
Network Working Group M. Spencer
Internet-Draft Digium, Inc.
Expires: July 5, 2005 F. Miller
 Cornfed Systems, LLC
 January 2005

 Inter-Asterisk EXchange (IAX) Version 2
 draft-mspencer-iax2-01

Status of this Memo

 This document is an Internet-Draft and is NOT offered in accordance
 with Section 10 of RFC 2026, and the author does not provide the IETF
 with any rights other than to publish as an Internet-Draft.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on July 5, 2005.

Abstract

 The Inter-Asterisk EXchange (IAX) protocol provides control and
 transmission of streaming media over Internet Protocol (IP) networks.
 IAX can be used with any type of streaming media including video but
 is targeted primarily at the control of IP voice calls.

 The protocol described in the document is actually Version 2 of the
 IAX protocol, commonly referred to as IAX2. IAX2 is intended to
 replace the original IAX Version 1 protocol and as such, this
 document simply refers to IAX. It is understood that subsequent
 references to IAX refer to Version 2.

Spencer & Miller Expires July 5, 2005 [Page 1]

Internet-Draft iax2 January 2005

Table of Contents

 1. Introduction . 3
 2. IAX Terminology . 4
 3. Protocol Overview . 5
 3.1 Call Setup . 6
 3.2 Call Teardown . 7
 3.3 Media Flow . 7
 4. Frame Definitions . 8
 4.1 Full Frame . 8
 4.2 Mini Frame . 15
 4.3 Information Element 16
 5. Protocol State Machines 17
 5.1 Reliable Transmission of Full Frames 17
 5.1.1 Estimating Round-Trip Delay 17
 5.1.2 Exponential Timer Backoff 18
 5.1.3 Maximum Retries 18
 5.2 Heartbeats . 18
 5.3 Call Setup Client Side 19
 5.4 Call Setup Server Side 21
 5.5 Call Teardown Client Side 23
 5.6 Call Teardown Server Side 23

Spencer & Miller Expires July 5, 2005 [Page 2]

Internet-Draft iax2 January 2005

1. Introduction

 The Inter-Asterisk EXchange (IAX) protocol provides control and
 transmission of streaming media over Internet Protocol (IP) networks.
 IAX can be used with any type of streaming media including video but
 is targeted primarily at the control of IP voice calls.

 The design goals for IAX derive from experience with existing
 Voice-over-IP (VoIP) protocols such as the Session Initiation
 Protocol (SIP) and the Media Gateway Control Protocol (MGCP) for
 control and the Real-Time Transfer Protocol (RTP) for streaming media
 transmission.

 The primary design goals for the IAX protocol are: 1) minimize
 bandwidth usage for both control and media with specific emphasis on
 individual voice calls and 2) provide native support for Network
 Address Translation (NAT) transparency

Spencer & Miller Expires July 5, 2005 [Page 3]

Internet-Draft iax2 January 2005

2. IAX Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC2119

Spencer & Miller Expires July 5, 2005 [Page 4]

Internet-Draft iax2 January 2005

3. Protocol Overview

 IAX is a peer-to-peer media and signaling protocol. Peer-to-Peer
 means that the endpoints maintain state machines associated with the
 protocol operations. The signaling component of the IAX protocol
 more analgous to the Session Initiation Protocol (SIP) than to the
 Media Gateway Control Protocol (MGCP), which is a Master-Slave call
 control protocol. With respect to media, sequencing and timing
 information is included in IAX frames. The transport of media does
 not use the Real-Time Transport Protocol (RTP).

 The basic design approach for IAX multiplexes signaling and multiple
 media streams over a single User Datagram Protocol (UDP) association
 between two Internet hosts. In this facet of its design, it is
 actually two protocols in one, a protocol for signaling sessions and
 a protocol for transporting the actual media streams themselves.
 This approach differs from the overall architecuture of other
 IETF-based protocols that separate the control (MGCP and SIP) and
 media stream (RTP/RTCP) components using different protocols.
 Because signaling and media share the same UDP port number, IAX does
 not suffer from the NAT traversal problems associated with SIP.

 Figure 1 illustrates the basic relationship between two Internet
 hosts. Each host uses the ``well-known'' UDP port 4569 to
 communicate all Internet packets. IAX then uses a 15-bit Call Number
 to multiplex multiple streams over the UDP port number.

