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Model-Based Despeckling and Information
Extraction from SAR Images

Marc Walessa and Mihai Datcu

Abstract—Basic textures as they appear, especially in high res-
olution SAR images, are affected by multiplicative speckle noise
and should be preserved by despeckling algorithms. Sharp edges
between different regions and strong scatterers also must be pre-
served. To despeckle images, we use a maximuma posteriori(MAP)
estimation of the cross section, choosing between different prior
models. The proposed approach uses a Gauss Markov random field
(GMRF) model for textured areas and allows an adaptive neigh-
borhood system for edge preservation between uniform areas. In
order to obtain the best possible texture reconstruction, an expec-
tation maximization algorithm is used to estimate the texture pa-
rameters that provide the highest evidence. Borders between ho-
mogeneous areas are detected with a stochastic region-growing al-
gorithm, locally determining the neighborhood system of the Gauss
Markov prior. Smoothed strong scatterers are found in the ratio
image of the data and the filtering result and are replaced in the
image. In this way, texture, edges between homogeneous regions,
and strong scatterers are well reconstructed and preserved. Addi-
tionally, the estimated model parameters can be used for further
image interpretation methods.

Index Terms—Bayesian inference, Gauss-Markov random fields
(GMRFs), speckle noise, synthetic aperture radar (SAR), texture.

I. INTRODUCTION

A LLOWING the acquisition of high resolution images of
the Earth under all weather conditions, synthetic aperture

radar (SAR) systems represent a very powerful observation tool.
However, automatic interpretation of the information contained
in the reflected intensity of the SAR data is extremely difficult
[15]. These difficulties are due to the speckle phenomenon that
can be regarded as a strong multiplicative noise affecting all
coherent imaging systems. Since speckle strongly hinders data
interpretation with standard image analysis tools, many filters
have been developed to reduce speckle, e.g., [8], [10], [12]. Usu-
ally, these filters rely on simple model assumptions, i.e., station-
arity of mean and variance, yielding fast and easily computable
results. The filter equations are often equivalent to a weighted
average of the original pixel value and an estimated mean. It is
clear that this does not provide a satisfactory filtering of com-
plex image structure even if some filters take into account non-
stationarities of the mean backscatter by applying an edge de-
tection step. Up to now, no filter is able to analyze and detect
structure, or texture, in the image and to perform an adequate
reconstruction.
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In this article, we propose a new Bayesian approach for
speckle reduction in SAR images. The emphasis lies on speckle
removal without losing textural and structural information
which becomes more and more important in SAR image inter-
pretation [16]. Strongly related to the task of despeckling are
methods for SAR image segmentation and feature extraction
yielding an algorithm for SAR information extraction.

Filtering SAR images, especially images of high resolu-
tion, requires a good preservation of textural features. As a
consequence, textural properties contained in the image must
be recognized to be accurately reconstructed in the filtered
image [21], [22]. For this reconstruction we propose a new
despeckling and information extraction algorithm (Fig. 1) that
uses Gauss Markov random fields (GMRFs) as texture models
and takes advantage of both the first and the second level of
Bayesian inference to obtain a maximuma posteriori (MAP)
estimate of the noise-free image. In the presence of noise,
texture parameter estimation becomes a very difficult problem
since the likelihood function of the noise must be considered.
In order to obtain the best possible texture reconstruction, we
propose an iterative algorithm to estimate the parameters that
provide the highest evidence. These parameters are used to
calculate the MAP estimate of the noise-free image. As a matter
of fact, the employed Gauss Markov model is not sufficient to
explain all SAR image features. For that reason, improvements
are made by using information from additionally extracted
features that can only be described by difficult to handle
nonlinear models. These improvements contain the detection
and preservation of strong scatterers and of borders between
regions of uniform backscatter. While edges are preserved by an
adaptive neighborhood system of the GMRF model, smoothed
strong isolated scatterers are found in the ratio image of the
noisy and the despeckled data and are reinserted in the image.
This enables us to compensate for the shortcomings of a linear
model while exploiting its advantages of easier tractability.

The article is organized as follows. In Section II, we shortly
sketch the information theoretical aspects. After a short
reminder of Bayesian inference, we present the likelihood
function of speckle and the employed prior for texture re-
construction, which is the GMRF model. Then the general
MAP solution for this model is derived, and the model param-
eter estimation is presented. In Section III, necessary model
improvements are outlined. This comprises edge detection,
together with model selection and the preservation of strong
scatterers. Afterwards, the whole algorithm is briefly summa-
rized. Results and examples are illustrated in Section IV. The
developed algorithm is evaluated and compared to already
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Fig. 1. Flowchart of the full model-based despeckling (MBD) and information
extraction algorithm. After the eqivalent number of looks (ENL) estimation
and the removal of strong scatterers, textural properties, flat areas, and edges
are determined in the form of the parameters��� , ��� , and �, respectively.
This information is combined to generate a locally adaptive, edge- and
texture-preserving MAP estimate. In a postprocessing step, blurred targets are
detected and restored.

existing approaches using much simpler model assumptions.
We conclude the article in Section V with a short summary.

