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Abstract

Searching for small targets in large spaces is a common problem in the
sciences. Because blind search is inadequate for such searches, it needs
to be supplemented with additional information, thereby transforming
a blind search into an assisted search. This additional information can
be quantified and indicates that assisted searches themselves result from
searching higher-level search spaces–by conducting, as it were, a search
for a search. Thus, the original search gets displaced to a higher-level
search. The key result in this paper is a displacement theorem, which
shows that successfully resolving such a higher-level search is exponentially
more difficult than successfully resolving the original search. Leading up
to this result, a measure-theoretic version of the No Free Lunch theorems
is formulated and proven. The paper shows that stochastic mechanisms,
though able to explain the success of assisted searches in locating targets,
cannot, in turn, explain the source of assisted searches.

1 Blind Search
Most searches that come up in scientific investigation occur over spaces that are
far too large to be searched exhaustively. Take the search for a very modest
protein, one that is, say, 100 amino acids in length (most proteins are at least
250 to 300 amino acids in length). The space of all possible protein sequences
that are 100 amino acids in length has size 20100, or approximately 1.27×10130.
Exhaustively searching a space this size to find a target this small is utterly
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beyond not only present computational capacities but also the computational
capacities of the universe as we know it. Seth Lloyd (2002), for instance, has
argued that 10120 is the maximal number of bit operations that the known,
observable universe could have performed throughout its entire multi-billion
year history.
If exhaustive searches are infeasible for large spaces, what about random

searches? Do random searches fare better at successfully finding small targets
in large spaces? The answer depends on what one means by the term random?
Ordinarily what is meant is this: the internal structure of some large space Ω
treats all its points as equivalent in the sense that the internal structure doesn’t
distinguish certain regions of the space from others. This internal structure is
typically captured via a geometry and thus encapsulated in a metric D on Ω. In
turn, D induces a uniform probabilityU on Ω (see Dembski 1990; spaces that are
not uniformizable are the exception rather than the rule for most of the search
problems that come up in scientific investigation). In general, random searches
of Ω therefore come down to either uniform random sampling or random walks
without drift.
When it comes to locating small targets in large spaces, random sampling

and random walks are equally ineffective. Uniform random sampling treats Ω
like a giant urn from which items are drawn (with replacement) according to the
uniform probability U. Each draw constitutes a brand-new attempt to locate a
point in the target. Because such draws are probabilistically independent of each
other, uniform random sampling cannot build on past successes in attempting
to reach the target. For each sampling event, success at reaching the target is
all-or-nothing.
The mathematics here is elementary: a uniform random sample from Ω of

sizem will have a better-than-even chance of containing a point in a small target
T (⊂ Ω) only if m is close to the reciprocal of the uniform probability of the
target. That’s because for a small target T , the probability p = U(T ) will be
correspondingly small. Thus, hitting the target in at least one of m independent
trials has probability 1−(1−p)m. This number approaches 1−e−1 ≈ 0.63 > 1/2
as m approaches 1/p, but remains close to 0 as m falls far short of 1/p. Thus,
for instance, to stand a reasonable chance of locating a particular protein 100
amino acids in length, uniform random sampling requires a sample sizem on the
order of 10130 (p here is 20−100, so 1/p = m ≈ 10130). It follows that uniform
random sampling is no better than exhaustive search in decreasing the number
of points that, on average, need to be examined before the search succeeds.
Nor are random walks more efficient in this regard. Whereas uniform random

sampling at each step selects a point with respect to the uniform probability U
over the entire search space Ω, a random walk at each step selects a point with
respect to the uniform probability defined over a neighborhood of fixed proximity
to the previously selected point. For instance, given that xk is selected at step k,
xk+1 may be selected by uniformly sampling Bε(xk) = {y ∈ Ω : D(y, xk) 6 ε}
(i.e., the ball of radius ε around xk). In practice, defining uniform probabilities
on such neighborhoods is unproblematic because the uniform probability on a
neighborhood like Bε(xk) is simply the uniform probability of the whole space
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conditioned on the neighborhood, i.e., U(·|Bε(xk)) (see Dembski 1990 for the
conditions under which this result holds as well as for pathological spaces that
constitute an exception).
Of course, we need to make sure that the random walk has no unfair ad-

vantage in finding the target. For instance, the random walk must not have
an inherent tendency to drift toward the target T . This would unduly increase
the probability of the walk reaching the target. Moreover, the initial starting
point of the random walk needs to be selected by sampling with respect to the
uniform probability U over the entire search space Ω. This ensures that the
starting point is not deliberately taken so close to T (or, worse yet, inside T
itself) that it is likely to reach the target in but few steps.
Given these provisos, the stopping time for the random walk to reach the

target T will have expected value whose order of magnitude is 1
U(T ) (for the

relevant mathematics, see Spitzer 2001). The stopping time here is simply the
number of steps required for the random walk to reach the target. Thus, for
instance, the average number of steps for a random walk to locate a particular
protein 100 amino acids in length will have order of magnitude 1

U(T ) =
1

1/20100 =

20100 ≈ 10130. Thus, we find that random walks, as with uniform random
sampling, are no better than exhaustive search in decreasing the number of
points that, on average, need to be examined before the search succeeds.
Uniform random sampling and random walks both presuppose a uniform

probability U on the search space Ω. This presupposition places a mathemat-
ical restriction on Ω. Nevertheless, it imposes no practical limitation on this
space. Many of the spaces that come up in practice are finite and thus have a
straightforward uniform probability, namely, one that assigns the same probabil-
ity to each point in the space (i.e., 1/N ifN is the number of points in the space).
More generally, for a space to be uniformizable, it must be a compact metric
space. Granted, this precludes search spaces of infinite diameter. Nonetheless,
even with search spaces whose diameter is potentially infinite, in practice we
limit searches to bounded subspaces that are compact. For instance, if we are
trying to account for the fine-tuning of the gravitational constant as the solution
of a search through the space of all possible values that the constant might take
(namely, the positive reals, a space that is unbounded and noncompact), it is
in practice enough to consider a closed interval around the actual gravitational
constant (such intervals are compact) and show that possible gravitational con-
stants compatible with a life-permitting universe have small probability within
this interval (see Collins 2003).
Random walks are discrete stochastic processes and thus depend on travers-

ing a finite number of steps. By increasing the number of steps and making
them small enough, random walks converge to Brownian motions, which are
continuous stochastic processes (see Billingsley 1999: ch. 2). Here again, pro-
vided that a Brownian motion is without drift and that its starting point is
selected with respect to U over all of Ω, the stopping time (which now reflects a
continuous measure of time) for it to reach the target T will have expected value
proportional to 1

U(T ) (see Port and Stone 1978: ch. 2; see also Doob 1984). This
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means that however time is scaled, the time it takes for the Brownian motion
to reach the target will, on average, be bounded below by some fixed factor
times 1

U(T ) . It follows that if the time to search Ω is limited, targets T whose
uniform probability is small enough will, for practical purposes, be unsearchable
by means of Brownian motions.
Exhaustive search, uniform random sampling, random walks, and Brownian

motion all fall under blind search. In general, blind search can be characterized
as a conversation between two interlocutors, call them Alice and Bob. Alice
has access only to the search space Ω. Bob not only has access to Ω, but also
to the target T (T is a subset of Ω; both Ω and T are nonempty). We think
of T as a problem that Bob has posed to Alice, and we think of the points in
T as solutions to the problem. Alice’s job is to find at least one such solution.
What makes Alice’s job difficult is that nothing about Ω provides a clue about
T . If we think of Ω as a giant urn filled with balls, it’s not as though the balls
are color-coded so that those with certain colors are more likely to be solutions.
Rather, we should imagine that all the balls have the same color and that the
only information Alice has about the balls is their color.
Bob, in contrast, knows a lot more. For any candidate solution x in Ω, Bob

is able to tell Alice whether x is in T (i.e., whether x is in fact a solution). In
attempting to find a solution, Alice now successively selects candidate solutions
x1, x2, . . . , xm from Ω, at each step querying Bob whether a candidate is in fact
a solution. Note that Alice limits herself to a finite search with at most m
steps–she does not have infinite resources to continue the search indefinitely.
(For simplicity, in the sequel, we limit ourselves to discrete searches with finitely
many steps; searches involving continuous time, as with Brownian motion, add
no fundamental new insight to the discussion.) Presented by Alice with a can-
didate solution, Bob truthfully answers whether it is in fact in T . The search is
successful if Bob informs Alice that one of her m candidate solutions resides in
T .
This is blind search. Two things render it blind. First, the search space Ω

provides no clue about the solution space or target T . This can be captured
mathematically by placing a uniform probability U on Ω and by limiting Alice
to sampling candidate solutions from Ω based only on the knowledge of U and
the underlying metric structure D (and, perhaps, other structures internal to Ω
that provide no clue about the target–genetic algorithms, for instance, allow
for candidate solutions to be “mated”). Second, Bob refuses to divulge to Alice
anything about a candidate solution except whether it is in the solution space
T . The information that Bob gives Alice is all-or-nothing–a candidate solution
is either in or out.
In a blind search, Bob provides the minimum amount of information that

Alice needs if she is to stand any chance of finding a solution. Moreover, as
we’ve just seen, for locating small targets in large spaces, this information is
essentially useless. Provided the targets are small enough, blind search will, in
practice, not find them. For a search procedure to be more effective than blind
search, it therefore needs to provide additional information.
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2 Assisted Search
Let us, therefore, define an assisted search as any search procedure that provides
more information about candidate solutions than a blind search. The prototypi-
cal example of an assisted search is an Easter egg hunt in which instead of saying
“yes” or “no” for each possible place where an egg might be hidden, one says
“warmer” or “colder” depending on whether the distance to an egg is narrowing
or widening. This additional information clearly assists those who are looking
for the Easter eggs, especially when the eggs are well hidden and blind search
would be unlikely to find them.
To characterize assisted search, let us again employ the services of Alice and