 +-----------------+ +------------------+
 | Call | | Call | | | | | | |
 | Number | | Number |
 | +-+ | | +-+ |
 | | |---+ UDP | | UDP +---| | |
 | +-+ \ Port | | Port / +-+ |
 | +-+ \ 4569 | +---------+ | 4569 / +-+ |
 | | |---+ \+-+ | | IP | | +-+/ +---| | |
 | +-+ _ | |<------>| Network |<----->| | _/ +-+ |
 | ... _ +-+ | +---------+ | +-+ _ ... |
 | +-+ / | | \ +-+ |
 | | |---+ | | +---| | |
 | +-+ | | +-+ |
 +-----------------+ +------------------+

 Figure 1: Multiplexing Muliple Streams Using a Single UDP Port

 The value of zero is a special call number reserved on each host.
 When attempting to setup a call, the Call Number of the destination
 host is not yet known. A zero destination call number is used in
 this situation.

Spencer & Miller Expires July 5, 2005 [Page 5]

Internet-Draft iax2 January 2005

 IAX is a binary protocol. This design choice was made for bandwidth
 efficiency. Further, the protocol is specifically optimized to make
 very efficient use of bandwidth for individual voice calls. The
 bandwidth efficiency for other stream types is sacrificed for the
 sake of individual voice calls.

3.1 Call Setup

 Figure 2 illustrates the basic message flow used to setup a voice
 call. In this example, Host A initiates the call by sending a NEW
 message to Host B. Host B immediately sends back an ACCEPT message,
 indicating to Host A that it has received the request and is
 beginning to service it. Host A sends an ACK message to Host B
 indicating receipt of the ACCEPT message. Once Host B begins to ring
 the phone on its side, it sends back to Host A a RINGING message.
 Host A sends an ACK message back to Host B indicating receipt of the
 RINGING message. Finally, when the phone is picked up, Host B sends
 an ANSWER message to Host A and the call setup is complete. At this
 point full-duplex voice passes between Host A and Host B.

 Host A Host B
 | |
 | NEW |
 |-------------->|
 | ACCEPT |
 |<--------------|
 | ACK |
 |-------------->|
 | |
 | RINGING |
 |<--------------|
 | ACK |
 |-------------->|
 | |
 | ANSWER |
 |<--------------|
 | ACK |
 |-------------->|
 | |

 Figure 2: A Typical Call Setup Scenario

Spencer & Miller Expires July 5, 2005 [Page 6]

Internet-Draft iax2 January 2005

3.2 Call Teardown

 Figure 3 illustrates the message flow for a voice call teardown. In
 this example, Host A initiates the call teardown by sending a HANGUP
 message to Host B. Host B is expected to immediately send back an
 ACK message indicating the receipt of the teardown request and that
 the call has been torn down on the Host B side.

 Host A Host B
 | |
 | HANGUP |
 |-------------->|
 | ACK |
 |<--------------|
 | |

 Figure 3: A Typical Call Teardown Scenario

3.3 Media Flow

 Figure 4 illustrates a simple, one-way IAX Media Flow. For a nominal
 voice call, there would be two of these flows, one flowing in either
 direction. Each flow is comprised mostly of IAX Mini Frames (labeled
 M in Figure 4) which contain a simple 4-byte header that targets
 bandwidth efficiency. The flow is supplemented by periodic Full
 Frames (labeled F in Figure 4) that include synchronization
 information.

 +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+
Host A | M | ... | M | | M | | F | | M | ... | M | | M | | F | Host B
 +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+
 ---------------- Frames Transmitted ------------->

 Figure 4: A Typical Media Flow Scenario

 Note that the Mini Frames are sent unreliably. That is, the Full
 Frames that are part of the stream are acknowledged by Host B but the
 Mini Frames are not.

Spencer & Miller Expires July 5, 2005 [Page 7]

Internet-Draft iax2 January 2005

4. Frame Definitions

 IAX messages are called frames. There are several basic frame types
 and each of these frame types is described in detail in this section.
 There a number of common fields within these frames that are
 explained here for consistency and brevity.

 An F bit is used in indicate whether a frame is a Full Frame or not.
 A value of 1 in this field indicates the frame is a Full Frame and a
 value 0 indicates the frame is something other than a Full Frame.

 A Call Number is a 15-bit unsigned integer that is used to track a
 media stream endpoint on a host. The value zero is a special Call
 Number that indicates the Call Number is unknown. A phone call
 actually has two Call Numbers associated with it, one for either
 direction.

 A Timestamp can be a full 32- or an abridged 16-bit value. In the
 case of a 16-bit field, the value is actually the lower 16 bits of a
 full 32-bit timestamp that is maintained by the endpoint host.