II. BAYESIAN SAR IMAGE ANALYSIS

In order to filter out speckle, the rules of Bayesian inference
[13], [20] are used, i.e., we try to estimate the noise-free image
that best explains the noisy observation assuming some prior in-
formation. In our case, the prior comes in the form of a texture
model. Using the Bayes equation at the first level of inference
(the equation is given here for a single pixel, i.e., for local char-
acteristics, which is justified by the Gibbs–Markov equivalence
[5], [6]), we get

(1)

The following proportionality is found:

(2)

By , we denote a noise free pixel of the image,describes a
pixel of the noisy observation, i.e., the SAR image, and by,
we take into consideration the influence of a particular model
or, more precisely, of the model parameters. (2) must be max-
imized as a function of in order to obtain a MAP estimate.
Concerning the likelihood function, we use the hypothesis

throughout the whole article.
Nonetheless, the power of the Bayesian approach lies in a

second step, allowing us to choose the best model from a group
of models. The same scheme applies for model parameters
[3] and is, again, equivalent to computing the MAP estimate.
Hence, assuming a uniform prior , we find an equivalent
equation

(3)

where the integral must be performed over the whole space
of in order to obtain the so-called evidence. The vector
notation for and denotes whole sets of pixels, e.g.,

.

A. Likelihood Function of Speckle

For SAR images, an assumed noise-free signalis affected
by speckle noise. This multiplicative noise, characteristic for
coherent imaging systems, is of high variance compared to the
mean image intensity. Unlike most approaches, we do not work
on the intensity image since the used prior proved to be more
suitable for amplitude images [23]. However, analytical calcu-
lations become more complex. The probability density function
for the likelihood of the observed square root of the intensity

can be found to be [7]

(4)

where denotes the equivalent number of looks (ENL). For
1, the highest noise level is observed, and the noise vari-

ance decreases with growing. For typical spaceborne SAR
products, not considering single-look data,is around three.

B. GMRF Texture Prior

To be able to preserve texture, we have chosen the GMRF
model, which represents an autoregressive process, as our prior
for [17]. Although there are many more powerful nonlinear
models, this model is used because of its better analytical
tractability. The probability density function of the stochastic
GMRF model is given by

(5)

where and are model parameters describing textural infor-
mation and the prediction uncertainty of the model, respectively.
A neighborhood system around a central pixelis denoted by
, and its size determines the complexity of the model. A precise

description of neighborhood systems and orders can be found in
[4], [18]. We employ the definition of the neighborhood system
according to Fig. 2. In the following, we use the vector notation
, with its dimension depending on the size of the considered

neighborhood to denote the set of texture parametersand .
Two realizations of GMRFs are shown in Fig. 3 with 4 and

(left) and
(right), respectively. In the

following, we also use the vector notation, with its dimension
depending on the size of the considered neighborhood to denote
the whole set of texture parametersand .

Linear autoregressive models are rather limited in their ca-
pability to describe complex features as will be illustrated in
the next section. Nevertheless, complexity increases with model
order, i.e., with the neighborhood size, and is found to be suffi-
cient for a good number of textures contained in SAR images.
The main drawback lies in the inability to model sharp transi-
tions. To overcome this problem, we propose the use of an adap-
tive neighborhood system with model selection.
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Fig. 2. Definition of the employed neighborhood system. Parameters� are
attributed to the pixel pairsx andx , which are symmetric with regard to the
center pixelx. A third order model consists of six, a fourth order of ten, and a
fifth order model of 12 parameters� .

Fig. 3. Two typical example textures synthesized with different parameter sets
of the third order, i.e., considering the 12 closest neighbors, GMRF model. Left:
Typical wave or line structure. Right: Flat, isotropic texture.

C. MAP Solution for GMRFs

We use the likelihood function together with the chosen prior
to calculate a MAP estimate of the noise-free scene. In a first
step, we assume that the model parameters are already known.
The parameter estimation is addressed in the next paragraph.
Setting the first derivative of the logarithm of the posterior to
zero

(6)

yields a fourth order polynomial (7) with four solutions for
, which depend on the model parameter vectorand the

current neighborhood configuration ofdenoted by

(7)

A valid solution for must be real-valued and positive
and can be found by a case study of the four possibly com-
plex-valued roots. Because of interdependencies with unknown

neighboring pixels via , an iterative algorithm must be ap-
plied for relaxation [14]. In our case, a few iterations of a simple
steepest descent algorithm with as initial guess provided
good results. As demonstrated in Fig. 4, convergence to a stable
solution is reached after three to five iterations.

