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Abstract

This paper describes a mechanism for protecting against malicious mobile code. As mobile code is linked
with a hosting application and executed in the same process, a fine-grained protection domain providing an
intra-process protection is required to prevent a malicious mobile code from unauthorized access. This paper
introduces a multi-protection page table: a mechanism of virtual memory that enables fine-grained protection
domains to be supported at the kernel level. A fine-grained protection domain (1) confines the memory accesses
by mobile code in authorized areas, (2) restricts the system calls issued by mobile code, and (3) enables efficient
cross-domain calls among mobile codes and a hosting application. Efficiency of cross-domain calls encourages
the use of fine-grained protection domains. This paper demonstrates that a multi-protection page table can be
implemented efficiently on the most widely used architecture; that is, Intel x86 family. The presented implemen-
tation achieves reasonable performance for practical use; one round-trip cross-domain call requires 226 to 608
cycles. Experimental results show that the protection overhead is only 6.1% to 15.8% in a real application.

1 Introduction

Code mobility is indispensable to Internet computing. Code mobility provides extensive flexibility for distributed
computing because any fragment of program code can be added dynamically both to clients and to servers in
order to enhance their functionalities on demand. More specifically, we definemobile code as a code fragment
that is downloaded from Internet, is linked with a hosting application, and runs as a part of the application. Once a
mobile code is linked with a hosting application, it runs in the same process as the hosting application runs in. For
example, a web browser such as Netscape Navigator allows the user to download a mobile code called a plug-in
to enhance the ability of browsing multimedia contents. Code mobility is now gaining widespread acceptance;
servlets, applets, and ActiveX are all examples of mobile code.

Mobile code raises critical security concerns. It provides not only a flexible and powerful platform for Internet
computing, but also a convenient carrier of computer virus. Anyone can develop a mobile code and make it avail-
able to everyone through Internet. The developer of mobile code is often anonymous; a code may be developed
by an adversary. Even if the developer is known and trustful, mobile code may be buggy and damage the local
computing systems.

Protecting against malicious mobile code is challenging because it exposes critical design flaws in operating
systems. Traditionally, operating systems provide only inter-process protection; that is, a process coincides with
a protection domain. This coincidence incurs two critical design flaws, resulting in inadequate security support
for mobile code systems. First, no intra-process memory protection is supported. Since a mobile code can access
any location of a hosting application’s memory, it can steal sensitive information such as passwords stored in the
application’s memory. Second, all execution entities in the same process are given the same authority to issue
system calls. Since even a mobile code is given the same authority as a hosting application, it can access user’s
files, perform network communications, etc.

This paper introduces a new abstraction calledfine-grained protection domain to reduce security risks caused
by mobile code. Fine-grained protection domains can co-exist within a traditional protection domain (i.e, a pro-
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cess), and confines all accesses by mobile code in a fine-grained protection domain. By using fine-grained pro-
tection domains, the memory access by mobile code is restricted to a certain memory area, and each mobile code
is given different authorities to issue system calls. The notion of fine-grained protection domain solves the design
flaws in traditional operating systems, and is expected to facilitate the development of various security mechanisms
for mobile code.

The notion of fine-grained protection domain is simple but the implementation is not straightforward if the
overhead of protection is considered. Since a mobile code is a part of a hosting application, it shares computing
resources extensively with the hosting application and frequently invokes APIs provided by the application. For
example, Java applet (an example of mobile code) invokes such APIs 30,000 times per second [15]. The goal of
the implementation is to provide intra-process protection, while achieving efficient cross-domain calls between
fine-grained protection domains.

To implement fine-grained protection domains efficiently, the authors’ previous paper [12] described a novel
mechanism calledmulti-protection page table. A multi-protection page table extends a conventional page table
so that the intra-process protection can be implemented without degrading the performance of cross-domain calls
between fine-grained protection domains. For efficiency reasons, we exploited processor-specific features to im-
plement multi-protection page tables. The implementation described in the previous paper exploited the features
specific to SPARC processors such as register windows, tagged TLBs, and physical address caching. It was an
open problem whether a multi-protection page table can be implemented efficiently on Intel x86 processors be-
cause Intel x86 lacks such features. Since over 90% of desktop computers are equipped with Intel x86 processors,
it has a great impact on the practicality of multi-protection page tables.

This paper demonstrates that a multi-protection page table can be implemented efficiently on Intel x86 family.
This implies that almost all computers, i.e., over 90% of desktop computers, can employ a multi-protection page
table as the protection basis. Thus, the implementation on Intel x86 family provides a good testbed to investigate
the usefulness of multi-protection page tables. In addition, if it has been proven to be useful in practical, the im-
plementation can be directly ported to almost all computers. To implement multi-protection page tables, we have
newly devised a method that utilizes the segmentation and ring protection mechanism of Intel x86. Since SPARC
processor lacks segmentation and ring protection and Intel x86 lacks register windows and tagged TLBs exploited
in the SPARC implementation, the Intel x86 implementation is quite different from the SPARC implementation
and it was a real effort to reach the Intel x86 implementation.