4.1 Full Frame

 A Full Frame can be used to send signaling, audio, or video
 information reliably. Full Frames are the only frame type are
 transmitted reliably. This means that the recipient host must return
 some type of message back to the sending host immediately upon
 reception. In some cases, the protocol may require a particular
 message be sent back immediately but if not the recipient must send
 an explicit acknowledgement. Figure 2 shows both cases. After
 receiving a NEW message, the recipient host must return an ACCEPT
 message immediately. In this case, no explicit ACK is required.
 Later, when a RINGING message is sent to the caller, Host A must send
 back an explicit ACK message since the IAX protocol does not require
 any other message to be returned at that time.

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |F| Source Call Number |R| Destination Call Number |
 +-+
 | Timestamp |
 +-+
 | OSeqno | ISeqno | Frame Type |C| Subclass |
 +-+
 | |
 | Data |
 | |

Spencer & Miller Expires July 5, 2005 [Page 8]

Internet-Draft iax2 January 2005

 +-+

 Figure 5: Full Frame Binary Format

 Figure 5 illistrates the binary format of a Full Frame. Table 1
 describes each of the fields in Figure 5. The R bit is set to 1 if
 the frame is being retransmitted. Retransmission occurs after some
 timeout period and retransmissions are retried several times,
 depending on the context. The outbound stream sequence number,
 OSeqno, always begins with 0 and increases monotonically. OSeqno is
 used by the recipient to track the ordering of media frames. ISeqno
 is similar to OSeqno, except that it is used to track the ordering of
 inbound media frames. Specifically, ISeqno is the next expected
 inbound stream sequence number for the incoming media frames. Frame
 Type identifes the class of message as defined in Table 2. The C bit
 determines how the Subclass value should be interpreted. If C is set
 to 1, the Subclass value is interpreted as a power of two. If C is
 set to 0, Subclass is interpreted as a simple 7-bit unsigned integer
 value.

 Table 1: Full Frame Field Descriptions

 +-------------+---+
 | FIELD | DESCRIPTION |
 +-------------+---+
 | F | Set to the value 1 indicating that this is a |
 | | Full Frame |
 +-------------+---+
 | Source | Call number of the transmitting side of the |
 | Call Number | Full Frame |
 +-------------+---+
 | R | Set to the value 1 if this frame is being |
 | | retransmitted and the value 0 for the initial |
 | | transmission |
 +-------------+---+
 | Destination | Call number of the receiving side of the Full |
 | Call Number | Frame |
 +-------------+---+
 | Timestamp | Full 32-bit timestamp |
 +-------------+---+
 | OSeqno | Outbound stream sequence number |
 +-------------+---+
 | ISeqno | Inbound stream sequence number |
 +-------------+---+
 | Frame Type | Frame type |
 +-------------+---+
 | C | Subclass value format |
 +-------------+---+

Spencer & Miller Expires July 5, 2005 [Page 9]

Internet-Draft iax2 January 2005

 | Subclass | Subclass |
 +-------------+---+

 Table 2 lists the values defined for the Frame Type field. This
 table contains the value associated with a Full Frame type, its
 description, a brief description of how the Subclass field in the
 Full Frame are used for the Full Frame type, and a brief description
 of the format of the data field. If a cell in Table 2 is left blank,
 the correspoding field in the Full Frame is not used.

 Table 2: Frame Type Values

 +------+-------------+--------------------------+------------------+
 | TYPE | DESCRIPTION | SUBCLASS DESCRIPTION | DATA DESCRIPTION |
 +------+-------------+--------------------------+------------------+
 | 0x01 | DTMF | 0-9, A-D, *, # | |
 +------+-------------+--------------------------+------------------+
 | 0x02 | Voice Data | Audio Compression Format | Raw Voice Data |
 +------+-------------+--------------------------+------------------+
 | 0x03 | Video | Video Compression Format | Raw Video Data |
 +------+-------------+--------------------------+------------------+
 | 0x04 | Control | See Control Frame Types | |
 +------+-------------+--------------------------+------------------+
 | 0x05 | Null | | |
 +------+-------------+--------------------------+------------------+
 | 0x06 | IAX Control | See IAX Protocol Messages| Information |
 | | | | Elements |
 +------+-------------+--------------------------+------------------+
 | 0x07 | Text | | Raw Text |
 +------+-------------+--------------------------+------------------+
 | 0x08 | Image | Image Compression Format | Raw Image Data |
 +------+-------------+--------------------------+------------------+
 | 0x09 | HTML | See HTML Frame Types | Message Specific |
 +------+-------------+--------------------------+------------------+

Spencer & Miller Expires July 5, 2005 [Page 10]

Internet-Draft iax2 January 2005

 When a Full Frame is used to transport DTMF digits, the Subclass
 contains the actual digit being transported. For voice, video, or
 image streams, the Subclass field specifies the compression format
 and the data portion of the Full Frame contains a packet of raw voice
 or video data. The compression formats for voice are given in Table
 3, for video in Table 4, and for images in Table 5.