D. Model Parameter Estimation

Knowing the solution for the MAP estimate of the noise-free
signal given the parameters, the problem remains how to
choose the values of the model parameter vector. To solve this
problem, we take advantage of the second level of Bayesian
inference to estimate the set of parameters that best explains
the noisy image for a given speckle noise level [3]. Using
the vector notation to consider a set of data within a window
and assuming a uniform prior , we have to maximize the
evidence given in (3). The integration must be performed over
the whole space of, generally an unsolved problem for higher
dimensions of , which depend on the estimation window size.

Note that the right-hand side of (3) is identical to the normal-
ization constant neglected in (2). This term called evidence re-
flects the probability of the datagiven an assumed model char-
acterized by . The actual task consists in maximizing this evi-
dence as a function of. This maximization is usually very dif-
ficult to perform, especially for non-Gaussian multidimensional
functions that often occur in image processing. A closed analyt-
ical expression for the integral over the posterior
cannot be obtained. So several approximations are needed to
make the problem tractable again, unless a computational, very
demanding Markov Chain Monte Carlo (MCMC) means [11] is
used. We make the following simplifications.

1) As a first approximation, the integrand of (3) is consid-
ered to consist of mutually independent random variables,
breaking the joint probability density functions into the
products of its components. Of course, this statistical in-
dependence is not given but has been shown to be a good
approximation for large , i.e., a large number of pixels
within the estimation window, as it is similar to the max-
imum pseudo-likelihood approach presented in [9], [24].

2) Moreover, the multidimensional probability density func-
tion is approximated by a multivariate Gaussian distri-
bution with Hessian , which is centered around the
MAP estimate of , i.e., around the maximum of the
posterior distribution [13], [20]. This can be shown to
be a good approximation for the product of the likeli-
hood function (4) and the Gauss Markov random field
model (5). The quality of this approximation increases
with growing values of and decreasing [23].

Consequently, we find the Gaussian-shaped multivariate pos-
terior

(8)
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Fig. 4. From left to right: Evolution of the MAP estimate ofx with known model parameters after zero, one, three, and five iterations using a steepest-descent
algorithm.

where is the MAP estimate of a pixel obtained using
a fixed parameter vector, , and the Hessian
matrix is given by

(9)

Applying these simplifications, we are now able to perform an
integration of the approximating function

(10)

Finally, since we prefer to use the logarithmic form of
for numerical reasons, this can be expressed as

(11)

where are the components of the matrix. Another approx-
imation was made in this final step

(12)

This approximation is assumed to be valid since it implies that
all covariances resulting from this sparsely set matrix are zero
(off-main-diagonal values are neglected), being in accordance
with the already made inherent assumption of statistical inde-
pendence in (8). Moreover, this simplifies practical calculations,

preventing us from the computation of determinants of dimen-
sion , which are typically in the order of 21 21 . In
this way, we need only the components on the main diagonal of
the matrix , which are found to be given by

(13)

Being able to approximately compute the evidence, the final
step for parameter estimation consists in finding the maximizing
parameter vector. To achieve this, an expectation-maximization
(EM) algorithm is used as outlined in Fig. 5 [3].

1) We start with an initial guess for, which corresponds
to a uniform cross section, i.e., a pure amplitude average
with for all , where is equal to /number of
parameters .

2) E-Step: Using the current guess for, a first MAP esti-
mate of is calculated with (7).

3) The evidence for and is computed using the ap-
proximations made above.

4) M-Step: Keeping fixed; a new is iteratively
chosen to maximize the evidence.

5) This procedure is repeated from step one with the new
until convergence is reached.

As a result, the maximum likelihood (ML) estimate of the
parameter vector and the maximuma posterioriestimate of the
cross section are obtained simultaneously. The evolution of the
parameter estimates over several iterations of the EM algorithm
is illustrated in Fig. 6.

III. EXTRACTION OF NONLINEAR MODEL FEATURES

GMRFs are good at describing a variety of smooth textures
but perform poorly when sharp edges are to be preserved. In
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Fig. 5. Flowchart of the EM algorithm used for texture parameter estimation
and MAP reconstruction.

general, the preservation of sharp edges requires the use of non-
linear models. Since we have chosen a linear model for practical
reasons, a compound solution for this problem must be found.
We use the GMRF model but extract nonlinear features with
two algorithms to afterwards adapt the GMRF model accord-
ingly or to do some other additional processing. Note that the
GMRF does not require stationarity of the mean backscatter.
Problems only arise for sharp transitions, i.e., high gradients of
gray values.