Bob. As before, Bob has a full grasp of the target T , so that for any proposed
solution x in Ω, he is able to answer whether x is in T . Alice, on the other
hand, knows only Ω and whatever information Bob is willing to divulge that
might help her to find a solution in T . We may assume that in knowing Ω,
Alice knows Ω’s geometric structure (as induced by the metric D) as well as the
uniform probability U. We may also assume that Alice knows enough about the
problem in question to ascertain the probability p = U(T ). Finally, we assume
that m is an upper bound on the number of candidate solutions in Ω that Alice
can verify with Bob, and that mp, the approximate probability for locating the
target by uniform random sampling given a sample size m, is so small that Alice
has no hope of attaining T via a blind search.
Alice and Bob are playing a game of “m questions.” Initially Bob divulged

too little information for Alice to have any hope of winning the game. The
game initially played was thus one of blind search. Generous fellow that Bob
is, he is now going to divulge additional information to Alice so that she may
reasonably hope to win the game. The game now being played is therefore one of
assisted search. To make the game interesting, Bob needs to give Alice enough
information so that she stands a reasonable chance of locating the target T by
proposing m candidate solutions. The challenge for Alice is to make optimal use
of whatever information Bob gives her so that her m questions are as effective
as possible for locating the target.
We can represent this situation mathematically as follows. Think of Bob

as possessing an information function j that maps cand(Ω,m) =def

mS
k=1

Ωk

into a space of responses Λ (here Ωk is the k-fold Cartesian product of Ω with
itself and Λ is some nonempty set). Call cand(Ω,m) the candidate solution
space for Ω with sample size m. The idea behind j is this: As Alice proposes
candidate solutions x1, x2, . . . , xm, at each step k (1 6 k 6 m) Bob responds
with an item of information j(x1, . . . , xk) from the response space Λ. This
way of representing the information that Bob gives to Alice ensures that Bob
need not merely respond to each candidate solution in isolation but rather to
the whole sequence of candidates that Alice has proposed leading up to it.
Thus, for each candidate solution xk, Bob is able to keep in memory previous
candidate solutions x1, . . . , xk−1. This is important because it enables Bob to
convey dependencies among previously proposed candidates (as in an Easter egg
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hunt, where comparative responses such as “warmer” and “colder” depend on
previous locations visited by the Easter egg hunter). These dependencies can
provide Alice with crucial information for locating the target T .
It’s now clear why blind search provides Alice with so little information for

locating T . In the scheme just outlined, blind search is represented (up to
isomorphism) as follows: Λ = {0, 1} and j(x1, ..., xk) = 1 if xk is in the target T ,
0 otherwise. Here 0 tells Alice that xk is not in the target, 1 that it is. Observe
that for the k-tuple (x1, ..., xk), the value of j depends only the last element of
the k-tuple, namely, xk, and merely records whether this candidate solution is
in T . Let us call such a j an indicator function for the target T . Information
functions like this characterize blind search.
Since assisted search is supposed to augment the information inherent in

blind search, the information function associated with an assisted search needs
to contain strictly more information than is contained in the indicator function
of the corresponding blind search. This strict increase in information can be
characterized as follows: An information function j́ strictly augments the infor-
mation in an indicator function j associated with a target T provided there is
a function ϕ from Λ to {0, 1} such that ϕ ◦ j́ = j and for any such ϕ there is
no function ψ from {0, 1} back to Λ such that ψ ◦ ϕ ◦ j́ = j́. In other words,
composing j́ with some function allows Alice to recover the indicator function
for T , but j́ cannot in turn be recovered from this composition.
The underlying intuition here can be understood from the measure-theoretic

idea that the amount of information associated with a random variable depends
on the complexity of the σ-algebra induced by it (see Bauer 1981: 309—319).
This can be generalized as follows: a function f : A → B conveys information
about A to the degree that the values it assumes in B discriminate among the
elements of A. Think of the information associated with f as the partition of
A resulting from all the inverse images of elements of B, i.e., Part(f) = {A ⊂
A : A = f−1(b) for some b ∈ B}. Accordingly, the composition of a function
g with f (i.e., g ◦ f) can at best retain all the information that f provides
about A, and in fact will strictly diminish it if f cannot be recovered from g ◦ f
by further composition of functions. This follows because the partition of A
associated with g ◦f cannot be finer than the one associated with f and may in
fact be coarser. In other words, Part(g ◦ f) ⊂ Part(f) with inequality always
a possibility. This is just elementary set theory.
The information function j was defined deterministically. It could also be

defined stochastically. Thus, instead of j mapping cand(Ω,m) into Λ, it could
be defined from cand(Ω,m) × Γ into Λ where Γ is a probability space that
supplies a randomizing element to j. It follows that for a stochastic information
function j, the item of information associated with a k-tuple (x1, ..., xk) need
not assume a univocal value, as in the deterministic case, but can vary according
to a probability distribution. With regard to Alice and Bob, this means that
Bob isn’t required every time to provide the same answer to the same k-tuple
proposed by Alice.
The information function j (whether deterministic or stochastic) is what Bob

brings to the game of “m questions” that he is playing with Alice. What does
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Alice bring to the game? Alice brings a strategy to take advantage of this in-
formation. Mathematically, this can be expressed as follows. Think of Alice as

possessing a strategy function s that maps strat(Ω,Λ,m) =def

m−1S
k=0

[Ωk × Λk]
to the search space Ω. Call strat(Ω,Λ,m) the strategy space for Ω and Λ with
sample size m (note that unlike for the candidate solution space, the strat-
egy space is defined for a grand union whose index begins at 0 rather than
1 and ends at m − 1 rather than m–the reason will be clear in a moment).
The idea behind s is this: As Alice proposes candidate solutions x1, x2, . . . , xm
and at each step k (1 6 k 6 m) receives feedback from Bob, transmitted as
items of information j(x1, . . . , xk), Alice responds by selecting a candidate so-
lution s(x1, x2 . . . , xk−1, j(x1), j(x1, x2) . . . , j(x1, x2 . . . , xk−1)) = xk (note that
for k = 1 this needs to be interpreted as s(∅, ∅) = x1 and for k = 2 this is just
s(x1, j(x1)) = x2). The function s is Alice’s strategy for proposing candidate
solutions in response to both previous candidate solutions (proposed by her)
and previous items of information (given by Bob).
As with information functions, strategy functions can be deterministic or

stochastic (in which case s needs to map strat(Ω,Λ,m) × Γ0 into Ω where Γ0
is a probability space that supplies a randomizing element to s). It follows
that for a stochastic strategy function s, the candidate solution associated with
(x1, x2 . . . , xk−1, j(x1), j(x1, x2) . . . , j(x1, x2 . . . , xk−1)) need not be uniquely de-
termined, but can vary according to a probability distribution. In that case,
Alice isn’t required every time to provide the same candidate solution given the
same history of prior exchanges between Alice and Bob.
In general, we may therefore characterize an assisted search A on the space

Ω with target T , metric structure D, uniform probability U, and sample size m
as a pairing of strategy function s and information function j, i.e., A = (s, j). In
case of a blind search, j is just the indicator function for the target T and s is
any sampling scheme with no inherent bias toward or prior knowledge about the
target T . This last condition, which attempts to purify the strategy function of
any special information from the environment regarding the target, is difficult to
formulate with full generality (cf. Culberson 1998). Nonetheless, there are clear
instances where this condition is unproblematically fulfilled–exhaustive search,
uniform random sampling, and random walks being cases in point. Uniform
random sampling, as a form of blind search, is conveniently represented as the
ordered pair B = (U, 1T ). Here 1T is the indicator function with respect to T
(1T (x) = 1 for x ∈ T , 0 otherwise). The first element in this ordered pair is
interpreted as Alice’s strategy of uniformly randomly sampling from the search
space whenever she proposes a candidate solution; the second is interpreted as
the information function that Bob uses to guide Alice.
This framework for understanding assisted search is entirely general. By

choosing the response space Λ as the set of nonnegative reals, Bob can define
the information function j as a hill-climbing comparator, thereby turning Alice’s
search into a straightforward hill-climbing search. More generally, Bob can de-
fine the information function as a stochastic, time covarying fitness landscape,
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thereby turning Alice’s search into an evolutionary search. Provided there is
enough structure on the search space Ω to allow for elements to be mutated and
recombined, Alice can select her strategy function s so that her search becomes
a genetic algorithm (GA). Note that this framework is entirely compatible with
searches in which at each step Alice proposes not a single candidate solution
but a whole set of them (i.e., a population). In this case, Bob’s information
function and Alice’s strategy function will be invariant under permutation for
the indexes corresponding to each such population. Supervised learning using
artificial neural networks falls within this framework (Reed and Marks 1999).
So do iterative forms of optimization, including those that employ populations
whose agents, as it were, communicate by walkie-talkies, as in particle swarm
optimization (Shi 2004). So do self-learning or self-play optimization scenarios,
in which agents compete in successive rounds of selection (Fogel et al. 2005).
Moreover, this assimilation of self-play to the framework outlined here holds de-
spite the claim that such optimizations offer free lunches (Wolpert and Macready
2005).