 Table 3: Voice Data Subclass Audio Compression Format Values

 +--------+------------------+----------------------------------+
 |SUBCLASS| DESCRIPTION | LENGTH CALCULATION |
 +--------+------------------+----------------------------------+
 | 0x0001 | G.723.1 | 4, 20, and 24 byte frames of 240 |
 | | | samples |
 +--------+------------------+----------------------------------+
 | 0x0002 | GSM Full Rate | 33 byte chunks of 160 samples or |
 | | | 65 byte chunks of 320 samples |
 +--------+------------------+----------------------------------+
 | 0x0004 | G.711 mu-law | 1 byte per sample |
 +--------+------------------+----------------------------------+
 | 0x0008 | G.711 a-law | 1 byte per sample |
 +--------+------------------+----------------------------------+
 | 0x0010 | MP3 (deprecated) | |
 +--------+------------------+----------------------------------+
 | 0x0020 | IMA ADPCM | 1 byte per 2 samples |
 +--------+------------------+----------------------------------+
 | 0x0040 | 16-bit linear | 2 bytes per sample |
 | | little-endian | |
 +--------+------------------+----------------------------------+
 | 0x0080 | LPC10 | Variable size frame of 172 |
 | | | samples |
 +--------+------------------+----------------------------------+
 | 0x0100 | G.729 | 20 bytes chunks of 172 samples |
 +--------+------------------+----------------------------------+
 | 0x0200 | Speex | Variable |
 +--------+------------------+----------------------------------+
 | 0x0400 | ILBC | 50 bytes per 240 samples |
 +--------+------------------+----------------------------------+

Spencer & Miller Expires July 5, 2005 [Page 11]

Internet-Draft iax2 January 2005

 Table 4: Video Subclass Video Compression Format Values

 +------------+-------------+
 | SUBCLASS | DESCRIPTION |
 +------------+-------------+
 | 0x00010000 | JPEG |
 +------------+-------------+
 | 0x00020000 | PNG |
 +------------+-------------+
 | 0x00040000 | H.261 |
 +------------+-------------+
 | 0x00080000 | H.263 |
 +------------+-------------+

 Table 5: Image Subclass Image Format Values

 +------------+-------------+
 | SUBCLASS | DESCRIPTION |
 +------------+-------------+
 +------------+-------------+

Spencer & Miller Expires July 5, 2005 [Page 12]

Internet-Draft iax2 January 2005

 There are two types of control information that are passed between
 peers using Full Frames, Control Frames and IAX Control Frames.
 Control Frames provide session control, i.e. they refer to control
 of the devices connected to the IAX endpoint. IAX Control Frames
 provide IAX protocol specific endpoint management, i.e. they are
 used to manage IAX protocol interactions that are generally
 independent of the type of endpoints. Table 6 lists the Full Frame
 Subclass values for Control Frames and Table 7 lists the Subclass
 values for IAX Control Frames.

 Table 6: Control Frame Subclass Values

 +----------+----------------------+
 | SUBCLASS | DESCRIPTION |
 +----------+----------------------+
 | 0x01 | Hangup |
 +----------+----------------------+
 | 0x02 | Ring |
 +----------+----------------------+
 | 0x03 | Ringing (ringback) |
 +----------+----------------------+
 | 0x04 | Answer |
 +----------+----------------------+
 | 0x05 | Busy Condition |
 +----------+----------------------+
 | 0x08 | Congestion Condition |
 +----------+----------------------+
 | 0x09 | Flash Hook |
 +----------+----------------------+
 | 0x0a | Wink |
 +----------+----------------------+
 | 0x0b | Option |
 +----------+----------------------+
 | 0x0c | Key Radio |
 +----------+----------------------+
 | 0x0d | Unkey Radio |
 +----------+----------------------+
 | 0x0e | Call Progress |
 +----------+----------------------+

 Table 7: IAX Control Frame Subclass Values

 +----------+-----------+---------------------------------+
 | SUBCLASS | MNEMONIC | DESCRIPTION |
 +----------+-----------+---------------------------------+
 | 0x01 | NEW | Initiate a new call |
 +----------+-----------+---------------------------------+

Spencer & Miller Expires July 5, 2005 [Page 13]