To compensate for the smoothing effect at borders, we apply
a local edge detection based upon a region growing algorithm.
Found edges are used to adapt the neighborhood systemof
the texture model, taking into account the nonstationarity of the
signal. Another drawback of the GMRF model is that it cannot
model small isolated features such as strong scatterer. Here, an-
other solution is proposed: strong scatterers that are smoothed
by the prior model are detected and put back in the filtering re-
sult after despeckling.

A. Local Edge Detection

Assuming a local area to be composed ofregions with
uniform backscatter values to , the likelihood of the data
can be written as [2]

(14)

By maximizing this function, we segment the local area into
regions, giving us information about their borders as shown in
Fig. 7. The maximization is performed by a region growing al-
gorithm estimating and attaching region labels to all pixels in
a way that favors the formation of closed areas. The prerequi-
site for having uniformly labeled regions avoiding a noisy ML
segmentation is determined by the updating scheme of the re-
gion growing technique. Starting with a random segmentation,
the whole region under consideration, i.e., the local estimation
window which has a typical size of 21 21 pixels, is scanned.
The probability (14) of each border pixel to belonging to the
class of a randomly chosen neighbor is calculated and compared
to the probability of its current class. The decision is sampled
from the resulting distribution and the estimates forto
are recomputed. After this, a number of iterations convergence
is reached unlessis too high. Because we work locally on small
areas, we set 3 in our algorithm assuming that the number

of homogeneous regions is limited to that value. The quality of
the final segmentation is independent of region shape and ori-
entation.

B. Model Selection

After having applied the texture parameter estimation and
the edge detection steps on local windows, different estimates

of the cross section can be obtained, according to the
following two assumptions.

1) We get a MAP estimate (7) using the extracted texture
parameters without any information about edges, i.e., it
is assumed that the noise-free image can be explained by
the texture model alone.

2) The noise-free image is assumed to consist of several re-
gions of different uniform backscatter. The image is fil-
tered using (7), together with an adaptive neighborhood
system at the region borders. The model parameters are
set to values that cause a pure averaging of the amplitude
image, i.e., for all , where is determined by the
model order and the number of parameters.

Now one must decide whether to use the edge information
and an adaptive neighborhood system or to use the unchanged
texture model. The impact of this choice on the reconstruction is
illustrated in Figs. 8 and 9 for an image without texture and a tex-
tured image, respectively. It is apparent that the correct choice is
crucial. Texture must be preserved, but on the other hand, edges
must not be smoothed by the GMRF model. The problem con-
sists of finding out whether edges are due to texture as in Fig. 9,
or if they are better explained by the assumption of homoge-
neous regions, as in Fig. 8. It is clear that edges are found in
both images. However, for the reconstruction of the straw tex-
ture image, this information must not be used while it is indis-
pensable for the chessboard image.

Since the evidence of the different models cannot be correctly
evaluated, we adopted a different and much simpler approach to
make this choice: The assumption of an area composed of dif-
ferent regions of uniform backscatter is verified by calculating
the empirical coefficient of variation and comparing it
to the expected value for uniform regions. If a uniform area is
detected, assumption two is used. Otherwise, assumption one
is valid, leading to the corresponding reconstruction. We found
this approach to work much better than approaches based on the
likelihood or on the cross entropy [1] of the ratio image. Even for
difficult cases, this approach yields the more correct reconstruc-
tion, as they are shown in Figs. 8 and 9, which is very important
for a good visual appearance of the filtered image.

C. Preservation of Strong Scatterers

Strong scatterers highly disturb the parameter estimation of
the texture model. The GMRF model is quite sensitive to small,
especially linear features, which is usually its main advantage.
Isolated targets, however, cannot be modeled by GMRFs. They
require a nonlinear modeling. As a consequence, strong scat-
terers immediately affect the estimated parameters and influ-
ence the filtering of the whole surrounding area.

To circumvent this effect, we detect and remove point tar-
gets before parameter estimation to make the final estimate less
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Fig. 6. Iterative EM estimation of the model parameters estimated from the image in Fig. 4. From left to right: Convergence of�, � , and� to their final estimates.

Fig. 7. Example for edge detection using the region growing algorithm. The original image is segmented into five classes. From left to right: Simulated noisy
data, map of detected edges, and overlay of original data with edge map.

Fig. 8. From left to right: Untextured noisy data, data filtered without edge information, and data filtered with an adaptive neighborhood system under the
assumption of uniform cross section. The right image gives a much better reconstruction.

sensitive to their influence. This can easily be done by calcu-
lating the ratio of the mean values of an inner and an outer
window. The mean of the inner window is set to the one of the
outer window if their ratio is beyond a statistically determined
threshold [12]. Note that the algorithm may be this simple be-
cause only strong scatterers whose gray values do not lie within
the range of the speckle distribution must be eliminated. Iso-
lated points with lower gray values can be preserved. They only
slightly, or not at all, disturb the parameter estimation, because
they are interpreted as speckle. This indicates that the threshold
is a function of the equivalent number of looks.

