure is about
10 h on a single 1.2 GHz CPU. Figure 6 shows saddle
points obtained by computational exploration of a region
of the five-dimensional parameter space (øABN, øACN,
øBCN, fA, fB) for a model of incompressible ABC mik-
toarm star-block copolymer melts75 in two-dimensions.
Finally, Figure 7 shows an isodensity surface [φC(r) )
0.5] for a saddle point computed for a model of an
incompressible linear ABC triblock copolymer melt. The
structure is tricontinuous, with “gyroidlike” struts of

Figure 5. Time evolution (top to bottom), starting from random initial conditions, leading to converged three-dimensional lamellar,
cylindrical, and spherical saddle points for an incompressible AB diblock copolymer melt. The top panels show isosurfaces of
species A volume fraction φA(r) ) f, which serve as the initial conditions in each case. The lower panels are isosurfaces defined
by φA(r) ) 0.5. The periodic simulation cell consisted of a lattice of 323 sites and Ns ) 100, øN ) 16. in all runs. Columns correspond
to: (a) lamellae, L ) 6.4, f ) 0.5; (b) cylinders, L ) 5.76, f ) 0.68; and (c) spheres, L ) 4.8, f ) 0.72.
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species C that are coated with a shell of species B.
Similar core-shell gyroid structures have been reported
in experiments by Shefelbine et al.76 Evidently this real
space strategy for computing saddle points is a powerful
tool for mapping out the phase diagrams of complex
polymer systems.

Overall, the advantages of our real space method are
much the same as those of DDFT, although the strategy
is considerably more efficient for the reasons described
above. No symmetry assumption is required, other than
overall periodic boundary conditions on the simulation
cell, but one does have to be careful about finite-size
effects. These are generally investigated by changing
the box length L, while maintaining a fixed level of
spatial resolution.

In facing a new problem, how does one decide between
the real space and spectral approaches to implementing
SCFT? As we have previously indicated, the computa-
tional effort required to carry out the spectral method
is of order Nc

3Niter operations, while the real space
algorithm just discussed requires of order NgNsNiter
operations. Obviously there are distinct prefactors in
these scaling expressions and Niter is different in the
two cases. If the competing phases are not known in
advance, we recommend an initial screening of the
parameter space using the real space SCFT algorithm.
To explain this, we note that if only overall periodic-
cell symmetry is imposed, an unrestricted Fourier
decomposition using Nc basis functions would be ex-
pected to give a comparable spatial resolution as a real
space calculation with Ng≈ Nc lattice sites. The O(NcNs)
scaling of the effort involved in the real space algorithm
per convergence step would thus seem to favor that
method over a spectral method [with an effort that is
O(Nc

3) per step] when “prospecting for new phases.” If
the symmetries of the phases are established in ad-
vance, however, a symmetry-restricted Fourier basis can
be used to significantly reduce Nc required for conver-
gence in the spectral method. In such cases (and for not

too large øN), Nc
3 , NgNs, and the Matsen-Schick

algorithm has a clear advantage over the real space
approach for computing a saddle point of known sym-
metry.

Obviously, many variations of the real space algo-
rithm are possible. Finite element methods have re-
cently been applied with uniform meshes;77 future use
of adaptive, unstructured meshes may permit the study
of much larger, three-dimensional systems than are
presently possible. Parallel computing strategies also
appear very attractive.78 The diffusion equations for q
and q† can be solved at the same time (without com-
munication) for a particular realization of the potential
fields. This “natural” parallelism is particularly impor-
tant to exploit when more than two chemical species
are involved and thus larger numbers of diffusion
equations are to be solved. Spatial decomposition to
promote parallelism is also possible and highly desirable
if a dedicated cluster is available. Another potential
route to faster algorithms is to use analytical methods
to approximate, rather than exactly compute, the single
chain partition function Q. This avoids the expense of
constructing numerical solutions to diffusion equations
such as eq 16. Bohbot-Raviv and Wang79 have recently
adopted such a strategy; undoubtedly much room exists
for developing improved approximations for the nonlocal
functionals, e.g., Q[iW], that enter the field theories.
Finally, we note that the relaxation scheme outlined in
eqs 64 and 65 is the simplest possible among nonlinear

Figure 6. Saddle points obtained by computational explora-
tion of the parameter space for a model of incompressible ABC
miktoarm star-block copolymer melts in two-dimensions.
Simulations were carried out on a 60 × 60 square lattice with
L ) 6, ∆s ) 0.005, øAB ) øBC ) øAC, and øAB(NA + NB + NC) )
30. In panels a-f the relative size of the A arms (black) is
systematically increased, while the B (red) and C (blue) arms
are maintained at equal lengths, fB ) fC. Clockwise: (a) fA )
0.20, (b) fA ) 0.22, (c) fA ) 0.38, (d) fA ) 0.46, (e) fA ) 0.54, and
(f) fA ) 0.62.