Experimental results show that the Intel x86 implementation is efficient enough to be used in real applications.
One cross-domain call between fine-grained protection domains requires only 226 cycles or 608 cycles, depending
on the configuration. In most cases, a cross-domain call requires the less cycles, i.e., 226 cycles. To investigate
the protection overhead in a real application, we configured an Apache web server to use fine-grained protection
domains. An Apache web server allows external modules to be linked with, and by default it contains 30 external
modules. These modules can be thought of as mobile code because they can be downloaded from Internet, be
linked with the server, and run as a apart of the server. In the experimental configuration, all 30 modules are put
in different fine-grained protection domains. In the experiments, the throughput of the web server degrades only
6.1% to 15.8%. The latency of one HTTP request is increased by only 0.11ms to 0.25ms, which is negligible
compared with network latency.

The rest of the paper is organized as follows. Section 2 describes the protection model of fine-grained pro-
tection domains. Section 3 describes the implementation of fine-grained protection domains on Intel x86 family.
Section 4 reports the experimental results. Section 5 describes related work. Section 6 concludes the paper.

2 Protection Model

2.1 Fine-grained Protection Domain

In conventional operating systems, a process coincide with a protection domain. If a mobile code is placed in the
same process as a hosting application, no protection is provided between the application and the mobile code. If
a mobile code is placed in a process other than a hosting application, all interactions between the mobile code
and the hosting application require interprocess communications. Since a mobile code frequently invokes APIs
provided by a hosting application, the overhead incurred by interprocess communication is unacceptably high.
For example, Java applet invokes 30,000 times per second the APIs provided by a hosting application. In a
conventional operating system like Linux, if interprocess communications are performed at such high frequency,
30% of computation time is spent in interprocess communications [11].

2



0

1

2

3

4

0

9

6

RX

RX

RX

RW RW

Virtual
Page #

Physical
Page #

Protection
Mode 1

Protection
Mode 2

Protection
Mode 3

 Process Boundary 

Multi-protection Page Table

Model of
Protection Domain

Implementation of
Protection Domain

Current Effective
Protection Mode2

Fine-grained
Protection
Domain 1

Fine-grained
Protection
Domain 2

Fine-grained
Protection
Domain 3

sharing the same
address space

R: Readable
W: Writable
X: Executable
-: Unaccesible

policy
module mobile

code mobile
code

- -

-

-

--

-

Figure 1: Protection Model. A process consists of multiple fine-grained protection domains, each of which has its
own memory protection. A policy module determines a protection policy of the process in which it resides.

To address this issue, this paper introduces the notion of fine-grained protection domains. For brevity, we
may simply refer to a fine-grained protection domain as a protection domain. In the protection model based on
fine-grained protection domains, a process holds more than one protection domain within itself (Figure 1). For
each process, there is exactly onepolicy module that determines a protection policy of the process, and the kernel
obeys the policy supplied by the module. Each fine-grained protection domain has different authorities to access
memory and issue system calls. As shown in the figure, the policy module is placed in one of the fine-grained
protection domains and is protected from mobile codes.

Note that all fine-grained protection domains in the same process share a single address space. The shar-
ing of an address space facilitates pointer-passing amongst fine-grained protection domains because no pointer
conversions are required.

2.2 Multi-Protection Page Table

When loading a mobile code, the policy module creates a new fine-grained protection domain and sets up a
protection policy for the mobile code. The policy module determines which memory page is readable, writable,
and executable by the mobile code.

A multi-protection page table extends a traditional page table so that different protections can be assigned to
each fine-grained protection domain (see Figure 1). Each row of a multi-protection page table consists of more
than one protection mode in addition to the mapping of the virtual and a physical memory page. Each column
of protection mode corresponds to one fine-grained protection domain. Namely, each fine-grained protection
domain has its own column of protection mode. For example, the data segment of a policy module is set to be
unaccessible by mobile codes, whereas the data segments of mobile codes are set to be readable and writable by
the policy module.