Remaining strong scatterers, interpreted as noise, will be
smoothed by the MAP despeckling. This requires a postpro-
cessing step after filtering. Basically, all we really know is the

speckle distribution. Therefore, failures of the filter are imme-
diately apparent in the ratio image . This motivated the
use of this ratio to detect smoothed scatterers. The original gray
values are reinserted into the filtering result, where the value of
the ratio image is out of the range of the speckle distribution,
as depicted in Figs. 10 and 11. The threshold for the scatterer
detection from the ratio image can be determined by fixing a
constant false alarm rate.

One drawback of this approach must not be omitted. Scat-
terers that are not eliminated in the preprocessing step influence
the filtering. Their intensity is spread around into neighboring
pixels. As a result, the filtered image will have the original
gray values of scatterers preserved but surrounded by a slightly
brightened area.
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Fig. 9. From left to right: Textured noisy data, data filtered without edge information, data filtered with an adaptive neighborhood system under theassumption
of uniform cross section. The center image gives a much better reconstruction.

Fig. 10. Example for the detection of strong scatterers. From left to right: Noisy image including a strong scatterer, filtering result of the GMRF-MAP despeckling
with the scatterer smoothed, ratio imagey=x where the scatterer reappears, and final despeckling result with the detected strong scatterer included.

Fig. 11. Corresponding profiles for the images of Fig. 10. From left to right: Noisy strong scatterer, filtering result with the scatterer smoothed, ratioy=x ,
and final result with the detected strong scatterer.

D. Model-Based Despeckling and Information Extraction

Before presenting several examples and comparisons in the
next section, we summarize the algorithm called model-based
despeckling (MBD), illustrated in the flowchart of Fig. 1.

1) The algorithm requires the speckled image as input and
eventually the equivalent number of looks. Otherwise,
is estimated from the data.

2) Strong scatterers are detected and removed in order not to
influence the model parameter estimation.

3) The model parameter vector is estimated using a
sliding or partly overlapping window. Typical window
sizes used for texture detection are 2121. From the
point of view of stationarity, this is feasible, since due to
the texture model, no stationarity of the mean backscatter
is assumed as in most other filters. Neighborhood orders
may range from two to ten. More than satisfactory results

are already achieved with a fifth order model which is
used in our algorithm.

4) Areas of uniform backscatter are detected using the coef-
ficient of variation, and the edge detection is applied. The
estimated value for of the GMRF is used for both the
filtering of uniform and textured areas.

5) The correct model is chosen by an analysis of the ex-
tracted coefficients of variation, and the eventually mod-
ified parameter vector for flat areas , or the param-
eter vector , together with the appropriate neighbor-
hood system, are used to calculate a MAP estimate of the
noise-free image.

6) After despeckling of the full image, smoothed scatterers
are detected by analyzing the ratio image and
are reinserted. The same applies for scatterers removed
prior to filtering.
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Fig. 12. (Top) Speckled, (Center) MBD-filtered, and (Bottom) GGMAP-filtered test images with very different contents used for speckle filter evaluation. The
center parts (256� 256 pixels) of the whole images (512� 512 pixels) are shown. From left to right: Optical image, Brodatz textures, Lena image, and Synthetic
image.

7) As a result, the filtered image, the estimated model pa-
rameters, an edge map, and the detected point targets are
provided for further interpretation.

Because of the iterative EM algorithm employed for param-
eter estimation and the iterative computation of the MAP esti-
mate, the whole algorithm is rather slow. This is also due to the
calculation of the solution of the fourth order polynomial and
the region-growing edge detection. In particular, the edge detec-
tion algorithm can be replaced by a standard method resulting in
faster computation speeds. Using partly overlapping windows,
the computation time for an image of 10241024 pixels is in
the range of 30 min on a Pentium 300 machine.

IV. RESULTS AND EXAMPLES

In this section, we shortly present some results obtained with
the described reconstruction and parameter estimation technique
and make a comparison to other commonly used speckle filters.
For test purposes, we present a quantitative evaluation using
noiseless data where synthetic speckle has been added. In this
way, we are able to compute several objective quality measures.
For a pure visual evaluation, we show examples of real SAR
images using X-SAR and high-resolution data filtered with
the presented model-based despeckling (MBD) algorithm and
provide an example application for the extracted information.