Figure 7. Isodensity surface, φC(r) ) 0.5, of a computed saddle
point for an incompressible model of a linear ABC triblock
copolymer melt. The computed structure is tricontinuous with
a “gyroidlike” network of species C that is coated with a
concentric shell of species B. Calculations were done on a 403

lattice in a cubic box with the following parameters: ∆x ) 0.16,
∆s ) 0.01, fA ) 0.41, fB ) 0.41, øABN ) 28, øACN ) 57, and
øBCN ) 22.
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optimization strategies. Undoubtedly, more sophisti-
cated schemes could be devised that would accelerate
convergence.

V. Beyond Mean-Field Theory: Sampling
Methods

In the previous section we discussed strategies for
finding stationary field configurations of the effective
Hamiltonian H for field theory models of polymers and
other complex fluids. These stationary configurations
(saddle points) are significant in that they represent a
mean-field approximation to the thermodynamic prop-
erties of a particular phase of the system. Moreover,
each inhomogeneous phase with a distinct symmetry
can be associated with a saddle point possessing that
same symmetry. In application to polymers, we are
fortunate in that mean-field theory (i.e., SCFT) proves
to be surprisingly accurate when used to describe dense
systems of high molecular weight polymers, such as
concentrated polymer solutions, molten blends, block
copolymers, and their alloys. This fortunate situation
highlights the power of field-theoretic models: by simply
computing stationary points, we can obtain useful and
accurate approximations to the thermodynamic proper-
ties of a dense, multicomponent polymer system. In
contrast, energy minimization of a particle-based model
for a dense polymer system proves far less valuable.

We can understand the accuracy of mean-field theory
for concentrated polymer phases by recalling the discus-
sion of section III.B. In both the polymer solution model
and the diblock copolymer model, we saw that a
dimensionless chain concentration, C ≡ nRg0

d/V, controls
the amplitude of field fluctuations about saddle points
and thus the accuracy of SCFT. Such a parameter is
often referred to as a “Ginzburg parameter.”30 In a
polymer melt, the concentration of chains, n/V, is
inversely proportional to the degree of polymerization
N, so C ∼ Nd/2 - 1 or C ∼ N1/2 in three dimensions. It
follows that C f ∞ for N f ∞, so SCFT becomes exact
in the limit of infinite molecular weight. Obviously, in
tackling a new polymer system with field-theoretic
methods, the computation of saddle points (implement-
ing SCFT) is a very good place to start.

Nevertheless, there are quite a number of physical
situations where mean-field theory is known to be
inaccurate. Dilute and semidilute polymer solutions are
a prime example.15,35 Polymer blends near a critical
point, block copolymers near the order-disorder transi-
tion (ODT),80 and polymeric microemulsions81-83 are
other notable cases where SCFT fails. In such instances,
we require a method for numerically sampling the field
fluctuations in a complete model, i.e., a field-theoretic
simulation (FTS) method, to accurately compute struc-
ture and thermodynamic properties.

A first step toward implementing a FTS method for
the case of microphase separated block copolymers was
introduced by Shi, Noolandi, and co-workers.56,84 These
authors formally carried out the steepest-descent as-
ymptotic expansion of the block copolymer model (de-
scribed in section III.B) to one term beyond the leading
saddle point approximation. This first correction term
(the so-called “one-loop” fluctuation correction) is nu-
merically rather involved to evaluate, in part because
it depends on having previously computed the relevant
inhomogeneous saddle point. A separate local analysis
must be done around each saddle point to gain an

understanding of the first effect of fluctuations on the
global phase diagram.

The Shi-Noolandi approach has been fruitfully ap-
plied to examine the stability of ordered phases of
diblock copolymers, to aid the interpretation of SAXS
and SANS experiments on such systems, and to help
identify kinetic pathways connecting the various or-
dered mesophases.56,84 A fundamental limitation of the
method is that it captures only the leading correction
term in the steepest-descent expansion, so is expected
to be accurate only for very large values of C. Indeed,
in the case of the order-disorder transition (ODT) for
a symmetric (f ) 1/2) diblock copolymer melt, we know
that the behavior of the model for 1/C f 0 is a singular
perturbation problem and that the steepest-descent
expansion must be resummed to infinite order80,85 to
capture the leading fluctuation-induced shift in the
transition temperature (∼C-2/3). Thus, the Shi-Nool-
andi formalism can only be safely applied in situations
where field fluctuations remain small in amplitude.
Finally, we note that a similar approach to computing
one-loop fluctuation corrections has been described by
Coalson and Duncan42 in the context of a lattice field
theory for electrolyte and polyelectrolyte solutions.