For efficient data sharing, fine-grained protection domains can share memory pages with one another. In Figure
1, the policy module and one mobile code share the virtual page #3. Since all fine-grained protection domains
in the same process share a single process, complex data structures including pointers (virtual addresses) can be
shared without converting pointers.
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2.3 Cross-Domain Calls

The protection model based on fine-grained protection domains can provide efficient cross-domain calls. The
notable feature of fine-grained protection domains is that all computing resources are shared between protec-
tion domains, while the authorities to access those resources are different from protection domain to protection
domain. Therefore a cross-domain call does not need to switch computing resources; it has only to switch the
authorities to access resources. This feature of cross-domain calls contrasts with conventional interprocess com-
munications. An interprocess communication involves the overhead of switching computing resources such as
scheduling, switching page tables, flushing TLB, and statistical housekeeping. A cross-domain call does not
require those time-consuming operations; thus a cross-domain call is expected to be much more efficient than
conventional interprocess communications.

2.4 Restricting System Calls

After setting up the memory protection policy, the policy module determines which system calls the mobile code
can issue. The policy module plays the role of reference monitor. When a mobile code issues a system call, it is
hooked by the policy module. Then the policy module checks if the mobile code has a permission to issue that
system call. If it has, the policy module directs the kernel to execute the system call. Otherwise, the mobile code
is determined to have attempted an illegal access, and the hosting application is notified. Since the policy module
is an ordinary user program, the designer of security policy can implement any policy as needed.

2.5 An Example

As a concrete example, consider the case where a web browser attempts to load a plug-in from Internet. In this
case, the web-browser plays the role of a policy module and determines protection policies. When loading a plug-
in, the browser creates a new fine-grained protection domain and sets up the memory protection of the plug-in.
In most cases the memory protection is set so that the plug-in can execute its own code, and read and write its
own data and stack segments, while the memory area of the browser is set to be unaccessible by the plug-in. Then
the plug-in starts executing and performs cross-fine-grained protection domain calls to invoke the browsers APIs.
When the plug-in issues a system call, it is hooked and checked by the web-browser.

3 Implementation

3.1 Segmentation-Based Implementation

Our previous paper[12] has already shown the implementation technique of multi-protection page tables on
SPARC processors. This technique fully exploits SPARC-specific features such as tagged TLBs and register
windows. Unfortunately, since Intel x86 lacks such features, the technique can not be applied to the Intel x86
family. Intel x86 is used on over 90% of desktop computers. It is significant for practical reasons to develop an
implementation technique on Intel x86 family.

3.1.1 Segmentation Mechanism

The segmentation mechanism of Intel x86 provides a programmer with thesegmented memory model. With this
memory model, memory consists of independent address spaces calledsegments. To address a byte in memory,
a program issues alogical address consisting of a 16-bitsegment selector and a 32-bitoffset. A segment selector
identifies the segment and an offset specifies a byte in the address space of the segment. A segment selector must
be stored in asegment register of the processor and a program issues a 32-bit offset alone as avirtual address.
The relationship between logical address, segment, and virtual address is shown in Figure 2. Loading a segment
selector into a segment register can be done in user mode.

Segments are protected from each other, as each segment corresponds to a single address space. An access
beyond the segment limit or without legal permission, is detected by the processor and causes a trap to the kernel.
Access permissions of each segment can be changed only in kernel mode.

Internally, all the segments are mapped into the processor’s 4GB flat address space calledlinear address space.
as shown in Figure 2. The processor translates a logical address into a linear address. This translation is transparent
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Figure 2: Segmentation mechanism

to application programs. That is, a linear address is different from a virtual address and invisible to application
programs. Then the processor translates a linear address into a physical address bypaging in the same way as
ordinary processors.

3.1.2 Segmentation Based Implementation

With our abstraction of the multi-protection page table, a fine-grained protection domain has two primary features.
One is that all protection domains share the same address space, and the other is that each protection domain holds
its own page-protection mode. We have implemented a multi-protection page table using segmentation mechanism
in the following three steps (see Figure 3).

First, a segment is assigned to each fine-grained protection domain for protection purpose. The segment
prevents a mobile code from accessing other protection domains, as segments are protected from each other.
However, it is not safe enough because amalicious mobile code may violate a hosting application’s protection
domain by loading the segment selector associated with the application. To prevent this, all segments are disabled
by the kernel except for the one associated with the currently effective protection domain. Thereby it becomes
impossible even for a malicious mobile code to access other domains because a user program can not enable any
segments.

Second, we arrange each segment in the processor’s linear address space so that the segments do not overlap
each other. In Figure 3, three segments are arranged without overlapped in the linear address space. Thereby,
each fine-grained protection domain holds its own entries of the page table because there is one entry of the page
table for each linear page. Hence the page-protection mode can be determined independent of other protection
domains. If segments were mapped into the same region in the linear address space, they would have to share the
same page-protection mode.

Third, the mapping from a virtual address to a physical address is set up so that the mapping becomes identical
among all the fine-grained protection domains. In this mapping, all protection domains share the same address
space, while a protection mode of each page may be different.