3 A Simplification
The obvious question that now needs to be addressed is how to assess the efficacy
of assisted search over blind search. Clearly, assisted search needs to be more
effective at locating small targets in large spaces than blind search. The question
is how go gauge this effectiveness. Specifically, given an assisted search A and
a blind search B, is there some way to measure the degree to which A is better
at locating a target than B?
To answer this question, we need first to establish a baseline for how effective

blind search is at locating a target. Given a search space Ω with metric D and
uniform probability U, there are many ways a blind search might attempt to
locate a target T contained in Ω. Suppose, for instance, Ω is finite with N
elements enumerated in the following order: a1, a2, . . . , aN . In this case, a blind
search might simply be an exhaustive search that runs through these elements
in order starting with a1 and ultimately (if time an resources permit) ending
with aN . But this raises a difficulty: if early in this enumeration of elements,
one of the ais happens to fall in T (in the most extreme case, if a1 were to fall in
T ), this blind (qua exhaustive) search for T would in fact be quite effective. Of
course, as the target varied (even if the size or probability of the target remained
constant), the search would in most cases be less effective. The underlying
difficulty here is that the effectiveness of this search depends on idiosyncrasies
in the relation between target and enumeration of elements defining the search.
Move the target or change the enumeration, and the effectiveness of the search
may rocket or plummet. It follows that exhaustive searches like this preclude a
usable baseline for the effectiveness of blind search.
Similar difficulties arise for random walks. Even if the starting point of a

random walk is taken by uniform random sampling of the entire search space
Ω (i.e., by picking a point at random in Ω according to the uniform probability
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U), if the search space is disconnected in the sense that it decomposes into
geometrically isolated portions or islands, the random walk, by always only
taking baby steps (i.e., small steps within neighborhoods of fixed proximity
from previous points in the random walk), may get stuck on some island of the
search space and never be able to reach a target located on another island. Thus,
the effectiveness of such a search can depend on idiosyncrasies in the relation
between the connectivity of the search space and the target. Moreover, even
if the search space is connected, there can be bottlenecks that unduly hinder
the random walk from locating the target. Still another issue is the size of the
jumps at each step in the random walk: if these are too large or too small, the
random walk may consistently miss certain types of targets.
Because of such difficulties, neither exhaustive searches nor random walks are

helpful in setting a baseline for how effective blind search is at locating a target.
There is one form of blind search, however, that avoids all such dependencies,
namely, uniform random sampling. Because at each step in the search uniform
random sampling always samples the entire search space with respect to the
uniform probability U and because each step in the search is probabilistically
independent of the others, the effectiveness with which this form of blind search
locates a target T depends solely on two things: the probability of the target,
namely, p = U(T ), and the number of points in the search space capable of being
sampled, namely, the sample size m. As we saw in section 1, for a sample of size
m, uniform random sampling locates a target of probability p with probability
1−(1−p)m. If, as is typical with small targets in large spaces, p = U(T ) is much
smaller than 1/m, then 1 − (1 − p)m is approximately mp. In the sequel, we
take uniform random sampling, which in section 2 we denoted by B = (U, 1T ),
as the baseline for blind search.
Given this baseline, the next question is how to assess the degree to which

an assisted search A = (s, j) does a better job locating the target T than
B = (U, 1T ). Given the extreme generality with which assisted search is charac-
terized (see section 2), it is not immediately obvious how to compare the assisted
search A = (s, j) with the baseline searchB = (U, 1T ). A may incorporate prior
knowledge about the target; then again, it may not. A may gradually converge
on the target; then again, it may waste most of its initial candidate solutions,
after which it suddenly zeros in on the target with a vengeance. Repeated
applications of A may increase the chances of locating the target; then again,
repeated applications of A may provide no advantage over a single application.
Given so much free rein with assisted search, simplifying the representa-

tion of A in relation to B is desirable. The following considerations suggest
a canonical simplification. Since the sample size m sets an upper bound on
the number of points in the search space that may be sampled, both A and
B may be seen as proposing m candidate solutions, call them x1, x2, . . . , xm
for A and y1, y2, . . . , ym for B. These candidate solutions can be viewed as
instantiations of Ω-valued random variables, respectively X1,X2, . . . ,Xm and
Y1, Y2, . . . , Ym. Since B is just uniform random sampling, the Yis are indepen-
dent and identically distributed with probability distribution U. Of course, no
neat characterization like this is possible for the Xis, whose joint probabilistic
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structure may be completely intractable. Nonetheless, just as the key to assess-
ing the efficacy of B in locating the target T is the probability that at least one
of the Yis successfully locates T , so too it makes sense to identify the efficacy
of A in locating the target T as the probability that at least one of the Xis
successfully locates T .
In the case of B, this probability is one we’ve already seen, namely,

P(Y1 ∈ T ∨ Y2 ∈ T ∨ · · · ∨ Ym ∈ T )

=
mX
i=1

P(Y1 /∈ T ∧ Y2 /∈ T ∧ · · · ∧ Yi−1 /∈ T ∧ Yi ∈ T )

=
mX
i=1

P(Y1 /∈ T )P(Y2 /∈ T ) · · ·P(Yi−1 /∈ T )P(Yi ∈ T ) [by indep.]

=
mX
i=1

(1− p)i−1p

= 1− (1− p)m.

Here ∨ denotes disjunction and ∧ conjunction. In the case of A, however,
the corresponding probability does not simplify. Given the extreme generality
with which assisted search is characterized, it appears that the best we can
do to assess the effectiveness of A in locating T is to calculate the probability
P(X1 ∈ T ∨X2 ∈ T ∨ · · · ∨Xm ∈ T ).
This, however, suggests an analogy with the case of uniform random sam-

pling. Since P(X1 ∈ T ∨X2 ∈ T ∨ · · · ∨Xm ∈ T ) is a probability, and since
for fixed m and for arbitrary α in the unit interval, the expression 1− (1−α)m

varies between 0 and 1, we can find a uniquely determined number q in the unit
interval for which P(X1 ∈ T ∨X2 ∈ T ∨· · ·∨Xm ∈ T ) = 1−(1−q)m. In place of
the random variables X1,X2, . . . ,Xm, we may therefore substitute independent
and identically distributed random variables X 0

1,X
0
2, . . . ,X

0
m whose probabil-

ity of locating T in m steps precisely equals the probability of X1,X2, . . . ,Xm

locating T in m steps. In that case,

1− (1− q)m = P(X1 ∈ T ∨X2 ∈ T ∨ · · · ∨Xm ∈ T )

= P(X 0
1 ∈ T ∨X 0

2 ∈ T ∨ · · · ∨X 0
m ∈ T )

=
mX
i=1

P(X 0
1 /∈ T ∧X 0

2 /∈ T ∧ · · · ∧X 0
i−1 /∈ T ∧X 0

i ∈ T )

=
mX
i=1

P(X 0
1 /∈ T )P(X 0

2 /∈ T ) · · ·P(X 0
i−1 /∈ T )P(X 0

i ∈ T ).

But from this, given that the X 0
is are independent and identically distributed,

it follows that for 1 6 i 6 m, P(X 0
i ∈ T ) = q.
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The canonical simplification that gauges A’s effectiveness in locating T as
compared with that ofB can now be summarized as follows. B’s effectiveness in
locating T is the effectiveness of uniform random sampling locating T inm steps.
Thus, to compare A’s effectiveness in locating T , substitute for the m random
variables induced by A corresponding random variables that are independent
and identically distributed, and whose probability of locating T in m steps is
identical with the probability of the original random variables induced by A
locating T in m steps.
Accordingly, determining the relative effectiveness with which A and B lo-

cate T in m steps is a matter of comparing two probability measures: one
induced by the Ω-valued random variable X 0 defined as any one of the indepen-
dent and identically distributed random variables X 0

1,X
0
2, . . . ,X

0
m that jointly

represent A; and the other induced by the Ω-valued random variable Y defined
as any one of the independent and identically distributed (in this case uniformly
distributed) random variables Y1, Y2, . . . , Ym that jointly represent B.
Since Y is uniformly distributed on Ω, Y induces the uniform probability U

on Ω. Thus, for an arbitrary Borel set S in Ω, P(Y ∈ S) = U(S). Similarly,
X 0 induces a probability measure µ on Ω. Thus, for an arbitrary Borel set S
included in Ω, P(X 0 ∈ S) = µ(S). Comparing A and B in their effectiveness to
locate T in m steps therefore amounts to substituting the probability measure
µ for A and the uniform probability U for B, and then assessing the difference
in magnitude between two probabilities, µ(T ) = q and U(T ) = p. The degree
to which A is more effective than B can thus be defined as the degree to which
µ concentrates more mass on T than U, and thus, in particular, the degree
to which q is greater than p. Note that in this simplification, A need not
uniquely determine µ (in fact, except in the simplest cases, µ will be vastly
underdetermined). At issue is what probability µ assigns to T and how this
probability compares to the uniform probability of T .
Does this simplification adequately capture the key features of blind and

assisted searches that enable their relative effectiveness to be accurately gauged?
To be sure, these simplifications dispense with a lot of the structure of A and
focus on a particular type of blind search, namely, uniform random sampling.
But representing blind search as uniform random sampling is, as argued at
the start of this section, well warranted. Moreover, any information lost by
substituting µ for A is irrelevant for gauging A’s effectiveness in locating T
since its effectiveness coincides with the probability of A locating T in m steps,
and this probability is captured by µ.
In any case, the simplification does not introduce any bias or distortion.

Uniform random sampling is an exact instance of blind search, not a rough
estimate of it. Moreover, I’ve indicated why it should be taken as the canonical
form of blind search. At the same time, the probability measure µ induced by A
and, specifically, the probability that µ assigns to T , namely q, are not artificial
additions to A but rather fully inherent in A. After all, 1− (1− q)m is the exact
probability that the assisted search A locates the target T in m steps.
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4 Accounting for Net Gains in Information
The simplification of the previous section essentially substitutes probability mea-
sures for search procedures, U for blind search and µ for assisted search. Now,
in practice, once µ is in hand, the search for T can be considered successfully re-
solved provided that the probability µ assigns to T , namely q, is sufficiently large
so that the probability of the assisted search successfully finding T in m steps,
namely 1− (1− q)m, is reasonably close to 1. For this last condition to hold, a
good rule of thumb is that the order of magnitude of q needs to be no smaller
than 1/m. In that case, 1− (1− q)m > 1− (1− 1/m)m ≈ 1− e−1 ≈ 0.63 > 1/2.
Thus, even though p = U(T ) is so small that random sampling with respect

to U is extremely unlikely to locate T in m steps, by representing the assisted
search as random sampling with respect µ, and given that q (= µ(T )) is rea-
sonably large (i.e., no smaller than 1/m), the assisted search is highly like to
locate the target. And, in practice, successfully concluding a search is all we
care about, whether it is a computer algorithm successfully locating an optimum
or nature successfully evolving a biological function.
In focusing on the conditions that µ must satisfy for an assisted search to

have a high probability of concluding successfully, let us not lose track of a deeper
question, namely, what is the source of the probability measure µ that makes
a successful search possible. Since we will be referring to U and µ repeatedly,
let us assign names to them. U, as already noted, is the uniform probability.
µ, as the probability induced by an assisted search, will be called the exchange
probability (i.e., it exchanges with the uniform probability). In practice, we
are concerned with how well an assisted search, as represented by the exchange
probability, facilitates finding a target. But whence the assisted search and the
exchange probability that represents it? In human engineering contexts, these
facilitators of successful searches typically need to be invented (i.e., they are the
result of intelligent design). But must they always be invented? Could they not
simply be brute givens, gifts that a profligate environment bestows on certain
searches without any need of explanation? In particular, might not the measure
µ simply be a free lunch?
Let’s examine these questions more closely. First off, it should be clear that

an assisted search needs to input a substantial amount of novel information to
make the search successful. The problem with blind search is that as the search
proceeds, no signal is coming back to the search to ensure that it is getting
closer to the target. Blind search offers extremely limited feedback and no sense
of approximation to a target. Assisted search, by contrast, attempts to provide
the feedback necessary for such approximation. Now, the precise form of this
feedback, though fully encapsulated in the strategy and information functions
that constitute an assisted search, is largely lost from the exchange probability
µ (i.e., a lot of the details about an assisted search get lost when substituting
an exchange probability for an assisted search). Nonetheless, in the very act of
replacing U, µ can be seen to introduce novel information, and this information
can be measured.
To see this, recall that the information in an event A, denoted by I(A), is
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by definition − log2P(A) and measures the number of bits inherent in A’s oc-
currence. This definition extends to two events A and B so that I(B|A) equals
by definition − log2P(B|A) and measures the number of bits inherent in B’s
occurrence given that A is known to have occurred. Now, this last definition
generalizes to probability measures, so that for probability measures ν and ξ,