Over the past year, our group has been developing
methods for direct numerical sampling of field theory
models of soft materials in the absence of any ap-
proximations.24 Ideally, such methods should be no more
involved to implement than conventional particle-based
computer simulation techniques. Fortunately, we can
benefit from the extensive and rich literature on closely
related lattice gauge theories that have been applied
widely in nuclear, high energy, and hard condensed
matter physics.23,86

To date, we have identified two general FTS strategies
that appear to be promising for studies of soft materials,
such as polymers and other complex fluids. The first is
a complex Langevin (CL) method and the second is a
class of steepest-descent (SD) techniques. We begin by
discussing the SD method.

A. Steepest-Descent Sampling. It is convenient to
introduce the SD method in the context of the polymer
solution model, summarized by eqs 13-16. As was
discussed in section II.A, it is possible to rewrite the
partition function for such a model in the form

where all quantities in the integrand are real and the
path of integration is along the real W axis. A simple
numerical strategy for sampling such an integral would
be to discretize the spatial domain on a uniform lattice
so that the real field W(r) becomes a real Ng-dimensional
vector WNg ≡ {Wj, j ) 1, ..., Ng} and the functional
integral is replaced by a Ng-dimensional Riemann
integral ∫ dWNg ≡ Πj)1

Ng ∫ dWj. A conventional Monte
Carlo method could be used to generate a series of states
in the configuration space with a probability distribution
function proportional to the positive definite weighting
factor P(WNg) ) exp[-HR(WNg)]. Averages of observables
G(WNg) would then be computed by including an explicit
factor of the phase factor, cos(HI):31,87

The average on the left-hand side of this equation

Z ) ∫ D[W] cos(HI[W]) exp(-HR[W]) (68)

〈G(WNg)〉 )
〈G(WNg)cos[HI(W

Ng)]〉P

〈cos[HI(W
Ng)]〉P

(69)
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represents an ensemble average with the full (complex)
statistical weight ∼exp[-H(WNg)]; the averages denoted
by 〈...〉P on the right-hand side are “time averages” over
the Markov chain of configurational states sampled from
P(WNg) in a Monte Carlo simulation.

The above approach has the advantage of simplicity;
however, in practice it is not very useful. The integration
path, which in this case is the real axis for each Wj, is
not a constant phase or steepest descent (ascent) path,
so the phase factor cos[HI(WNg)] oscillates in sign from
state to state along a Monte Carlo trajectory. As a result,
it proves very difficult to accurately compute the right-
hand side of expressions such as eq 69.

One method of eliminating the strong oscillations in
the integrand is to adopt a steepest-descent (SD)
strategy, familiar in the asymptotic analysis of low
dimensional integrals.47 The approach is very similar
to that used in section III.B to argue that the saddle
point dominates the behavior of the model for C f ∞.
Specifically, we deform the path of integration as in
Figure 2 onto a new path that passes through the
relevant saddle point and is also a constant phase path
to quadratic order near the saddle point. Indeed, for the
simple homogeneous saddle point of the polymer solu-
tion model, we have already shown that this can be
accomplished with the simple constant shift in field to
W̃(r) ) W(r) + iBC, which leads to eqs 52 and 53. Here
we depart from the analysis of section III.B. Instead of
using the representation of the model on the deformed
path as a starting point for a large C expansion, we
develop a computer simulation strategy around the new
model summarized by eqs 52 and 53. It is important to
note that there is no approximation invokedsthese
equations represent an exact reformulation of the
polymer solution model.

Our simulation strategy is to adapt the sampling
method described above with a few modifications. The
field W̃(r) is replaced by a real Ng-vector W̃Ng. Required
is an efficient algorithm that can generate a series of
states in the configuration space W̃Ng with a probability
distribution function proportional to the positive definite
weighting factor P̃(W̃Ng) ) exp[-H̃R(W̃Ng)]. A simple
Monte Carlo procedure with attempts to change the
chemical potential W̃j of single sites j proves not to be
the best choice. Each evaluation of the energy function
H̃R, which is required to make an accept/reject decision
on the trial change, is expensive because of the nonlocal
character of the effective Hamiltonian and requires of
order NgNs operations. Thus, a more efficient scheme
is one that invokes multiple-site trial moves between
energy evaluations. Our preference is a method known
in the literature as “smart” or “hybrid” Monte Carlo
simulation.23,86,88,89 In such a method, at each MC step,
one updates the value of the chemical potential(s) at all
Ng lattice sites to construct a new trial configuration
(W̃Ng)′. These individual site updates are carried out by
summing (for the jth site) a systematic displacement
term proportional to the “force” - ∂H̃R/∂W̃j with a
random displacement. This is similar to a move in a
Brownian dynamics simulation. After updating all Ng
sites in this fashion (with the force computed only
once!), an overall move of W̃Ng f (W̃Ng)′ is generated.
This move is then accepted or rejected based on an
acceptance probability criterion that enforces detailed
balance and that differs in form from the usual Me-
tropolis criterion because of the force-directed nature