A cross-domain call is implemented efficiently using a software trap. We prepared a dedicated software trap
to handle cross-domain calls. This software trap switches effective protection domains. When a thread issues the
software trap, the kernel disables the caller’s segment and enables the callee’s segment. Then the kernel loads
into the segment registers selectors corresponding to the callee’s segments . Finally, the kernel sets up the callee’s
stack pointer and transfers control to the entry point of the callee. This is all to be done: the kernel need not
schedule, flush TLBs, and switch resources because all protection domains share the computing resources of the
same process.
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Figure 3: Implementation of a multi-protection page table

The entry point of each protection domain is registered in the kernel. The return address is stored on the stack
of the caller to deal with recursive cross-domain calls. The stack pointer of the calling thread is registered in the
kernel and saved/restored at the time of cross-domain calls. The arguments of cross-domain calls are placed on
registers. If the number of arguments is larger than that of registers, extra arguments are placed on memory page
shared by the caller’s and the callee’s protection domain.

Intel x86 supports 8192 segments for one process and one protection domain requires at least two segments
(for code and data). Therefore, the maximum number of mobile codes is 4096, which will be sufficient for
practical use. However, the approach shown in this section may require the linear address space as large as the
sum of the sizes of all segments because each segment is arranged on different areas in the linear address space.
Consequently, an application may exhaust the 4GB(232) linear address space. To reduce the size of segments, the
hosting application’s memory pages unaccessible from a mobile code are dropped from the segment corresponding
to the mobile code. In addition, shared memory areas are allocated at the address as low as possible. If shared
memory areas are allocated at a higher address, a segment must be expanded to include those shared memory
areas.

3.2 Optimizing Cross-domain Calls between Application and Mobile Codes

A cross-domain call between a hosting application and a mobile code can be optimized by exploiting the ring
protection of Intel x86. This optimization is effective because cross-domain calls between a hosting application
and mobile codes will be performed more frequently than between mobile codes. We refer to the mechanism
described in Section 3.1.2 assegment switch, and to the mechanism described in this section asring switch.
As shown in Figure 4,ring switch implements the cross-domain calls between a hosting application and mobiles
codes, andsegment switch implements the calls between mobile codes.
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3.2.1 Ring Protection

The segment-protection mechanism of Intel x86 recognizes 4 privilege levels, numbered from 0 to 3. The privilege
level 0 is the most privileged and the privilege level 3 is the least privileged. Normally, a kernel resides in the
segment with privilege level 0, and a user program resides in the segment with privilege level 3. Figure 5 shows
how these levels of privilege can be interpreted as rings of protection.

To call a procedure operating at higher privilege segments, a program must do it by means of agate. A gate
is tightly controlled and protected interface to communicate safely with procedures in higher privilege segments.
An attempt to access higher privilege segments without going through a gate or without having appropriate access
rights raises a protection fault.

3.2.2 Optimization by Ring Protection

We have optimized cross-domain calls between a hosting application and mobile codes using the ring protection.
The point of this optimization is that the application have more privileges than mobile codes. As described in
Section 2.5, a hosting application usually plays the role of policy module. Thus mobile codes do not necessarily
have to be protected from the hosting application.

Taking this point into consideration, the privilege level of a hosting application is raised from 3 to 2, while the
mobile codes remain at the privilege level 3. Then, the ring protection mechanism prevents a malicious mobile
code from accessing unauthorized data of the application, because the privilege levels of mobile codes are lower
than that of the application. Mobile codes can not access to the application’s segment even if the application’s
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segment is not disabled. Therefore, it is unnecessary to disable and enable segments when cross-domain calls are
performed between a hosting application and mobile codes. As a result, we can avoid the cost of entering the
kernel; a cross-domain call is performed by two instructions: the instructions for inter-segment call/return by way
of the gate.

We must ensure that there is no security hole when the privilege level of a hosting application is raised from
3 to 2. First, the privileged instructions are not problem because they can be executed only in the privilege level
0. Second, a program in a privilege level higher than or equal toIOPL (I/O privilege level) can make an I/O
access. IOPL is stored in the processor’s system register and can be modified in the privilege level 0. Again this
is not problem because IOPL is normally 0. Finally, a program in the privilege level 2 can access a memory page
whose page-level protection is marked assupervisor pages. A program in the privilege level 3 can not access to
supervisor pages. Supervisor pages are intended to be used for protecting the kernel from user programs but Linux,
on which our implementation is based, does not need to utilize supervisor pages to protect the kernel. Instead, the
kernel is protected by the segmentation mechanism. Again, this is not the problem. Only the problem is that Intel
386 processor, an early implementation of Intel x86, has a bug that the page-level write-protection in the privilege
level 2 is always ignored. There is not such a bug in later processors, such as Intel 486, Pentium, and P6 family.
Consequently, there is no problem even if the privilege level of a hosting application is raised to 2.