Internet-Draft iax2 January 2005

 | 0x02 | PING | Ping request |
 +----------+-----------+---------------------------------+
 | 0x03 | Reserved | |
 +----------+-----------+---------------------------------+
 | 0x04 | ACK | Acknowledgement |
 +----------+-----------+---------------------------------+
 | 0x05 | HANGUP | Initiate call teardown |
 +----------+-----------+---------------------------------+
 | 0x06 | REJECT | Reject |
 +----------+-----------+---------------------------------+
 | 0x07 | ACCEPT | Accepted |
 +----------+-----------+---------------------------------+
 | 0x08 | AUTHREQ | Authentication request |
 +----------+-----------+---------------------------------+
 | 0x09 | AUTHREP | Authentication reply |
 +----------+-----------+---------------------------------+
 | 0x0a | INVAL | Invalid call |
 +----------+-----------+---------------------------------+
 | 0x0b | LAGRQ | Lag request |
 +----------+-----------+---------------------------------+
 | 0x0c | LAGRP | Lag reply |
 +----------+-----------+---------------------------------+
 | 0x0d | REGREQ | Registration request |
 +----------+-----------+---------------------------------+
 | 0x0e | REGAUTH | Registration authenticate |
 +----------+-----------+---------------------------------+
 | 0x0f | REGACK | Registration acknowledgement |
 +----------+-----------+---------------------------------+
 | 0x10 | REGREJ | Registration reject |
 +----------+-----------+---------------------------------+
 | 0x11 | REGREL | Registration release |
 +----------+-----------+---------------------------------+
 | 0x12 | VNAK | Video/Voice retransmit request |
 +----------+-----------+---------------------------------+
 | 0x13 | DPREQ | Dialplan request |
 +----------+-----------+---------------------------------+
 | 0x14 | DPREP | Dialplan response |
 +----------+-----------+---------------------------------+
 | 0x15 | DIAL | Dial |
 +----------+-----------+---------------------------------+
 | 0x16 | TXREQ | Transfer request |
 +----------+-----------+---------------------------------+
 | 0x17 | TXCNT | Transfer connect |
 +----------+-----------+---------------------------------+
 | 0x18 | TXACC | Transfer accept |
 +----------+-----------+---------------------------------+
 | 0x19 | TXREADY | Transfer ready |
 +----------+-----------+---------------------------------+

Spencer & Miller Expires July 5, 2005 [Page 14]

Internet-Draft iax2 January 2005

 | 0x1a | TXREL | Transfer release |
 +----------+-----------+---------------------------------+
 | 0x1b | TXREJ | Transfer reject |
 +----------+-----------+---------------------------------+
 | 0x1c | QUELCH | Halt audio/video transmission |
 +----------+-----------+---------------------------------+
 | 0x1d | UNQUELCH | Resume audio/video transmission |
 +----------+-----------+---------------------------------+
 | 0x1e | POKE | Poke request |
 +----------+-----------+---------------------------------+
 | 0x1f | PAGE | Paging call description |
 +----------+-----------+---------------------------------+
 | 0x20 | MWI | Message waiting indication |
 +----------+-----------+---------------------------------+
 | 0x21 | UNSUPPORT | Unsupported message |
 +----------+-----------+---------------------------------+
 | 0x22 | TRANSFER | Remote transfer request |
 +----------+-----------+---------------------------------+

4.2 Mini Frame

 A Mini Frame is used to send media with a minimal protocol overhead.
 Figure 6 illustrates the binary format of a Mini Frame and Table 7
 describes the fields present in Figure 6.

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |F| Source Call Number | Timestamp |
 +-+
 | |
 | Data |
 | |
 +-+

 Figure 6: Mini Frame Binary Format

 The Timestamp in the Mini Frame is truncated. The client generally
 maintains a 32-bit full timestamp. When sending Mini Frames, the
 low-order 16 bits of the timestamp are sent in the Timestamp field.
 When the 16-bit timestamp wraps around, a Full Frame is sent to allow
 the other end to synchronize its full 32-bit timestamp counter.

Spencer & Miller Expires July 5, 2005 [Page 15]

Internet-Draft iax2 January 2005

 Table 7: Mini Frame Field Descriptions

 +-------------+---+
 | FIELD | DESCRIPTION |
 +-------------+---+
 | F | Set to the value 0 indicating that this is |
 | | not a Full Frame |
 +-------------+---+
 | Source | Call number of the transmitting side of the |
 | Call Number | Mini Frame |
 +-------------+---+
 | Timestamp | 16-bit timestamp |
 +-------------+---+

4.3 Information Element

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | IE | Data Length | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 | Data |
 | |
 +-+

 Figure 7: Information Element Binary Format

 Table 8: Information Element Field Descriptions

 +-------------+---+
 | FIELD | DESCRIPTION |
 +-------------+---+
 | IE | |
 +-------------+---+
 | Data Length | |
 +-------------+---+

Spencer & Miller Expires July 5, 2005 [Page 16]

Internet-Draft iax2 January 2005

5. Protocol State Machines

 This section describes a series of state machines that are
 implemented by the IAX endpoints.