I(ξ|ν) equals by definition log2
R
Ω

³
dξ
dν

´2
dν provided that ξ is absolutely con-

tinuous with respect to ν (see Dembski 2004; note that dξ
dν is a Radon-Nikodym

derivative). I(ξ|ν) is a special case of Rényi information (Rényi 1961; Cover and
Thomas 1991: 499—501) and can be thought of as measuring the number of bits
required for ξ to update ν. Think of it this way: initially we thought that ν
characterized some state of affairs but then we learned that ξ characterized that
state of affairs; I(ξ|ν) then measures the amount of information we’ve learned
in updating ν by ξ. In the case at hand, µ updates U and thereby introduces
I(µ|U) bits of novel information.
What is this last number? Before answering this question, let us introduce

a simplifying assumption that results in no loss of generality in the ensuing
discussion. Specifically, let us assume that the collection of all probability mea-
sures ν that are absolutely continuous with respect to U are dense in the weak
topology on M(Ω), the latter space being the set of all probability measures
defined on the Borel sets of Ω. This assumption holds for most search spaces
that come up in practice, certainly for finite sets Ω as well as for the manifolds
and topological groups that are the basis for much of physics (for exceptions
see Dembski 1990). Given this assumption, µ will be indistinguishable from a
probability measure that is absolutely continuous with respect to U. As a con-
sequence, we are justified treating µ as absolutely continuous with respect to U
and therefore taking I(µ|U) to be well-defined.
The remaining task, then, is to evaluate I(µ|U). Because µ may unduly

concentrate probability in portions of Ω to which U assigns little probability,
I(µ|U) may blow up enormously even if the assisted search that induces µ
provides little help in locating T (as when q is very close to p). Thus, what’s
needed is a lower bound on I(µ|U) for all probability measures µ such that
µ(T ) = q. In other words, for fixed T and q, we need to evaluate

inf{I(µ|U) : µ(T ) = q}.

Fortunately, this is easily done. It turns out that the following probability
measure, denoted by µ0, is in this set and achieves the infimum:

dµ0 =def [
q

p
1T +

1− q

1− p
1T c ]dU.

Here 1T is the indicator function for T and 1T c is the indicator function for the
set-theoretic complement of T .
Let us call µ0 the canonical exchange probability associated with an assisted

search whose probability of successfully locating T is 1− (1− q)m. The reason
this probability measure achieves the infimum is that I(µ|U) is, in essence, a
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variance (see Dembski 2004) and the probability density with respect to U that
defines µ0 (i.e.,

q
p1T+

1−q
1−p1T c) is the least squares solution for all such variances.

To see this, note first that µ0 is indeed an exchange probability since

µ0(T ) =

Z
T

(
q

p
1T +

1− q

1− p
1T c)dU =

q

p
U(T ) = q.

In addition, note thatZ
T

(
q

p
1T +

1− q

1− p
1T c)

2dU =
q2

p
+
(1− q)

2

1− p
.

Next, consider an arbitrary exchange probability µ that is absolutely continuous
with respect to U and for which

µ(T ) =

Z
T

dµ

dU
= q.

In that case

Z
Ω

(
q

p
1T +

1− q

1− p
1T c − dµ

dU
)2dU =

Z
T

(
q

p
1T − dµ

dU
)2dU

+

Z
T c

(
1− q

1− p
1T c − dµ

dU
)2dU

= −q
2

p
+

Z
T

(
dµ

dU
)2dU

− (1− q)2

1− p
+

Z
T c

(
dµ

dU
)2dU

= −
Z
T

(
q

p
1T +

1− q

1− p
1T c)

2dU+

Z
Ω

(
dµ

dU
)2dU

> 0,

which implies that

I(µ|U) = log2
Z
Ω

(
dµ

dU
)2dU > log2

Z
T

(
q

p
1T +

1− q

1− p
1T c)

2dU = I(µ0|U).

It immediately follows {I(µ|U) : µ(T ) = q} attains its infimum at the canonical
exchange probability µ0.
I(µ0|U) evaluates as follows:

I(µ0|U) = log2
"
q2

p
+
(1− q)

2

1− p

#
.
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This last expression simplifies if p and q are small and p is much smaller than
q (as is so often the case when searching for small targets in large spaces–
typically q has order of magnitude 1/m and p is much, much smaller than q).

Under these circumstances, we can drop the term (1−q)2
1−p within the logarithm

(because it’s now negligible) and write:

I(µ0|U) ≈ log2
q2

p
= log2

1

p
− 2 log2

1

q
.

Note that in the extreme case where the search is guaranteed to find a solution
(i.e., q = 1), this last equation becomes exact again and is

I(µ0|U) = log2
1

p
,

which is just the old-fashioned, event-based information of the target T with
respect to the uniform probability U.
As an example to which we can put actual numbers for I(µ0|U), take the

search for a given protein 100 amino acids in length (recall section 1). Call this
protein the target T . There are roughly 10130 amino acid sequences of length
100. This space of sequences is the search space Ω. The uniform probability U
on Ω assigns equal probability to each point in the space. Thus U(T ) = p is
roughly equal to 10−130. The fastest supercomputer at the time of this writing
maxes out at under 100 teraflops, which is 1014 floating point operations per
second. Let us therefore imagine that this is the fastest rate at which points in
Ω can be sampled and that points can be sampled for three years (which is just
under 108 seconds). A conservative estimate on the number of possible proteins
that can be sampled is therefore m = 1014 × 108 = 1022. If we now assume an
assisted search has probability 1−(1−q)m of reaching the target and that q has
order of magnitude roughly 1/m (as is typical in successful assisted searches),
then

I(µ0|U) ≈ log2
q2

p
= log2

1

p
− 2 log2

1

q
≈ log2 10130 − 2 log2 1022 ≈ 286.

Accordingly, the assisted search here adds at least 286 bits of information, which
for event-based information measures corresponds to an improbability of 10−86.
Note, the more effective the search, the greater the number of bits measured by
I(µ0|U). Thus, when the search guarantees a solution (i.e., q = 1), I(µ0|U) ≈
log2 10

130 ≈ 432, which is the maximal number of bits that an assisted search
can produce through a canonical exchange probability relative to this target.
It follows that assisted search, even with so modest a problem as finding a

specific protein 100 amino acids in length, requires a considerable amount of
information if it is to surpass blind search and successfully locate a target. How
are we to explain this net increase in information? One way is to explain it
away by suggesting that no targets are in fact being searched. Rather, a space
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of possibilities is merely being explored, and we, as pattern-seeking animals, are
merely imposing patterns, and therefore targets, after the fact (see, for instance,
Shermer 2003).
This explanation may work in certain instances where humans make up pat-

terns as they go along. But many patterns–whether in the arts or in engineering
or in the natural sciences–are objectively given. For instance, it is an objec-
tive fact whether a given polymer has a certain strength and resilience. Thus,
searching through a polymer configuration space to find a polymer with at least
that level of strength and resilience constitutes a search for an objectively given
pattern qua target. If such a polymer is found and if the target within which it
resides has small uniform probability, then a considerable amount of informa-
tion needs to be incorporated in an assisted search for it to be successful, a fact
that will be reflected in the information measure I as applied to the canonical
exchange probability (i.e., I(µ0|U)).
Besides explaining it away, there are two main options for explaining the

net increase in information that an assisted search brings to an otherwise blind
search. One is that an assisted search is intelligently designed by a purposive
agent (cf. engineering). The other is that it is a fortuitous gift bestowed by
an environment under the control of stochastic mechanisms (cf. evolutionary
biology). I will argue that this latter option is inadequate and that the increase
in information captured by I(µ0|U) is properly viewed as the result of a form
of intelligence that cannot be reduced to stochastic mechanisms.
By intelligence, here, I mean something quite definite, namely, the causal

factors that change one probability distribution into another and thus, in the
present discussion, transform a blind search into an assisted search. A logically
equivalent, information-theoretic reformulation of this definition takes intelli-
gence as those causal factors that induce a net increase in information as mea-
sured by the information measure I. Note that by a stochastic mechanism, here,
I mean any causal process governed exclusively by the interplay between chance
and necessity and characterized by unbroken deterministic and nondeterministic
laws.
Intelligence acts by changing probabilities. Equivalently, intelligence acts

by generating information. For instance, a slab of marble temporarily has a
high probability of remaining unchanged. Then, without warning, Michelangelo
decides to sculpt David, and the probability of that marble slab taking on a new
form (i.e., receiving new information) now changes dramatically.
This definition of intelligence as the causal factors responsible for changes

in probabilities or, equivalently, for net increases in information is noncircular
and, on reflection, should seem unproblematic. If there is a problem, it concerns
whether intelligence is reducible to stochastic mechanisms. The neo-Darwinian
theory of evolution, for instance, purports to account for biological complexity
and diversity through an intelligence that is a stochastic mechanism, namely, the
joint action of natural selection and random genetic mutations. To be sure, this
mechanism operates in nature and is responsible for significant changes in the
biological world. Nevertheless, is it the case that this mechanism accounts for
biological complexity and diversity without remainder? In other words, is the
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intelligence responsible for biological complexity and diversity entirely reducible
to this mechanism?
In general, to justify the reduction of intelligence to stochastic mechanisms,

these mechanisms need to supply a complete, self-consistent account of how
changes in probability or net increases in information arise. As we shall see, the
mathematics of blind and assisted searches precludes such an account, whether
for neo-Darwinian assisted searches or for assisted searches in general.