This approach may slightly increase risk of attacks from a malicious mobile code. For example, a malicious
mobile code may be able to cause the application to jump to and execute code within the mobile code by means
of buffer overflow attacks. This sort of attacks is not unique to our approach. Several techniques are available to
defend against buffer overflow attacks[4].

3.3 Restricting System Calls

Our mechanism provides the policy module with a mechanism to prevent a mobile code from issuing arbitrary
system calls. This mechanism retains backward compatibility with existing systems at the binary level since the
interfaces of system calls need not changed. The policy module registers a callback routine in the kernel. When a
mobile code issues a system call, the kernel upcalls the callback routine. At the same time, the kernel passes the
ID of the mobile code issuing the system call, type of the system call, and arguments of the system call. Based on
the protection policy, the policy module determines whether the system call is granted permission to execute, or
not. As a callback routine is a normal procedure, various protection policies can be implemented using capability,
access control list, and so on.

This mechanism exploits the features of fine-grained protection domains. First, the policy module can check a
system call argument without extra costs even if it contains a pointer. No pointer conversions are required because
the policy module shares the same address space with mobile codes. Second, the callback routine in the policy
module is invoked by way of our cross-domain call. Since our cross-domain call is efficient as shown in Section
4, the overhead of calling the callback routine is not high. Moreover, as a user program is normally designed not
to issue system calls so frequently, the cost of checking system calls is relatively low.

3.4 Library

For ease of use, we have implemented a library for loading mobile codes. This library creates a segment in the
linear address space for the fine-grained protection domain of the code. Then, the library loads the mobile code
into the address space of the created segment. Finally, the library registers the entry point and initial stack address
of the mobile code in the kernel.

This library manages dynamic linking information for every protection domain. Shared libraries are linked
against each mobile code and arenot shared among mobile codes. It is necessary for efficiency and security
reasons. If a shared library is put in another fine-grained protection domain, a shared library’s function such as
memcpy() is called frequently by way of a cross-domain call and the performance degrades significantly. If
mobile codes share a shared library, static data areas used by a library function such asprintf() might be
destroyed by a malicious mobile code.

4 Experiments

To validate our approach to fine-grained protection domains, we have implemented a prototype system by altering
Linux 2.2.14 kernel. The prototype system is running on a PC with Intel PentiumII 400MHz processor, and
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Table 1: Cycles for one cross-domain call

Method Cycles Time
Segment switch 608 1.52µs
Ring switch 226 0.57µs
IPC 3975 9.94µs

Table 2: Breakdown ofsegment switch (one-way)

Operation # of Instructions Cycles
Enter kernel 1 86
Parameter check 16 16
Context setup 21 12
Segment enable /disable 12 12
Segment register reload 6 30
misc. 20 11
Leave kernel 1 137
Total 77 304

128Mbytes of main memory. As described in Section 3, we have proposed two approaches to implementing
fine-grained protection domains on Intel x86 family:Segment switch exploiting the segmentation mechanism
(described in Section 3.1.2) andring switch exploiting the ring protection mechanism (described in Section 3.2.2).

4.1 Micro Benchmark

To estimate the cost of cross-domain calls, we measured processor cycles spent in a cross-domain call and com-
pared it with those of a conventional interprocess communication. From this comparison, we can verify that
cross-domain calls between fine-grained protection domains are more efficient than interprocess communications.
In the experiment, a null procedure was called repeatedly in a tight loop to reduce the effect of cache misses. The
number of cycles was obtained from the cycle counter, called time-stamp counter, of PentiumII processor. We
also measured the average cycles spent in an interprocess communication (Hereinafter,IPC) of Linux. In this
experiment, two processes communicate via a semaphore.

Table 1 shows the result of measuring cycles for one cross-domain call.Segment switch costs 608 cycles, and
ring switch costs 226 cycles for one cross-domain call. In both cases, a cross-domain call between fine-grained
protection domains is faster thanIPC; 6.5 times faster insegment switch and 17.6 times faster inring switch.
Comparingsegment switch andring switch, ring switch is 2.7 times faster thansegment switch. Thusring
switch successfully optimizes cross-domain calls in special but most frequent cases between a hosting application
and mobile codes.