A. Synthetic Data Example

Four test images (Fig. 12) with very different contents are used
in order not to restrict the performance evaluation to a certain
image type. An optical image was chosen because of its similar
scene contents compared to SAR images. To test the texture
preservation, we generated an image consisting of four Brodatz
textures. Asa test for the model selection, the Lena image is taken
since it comprises flat areas, edges, and texture. Finally, a pure
synthetic image is used to verify the smoothing performance, the
edge preservation, and the reconstruction of fine details, such as
lines.

We tested the most frequently used filters, like the GGMAP
[12] with edge detection (window size 77), the basic Lee filter
[10] (window size 7 7), the EPOS filter [8] (window size 7
7), and a simple wavelet-shrinkage method, and compared the
results to the proposed MBD-Filter. All test images are affected
by synthetic 3-look speckle noise.

The following quality measures have been used for the filter
comparison given in Table I.

1) MSE: Mean-square error between the filtered image and
the original noise-free data.

2) Mean: Square-root of the mean intensity of the filtered
data to be compared to the value of the original data de-
noted by .
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TABLE I
QUANTITATIVE FILTER EVALUATION FOR TEST

IMAGES 1–4. BEST VALUES IN EACH CATEGORY

ARE DISPLAYED IN BOLD LETTERS

3) ENL: Maximum smoothing in the filtered image mea-
sured in a window of 35 35 pixels.

4) Speckle: Equivalent number of looks of the whole ratio
image . This measure should be close to three.
If the number is omitted, the measured value is lower than
three, indicating strong filter-induced distortions, usually
at borders or strong scatterers.

We notice that the model-based despeckling approach
dominates in many categories, especially in the MSE and the
smoothing performance. This can be explained by its superior
modeling, which is not relying on simple averaging based on a
mean/variance analysis but on the detection and reconstruction
of features. In order to verify the preservation of structural
information, we depict the ratio image scaled between 0.5–1.5
of the noisy data to the filtering results in Fig. 13 and compare
the MBD to the GGMAP filter, which gave the best results
for the used test images. Especially for the Brodatz image,
considerably less structural degradation can be observed.

Unfortunately, it is impossible to verify, if the same favorable
behavior of the MBD filter also applies for real SAR data since
the made model assumptions might not be fulfilled. A universal
quality measure for filtered SAR data, which could help to make
this verification, does not exist.

B. High-Resolution SAR Data

Two small parts of high-resolution SAR data are shown in
Fig. 14. Here the performance of the filter is clearly visible, e.g.,
in the reconstruction of the bright lines and the strong smoothing

of the homogeneous areas. Also note the reconstruction of the
upper right part of the leftmost image where a lot of structure is
visible. Compared to typical satellite SAR image products the
noise level in this example is much lower with ENL8. This
yields a better estimate of the texture parameters, hence, a better
reconstruction than for 3-look images.

C. Information Extraction from X-SAR Data

In Fig. 15, an example for X-SAR (Space Radar Lab, 1994)
data is given. The visual quality of the despeckled image is
rather high and similar to an optical image. Disturbing speckle is
completely filtered out, edges are nicely preserved in the agri-
cultural areas, and linear structures are well reconstructed by
the GMRF model. A similar example is displayed in Fig. 16.
The mountain ranges are well explained by the texture model,
yielding a good reconstruction. Marked areas denote regions of
high scatterer density, interpreted as urban areas. The interpre-
tation was done based on the scatterer map provided by the al-
gorithm. Having applied this processing on a couple of X-SAR
scenes over Switzerland, this technique proved to be very ro-
bust. Almost no misinterpretations due to layover occurred.

In Fig. 17 a global segmentation of the same X-SAR image
into five classes can be seen on the left. The result was obtained
by the presented region growing technique, this time working
globally on the whole image. An application for the extracted
texture parameters is demonstrated on the right. The clustered
norm of the parameter vector without is displayed. Dif-
ferent regions of the image can easily be distinguished in the
false-color overlay. Applying a GMRF parameter estimation
without considering noise (resulting in a least-mean squares es-
timation) either on original or on conventionally filtered data,
gives only a meaningless noisy clustering. This estimation is
very sensitive to both remaining noise and filter-induced arti-
facts. Thus, the likelihood function must be considered for pa-
rameter estimation from noisy data, as in (11).