5.1 Reliable Transmission of Full Frames

 The most basic state machine is associated with the reliable
 transmission of Full Frames. Full Frames are the only frame type
 that is transmitted reliably.

 Figure 8 illustrates the general state machine used by the sender of
 a Full Frame to implement reliablity. Some State in the diagram is
 used to represent any state in any subsequent state diagram that Full
 Frames are sent from.

 +-------+ +-------+ +---------+
 | | send:Full Frame | Full | recv:ACK | |
 | Some |---------------->| Frame |---------------->| Another |
 | State | | Sent | or Full Frame | State |
 +-------+ +-------+ +---------+
 ^ |
 | | Timeout
 +---+ send:Full Frame

 Figure 8: Reliable Transmission of Full Frames

 Once an endpoint has transmitted the Full Frame, it enters a logical
 Full Frame Sent state and sets a timer. If an ACK or another Full
 Frame is received from the intended recepient of the original Full
 Frame before a timeout occurs, the original Full Frame is considered
 delivered and the endpoint moves to Another State.

 This state diagram is logically present in all of the remaining state
 diagrams. Anytime a Full Frame is transmitted in a subsequent
 diagrams, there this mechanism is present in the subsequent states
 and transitions. Its presentation here as a separate state diagram
 is provided for clarity.

5.1.1 Estimating Round-Trip Delay

 The Estimated Round-Trip Delay (ERTD) is a value that is continuously
 maintained between two IAX endpoints. The ERTD estimates the latency
 required to send a Full Frame and receive an ACK from the other
 endpoint.

 The ERTD is updated each time a Full Frame is sent. When the Full
 Frame is either transmitted or retransmitted, the sending endpoint

Spencer & Miller Expires July 5, 2005 [Page 17]

Internet-Draft iax2 January 2005

 places a timestamp in the Timestamp field of the Full Frame. When
 either an ACK or another Full Frame is received that serves as an
 ACK, the sending endpoint records the time that ACK or secondary Full
 Frame is received. The ERTD is then updated as the difference
 between the recorded time of reception and the timestamp contained in
 the received ACK or secondary Full Frame.

5.1.2 Exponential Timer Backoff

 The timer durations associated with each transmission and
 retransmission of a Full Frame follow an exponential backoff. When a
 Full Frame is first transmitted, the initial timer value is chosen as
 twice the current ERTD value. Every retransmission causes the timer
 last timer value to be doubled.

 For example, assume that an initial Full Frame transmission occurs
 and the original timer value is taken from the current ERTD value of
 50 milliseconds. If the Full Frame requires retransmission, the next
 timer value would be 100 milliseconds. The next retransmission would
 set a timer value of 200 milliseconds, and so on. This backoff
 continues until the maximum number of retries is reached.

5.1.3 Maximum Retries

 The Maximum Number of Retries (MNR) is has two factors associated
 with it. There is a total number of retries and there is a maximum
 duration that retries can occur within. Whichever value is reached
 first causes retries to stop.

 The total number of retries is 10 and the maximum duration is set at
 60 seconds. If 10 retries with exponential backoff occur in less
 than 60 seconds, retrying is stopped. If however, less than 10
 retries occurs after 60 seconds, retrying is also stopped.

5.2 Heartbeats

 Two endpoint interactions form heartbeats functions. The first uses
 a PING message between two endpoints that have a connection
 established. The second uses a POKE message to determine whether a
 endpoint will respond when no connection exists between two
 endpoints. Each of these interactions has a similar state diagram.

 The first state machine describes a PING message. When two endpoints
 are connected but no Full Frames have been exchanged for 15 seconds a
 PING is sent to make sure the other side is still connected.

Spencer & Miller Expires July 5, 2005 [Page 18]

Internet-Draft iax2 January 2005

 Figure 9 illustrates the PING state machine. Since PING is sent in a
 Full Frame, the state machine in Figure 9 uses the retransmission
 described in Figure 8. When the sender send the initial PING Full
 Frame, it starts a timer and enters the Ping Sent state. If the
 timer expires, the PING is resent. If the PING is retransmitted the
 maximum number of times, the sender will teardown the connection.