5 Displacement
To see why intelligence, as defined in the last section, is not reducible to sto-
chastic mechanisms in accounting for the probability change associated with an
assisted search replacing a blind search, let us review where we are in the argu-
ment. We started with a large search space Ω that is a compact metric space
under the metric D. D, in turn, induces a uniform probability U. Our task is to
find a target T in Ω, but U(T ) = p is so small that blind search, as represented
by uniform random sampling, is highly unlikely to locate T with any feasible
sample sizem. In other words, 1−(1−p)m, the probability of locating the target
by uniform random sampling in m steps, is close to 0. We therefore look to an
assisted search that induces a canonical exchange probability µ0. µ0(T ) = q,
and the probability of the assisted search locating the target T in m steps is
1− (1− q)m. This last probability needs to be reasonably close to 1 (as is the
case when q has order of magnitude at least 1/m). When 1−(1−q)m is close to
1, we have a satisfactory explanation for why the assisted search that induces µ0
successfully locates T . The same cannot be said for blind search (qua uniform
random sampling) since its probability of locating T in m steps is minuscule.
All this is unproblematic. But it leaves unanswered the precise causal factors

responsible for the assisted search that induces µ0. In general terms, µ0 derives
from an ambient environment (or context) in which the search for T is embedded.
This environment is intelligent in that, as defined in the last section, it is capable
of altering probabilities by replacing a blind search with an assisted search.
But in this replacement, is such an environment entirely reducible to stochastic
mechanisms? If so, then a stochastic mechanism must account for how µ0 came
to replace U in the search for T .
Here’s how this would work: the original search space Ω has little struc-

ture; by itself, it cannot, except as a highly improbable event (improbability
being gauged by U), deliver a solution from the target T . Ω must therefore be
embedded in a larger environment capable of delivering an assisted search that
induces µ0, which then in turn is capable of delivering a solution from the target
T . But if this larger environment is driven by stochastic mechanisms and if a
stochastic mechanism within Ω0 is responsible for delivering µ0, then µ0 is itself
the solution of a stochastically driven search.
What is this search for µ0? To answer this question, let us first ask, What is

the target of this new search? The original target was T , and the original search
aimed to find some element in T (i.e., a solution in this target). But if µ0, in
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representing an assisted search that effectively locates the original target T , is
a solution for some new search, to what new target qua solution space does µ0
belong? Clearly, the solutions in this new target will need to comprise all other
probability measures on Ω that represent assisted searches at least as effective
as the search for T represented by µ0: to omit any of these is to artificially
constrict the new target, making unduly difficult the search for assisted searches
that make the original search for T feasible; on the other hand, to include any
more than these is to include assisted searches that are strictly less effective
than the search represented by µ0, and thus to open the new target to assisted
searches that may be unlikely to locate the original target T . Such solutions
would be no solutions at all.
Since any probability measure ν on Ω for which ν(T ) > µ0(T ) represents

an assisted search at least as effective in locating T as the assisted search that
induced µ0, the new target is therefore properly defined as follows:

T =def {ν ∈M(Ω) : ν(T ) > µ0(T )}.

Here M(Ω) denotes the set of all Borel probability measures on Ω. Note that
any probability measure within T is at least as effective as µ0 for locating T ,
whereas any probability measure outside will be strictly less effective than µ0.
Also, it follows immediately from the results of section 4 and from the fact that
µ0(T ) = q that I(µ0|U) = inf{I(ν|U) : ν(T ) > q} = inf{I(ν|U) : ν ∈ T}. Thus,
each element of T contributes at least as much information as µ0 to an assisted
search for T .
Given this characterization of T , what is the search space in which the search

for T takes place? T , the new target being searched, is a set of probability
measures. Moreover, since Ω has a topology induced by the metric D, those
probability measures need to respect that topology. Probability measures that
respect Ω’s topology are those defined on the Borel sets of Ω. For this reason,
T was explicitly defined in reference to M(Ω), which comprises the probability
measures defined on the Borel sets of Ω. Accordingly, the search for T is a
search within M(Ω). This latter space is the most parsimonious way to cash
out the search space in which the search for T takes place.
To summarize, the problem we face is how to account for an assisted search

that renders the probability of locating a target T highly probable. Initially, the
problem was to find T in Ω using only Ω’s metric structure D and the uniform
probabilityU induced byD on Ω. Because this problem proved to be intractable
for blind search (specifically, the problem was effectively unsolvable for uniform
random sampling), an assisted search was required. The assisted search, repre-
sented by the canonical exchange probability µ0, adequately explained finding
a solution within T . Yet, procuring such an assisted search required its own
search, namely, the search for T = {ν ∈ M(Ω) : ν(T ) > µ0(T )} within M(Ω).
The initial search explored Ω to find T . The new search exploresM(Ω) to find
T . The problem of finding T has therefore been displaced to the new problem of
finding T . This is the displacement problem. As we shall see, the displacement
problem precludes stochastic mechanisms from reductively explaining assisted
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searches. Stochastic mechanisms may be involved, but they cannot be the whole
story.

6 Higher-Level Search
How, then, shall we understand the search for T withinM(Ω)? By analogy with
the search for T in Ω, let us first determine which structures inM(Ω) are relevant
to the search for T . As it is, geometric and measure-theoretic structures on Ω
extend straightforwardly and canonically to corresponding structures onM(Ω).
For instance, take the metric D on Ω. Because D makes Ω a compact metric
space, D a fortiori makes Ω a complete separable metric space. Now, most of the
interesting mathematical work in probability theory focuses on separable metric
spaces and, specifically, on separable topological spaces that can be metrized
with a complete metric–these are known as Polish spaces (see Cohn 1996: ch.
8).
As it turns out,M(Ω) is itself a separable metric space in the Kantorovich-

Wasserstein metric D, which induces the weak topology on M(Ω). For Borel
probability measures µ and v on Ω, this metric is defined as follows:

D(µ, ν) = inf
©R

D(x, y)ζ(dx, dy) : ζ ∈ P2(µ, ν)
ª

= sup
©¯̄R

f(x)µ(dx)− R f(x)ν(dx)¯̄ : kfkL ≤ 1ª
In the first equation here, P2(µ, ν) is the collection of all Borel probability
measures on Ω × Ω with marginal distributions µ on the first factor and ν
on the second. In the second equation here, f ranges over all continuous
real-valued functions on Ω for which the Lipschitz seminorm is ≤ 1 (kfkL =
sup {|f(x)− f(y)|/D(x, y) : x, y ∈ Ω, x 6= y}). Both the infimum and the supre-
mum in these equations define metrics. The first is called theWasserstein metric,
the second the Kantorovich metric. Though the two expressions appear quite
different, they are known to be equal (see Dudley 1976).
The Kantorovich-Wasserstein metric D is the canonical extension to M(Ω)

of the metric D on Ω. It is fair to say that it extends the metric structure of
Ω as fully as possible to M(Ω). For instance, if δx and δy are point masses in
M(Ω), then D(δx, δy) = D(x, y). It follows that the canonical embedding of Ω
intoM(Ω), i.e., x 7→ δx, is in fact an isometry.
Perhaps the best way to see that D scrupulously extends the metric struc-

ture of Ω to M(Ω) is to consider the following reformulation of this metric.
Let Mav(Ω) = { 1n

P
1≤i≤n δxi : xi ∈ Ω, n a positive integer}. It is readily

seen that Mav(Ω) is dense in M(Ω) in the weak topology. Note that the xis
are not required to be distinct, implying that Mav(Ω) consists of all convex
linear combinations of point masses with rational weights; note also that such
combinations, when restricted to a countable dense subset of Ω, form a count-
able dense subset of M(Ω) in the weak topology, showing that M(Ω) is itself
separable in the weak topology.
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Now, for any measures µ and v in Mav(Ω), it is possible to find a positive
integer n such that µ = 1

n

P
1≤i≤n δxi and ν = 1

n

P
1≤i≤n δyi . Next, define

Dperm(
1
n

P
1≤i≤n δxi ,

1
n

P
1≤i≤n δyi) =def min{ 1n

P
1≤i≤nD(xi, yσi) : σ ∈ Sn}

where Sn is the symmetric group on the numbers 1 to n. Dperm looks for the
best way to match up point masses for any pair of measures in Mav(Ω) vis-
a-vis the metric D. It is straightforward to show that Dperm is well-defined
and constitutes a metric on Mav(Ω). The only point in need of proof here
is whether for arbitrary measures 1

n

P
1≤i≤n δxi and

1
n

P
1≤i≤n δyi in Mav(Ω),

and for any measures 1
mn

P
1≤i≤mn δzi =

1
n

P
1≤i≤n δxiand

1
mn

P
1≤i≤mn δwi =

1
n

P
1≤i≤n δyi ,

min{ 1n
P

1≤i≤nD(xi, yσi) : σ ∈ Sn} =
min{ 1

mn

P
1≤i≤mnD(zi, wρi) : ρ ∈ Smn}.