of the trial move. The net effect of many such MC
sweeps is a Markov chain of W̃Ng states that are sampled
from a probability distribution function proportional to
P̃(W̃Ng) ) exp[-H̃R(W̃Ng)]. These states can be used to
construct “time” averages for observables G(W̃Ng) just
as in eq 69:

An important difference from the “naive” method of eq
69, however, is that now the sampling is carried out
along a deformed path that is locally a constant phase
path near the saddle point (at the origin in this case).
Thus the sign oscillations in the weighting factor
cos[H̃I(W̃Ng)] are significantly reduced (but not com-
pletely eliminated because H̃ is generally not a simple
quadratic form in W̃Ng) and the convergence of the MC
procedure is accelerated.

We have successfully applied the above SD sampling
method to several problems, including two- and three-
dimensional homopolymer solutions90 and inhomoge-
neous solutions of strong electrolytes.91 In these appli-
cations, there is a single analytically accessible saddle
point about which to focus the SD analysis. In other
situations, where the relevant models possess a number
of competing saddle points, we have found that the SD
method is either tedious to implement or the identifica-
tion of an appropriate constant phase path is difficult
or expensive to compute. For example, the incompress-
ible diblock copolymer model of eqs 28 and 29 has
multiple saddle points, as discussed in section III.B.
Depending on the values of the relevant parameters,
(øN, f, C), either the homogeneous, disordered phase
saddle point at the origin, W(

/ ) 0, or one of the
inhomogeneous ordered phase saddle points can domi-
nate the thermodynamic behavior. A separate SD analy-
sis must be manually executed about each saddle point
to map out the overall behavior of the model. Besides
the obvious labor involved in such analysis, the constant
phase paths through the inhomogeneous saddle points
are not as straightforward to identify as in the simple
polymer solution model and must be obtained numeri-
cally. Overall, a fundamentally different type of sam-
pling method is clearly needed to conveniently simulate
field theory models with many inhomogeneous saddle
points.

B. Complex Langevin Sampling. The complex
Langevin (CL) sampling method at least partially
addresses this need. The CL method was originally
developed by Klauder92 and Parisi26 as a strategy for
sampling quantum field theories on a lattice and for
simulating more general types of lattice gauge theories
with complex actions. Such theories have the same
characteristic nonpositive definite statistical weights as
encountered in the field theory models described here.

To introduce the CL technique, we again return to
the simple polymer solution model of eqs 13-16. It is
important to emphasize that in applying the CL method,
saddle points and SD paths do not need to be determined
in advance; thus, the transformation of the model
leading to eqs 52 and 53 is unnecessary. The basic idea
behind the CL method is to stochastically sample the
relevant field, i.e., W(r), not just along the real axis, but
in the entire complex plane of W ) WR + iWI. Recall that

〈G(W̃Ng)〉 )
〈G(W̃Ng)cos[H̃I(W̃

Ng)]〉P̃

〈cos[H̃I(W̃
Ng)]〉P̃

(70)
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for some observable G[W], the expectation (average)
value can be expressed as

where we have explicitly noted that the path of integra-
tion is along the real axis, yet the statistical weight Z-1

exp(-H) is complex. In the CL method, the strategy is
to instead express such an observable as

where the complex weight Z-1exp(-H) has been re-
placed by a real, positive definite statistical weight P[WR,
WI], in return for extending the field to the complex
plane. This extension has a practical cost in that the
number of configurational degrees of freedom in a
simulation is doubled, but in our experience this is an
acceptable trade-off.

