ENT BY:

150 9979 0005

Country.

Application for Registration of Cryptographic Algorithm

- a.) ISO entry name { iso standard 9979 cdmf (5)}
- b.) Name of Algorithm

Commercial Data Masking Facility (CDMF)

c.) Intended Range of Applications

Confidentiality

- d.) Cryptographic Interface Farameters
 - 1. Input data: 64 bit block
 - 2. Output data: 64 bit block
 - 3. Key input: 64 bit block in a pattern of 7 key bits followed by one unused bit followed by 7 key bits followed by an unused bit. This pattern in continued through the 64th bit.
- e.) Test Words
 - 1.Clear key = X FFFFFFFFFFFFFFFF
 Cleartext = X 0123456789ABCDEF'
 Ciphertext = X 12CC8EE83C686380'

 - 3.Clear key = X 0123456789ABCDEF' Cleartext = X 0123456789ABCDEF' Ciphertext = X 7D74922D74B12E13'
- f.) Sponsoring Authority

American National Standards Institute

Registeration requested by IBM

Contact for information

James Randall
IBM Corporation
1301 K Street N.W.
Washington D.G. 20005-9307
USA
Telephone: 1-202-515-5525
FAX: 1-202-515-5551

- g.) Date of Submission 29 October 1994
- h.) Whether the Subject of a National Standard

- / 1004 17.55

P. 3

WA21→

PAGE. 004/010

150 9979 0005

No

1.) Patent License Restriction Information

Patent filed by IBM - Pending

- j.) References to Associated Algorithms
 - 1.FIPS 46 Data Encryption Standard (USA)
 - 2. ANSI X3.92 Data Encryption Algorithm (USA)
- K.) Description of Algorithm
- 1.) Other Information

SENT BY:

CDMF Algorithm Definition Details

In the following definition of the CDMF algorithm, all bits in a bit string are numbered from leftmost to rightmost as bit 1 to bit 64, eX(X) represents DEA encryption of X using key K, AND is the bitwise Boolean-AND operation, KOR is the bitwise Boolean-Exclusive-OR operation, and := represents the assignment operation.

The procedural definition of the CDMF algorithm is as follows:

1. Set parity bits.

Zero the following bits in the input CDMF key: Bits 8, 16, 24, 32, 40, 48, 56, 64 of input CDMF key are set to zero. Call the result II.

This may be accomplished by the following: I1 := input-key AND X'FEFEFEFEFEFEFE'

2. One-way function.

I2 := I1 XOR eKl(I1)where K1 is the fixed value X'C408B0540BA1EQAE'.

3. Selection function.

Zero the following bits in I2: 1,2,3,4,8,16,17,18,19,20,24,32,33,34,35,36,40,48,49,50,51,52,56,64. Call the result I3.

This may be accomplished by the following: I3 := I2 AND X'0EFE0EFE0EFE0'

1. Expansion function.

The derived key K' := eK2(I3)where K2 is the constant DEA key X'EF2C041CE6382FE6'.

j. Regular DEA invocation.

The derived key K' is used internally as the key in a DEA invocation.