 +-----------+ send:PING +-----------+
 | |------------->| |---+
 | Connected | | Ping Sent | | Timeout
 | |<-------------| |<--+ send:PING
 +-----------+ recv:ACK +-----------+

 Figure 9: PING State Machine

 The second state machine describes a POKE request. When one endpoint
 wants to probe another, it can send a POKE message to determine if
 the endpoint will respond.

 Figure 10 illustrates the POKE state machine. Since POKE is sent in
 a Full Frame, the state machine in Figure 10 uses the retransmission
 described in Figure 8. When the sender send the initial POKE Full
 Frame, it starts a timer and enters the Poke Sent state. If the
 timer expires, the POKE is resent. If the POKE is retransmitted the
 maximum number of times, the sender assumes the target endpoint will
 not respond.

 +-----------+ send:POKE +-----------+
 | |------------->| |---+
 | Some | | Poke Sent | | Timeout
 | State |<-------------| |<--+ send:POKE
 +-----------+ recv:ACK +-----------+

 Figure 10: POKE State Machine

5.3 Call Setup Client Side

 Figure 11 illustrates the client side of a call setup. By client
 side, we mean the side of the call that initiates the call setup.
 This state machine includes the timeouts associated with the sending
 of Full Frames illustrated in Figure 8.

 recv:REJECT
 +-------------------------------+
 / send:ACK \
 / +--------+ +--------+
 / | | Timeout | |

Spencer & Miller Expires July 5, 2005 [Page 19]

Internet-Draft iax2 January 2005

 / | Final |<--------------------| Auth |
 / | | send:HANGUP | |
 / +--------+ +--------+
 / / |\ /| \
 / / \ / \
 | / Timeout \ / \ recv:ACCEPT
 | / send:HANGUP \ / \ send:ACK
 | / \ / \
 | /recv:ACK \ / recv:AUTHREQ \
 | /or Timeout \ / send:AUTHREP \
 | / \ / \
 \| |/ \ / \|
 +--------+ +--------+ +--------+
	send:NEW	Accept	recv:ACCEPT	
Null	-------------------->	Wait	------------------>	Accepted
			send:ACK	
+--------+ +--------+ +--------+				
^ ^ ^	/ / /			
		recv:REJECT	/ / /	
	+--------------------------+ / / /			
	send:ACK / / /			
	recv:REJECT / / /			
+---+ / /				
send:ACK / /				
/ /				
recv:ANSWER / /				
+-------------------------+ /recv:				
/	RINGING			
/ send:ACK / send:ACK				
 \ / /
 \ |/ |/
 \ +---------+ +--------+
 \ | | recv:ANSWER | |
 \ |Connected|<--------------------| Ringing|
 \ | | send:ACK | |
 \ +---------+ +--------+
 \ recv:REJECT /
 +--------------------------------+
 send:ACK

 Figure 11: Client Side Call Setup State Machine

 The client begins a call setup by sending a NEW Full Frame to the
 server side of the call. The client moves from the Null to the
 Accept Wait state when this happens. The sending of the NEW Full
 Frame triggers the state machine associated with the sending of a
 Full Frame as shown in Figure 8. The NEW Full Frame is retransmitted
 some number of times. Only when the final Timeout occurs does the
 client state machine move to the Final State shown in Figure 11 and

Spencer & Miller Expires July 5, 2005 [Page 20]

Internet-Draft iax2 January 2005

 send a HANGUP Full Frame to the server (that has not responded).
 When an ACK is received for the HANGUP Full Frame or a Timeout
 occurs, the client returns to the Null state.

 Three events can cause a transition when the client is in the Accept
 Wait state. In the nominal case, an ACCEPT Full Frame is received
 that indicates the call setup request has been accepted and the
 server side is ringing the phone. The client sends an ACK to the
 ACCEPT Full Frame, moves to the Accepted state and waits for the call
 to be answered on the server side. The server side can also ask for
 authentication be responding with a AUTHREQ Full Frame. In this
 case, an AUTHREP is generated and the and the client moves to the
 Auth state. The server side can also respond with a REJECT Full
 Frame to indicate that the call cannot be completed. In this case,
 the client responds with the ACK of the REJECT Full Frame and returns
 to the Null state.

 When the client is in the Auth state, one of three events can cause a
 transition. The server may return a REJECT Full Frame. The client
 then sends an ACK to the server and returns to the Null state. The
 client may Timeout waiting for a response from the server. The
 client would send a HANGUP to the server and enter the Final state.
 Finally, the client can receive an ACCEPT Full Frame from the server.
 The client then returns an ACK for the Full Frame and enters the
 Accept state to wait for the call to be answered.