The statistical weight P[WR, WI] is the steady-state
limit (if it exists) of a more general (real) probability
distribution functional P[WR, WI, t] that gives the
probability of observing the field configuration W ) WR
+ iWI at time t. This distribution can be generated by a
stochastic “complex Langevin” dynamics defined by

The field η(r, t) is a real, Gaussian, white thermal noise
source with first and second moments given by

An important feature of the CL equations is that the
noise source appears only in the relaxational dynamics
of the real part of the field. Note also that when the
noise term is removed, the equations relax to saddle
points of the theory and, indeed, eqs 73 and 74 reduce
to the real-space saddle point algorithm described in eqs
64 and 65. Along a CL trajectory, the imaginary part of
the field deterministically attempts to relax WI to its
saddle point value (cf. eq 51) at the instantaneous value
of WR. This has the net effect of a sampling path in the
complex plane that automatically adjusts to approach
a steepest path, which in the present case is a trajectory
near the saddle point with WI ) -BC constant. This
automatic adjustment feature improves the convergence
of the method (by minimizing phase oscillations) but
also is particularly convenient because in a model with
many competing saddle points, no particular saddle
point need be isolated or analyzed.

The above coupled Langevin equations that define the
CL method can be converted to the following Fokker-
Planck equation for the probability distribution func-
tional P[WR, WI, t]:

where UR(r, t;[W]) and UI(r, t;[W]) represent the real
and imaginary parts, respectively, of the complex de-
rivative δH/δW(r, t). A general proof that eq 76 relaxes
in time to a stationary distribution P[WR, WI] that can
be used to compute averages as in eq 72 is not available.
Nevertheless, if a stationary distribution is achieved,
which can be established in a simulation by expectation
values becoming time independent, then it can be
proved that the ensemble averages computed by using
this distribution (i.e., with eq 72) are equivalent to
ensemble averages computed with the original model
(i.e., with eq 71).27,28 In practice, we have encountered
no problems with convergence or uniqueness of solutions
in CL simulations. Nevertheless, it is important to check
that averages converge to time independent values and
that these values are independent of the initial condi-
tions that were used to start the simulations.

To implement a CL simulation, a simulation cell is
constructed from a uniform lattice with Ng sites. The
complex field W(r) is thus replaced by a 2Ng-dimensional
vector W2Ng ≡ (WR

Ng, WI
Ng). Equations 73 and 74 are

discretized in both space and time and iterated forward
from an initial configuration to generate a Markov chain
of configurational states. We generally start simulations
from a random initial configuration or a saddle point,
and use a simple first-order forward time, explicit
scheme for the time integration. In the case of polymer
models, i.e., in performing a FTPS simulation, the
complex monomer density operator F(r, t;[W]) must be
evaluated at each time step by solving a complex
diffusion equation such as eq 16 and by use of formulas
such as eq 37. This is expensive, requiring of order NgNs
operations, so it is imperative that the algorithms used
to solve the diffusion equation are as efficient as
possible.

After an equilibration period, the Markov chain of
complex field configurational states can be used to
approximate the ensemble average in eq 72 by a “time
average” over the states of the chain. Specifically,

where the jth configurational state is denoted by
WR/I

Ng(j). Assuming convergence, equality of ensemble
and time averages is achieved for M f ∞.

The size of the time step, ∆t, in a CL simulation is
dictated by considerations of stability, accuracy, and
computational resources. Too large a time step can lead
to instabilities and errors in computed averages [errors
are O(∆t2) in the scheme described]; too small a time
step leads to unnecessarily long runs. The lattice
spacing ∆x and simulation box size L are chosen to affect
a compromise between accuracy and computational
effort. We have found it convenient to fix ∆x and L based
on this compromise for one or more saddle point
configurations in advance of starting a CL simulation.
For example, a choice of these parameters that resolves

〈G[W]〉 ) Z-1 ∫ D[WR] exp(-H[WR])G[WR] (71)

〈G[W]〉 ) ∫ D[WR] ∫ D[WI] P[WR, WI]G[WR + iWI]
(72)

∂

∂t
WR(r, t) ) - Re[ δH[W]

δW(r, t)] + η(r, t)

) - WR(r, t)/B + CFI(r, t;[W])/F0 + η(r, t)
(73)

∂

∂t
WI(r, t) ) - Im[ δH[W]

δW(r, t)]
) - WI(r, t)/B - CFR(r,t;[W])/F0 (74)

〈η(r, t)〉 ) 0, 〈η(r, t)η(r′, t′)〉 ) 2δ(r - r′)δ(t - t′)
(75)

∂

∂t
P[WR, WI, t] ) ∫ dr ∫ dr′ δ2P

δWR(r, t)δWR(r′, t)
+

∫ dr δ
δWR(r, t)

{UR(r, t;[W])P} +

∫ dr δ
δWI(r, t)

{UI(r, t;[W])P} (76)

〈G[W]〉 ≈ 1

M
∑
j)1

M

G[WR
Ng(j) + iWI

Ng(j)] (77)
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|H| to three or four significant figures at the saddle point
configuration of a lamellar block copolymer phase would
be a good starting point for CL simulations to study
fluctuations of that lamellar phase.