This equality does in fact hold. Crucial in its proof is Philip Hall’s well-known
“marriage lemma” from combinatorial theory. Given this equality, it follows that
Dperm = D on Mav(Ω) and, because Mav(Ω) is dense in M(Ω), that Dperm

extends uniquely to D on all ofM(Ω) (for the proof see Dembski 2004). Dperm,
as a characterization of the Kantorovich-Wasserstein metric, will be important
in the sequel.
Thus, given that D metrizes Ω, D is the canonical metric that metrizes

M(Ω). And, just as D induces a compact topology on Ω, so does D induce a
compact topology onM(Ω). This last result is a direct consequence of D induc-
ing the weak topology onM(Ω) and of Prohorov’s theorem, which ensures that
M(Ω) is compact in the weak topology provided that Ω is compact (Prohorov’s
theorem is actually somewhat stronger; see Billingsley 1999: 59).
Given that D makes M(Ω) a compact metric space, the next question is

whether this metric induces a uniform probability U on M(Ω). Accordingly,
given that M0(Ω) = Ω, M1(Ω) = M(Ω), M2(Ω) = M(M(Ω)), and in general
Mk(Ω) =M(Mk−1(Ω)), it would follow that U resides in M2(Ω). As it turns
out, M(Ω) is uniformizable with respect to D. To see this, note that if

Uε =
1
n

P
1≤i≤n δxi

denotes a finitely supported uniform probability that is based on an ε-lattice
{x1, x2, . . . , xn} ⊂ Ω, then Uε approximates U to within ε, i.e., D(Uε,U) 6 ε.
And from this it follows that for n∗ =

¡
2n−1
n

¢
= (2n−1)!

n!(n−1)! , {θ1, θ2, . . . , θn∗} ⊂
M(Ω) is an ε

n -lattice as the θks run through all finitely supported probability
measures 1

n

P
1≤i≤n δwiwhere the wis are drawn from {x1, x2, . . . , xn} allowing

repetitions. Note that
¡
2n−1
n

¢
is the number of ways of filling n slots with n

identical items (see “orderings involving two kinds of elements” and “occupancy
problems” in Feller 1968: ch. 1).
It follows that, as Uε converges to U in the weak topology on M(Ω), the

sample distribution
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Uε =
1

n∗
X

1≤k≤n∗ δθk

converges to the uniform probability U in the weak topology onM2(Ω). More-
over, for D, which is the iterated Wasserstein-Kantorovich metric on M2(Ω)
(note the double bars over D; M2(Ω) is likewise a compact metric space with
respect to D), D(Uε,U) 6 ε

n . The details here are all elementary combinatorics
and unpacking the definition of uniform probability as given in Dembski (1990).
The search for T within M(Ω) therefore precisely parallels the search for T

within Ω. Just as the D induces a compact metric structure on Ω that in turn
induces a uniform probability U, so does the Kantorovich-Wasserstein metric
D induce a compact metric structure on M(Ω) that in turn induces a uniform
probability U. The obvious question, now, is how U(T ) compares to U(T ) and
what that the comparison indicates about the search for T within M(Ω) being
either easier or more difficult than the search for T within Ω. We’ll return to this
question, but first we examine some deeper connections between Ω and M(Ω).

7 Liftings, Lowerings, and No Free Lunch
The parallels between Ω andM(Ω) don’t stop with these spaces being compact
metric spaces that support uniform probabilities. In addition, these spaces allow
for considerable interaction through what may be called liftings and lowerings.
Think of M(Ω) as a higher-order space and Ω as a lower-order space with
structures in the lower having corresponding structures in the higher and vice
versa. Thus, structures in Ω may be lifted to structures inM(Ω) and structures
inM(Ω) may correspondingly be lowered to structures in Ω.
Consider, for instance, the following. For a bounded continuous real-valued

function f on Ω (actually, all continuous real-valued functions on Ω, M(Ω),
M2(Ω), etc. are bounded since these spaces are compact), we can define a
(bounded) continuous real-valued function f on M(Ω) as θ 7→ R

Ω
f(x)dθ(x).

Note that f is indeed continuous onM(Ω) because weak convergence is defined
in this space as θn converges to θ provided that for all bounded continuous real-
valued functions h on Ω,

R
Ω
h(x)dθn(x) converges to

R
Ω
h(x)dθ(x). Note also

that for θ = δx (i.e., the point mass at x), f(δx) = f(x). Call f the lifting of f
from Ω to M(Ω). Likewise, for F a continuous real-valued function on M(Ω),
define eF on Ω as x 7→ eF (δx). eF is continuous on Ω. Call eF the lowering of F

from M(Ω) to Ω. It then follows that ef = f though in general it need not be

the case that eF = F (lowerings can lose information whereas liftings do not).
Note that we can give up on continuity in defining liftings and lowerings. Thus,
for instance, if f is a nonnegative measurable function on Ω, we can define f
on M(Ω) as before, namely f(θ) =

R
Ω
f(x)dθ(x). Lowerings can likewise be

generalized to arbitrary measurable functions.
We now prove a result that is the key to lifting and lowering probability

measures between M(Ω) andM2(Ω):
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Theorem (No Free Lunch). U =
R
M(Ω)

θdU(θ).

Remarks. The integral on the right side of this equation is vector-valued.
Vector-valued integration has been well understood since the work of Gelfand
(1936) and Pettis (1938) in the 1930s and has been widely applied since then
(see Dinculeanu 2000). Such integrals exist provided that all continuous linear
functionals applied to them (which, in this case, amounts to integrating with
respect to all bounded continuous real-valued functions on Ω) equals integrating
over the continuous linear functions applied inside the integral. Essentially, lin-
ear functionals reduce vector-valued integration to ordinary integration. Thus,
the equality in the statement of this theorem means that for all continuous
real-valued f on Ω,R

Ω
f(x)dU(x) =

R
M(Ω)

£R
Ω
f(x)dθ(x)

¤
dU(θ).

Because of the compactness of Ω and M(Ω), the existence and uniqueness ofR
M(Ω)

θdU(θ) is not a problem.

According to the equationU =
R
M(Ω)

θdU(θ), averaging all probability mea-

sures on M(Ω) with respect to the uniform probability U is just the uniform
probability U on Ω. This, in measure-theoretic terms, restates the No Free
Lunch theorems of Wolpert and Macready (1997), which say that when averaged
over all fitness functions (whether time-dependent or time-independent fitness
functions), no evolutionary search procedure outperforms any other. Thus, in
particular, these searches, when averaged, do not outperform blind search. If
we now think of θ under the integral in

R
M(Ω)

θdU(θ) as an exchange probabil-
ity for an assisted search, this formulation of the No Free Lunch theorem says
that the average performance of all assisted searches is no better than uniform
random sampling, which throughout this paper epitomizes blind search.

Proof. We prove the theorem in the case where Ω is finite (the infinite case is
proven by considering finitely supported uniform probabilities on lattices, and
then taking the limit as the mesh of these lattices goes to zero–see Dembski
1990). Suppose, therefore, that Ω = {x1, x2, . . . , xn}. For large N , consider all
probabilities of the form

θ =
P
1≤i≤n

Ni

N δxi

such that the Nis are nonnegative integers that sum to N . From elementary
combinatorics, there are N∗ =

¡
N+n−1
n−1

¢
distinct probabilities like this (see Feller

1968: 38). Therefore, define

UN =def
1

N∗
X

1≤k≤N∗ δθk

so that the θks run through all such θ. As we saw in the last section, UN

converges in the weak topology to U as N ↑ ∞.
It’s enough, therefore, to show that

22



R
M(Ω)

θdUN (θ) =
1

N∗
X

1≤k≤N∗ θk

is the uniform probability on Ω. And for this, it is enough to show that for xi
in Ω,

1

N∗
X

1≤k≤N∗ θk({xi}) =
1

n
.

For definiteness, let us consider x1. We can think of x1 as being occupied
with weights that run through all the multiples of 1/N ranging from 0 to N .
Hence, for fixed integer M (0 6 M 6 N), the contribution of the θks with
weight M/N at x1 is

M ·
µ
N −M + n− 2

n− 2
¶
.

The term
¡
N−M+n−2

n−2
¢
is the number of ways of occupying n−1 slots with N−M

identical items (see Feller 1968: 38). Accordingly, the total weight that the θks
assign to x1 when normalized by 1/N∗ is

1

N∗
X

1≤k≤N∗ θk({x1}) =
1

N∗
X

0≤M≤N M ·
µ
N −M + n− 2

n− 2
¶
.

This last expression is messy and difficult to evaluate directly. But it does
not need to be evaluated directly. Because this expression is independent x1
and is also the probability of x1, it follows that the probability of all xis under
1
N∗
P
1≤k≤N∗ θk is the same. In other words, for each xi in Ω,

U({xi}) = 1

N∗
X

1≤k≤N∗ θk({xi}) =
1

n
.

This is what needed to be proved. ¥

Corollary. Suppose µ is a probability measure on Ω that is absolutely con-
tinuous with respect to U. Let dµ

dU denote the Radon-Nikodym derivative of µ

with respect to U and let dµ
dU denote its lifting. If we now define the lifting of

µ as µ = dµ
dUdU, then µ is a probability measure on M(Ω). Moreover, since

U is absolutely continuous with itself so that dU
dU is identically equal to 1 on

Ω, it follows that the lifting of dU
dU , i.e.,

dU
dU , is identically equal to 1 on M(Ω),

and thus the lifting of U, as just defined, is in fact the uniform probability on
M(Ω). Thus, whether we interpret U as the uniform probability on M(Ω) in
the sense of Dembski (1990) or as the lifting of the uniform probability U on Ω,
both signify the same probability measure onM(Ω).

Proof. It is enough to see that µ is indeed a probability measure on M(Ω),
and for this it is enough to see that
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Z
M(Ω)

dµ

dU
(θ)dU(θ) =

Z
M(Ω)

·Z
Ω

dµ

dU
(x)dθ(x)

¸
dU(θ)

=

Z
Ω

dµ

dU
(x)d

"Z
M(Ω)

θdU(θ)

#
(x)

=

Z
Ω

dµ

dU
(x)dU(x) [by the NFL theorem]

=

Z
Ω

dµ

= 1. ¥

By analogy with the No Free Lunch theorem, it is tempting to think that
for µ absolutely continuous with respect to U,

µ =

Z
M(Ω)

θdµ(θ).

This equality, however, does not hold. To see this, suppose that µ is absolutely
continuous with respect to U and that for some set A in Ω, µ(A) = 0 but
U(A) > 0. In that case

 Z
M(Ω)

θdµ(θ)

 (A) =

Z
Ω

1A(x)d

 Z
M(Ω)

θdµ(θ)

 (x)
=

Z
Ω

1A(x)d

 Z
M(Ω)

θ
dµ

dU
(θ)dU(θ)

 (x)
=

Z
M(Ω)

θ(A)

·Z
Ω

dµ

dU
dθ

¸
dU(θ)

> 0.