 When the client has reached the Accepted state, three events can
 cause a transition to another state. The server may return a REJECT
 Full Frame. The client sends an ACK to the server and returns to the
 Null state. The client may receive a RINGING Full Frame from the
 server. The client returns an ACK for the RINGING Full Frame and
 moves to the Ringing state. Finally, the client may receive an
 ANSWER Full Frame from the server. In this case, the client returns
 an ACK for the ANSWER Full Frame and moves to the Connected state.

 Only two transitions can occur when the client is in the Ringing
 state. The server may return a REJECT Full Frame. The client would
 then return an ACK and move to the Null state. The server can also
 return an ANSWER Full Frame. The client returns an ACK for the
 ANSWER Full Frame and moves to the Connected state. Note that there
 are no Timeouts specified for the Accepted and Ringing states.

5.4 Call Setup Server Side

 Figure 12 illustrates the server side of a call setup. By server
 side, we mean the side of the call that receives the initial call
 setup request. Figure 12 is divided into two parts, the state
 machine prior to a call setup request being accepted by the server

Spencer & Miller Expires July 5, 2005 [Page 21]

Internet-Draft iax2 January 2005

 and the state machine after the call setup request has been accepted
 by the server. The first part of the state machine has two paths,
 one that requires authentication of the client making the request and
 one that does not require authentication. The second part of the
 state machine also has two paths. The first answers the call without
 returning a RINGING Full Frame to the client a the second that
 returns a RINGING Full Frame prior to answering the call.

 +------------+
 | |
 +-------------->| Null |---+ recv:NEW
 recv:ACK / | | \| send:AUTHREQ
 / +------------+ +------------+
 / recv:NEW / | |
 | send:ACCEPT / | Auth |
 | |/ to Reject Sent <--| |
 | +------------+ recv:AUTHREP +------------+
 | | | send:REJECT | recv:AUTHREP
 | | No Auth | v send:ACCEPT
 | | | +------------+
 | +------------+ | Auth |
 | \ | Reply |
 | recv:ACK \| | Rcvd |
 +------------+ +------------+ +------------+
 | Reject | send:REJECT | | /
 | Sent |<------------| Accept Rcvd|<--+ recv:ACK
 | | | |
 +------------+ +------------+
 ^ send:RINGING / |
 | |/ |
 | +------------+ |
 | | Ringing | |
 | | Sent | |
 | | | |
 | +------------+ |
 | | recv:ACK | send:ANSWER
 | v |
 | +------------+ |
 | | Ringing | |
 +---| Rcvd | |
 send:REJECT | | |
 +------------+ |
 \ |
 send:ANSWER \| v
 +------------+
 | Answer |
 | Sent |
 | |

Spencer & Miller Expires July 5, 2005 [Page 22]

Internet-Draft iax2 January 2005

 +------------+
 |
 v recv: ACK
 +------------+
 | |
 | Connected |
 | |
 +------------+

 Figure 12: Server Side Call Setup State Machine

 A call setup request is initiated by a client when the server
 receives a NEW Full Frame. The server can either return an ACCEPT
 Full Frame immediately or send an AUTHREQ if authentication of the
 client is required. If an ACCEPT Full Frame is sent, the server
 moves to the No Auth state. If an AUTHREQ is send, the server moves
 to the Auth state. When the server receives an AUTHREP for
 authentication of the client, it sends an ACCEPT and moves to the
 Auth Reply Rcvd state. In both the No Auth and the Auth Reply Rcvd
 states, the server transitions to the Accept Rcvd state when the Full
 Frame ACK is received.

 While in the Accept Rcvd state, the server can send either a RINGING
 or an ANSWER Full Frame to the client. If a RINGING Full Frame is
 sent, the server moves to the Ringing Sent state. When an ACK for
 the RINGING Full Frame is received, the server then moves to the
 Ringing Rcvd state. The server can then send an ANSWER Full Frame to
 the client. Whether the server sends an ANSWER Full Frame while in
 the Accept Rcvd or the Ringing Rcvd states, it moves to the Answer
 Sent state to await an ACK. Once the ACK is received, the server
 moves to the Connected state.

 The server can reject the call in any of the Auth, Accept Rcvd, or
 Ringing Rcvd states. When the call is rejected, the server sends a
 REJECT Full Frame to the client and moves to the Reject Sent state.
 The server returns to the Null state when the ACK for the REJECT Full
 Frame is received.

5.5 Call Teardown Client Side

5.6 Call Teardown Server Side

Spencer & Miller Expires July 5, 2005 [Page 23]