As an example of an application of the CL sampling
method to carry out a FTPS simulation, we consider the
model of an incompressible AB diblock copolymer melt
introduced in section II.C. In this model, there are two
independent chemical potential fields, W((r), which
must each be extended to the complex plane. Thus, the
CL equations are a set of four coupled Langevin equa-
tions for the real fields W+,R, W+,I, W-,R, and W-,I. The
first two equations, for example, are

We have implemented a CL simulation of this model in
two dimensions on a 64 × 64 square lattice with L )
8(V ) L2 ) 64, ∆x ) 0.125) and periodic boundary
conditions. The diffusion equations for the (complex) q
and q† are solved with an ADI scheme and a contour
step of ∆s ) 0.025. With these choices, |H| is computed
to three significant figure accuracy at the relevant
lamellar and hexagonal saddle points of the model.
Figure 8a shows the real part of the monomer A volume
fraction field φA,R at a computed hexagonal saddle point
for parameters øN ) 15.2 and f ) 0.3. Figure 8b shows
the instantaneous A species volume fraction after run-
ning a CL simulation for 120 000 time steps (∆t ) 0.1)
and for a small value of the Ginzburg parameter C ) 5.
Evidently, thermal fluctuations have “melted” the hex-
agonal phase in this case. At a larger value of C ) 100,
we see in Figure 8c (another snapshot after 120 000 CL
time steps) that the hexagonal mesophase is again
present but is distorted slightly by fluctuations in
comparison with the saddle point configuration of
Figure 8a. As expected, the fluctuations increase in
intensity as C is reduced.

FTPS simulations similar to the above have been used
to explore quantitatively the effect of fluctuations on
shifting the order-disorder transition (ODT) in two-
dimensional, symmetric (f ) 0.5) diblock copolymer
melts.24 Figure 9 shows the shift in the ODT from the
mean-field (SCFT) value of (øN)t (C ) ∞) ) 10.495 as a
function of the Ginzburg parameter C. The ODT was
identified in the simulations at each value of C by the
visual observation of melting of the lamellar phase upon
increasing øN. A best fit line through the data for C g
128 yields a slope of -0.68 for the asymptotic, large C
shift in the ODT. This is remarkably close to the
analytical prediction of ∆(øN) ∼ C-2/3 obtained from a
self-consistent Hartree analysis of fluctuation effects in
diblock copolymers.80,85 It is important to emphasize
that such results would be very difficult to obtain by
means of a conventional particle-based simulation of a
highly incompressible block copolymer melt.

A few comments should be made about such lattice
simulations that go beyond mean-field theory. First, the

underlying lattice structure clearly breaks the continu-
ous translational and rotational symmetries under
which the energy functional is invariant (Goldstone
modes). Thus fluctuations involving such modes will not
be properly treated unless special care is taken to
minimize pinning and other deleterious effects of the
computational lattice. Another role the lattice plays is
to provide a short-range (“ultraviolet”) cutoff which
regularizes the field theory. This cutoff, which can have
sizable but generally uninteresting effects on the loca-
tions of phase boundaries and various thermodynamic

∂

∂t
W+,R(r, t) ) - Re[δH[W+, W-]

δW+(r, t) ] + η(r, t) )

C[φA,I(r, t;[W+, W-]) + φB,I(r, t;[W+, W-])] +
η(r, t) (78)

∂

∂t
W+, I(r, t) ) - Im[δH[W+, W-]

δW+(r, t) ] )

- C[φA,R(r, t;[W+, W-]) + φB,R(r, t;[W+, W-]) - 1]
(79)

Figure 8. (a) Saddle point configuration of the species A
monomer volume fraction field for a two-dimensional incom-
pressible AB diblock copolymer melt with øN ) 15.2 and f )
0.3. (b) Instantaneous configuration of the species A volume
fraction field after 120 000 time steps of a complex Langevin
simulation with C ) 5. (c) Instantaneous configuration of the
species A volume fraction field after 120 000 time steps of a
complex Langevin simulation with C ) 100.
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quantities, is generally dealt with differently in analyti-
cal calculations of fluctuation phenomena. Thus, it is
important to isolate such cutoff-dependent effects when
comparing FTS data with analytical theories or experi-
ment. In the above CL simulations of diblock copoly-
mers, the magnitude of the fluctuation-induced shift of
the ODT is sensitive to the lattice cutoff, but not the
dependence of the shift on C.