This last inequality holds because the set of θs in M(Ω) for which both θ(A)
and θ(A) are both strictly positive has nonzero measure under U, thus making

the integrand θ(A)
hR
Ω

dµ
dUdθ

i
strictly greater than zero on a set of positive U

probability.
For completeness, given a probability measure Θ onM(Ω) that is absolutely

continuous with respect to U, we define its lowering eΘ as follows: since Θ is
absolutely continuous with respect to U, take its Radon-Nikodym derivative dΘ

dU

on M(Ω) and lower it to fdΘ
dU

on Ω as defined at the start of this section. The

24



lowering of Θ is then defined as the measure fdΘ
dU

dU on Ω. Note that this need

not be a probability measure since Ω =def {δx ∈ M(Ω) : x ∈ Ω} defines a set
of U-probability zero in M(Ω), allowing dΘ

dU
to be arbitrarily defined on that

set. Nonetheless, if µ on Ω not only is absolutely continuous with respect to U
but also has a continuous Radon-Nikodym derivative dµ

dU on Ω, then dµ
dU is itself

continuous onM(Ω), and
fdµ
dU = dµ

dU , implying that eµ = µ.

8 The Displacement Theorem
Theorem (Displacement Theorem). Suppose that Ω has uniform proba-
bility U and that M(Ω) has uniform probability U. Let T be a target in Ω
such that U(T ) = p (> 0) and let µ be an exchange probability representing
an assisted search for T such that µ(T ) = q (> p). Define T = {ν ∈ M(Ω) :
ν(T ) > q}. Then, if Ω = {x1, x2, . . . , xK} is finite with K elements such that
T = {x1, x2, . . . , xK1} for K1 = Kp (i.e., p = K1/K),

U(T ) =
Γ(K)

Γ(K(1− p))Γ(Kp)

1−qZ
0

tK(1−p)−1(1− t)Kp−1dt

<
√
K ·
√
p

q
·
"µ
1− q

1− p

¶1−pµ
q

p

¶p#K
for K > 2q − 1

q − p
.

<
√
K ·
√
p

q
· £1− r2

¤K
for r = q − p and K > 2q − 1

q − p
.

Because both these last expressions are exponential in K and because both the
terms in brackets are strictly less than 1 for q > p, it follows that the last two
expressions converge to zero as K ↑ ∞. Thus, for infinite Ω and nonatomic U,
U(T ) = 0.

Remarks. Here Γ is the gamma function, i.e., Γ(x) =
R∞
0

e−ttx−1dt for x
positive (recall that for positive integers n, Γ(n) = (n − 1)!). For x and y
positive, the beta function is defined as follows:

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
=

Z 1

0

tx−1(1− t)y−1dt.

It follows that for finite Ω, U(T ) is given by a cumulative beta distribution.
Although there is no closed expression for U(T ) in terms of p, q, and K, in

some cases U(T ) can be readily evaluated. Recall finding a protein 100 amino
acids in length (section 6). Here we set p = 10−130, q = 10−22, K = 10130, and
K1 = 1. In that case
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U(T ) =
Γ(K)

Γ(K(1− p))Γ(Kp)

1−qZ
0

tK(1−p)−1(1− t)Kp−1dt

=
Γ(10130)

Γ(10130 − 1)Γ(1)

1−10−22Z
0

t10
130−2(1− t)0dt

= (10130 − 1) · t10
130−1

10130 − 1 |
1−10−22
0

= (1− 10−22)10130−1

= (1− 10
108

10130
)10

130−1

≈ e−10
108

.

Note that since K = 10130 = 1/p, plugging numbers into the upper bound

estimate
√
K ·

√
p
q ·

·³
1−q
1−p

´1−p ³
q
p

´p¸K
yields:

√
K ·
√
p

q
·
³
1−q
1−p

´K−1
·
µ
q

p

¶
= 1065 · 10−43 · 10108

³
1−10−22
1−10−130

´10130−1
6 10130 ·

³
1−10−22
1−10−130

´10130
≈ 10130

e−10
108

e−1

= e−10
108+1+130 ln 10

< e−10
108+301

It follows not just in this instance that the higher-order probability U(T )
is exponential in the lower-order probability U(T ), but that this result holds
quite generally since, as K increases but p and q remain fixed, this bound will
decrease all the more. For instance, substituting the multiple nK for K in this
bound yields

√
nK·
√
p

q
·
·³

1−q
1−p

´1−pµq
p

¶p¸nK
=
√
nK ·

√
p

q
·
³
1−q
1−p

´n(K−1)
·
µ
q

p

¶n
=
√
n · 1065−43+108n ·

³
1−10−22
1−10−130

´n(10130−1)
6
√
n · 1022+108n ·

³
1−10−22
1−10−130

´n10130
≈ eln

√
n · eln 10(108n+22) · e−(10108·n)+n

6 e−10
108n+250n+ln

√
n+51.
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Not only is this bound exponential in n, but the term −10108n completely
dominates the exponent.
Accordingly, this inequality allows maximal tolerance when the cardinality

of the underlying search space Ω equals 1/p and gets tighter as Ω gets refined.
In particular, refining the probability space Ω only makes the lifted probability
U(T ) worse (i.e., smaller still). In the limit, as Ω becomes infinite and U
constitutes a nonatomic uniform probability on Ω, U(T ) = 0. By definition,
U is nonatomic iff for every x in Ω, U({x}) = 0 (see Parthasarathy 1967:
53—55). This assumption is necessary for the Displacement Theorem to show
that U(T ) = 0 because it assures that as K increases and as finitely supported
uniform probabilities converge weakly to U, those probabilities, when applied
to T , are converging to U(T ) (cf. conditionalization of uniform probabilities on
subspaces in Dembski 1990).

Proof. We start with the finite case: Ω = {x1, x2, . . . , xK}, T = {x1, x2, . . . ,
xK1}, 1 6 K1 < K, and p = K1/K. For a given N , consider all probabilities
θ = 1

N

P
1≤i≤N δwiwhere the wis are drawn from {x1, x2, . . . , xK} allowing rep-

etitions. By elementary combinatorics (recall the proof of the No Free Lunch
Theorem–note the slight change in notation), there are N∗ =

¡
N+K−1
K−1

¢
=

(N+K−1)!
N!(K−1)! such probabilities. Accordingly, define UN =

1

N∗
X

1≤i≤N∗ δθi where

the θis range over these θs. UN then converges weakly to U.
Next, consider the probabilities θ = 1

N

P
1≤i≤N δwiwhere the wis are drawn

from {x1, x2, . . . , xK} allowing repetitions but also for which the number of wis
among T = {x1, x2, . . . , xK1} is at least bNqc (here bxc denotes the greatest
integer contained in x; thus b5.4c = 5). If we let QN denote the set of all such
finitely supported probabilities that assign probability at least q to T , and if we
let K2 = K−K1 and q(N) = N − bNqc, then by elementary combinatorics QN

has the following number of elements:

|QN | =
q(N)X
j=0

µ
N − j +K1 − 1

K1 − 1
¶µ

j +K2 − 1
K2 − 1

¶
.

Accordingly, it follows that

U(T ) = lim
N→∞

|QN |
N∗

= lim
N→∞

q(N)P
j=0

¡
N−j+K1−1

K1−1
¢¡

j+K2−1
K2−1

¢
¡
N+K−1
K−1

¢ (*)

.

This last limit simplifies. Note first that¡
N+K−1
K−1

¢
= NK−1+(lower order terms in N)

(K−1)! ,
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implying that
¡
N+K−1
K−1

¢ ∼ NK−1
(K−1)! , i.e.,

lim
N→∞

(N+K−1
K−1 )

NK−1/(K−1)! = 1.

Similarly, note that
¡
N−j+K1−1

K1−1
¢
= (N−j)K1−1+(lower order terms in N−j)

(K1−1)! and that¡
j+K2−1
K2−1

¢
= jK2−1+(lower order terms in j)

(K2−1)! so that¡
N−j+K1−1

K1−1
¢ ∼ (N−j)K1−1

(K1−1)! and
¡
j+K2−1
K2−1

¢ ∼ jK2−1
(K2−1)! .

Accordingly, there is no problem substituting NK−1
(K−1)! for

¡
N+K−1
K−1

¢
in the

denominator of (*). In the numerator of (*), the corresponding substitution
does not follow immediately because the limits of summation depend on N via

q(N). Nonetheless, because in general
MP
j=0

jn = Mn+1

n+1 + (lower order terms

in M), the effect of summing lower order terms up to q(N) is still swamped
by dividing out by

¡
N+K−1
K−1

¢ ∼ NK−1
(K−1)! . More precisely, the lower-order terms

in N and j from the numerator have exponents that sum to no more than
(K1 − 1) + (K2 − 1) − 1 = K − 3. Summing from zero to q(N) adds 1 to this
exponent, making it K − 2. Therefore, dividing by NK−1

(K−1)! , where the exponent
is higher still, takes to zero these lower-order terms as N −→∞.
We thus have the following simplification:

U(T ) = lim
N→∞

|QN |
N∗

= lim
N→∞

q(N)P
j=0

(N−j)K1−1
(K1−1)!

jK2−1
(K2−1)!

NK−1
(K−1)!

(**)

This last limit can now be rewritten as follows:

lim
N→∞

q(N)P
j=0

(N−j)K1−1
(K1−1)!

(j)K2−1

(K2−1)!

NK−1
(K−1)!

= lim
N→∞

(K − 1)!
(K1 − 1)!(K2 − 1)!

q(N)X
j=0

1

N

(N − j)K1−1

NK1−1
jK2−1

NK2−1

=
Γ(K)

Γ(K1)Γ(K2)
lim

N→∞

q(N)X
j=0

1

N
(1− j

N
)K1−1(

j

N
)K2−1

=
Γ(K)

Γ(Kp)Γ(K(1− p))

Z 1−q

0

(1− t)Kp−1tK(1−p)−1dt

=
Γ(K)

Γ(K(1− p))Γ(Kp)

Z 1−q

0

tK(1−p)−1(1− t)Kp−1dt.
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This proves our main result, which is that

U(T ) =
Γ(K)

Γ(K(1− p))Γ(Kp)

R 1−q
0

tK(1−p)−1(1− t)Kp−1dt.