To analyze the cost of cross-domain calls, Table 2, Table 3, and Table 4 list the breakdown of cycles for one
cross-domain call insegment switch, ring switch, andIPC respectively. Table 2 shows the one-way cost of a
cross-domain call because the return sequence is completely the same as the call sequence. In this table,Enter
kernel is the software trap to enter the kernel mode.Parameter check is the instructions to check the validity of a
destination protection domain.Context setup is the instructions for setting up the stack pointer and the instruction
pointer for the destination .Segment enable /disable andSegment register reload are instructions to switch
segments.Leave kernel is the instruction to return to the user mode. This breakdown indicates that the bare
hardware cost for switching segments requires 265 cycles — 87% of all — (entering and leaving the kernel, and
switching segments). Thus our implementation is almost optimal in that the software overheads such as parameter
checking occupies only 13% of processor cycles. From this breakdown, the optimization that eliminates the cost
of entering and leaving the kernel is expected to be very effective. This is the reason we launched the development
of ring switch, which does not need kernel entry.

Table 3 shows the breakdown ofring switch. Inter-segment return is the instruction to call a mobile code
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Table 3: Breakdown ofring switch (round-trip)

Operation Instructions Cycles
Context setup 4 11
Segment register save & reload 6 22
Inter-segment return 1 86
Inter-segment call 1 80
Segment register restore 3 18
misc. 9 9
Total 24 226

Table 4: Breakdown ofIPC (one-way)

Operation Cycles
Enter kernel 86
Prepare for system call 113
Semaphore operation 208
Scheduling 770 – 1500
Return from system call 101
Leave kernel 137
Total 1415 – 2145

from a hosting application andInter-segment call is the instruction to return from a mobile code to a hosting
application. Note that control transfer to a segment with less privilege requires the inter-segment return instruction
as mentioned in Section 3.2.2. Since all operations are performed in the user mode inring switch, the cost of a
round-trip cross-domain call is much smaller thansegment switch. In segment switch, one round-trip cross-
domain call requires two kernel entries, totally costing 446 cycles. Inring switch, calling and returning from a
mobile code costs 166 cycles (86 for calling, 80 for returning) but this cost is much smaller than the cost of two
kernel entries.

Table 4 lists the breakdown of cycles inIPC. The major overhead ofIPC is scheduling. It takes 54% – 70%
of all the cycles. Even if the kernel supports hand-off scheduling, a conventional interprocess communication can
not compete with a cross-domain call between fine-grained protection domains because Intel x86 requires TLB
flush in conventional interprocess communications. Once TLB is flushed, reconstructing TLB entries causes TLB
miss interrupts, accessing a page table, and restarting a process. This secondary cost is not involved in Table 4
since the call was made in a tight loop.

In fine-grained protection domains, all protection domains share computing resources such as time slice and a
virtual address space. Therefore, a cross-domain call requires no TLB flush as well as no scheduling. This design
effectively eliminates the overhead involved in interprocess communications, even if compared with hand-off
scheduling.

4.2 Macro Benchmark

This section investigates the protection overhead in a real application. We modified the Apache web-server to
use fine-grained protection domains. Apache allows external modules to be dynamically loaded for extending
its functionalities. These modules handles access control, authentication, CGI, SSI, logging, URL rewriting, and
so on. These modules can be thought of as mobile code because they can be downloaded from Internet. We
configured Apache so that each module is put in a different fine-grained protection domain.

4.2.1 Porting Apache

Incorporating fine-grained protection domains in Apache is straightforward but setting up protection policy is
difficult. This is because Apache is not designed supposing that the modules may be malicious. In particular,
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Figure 6: Throughput

setting up memory protection is difficult because Apache’s private data is mixed up with modules’ private data.
In this experiment, we set the protection of Apache’s memory pages shared with modules to be readable and

writable from modules. In practice, this will cause security problems. However, it does not matter here whether
page protections are appropriate or not, because the goal of this experiment is to measure the performance. In the
experimental configuration, the stack and heap areas of Apache are allocated in shared pages and made accessible
from modules. Because our prototype loader lacks the facility to map static data areas to modules, library functions
that return a pointer to a static data area must be wrapped so that they return a pointer to a shared memory page
by copying the referent. For example,gethostbyname() is wrapped in the modified Apache.

As our module loader does not support dynamic linking yet, shared libraries are linked with a hosting appli-
cation. All modules must call library functions via cross-domain calls except for inline functions such asmem-
cpy(). This is the restriction of the current implementation and will be modified with modest efforts. Calling all
library functions via cross-domain calls degrades performance of Apache significantly. Therefore, the following
results must be interpreted, taking this point into account.

4.3 Results

We measured the throughput and the latency of the modified Apache, and compared them with those of the original
Apache (version 1.3.9). we used ApacheBench, a benchmark program distributed with Apache server. A client
requests the same file for 1000 times with 10 simultaneous connections, changing the file size from 1Kbyte to
256Kbyte. HTTP KeepAlive feature is turned on. The file size ranges from 1KByte to 256KByte. As a client, we
used an Alpha 667MHz machine with 512MB memory and a PentiumII 400MHz machine with 128MB memory
as a server. The server machine is equipped with 4GB Ultra-Wide SCSI disk. These machines are connected to
by Gigabit Ethernet. The configuration of Apache is the same as default except that logging is disabled to avoid
I /O bottleneck.