As a second example of FTPS simulations with CL
sampling, we have recently started to study a model of
a ternary melt blend of A homopolymer, B homopoly-
mer, and symmetric AB diblock copolymer. The primary
focus is on blends of equal molecular weight A and B
homopolymers (degree of polymerization NH) mixed in
equal proportions with varying amounts of symmetric
(f ) 1/2) AB diblock copolymers (degree of polymerization
N). In this restricted composition space (the so-called
isopleth plane), and assuming overall melt incompress-
ibility, the intensive thermodynamic properties are
functions of four parameters: øN, C (defined here as
the total number density of polymers made dimension-
less by the unperturbed radius of gyration of a diblock
copolymer), the molecular weight ratio R ≡ NH/N, and
the average total (A + B) volume fraction of homopoly-
mer φH.

This ternary blend model has been studied to date
only in the mean-field (SCFT) approximation, which
again corresponds to the C f ∞ limit of the field
theory.81,93,94 The model is particularly interesting in
that application of SCFT indicates the existence of an
isotropic Lifshitz point in the isopleth plane, (øN,φH),
for R < 1. A Lifshitz point is a multicritical point
delimiting mesophase separation behavior (in this case
lamellar ordering) from macrophase separation behavior
(in this case demixing into two phases, each rich in one
of the two homopolymers). For the particular case of R
) 0.5, SCFT locates the Lifshitz point at (øN)L ) 6 and
(φH)L ) 2/3. A lamellar phase is predicted by mean-field
theory to be formed when cooling such a blend with φH
< 2/3 from the high-temperature disordered phase; a
two-phase coexistence of homogeneous liquid phases is
expected upon cooling blends with φH > 2/3. Indeed,
Figure 10a shows the saddle point configuration of the

total A monomer volume fraction field arising from a
two-dimensional real space calculation on a 64 × 64
lattice with L ) 48, øN ) 9.5, and φH ) 0.45. The
configuration is clearly lamellar. Figure 10c shows the
corresponding saddle point configuration for the same
parameters, except that φH was increased to 0.8. This

Figure 9. Fluctuation-induced shift in the order-disorder
transition temperature (relative to the mean-field value of øN
) 10.495) as a function of the Ginzburg parameter C for a two-
dimensional, incompressible diblock copolymer melt. The best
fit line for C g 128 yields a slope of -0.68.

Figure 10. Real part of the total A monomer volume fraction
field for a symmetric, ternary blend of A homopolymer, B
homopolymer, and symmetric AB diblock copolymer. The
homopolymers are mixed in equal proportions and have equal
degrees of polymerization, N/2, half of the diblock copolymer
degree of polymerization N. Relevant parameters are øN )
9.5, L ) 48, and ∆x ) 0.75. Panels a and c denote saddle point
configurations with total homopolymer volume fractions of φH
) 0.45 and φH ) 0.8, respectively. Panel b shows an instan-
taneous configuration after a 200 000 time step FTPS simula-
tion (with CL sampling and C ) 100) of a blend with an
intermediate composition, φH ) 0.65, very close to the Lifshitz
composition, (φH)L ) 2/3.
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configuration reflects a macroscopic phase separation
in the simulation box (the two interfaces are forced by
the periodic boundary conditions).

Experimental observations on such blends near a
Lifshitz point suggest that thermal fluctuation effects
are extremely strong and may even destroy the Lifshitz
point, replacing it with a region of bicontinuous poly-
meric microemulsion.82,83 Thus, the above blend model
in the vicinity of the mean-field Lifshitz point is an
excellent candidate for study by FTPS methods. Early
results are very promising: Figure 10b shows a snap-
shot of the A monomer volume fraction field after
200 000 time steps of a two-dimensional FTPS simula-
tion with CL sampling (C ) 100), carried out very near
the Lifshitz composition (φH ) 0.65). Thermal fluctua-
tions have clearly created a highly structured, disor-
dered microemulsion-like morphology. We plan to report
more extensive results from FTPS simulations of this
ternary blend model soon.95

VI. Discussion and Conclusions

In the present review, we have described a suite of
field-theoretic computer simulation (FTS) tools for
analyzing the equilibrium structure and thermodynam-
ics of both simple and complex fluids. These methods
are very versatile in that they allow models to be
formulated at atomistic, mesoscopic, or macroscopic
scales. Moreover, we have seen how field theory models
suitable for study by FTS techniques can be derived
from conventional particle-based models of fluids. Thus,
it is possible to connect the potential parameters used
in traditional MD or MC simulations to the parameters
in field theory models amenable to study by the methods
described here. Another attractive feature of building
a computer simulation strategy around field theory
models is that these are the same models commonly
used in analytical studies aimed at extracting “univer-
sal” features of the structure and thermodynamics of
polymers and complex fluids.15 The FTS methods thus
enable numerical studies of field theory models in
parameter ranges or situations where approximate
analytical tools are inadequate or fail. Finally, experi-
mental studies of complex fluids are often interpreted
in the context of parameters (e.g., Flory ø parameters)
and predictions derived from field theory models. As a
result, it is often more straightforward to connect
experimental data to results from a FTS simulation
than to numerical data from particle-based MD or MC
simulations.