In this last expression, let us use Stirling’s exact formula to calculate the
factor in front of the integral (without loss of generality assume p is rational
and K such that Kp is an integer). According to Stirling’s exact formula,
for every positive integer n,

√
2πnn+1/2e−n < n! <

√
2πnn+1/2e−n+1/(12n),

which implies that there is a function ε(n) satisfying 0 < ε(n) < 1 such that
n! =

√
2πnn+1/2e−n+ε(n)/(12n) (Spivak 1980: 543). It now follows that

:

Γ(K)

Γ(K(1− p))Γ(Kp)

=
K!

(K(1− p))!(Kp)!
· K(1− p)Kp

K

= Kp(1− p) ·
√
2πKK+1/2e−K+ε(K)/(12K)√

2π(Kp)Kp+1/2e−Kp+ε(Kp)/(12Kp)
·

1√
2π(K(1− p))K(1−p)+1/2e−K(1−p)+ε(K(1−p))/(12K(1−p))

=

r
Kp(1− p)

2π
·
³
(1− p)(1−p)pp

´−K
· e ε(K)

12K − ε(Kp)
12Kp − ε(K(1−p))

12K(1−p)

6
r

Kp(1− p)

2π
· e 1

12 ·
³
(1− p)(1−p)pp

´−K
<

p
Kp(1− p) ·

³
(1− p)(1−p)pp

´−K
for all K.

Moreover, the integral in this expression can be bounded as follows for large
K:

Z 1−q

0

tK(1−p)−1(1− t)Kp−1dt 6 (1− q)(1− q)K(1−p)−1qKp−1

= (1− q)K(1−p)qKp−1

How large does K have to be for this last inequality to hold? Consider the
function tm(1−t)n. For t = 0 as well as to t = 1, this function is 0. Elsewhere on
the unit interval it is strictly positive. From 0 onwards, the function is therefore
monotonically increasing to a certain point. Up to what point? To the point
where the derivative of tm(1 − t)n, namely mtm−1(1 − t)n − ntm(1 − t)n−1 =
tm−1(1− t)n−1[m(1− t)−nt], equals 0. And this occurs when the expression in
brackets equals 0, which is when t = m/(m+n). Thus, letting m = K(1−p)−1
and n = Kp− 1, the integrand in the preceding integral increases from 0 to
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K(1− p)− 1
(K − 2) =

K

K − 2(1− p)− 1

K − 2 .

Since p < q and therefore 1−p > 1−q, elementary manipulations show that this
cutoff is at least 1 − q whenever K > 2q−1

q−p (which is automatic if q < 1
2 since

then the right side is negative). Thus, if K > 2q−1
q−p , when integrated over the

interval [0, 1− q], the integrand reaches its maximum at 1− q. That maximum
times the length of the interval of integration therefore provides an upper bound
for the integral, which justifies the preceding inequality.
It now follows that for large K,

Γ(K)

Γ(K(1− p))Γ(Kp)

R 1−q
0

tK(1−p)−1(1− t)Kp−1dt

<
p
Kp(1− p) ·

³
(1− p)(1−p)pp

´−K
· (1− q)K(1−p)qKp−1

=

s
Kp(1− p)

q2

³
(1− p)(1−p)pp

´−K
· ((1− q)(1−p)qp)K

=

s
Kp(1− p)

q2

"µ
1− q

1− p

¶1−pµ
q

p

¶p#K

<
√
K ·
√
p

q
·
"µ
1− q

1− p

¶1−pµ
q

p

¶p#K
for K > 2q − 1

q − p
.

This last expression is exponential in K, with its limit going to zero as K ↑ ∞.
This is because the term in brackets, to which the power of K is taken, is strictly
less than 1 whenever q > p. To see this, note first that in general for 0 < a < b
and for r > −a, (1 + r

a)
a < (1 + r

b )
b (Hardy et al. 1952: 37). If we now write

r = q − p, which is greater than zero, the term in brackets can be rewritten asµ
1 +

−r
1− p

¶1−pµ
1 +

r

p

¶p
,

which by a double application of the previous inequality (choosing b in each case
to be 1) is therefore strictly less than (1 − r)(1 + r) = 1 − r2 < 1. Hence the
final inequality in the statement of the theorem. ¥

9 Conclusion: The No Free Lunch Regress
What is the significance of the Displacement Theorem? It is this. Blind search
for small targets in large spaces is highly unlikely to succeed. For a search to
succeed, it therefore needs to be an assisted search. Such a search, however,
resides in a target of its own. And a blind search for this new target is even less
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likely to succeed than a blind search for the original target (the Displacement
Theorem puts precise numbers to this). Of course, this new target can be
successfully searched by replacing blind search with a new assisted search. But
this new assisted search for this new target resides in a still higher-order search
space, which is then subject to another blind search, more difficult than all those
that preceded it, and in need of being replaced by still another assisted search.
And so on. This regress, which I call the No Free Lunch Regress, is the upshot
of this paper. It shows that stochastic mechanisms cannot explain the success
of assisted searches.
This last statement contains an intentional ambiguity. In one sense, sto-

chastic mechanisms fully explain the success of assisted searches because these
searches themselves constitute stochastic mechanisms that, with high probabil-
ity, locate small targets in large search spaces. Yet, in another sense, for sto-
chastic mechanisms to explain the success of assisted searches means that such
mechanisms have to explain how those assisted searches, which are so effective
at locating small targets in large spaces, themselves arose with high probability.
It’s in this latter sense that the No Free Lunch Regress asserts that stochastic
mechanisms cannot explain the success of assisted searches.
To appreciate the significance of the No Free Lunch Regress in this latter

sense, consider the case of evolutionary biology. Evolutionary biology holds that
various (stochastic) evolutionary mechanisms operating in nature facilitate the
formation of biological structures and functions. These include preeminently
the Darwinian mechanism of natural selection and random variation, but also
others (e.g., genetic drift, lateral gene transfer, and symbiogenesis). There is
a growing debate whether the mechanisms currently proposed by evolutionary
biology are adequate to account for biological structures and functions (see, for
example, Depew and Weber 1995, Behe 1996, and Dembski and Ruse 2004).
Suppose they are. Suppose the evolutionary searches taking place in the biolog-
ical world are highly effective assisted searches qua stochastic mechanisms that
successfully locate biological structures and functions. Regardless, that success
says nothing about whether stochastic mechanisms are in turn responsible for
bringing about those assisted searches.
Evolving biological systems invariably reside in larger environments that

subsume the search space in which those systems evolve. Moreover, these larger
environments are capable of dramatically changing the probabilities associated
with evolution as occurring in those search spaces. Take an evolving protein or
an evolving strand of DNA. The search spaces for these are quite simple, com-
prising sequences that at each position select respectively from either twenty
amino acids or four nucleotide bases. But these search spaces embed in in-
credibly complex cellular contexts. And the cells that supply these contexts
themselves reside in still higher-level environments.
As a consequence, the uniform probability on the search space almost never

characterizes the system’s evolution. Rather, according to evolutionary biology,
the larger environment bestows a nonuniform probability that brings the search
(i.e., an assisted search) to a successful conclusion. This, in a nutshell, was
Richard Dawkins’s (1996) argument in Climbing Mount Improbable: biological
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structures that at first blush seem vastly improbable (i.e., with respect to the
uniform probability, blind search, pure randomness, call it what you will) be-
come quite probable once the appropriate evolutionary mechanisms are factored
in to reset the probabilities.
Even if we accept the full efficacy of evolutionary mechanisms to evolve

biological structures and functions, the challenge that displacement poses to
evolutionary biology still stands. A larger environment bestows a nonuniform
probability qua assisted search. Fine. Presumably this nonuniform probability,
which is defined over the search space in question, splinters off from richer prob-
abilistic structures defined over the larger environment. We can, for instance,
imagine the search space being embedded in the larger environment, and such
richer probabilistic structures inducing a nonuniform probability (qua assisted
search) on this search space, perhaps by conditioning on a subspace or by fac-
torizing a product space. But, if the larger environment is capable of inducing
such probabilities, what exactly are the structures of the larger environment
that endow it with this capacity? Are any canonical probabilities defined over
this larger environment (e.g., a uniform probability)? Do any of these higher-
level probabilities induce the nonuniform probability that characterizes effective
search of the original search space? What stochastic mechanisms might induce
such higher-level probabilities?
For any interesting instances of biological evolution, we don’t know the an-

swer to these questions. But suppose we could answer these questions. As
soon as we could, the No Free Lunch Regress would kick in, applying to the
larger environment once its probabilistic structure becomes evident. And so,
this probabilistic structure would itself require explanation in terms of stochas-
tic mechanisms. On the other hand, lacking answers to these questions, we
lack a stochastic mechanism to explain the nonuniform probabilities (and cor-
responding assisted searches) that the larger environment is supposed to induce
and that makes effective search of the original space possible. In either case,
the No Free Lunch Regress blocks our attempts to account for assisted searches
in terms of stochastic mechanisms.
Evolutionary biologists at this point sometimes object that evolutionary

mechanisms like Darwinian natural selection are indeed a free lunch because
they are so simple, generating, as Richard Dawkins (1987: 316) puts it, biolog-
ical complexity out of “primeval simplicity.” But ascribing simplicity to these
mechanisms betrays wishful thinking. The information that assisted searches
bring to otherwise blind searches is measurable and substantial, and discloses an
underlying complexity (see section 4). Just because it’s possible to describe the
mechanism that assists a search in simple terms does not mean that the mech-
anism, as actually operating in nature and subject to countless contingencies
(Michael Polanyi called them boundary conditions), is in fact simple.
A final question therefore presents itself, namely, Is it even reasonable,

whether in biology or elsewhere, to think that the assisted searches that success-
fully locate small targets in large spaces should be conceived as purely the result
of stochastic mechanisms? What if, additionally, they inevitably result from a
form of intelligence that is not reducible to stochastic mechanisms–a form of
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intelligence that transcends chance and necessity? The No Free Lunch Regress,
by demonstrating the incompleteness of stochastic mechanisms to explain as-
sisted searches, fundamentally challenges the materialist dogma that reduces all
intelligence to chance and necessity.
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