Figure 6 shows the measured throughput of three Apache servers.No protection denotes the original Apache
in which no protection is provided.Segment switch andring switch denote the Apache modified to use fine-
grained protection domains.Segment switch andring switch are degraded compared withno protection. This
is because cross-domain calls are used insegment switch and ring switch. By the optimization effects,ring
switch shows slightly better throughput thansegment switch.
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Table 5: Number of cross-domain calls

The number of calls from modules 71
The number of calls from Apache 59
Total number of calls 130

To discern the overhead caused by protection, we calculated the overhead from the following expression.Figure
7 shows the overhead ofsegment switch andring switch.

overhead =
Throughput with No Protection

Throughput with Protection
−1

As the file size grows, the overhead becomes lower. At the file size of 64KB, the overhead is 15.8% forsegment
switch and 10.4% forring switch. At the file size of 128KB, the overhead is 8.3% forsegment switch and
6.1% for ring switch. This is due to the characteristics of HTTP. Almost all calls of modules are made when a
negotiation is performed at the beginning of the connection. After the negotiation, the server simply transmits the
requested file to the client without calling modules. Therefore, the cost of cross-domain calls does not depend on
the file size. As a result, the overhead of HTTP request becomes relatively lower as the file size grows.

Figure 8 shows the results of measured latency of each HTTP request. On average, latency is increased by
0.25ms forsegment switch and by 0.11ms forring switch. At the file size of 128KB, the overhead is 2.8% for
segment switch and 1.2% forring switch. This is negligible compared with network latency.

Table 5 shows how many cross-domain calls are made in each HTTP request. The hosting application calls
modules for 71 times and the called modules calls back the Apache for 59 times. Totally, 130 cross-domain calls
are performed per HTTP connection. Calculating from Table 1, 130 calls amount to 198µs in segment switch
and 74µ in ring switch.

12
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Table 6: Comparison of memory consumption

No Protection Domain With Protection Domain
sum of virtual pages 2692KB 673 pages 54596KB 13649 pages
sum of physical pages 2648KB 662 pages 2792KB 698 pages
page table size 16KB 4 pages 68KB 17 pages

4.4 Memory Consumption

Our approach consumes memory resources than usual because it requires many entries of the page table to im-
plement a multi-protection page table. To investigate the memory consumption, we obtained the information on
memory consumption from the kernel. The target application is Apache used in the above experiments. Table
6 shows the comparison of memory consumption between Apache with and without fine-grained protection do-
mains. The data listed in Table 6 is obtained after processing one HTTP connection. In this experiment, Apache is
configured to place 30 modules in different fine-grained protection domains respectively. Among these modules,
23 modules are actually invoked per HTTP connection. The size of each module ranges from 8KB to 56KB (16KB
on average). In this experiment, each fine-grained protection domain contains 1024KB virtual pages to access the
stack and heap of the hosting application, and 20KB virtual pages for its own stack. When these modules are
put in fine-grained protection domains, each module consumes 1056KB to 2120KB virtual pages. Totally, the
48292KB virtual pages are consumed.

As shown in Table 6, the Apache with protection consumes about 54MB virtual memory, which is 20 times
larger than that of the original Apache without protection. The increased number of virtual pages has an impact
on the size of the page table. The size of the page table is increased from 16KB to 68KB. This is negligible
compared with the size of Apache (2.6MB). The increased size of virtual memory has an impact on TLB misses
but the experimental results in Section 4.2 implies the protection overhead is modest. The total number of physical
pages is increased only by 5.4% (from 2648KB to 2792KB). As fine-grained protection domains share almost all
physical pages, the increase of physical pages is negligible. The reason of the increase is that each protection
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domain holds its own stack pages.

4.5 Summary

We have implemented fine-grained protection domains and achieved efficient cross-domain calls.Segment
switch exploiting the segmentation mechanism costs only 608 cycles, which is 6.5 times faster than IPC. And
ring switch exploiting the ring protection mechanism successfully reduced the cost of cross-domain calls between
a hosting application and mobile codes to 226 cycles, which is 2.7 times faster thansegment switch.

Also, we have modified an Apache to use fine-grained protection domains and measured performance in
practice. The overhead of throughput is only 6.1% to 15.8%, which becomes lower as the file size grows. The
latency of one HTTP request is increased by only 0.11ms to 0.25ms, which is negligible compared with network
latency.

From the analysis of memory consumption of the Apache, the increase of the page table was found to be
negligible compared with the size of the Apache. As fine-grained protection domains share almost all physical
pages, the increase of physical pages was only 5.4%.