V. CONCLUSION

A new texture preserving despeckling algorithms has been
presented that does not require any parameter tuning. Though
computationally rather demanding compared to conventional
despeckling techniques, even larger scenes can be processed
within reasonable time, i.e., within a few hours. Unfortunately,
the texture reconstruction may give unsatisfactory results in the
case of correlated speckle since the noise correlation is not con-
sidered in the likelihood function. This problem can be solved
by subsampling the data at the cost of reduced spatial resolution
or by a model change. The latter is still under investigation. For
low speckle correlation, the results of the proposed filter are gen-
erally of very high quality, especially where the reconstruction
of texture, a strong smoothing and the preservation of edges is
concerned. Concerning single-look SAR data, the quality of the
filtering result and the estimated texture parameters is reduced.
Only very strong textures can be captured in this case since the
SNR is too low. The assumption of a Gaussian-shaped posterior
still holds, although the accuracy is decreased. For products of
three and more looks. However, the image quality increases sig-
nificantly.
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Fig. 13. Corresponding ratio images of the speckled data and the filtering results of Fig. 12 are displayed (top row: MBD filter, bottom row: GGMAP filter).
From left to right: 1— Optical image, 2—Brodatz textures, 3—Lena image, 4—Synthetic image.

Fig. 14. High-resolution SAR image example. Left image of image pairs: Original SAR data (ENL= 8, 160� 160 pixels) by N. A. Software, Ltd. Right image
of image pairs: MBD-filtered data (ENL= 98 and ENL= 157).

Fig. 15. X-SAR example 1, Left: Original X-SAR image (ENL= 3.5, 512� 512 pixels). Right: Despeckled image obtained with the described algorithm
(ENL = 122).

The presented filter not only produces a despeckled image
but also provides additional information in form of texture pa-
rameters, a scatterer, and an edge map. As demonstrated, these

features are well suited for further image interpretation. This is
especially important, as the number of SAR sensors for high res-
olution imagery is steadily demanding new interpretation tools
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Fig. 16. X-SAR example 2, Left: Original X-SAR image (ENL= 3.5, 512� 512 pixels). Right: Despeckled image using the described algorithm (ENL= 371).
Marked regions are urban areas obtained by thresholding the density of detected point targets.

Fig. 17. X-SAR example 3: Left: Global backscatter segmentation of original data into five classes using the described region growing technique. Right: Clustering
of the normj���j of the extracted parameters into five classes (lake, city, valley, higher mountains, and lower mountains).

and new image archiving systems based on retrieval by image-
content techniques. We think that one step in this direction has
been made with the proposed approach, whose output can be
used directly in such systems [19].

ACKNOWLEDGMENT

The authors would like to thank F. Faille for her help and for
her suggestions concerning the manuscript.

REFERENCES

[1] R. E. Blahut,Principles and Practice of Information Theory. Reading,
MA: Addison-Wesley.

[2] R. Cook, I. McConnell, D. Stewart, and C. Oliver, “Segmentation and
simulated annealing,”Satellite Remote Sensing III, Sept. 1996.

[3] M. Datcu, K. Seidel, and M. Walessa, “Spatial information retrieval
from remote sensing images—Part I: Information theoretical perspec-
tive,” IEEE Trans. Geosci. Remote Sensing, vol. 36, pp. 1431–1445,
Sept. 1998.

[4] H. Derin and H. Elliott, “Modeling and segmentation of noisy and tex-
tured images using Gibbs random fields,”IEEE Trans. Pattern Anal.
Machine Intell., vol. PAMI-9, pp. 39–55, Jan. 1987.

[5] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions and
the Bayesian restoration of images,”IEEE Trans. Pattern Anal. Machine
Intell., vol. 6, pp. 721–741, Nov. 1984.

[6] D. Geman,Random fields and inverse problems in imaging. Berlin,
Germany: Springer-Verlag, 1988, pp. 117–193.

[7] J. W. Goodman, “Statistical properties of laser speckle patterns,” in
Laser Speckle and Related Phenomena, J. C. Dainty, Ed. Berlin,
Germany: Springer-Verlag, 1975.

[8] W. Hagg and M. Sties, “Efficient speckle filtering of SAR images,”Proc.
IGARSS ’94, vol. 4, pp. 2140–2142, 1994.

[9] S. Lakshmanan and H. Derin, “Simultaneous parameter estimation and
segmentation of Gibbs random fields using simulated annealing,”IEEE
Trans. Pattern Anal. Machine Intell., vol. 11, pp. 799–813, Aug. 1989.



WALESSA AND DATCU: MODEL-BASED DESPECKLING AND INFORMATION EXTRACTION FROM SAR IMAGES 2269

[10] J.-S. Lee, “Speckle supression and analysis for synthetic aperture radar
images,”Opt. Eng., vol. 25, no. 5, pp. 636–643, May 1986.

[11] W. von der Linden, R. Preuss, and V. Doseet al., “The prior-pre-
dictive value: A paradigm of nasty multidimensional integrals,” in
Maximum Entropy and Bayesian Methods, W. von der Lindenet al.,
Eds. Norwell, MA: Kluwer, 1999, pp. 319–326.