It is still too early in the development of FTS methods
to make definitive statements about the conditions
under which a FTS simulation strategy is favored over
a conventional simulation approach. Nevertheless, our
experience to date suggests the following:

•Atomic and small-molecule fluids are generally best
studied by particle-based simulation methods. For typi-
cal interparticle potentials with harsh repulsions at
small separations, a rich liquid structure is set up on
atomic scales that is manifest, e.g., in the radial
distribution function. While such atomic-scale liquid
structure can be captured in FTS simulations, it re-
quires a very high lattice resolution. Thus, one expects
that more degrees of freedom would be required for a
FTS study of a small molecule fluid than the degrees of
freedom required to carry out a particle-based simula-
tion, i.e., Ng > 3n. Possible exceptions (see below) are
cases of fluids with soft, long-range interactions.

•Concentrated polymer systems, especially multiphase
blends and copolymer melts appear to be best studied
by FTS methods, at least if atomic-scale structure is not
of interest or relevant to mesoscopic/macroscopic self-
assembly behavior. We have seen in the polymer models
studied here that the dimensionless chain concentration
C controls the strength of fluctuation effects and thus
the extent of departure from mean-field thermodynamic
behavior. Since C is typically very large in concentrated
solutions or melts, it is often sufficient to locate the
saddle point configurations of an appropriate field
theory model by invoking one of the SCFT algorithms
described in this review. (It should again be emphasized
that energy minimization of a particle-based model is
far less useful than a saddle point computation of a
corresponding field theory model.) For smaller values
of C, one of the FTS sampling methods can be invoked
to assess fluctuation corrections to the mean-field
thermodynamics.

•Dilute polymer solutions are probably best studied
by conventional particle-based computer simulation
methods. Chemical potential field fluctuations are strong
in such systems, so large deviations from the saddle
point field configurations and thus mean-field behavior
are expected.

•Systems with soft, long-ranged interactions such as
electrolyte solutions, polyelectrolytes, block co-polyelec-
trolytes, etc. may prove to be easier to study using FTS
techniques. A long-range Coulomb interaction, v(|r -
r′|) ∼ |r - r′|-1, is transformed into a short-range
interaction, v-1(|r - r′|) ∼ ∇2δ(r - r′), by the Hubbard-
Stratonovich transformation leading to eq 6. (Note that
in this case the field w(r) can be interpreted as a
fluctuating electrostatic potential.) Thus, in FTS simu-
lations of such systems, the cumbersome and compu-
tationally expensive techniques (such as Ewald sums)
that have been developed to treat long-range interac-
tions in particle-based simulations can be avoided. Work
along these general lines is already in progress.42,71

•The determination of potentials of mean force between
colloidal particles might also be conveniently addressed
by FTS techniques. Colloidal suspensions with surface
charges, grafted polymers, free polymers, counterions,
and salts can in principle be investigated by the
methods described here. Saddle point computations
would provide mean-field approximations to interpar-
ticle potentials; FTS simulations could provide insights
into “Casmir-like” interparticle forces caused by fluctua-
tions in the relevant chemical and electrostatic potential
fields.

•The dynamical and rheological properties of complex
fluids are currently best addressed with particle-based
simulation methods. Although some progress has been
made in the context of DDFT to build time-dependent
versions of mean-field theory to address the dynamics
of multiphase polymers,66,67 current formulations either
neglect or oversimplify key ingredients of a fundamen-
tally based kinetic theory of polymers, such as chain
entanglements and hydrodynamic interactions. The
latter, for example, are essential to properly capture
drop breakup and coalescence phenomena in polymer
blends. Moreover, as previously discussed, a theoretical
framework is not yet available for relaxing the mean-
field approximation inherent in DDFT. DPD simulations
and competitive particle-based methods96 appear to be
the best options at present for studying the nonequi-
librium behavior of multiphase complex fluids with
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mesoscopic resolution.
A number of simulation projects in the above areas

are currently under investigation in our research group
and in several other computational laboratories. We
hope to have a better understanding of the performance
of FTS methods in such applications soon. It is also to
be expected that improvements in algorithms and
strategies for implementation of FTS, coupled undoubt-
edly with advances in computer hardware, will permit
the investigation of larger, more challenging complex
fluid systems. Parallel computing strategies and the
introduction of advanced adaptive meshing techniques
for finite element implementations of FTS appear to be
especially important to pursue.
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