5 Related Work

Many research activities have been done to provide intra-process protection in various contexts. The work most
related to ours is Palladium [3]. Palladium exploits the features specific to Intel x86 family to provide the memory
protection between a hosting application and its extensions. Palladium is different from ours in three significant
points. First, Palladium does not provide any mechanisms of the protection between extensions. In our terms,
Palladium does not allow more than two fine-grained protection domains to co-exist within a process. Thus all
extensions must be put in the same fine-grained protection domain. If there is one malicious extension, all the
other extensions are infected. Second, the protection policy is restricted in Palladium; each memory page of a
hosting application is either accessible (readable and writable) or unaccessible from extensions. Our approach
allows each page to be any combination of readable and writable modes. Read-only sharing is useful in various
contexts but Palladium does not allow read-only sharing. Third, Palladium does not provide any mechanisms to
restrict system calls. Even if such mechanisms are introduced, all extensions are given the same authority to issue
system calls. Thus we can not insist on the “principle of least privilege”: a mobile code should be granted the
most restrictive collection of capabilities required to perform its legitimate duties, and no more [5]. Designing a
protection policy is much more complicated in Palladium than in our approach.

LRPC [1] and L4 [6] attempt to minimize the overhead of interprocess communication in traditional operating
systems. Since interprocess communication inherently requires to switch computing resources, our model based
on fine-grained protection domains will over-perform interprocess communication. If a more efficient technology
of interprocess communication is developed, we can use that technology to implement fine-grained protection
domains, eliminating the overhead of switching computing resources.

Java [13] ensures code safety by the bytecode verifier and by the runtime checking. The verifier checks code
integrity at the loading time, and Java VM (virtual machine) checks code safety at runtime. The safety of Java
heavily relies on the correctness of Java VM. If Java VM has a security bug, the safety of the system is lost.
Unfortunately, large applications are scarcely bug-free (for example, “bug of the month ofsendmail”). We
believe that an operating system should provide a final barrier using hardware-level protection.

SPIN [2] is an extensible operating system that allows an extension to be loaded and executed in the kernel.
SPIN relies on the safety of Modula-3 to ensure the safety of extensions. This approach suffers from the same
weakness with Java VM; if the Modula-3 compiler has a bug, the generated code may be able to corrupt the kernel.

SFI [14] ensures code safety by inserting a code sequence that confines all memory accesses in a certain
memory area. In SFI, a set of instructions is inserted before all memory access instructions such asload, store,
andjump. VINO [10], an extensible operating system, uses SFI to ensure the safety of extensions. Seltzeret
al. [10] report that the overhead due to SFI is 5% to 200%.

Proof carrying code (PCC) [9, 8] can ensure code safety without any runtime overheads. In PCC, a mobile
code is compiled by a special compiler, and a formal proof is attached to the generated code. This proof proves
that the mobile code obeys the protection policy. When loading the mobile code, the proof is validated before
execution. If the validation fails, the mobile code is rejected. The primary difficulty lies in automatic proof. To
keep the automatic proof feasible, the expressive power of protection policy is considerably limited.
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To prevent untrusted programs from issuing arbitrary system calls, Janus [5] uses the Solaris process trac-
ing facilities. In Janus, a reference monitor is placed in a process different from the traced process. Thus the
monitoring overhead is larger than our approach.

Loscoccoet al. [7] reports that modern operating systems lack sufficient support for secure computing envi-
ronments. Our attempt is an answer to them; operating systems should provide fine-grained protection domains to
protect against malicious mobile codes.

6 Conclusion

We have developed a mechanism of fine-grained protection domains to protect against malicious mobile code.
A fine-grained protection domain prevents a malicious code from unauthorized access to a hosting application’s
memory and local computing resources. To support fine-grained protection domains, we have proposed a new
abstraction called a multi-protection page table. A multi-protection page table extends traditional page tables so
that each virtual page can hold multiple protection modes at the same time. This abstraction allows each fine-
grained protection domain to have its own memory protection policy while sharing the same single address space.
It also provides an efficient cross-domain call by avoiding TLB flush and scheduling. An efficient cross-domain
call also realized an efficient mechanism to check unauthorized system calls from a mobile code. This paper
showed an implementation of multi-protection page tables on the most widely used Intel x86 architecture. By
exploiting the segmentation mechanism and the ring protection mechanism, we achieved a cross-domain call that
requires only 226 - 608 cycles in a null cross-domain call. We also demonstrated that the overall performance of
the Apache using fine-grained protection domains is good enough for practical use: the overhead of throughput is
6.1 - 15.8% and the overhead of latency is 1.2 - 2.8%.
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