[12] A. Lopez, E. Nezry, R. Touzi, and H. Laur, “Structure detection and
statistical adaptive speckle filtering in SAR images,”Int. J. Remote
Sensing, vol. 14, no. 9, pp. 1735–1758, 1993.

[13] D. J. C. MacKay, “Bayesian interpolation,”Neural Comput., vol. 43,
1992.

[14] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equations of state calculations by fast computing machines,”
J. Chem. Phys., vol. 21, pp. 1087–1091, 1953.

[15] C. J. Oliver, “Information from SAR images,”J. Phys. D: Appl. Phys.,
vol. 24, pp. 1493–1514, 1991.

[16] C. J. Oliver, A. Blake, and R. G. White, “Optimum texture analysis of
synthetic aperture radar images,” inProc. SPIE, vol. 2230, 1994, pp.
389–398.

[17] A. H. Schistad Solberg and A. K. Jain, “Texture fusion and feature se-
lection applied to SAR imagery,”IEEE Trans. Geosci. Remote Sensing,
vol. 35, pp. 475–479, Mar. 1997.

[18] M. Schroeder, H. Rehrauer, K. Seidel, and M. Datcu, “Spatial infor-
mation retrieval from remote sensing images—Part II: Gibbs Markov
random fields,” IEEE Trans. Geosci. Remote Sensing, vol. 36, pp.
1446–1455, Sept. 1998.

[19] M. Schroeder and H. Rehrauer. (1999). [Online] Available:
http://www.dfd.dlr.de/srtm/html/data_minigen.htm.

[20] D. S. Sivia, Data Analysis: A Bayesian Tutorial. Oxford, U.K.:
Clarendon, 1996.

[21] M. Walessa and M. Datcuet al., “Texture reconstruction in noisy im-
ages,” inMaximum Entropy and Bayesian Methods, W. von der Linden
et al., Eds. Norwell, MA: Kluwer, 1999.

[22] M. Walessa, “Texture preserving despeckling of SAR images using
GMRFs,”Proc. IGARSS 99, vol. 3, pp. 1552–1554, 1999.

[23] , “Bayesian information extraction from SAR images,” Ph.D.
thesis, Univ. Siegen, Siegen, Germany, submitted for publication.

[24] G. Winkler,Image Analysis, Random Fields and Dynamic Monte Carlo
Methods: A Mathematical Introduction. Berlin, Germany: Springer-
Verlag, 1995.

Marc Walessa received the degree in elec-
trical engineering and telecommunications from
Rheinisch-Westfälische Technische Hochschule
Aachen (RWTH), Aachen, Germany, in 1996,
working in the signal theory group of the telecom-
munications institute. He is currently pursuing the
Ph.D. degree at the German Remote Sensing Data
Center, German Aerospace Center (DLR/DFD),
Oberpfaffenhofen, Germany, working on Bayesian
SAR data interpretation and speckle filtering

In 1995, he joined the Image Processing Depart-
ment, Ecole Nationale Supérieure des Télécommunications (ENST), Paris,
France, for a six-month project work on stereovision. His research interests are
in image and speech processing and information theory.

Mihai Datcu received the Ph.D. degree in elec-
tronics and telecommunications from the University
“Polytehnica,” of Bucharest (UPB), Bucharest,
Romania, in 1986, and the title “Habilitation à
diriger des recherches” from the Université Louis
Pasteur, Strasbourg, France, in 1999.

He has held an image processing Professorship
with UPB since 1981. He was a Visiting Professor
from 1991 to 1992 with the Department of Mathe-
matics, University of Oviedo, Oviedo, Spain, and
from 1992 to 1993, 1996 to 1997, 1998, and 2000,

was with the Swiss Federal Institute of Technology (ETH), Zürich, Switzerland.
In 1994, he was Guest Scientist with the Swiss Center for Scientific Computing
(CSCS, Manno, Switzerland. He was teaching stochastic image analysis,
fractal analysis, image processing in medical sciences, and designing and
developing new concepts and systems for image information mining, realistic
visualization, query by image content from very large image archives, and new
algorithms for parameter estimation. Since 1993, he has been a Scientist with
the German Remote Sensing Data Center (DFD), German Aerospace Center
(DLR), Oberpfaffenhofen, Germany. He is developing algorithms for scene
understanding from synthetic aperture radar (SAR), and interferometric SAR
data, model-based methods for information retrieval, and conducts research
in information theoretical aspects and semantic representations in advanced
communications systems. Currently, he is Image Analysis Group Leader, Re-
mote Sensing Technology Institute (IMF), (DLR). His interests are in Bayesian
inference, information theory, stochastic processes, model-based scene under-
standing, image information mining with applications in information retrieval
and understanding of high resolution SAR and optical observations.


