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The bodies of the Solar System exist in a variety of irregular
shapes. Studies of those shapes are conducted to infer informa-
tion about the internal composition, structure, and history of those
bodies. However, such inferences require knowing how the com-
position and structure or history relates to the shape and inter-
nal forces. That connection is known only for fluid bodies, where
the permissible equilibrium states were discovered centuries ago
by Newton, Maclaurin, Jacobi, Poincaré, and Roche. While others
have given results for linear elastic solid bodies, the elastic problem
is not uniquely posed, since elastic solutions depend on an implicit
assumption about the existence and shape of an initial stress-free
state. The present states of Solar System bodies are a culmination
of complicated past histories, possibly involving collisions, disrup-
tion, melting, accumulation, and large-scale yielding and reshaping.
Such processes create underlying residual stress fields that cannot
be known.

Here I present an approach in the same spirit as for the fluid
bodies: limits on equilibrium shapes are determined. Results are ob-
tained for a cohesionless elastic–plastic solid with a Mohr–Coloumb
yield criteria. That model is commonly used in soil mechanics and
is appropriate for “rubble pile” reaccumulated asteroids that have
negligible cohesive forces. It is possible to determine limit equilib-
rium stress fields and shapes that are independent of past histories,
using the approaches of limit analyses of elastic–plastic theories.
The results show that for these bodies there exists a region of per-
missible combinations of shape and spin rates, centered about the
unique equilibrium fluid states of Maclaurin and Jacobi.

The database on asteroids is compared to those equilibrium states.
Few asteroids are outside the limit shape envelopes according to this
theory.

The application of the analysis to Phobos is also presented, as-
suming that the rubble-pile model is appropriate. The deformation
that would occur as it moves closer to Mars is determined; it is
shown to be unstable and globally catastrophic at about 2.1 Mars
radii. c© 2001 Elsevier Science (USA)

Key Words: asteroids; celestial mechanics; solid bodies; tides;
satellites of Mars.

1. INTRODUCTION

termined that the shape of an almost spherical fluid Earth with
The determination of equilibrium shapes of fluid bodies with
gravitational, centrifugal and/or tidal forces is a classical prob-
lem that has spanned over three centuries. Newton (1687) de-
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gravitational and rotational forces is a slightly oblate spheroid.
Maclaurin (1742) extended the work to discover the existence
of equilibrium oblate spheroidal shapes with large ellipticity
for rotating bodies with self-gravity, now called the “Maclaurin
spheroids.” Jacobi (1834) discovered the “Jacobi ellipsoids”:
equilibrium ellipsoidal shapes with three unequal axes. Others
extended the work to allow for internal rotational motions of a
fluid body. Roche (1850) considered the tidal forces during an
orbit around a parent body and determined that there is a limit
to the orbit radius, the famous “Roche limit,” inside of which
there are no equilibrium solutions. Poincaré (1885) discovered
other pear-shaped, nonellipsoidal possibilities for equilibrium.
Chandrasekhar (1969) gives a complete exposition of these clas-
sical works.

The assumption of fluid behavior may be warranted for gas-
eous bodies; but for Solar System bodies the assumption of fluid
behavior is generally unwarranted, and these results are interest-
ing only as limit cases. To study the breakup of solid bodies by
tidal forces, Jeffreys (1947) and Õpik (1950), neglecting self-
gravitation and spin forces, and looking only at the force across
an entire cross section for rigid spherical bodies, determined
Roche limits for solids, using either a maximum tensile or maxi-
mum shear force criteria for failure. A recent paper by Davidsson
(1999) included all of gravitational, spin, and tidal forces but
still assumed a rigid spherical body and still used only averaged
total forces across certain cross sections. Davidsson compared
those forces to either tensile or shear force criteria to determine
tidal limits and spin limits. The consideration of force averages
across cross-sectional planes has a great advantage in that the
force solution is statically determined, but the approach suffers
from the lack of knowledge of actual stress variations across
that cross section and, as a consequence, imprecise knowledge
of reasonable stress failure criteria.

Sekiguchi (1970) and Aggarwal and Oberbeck (1974) revis-
ited the Jeffreys and Õpik theories. Aggarwal and Oberbeck
assumed an incompressible but otherwise elastic material and
retained the spherical assumption. Following Love (1944), they
assumed an initial state of hydrostatic pressure. They considered
both an impacting body (no spin) and an orbiting, spin-locked
body. They compare their results to those of Roche and claim
that the significant differences are due to nonlinearities in fluid
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behavior, although nowhere in Roche’s approach is there any
use of constitutive equations. The difference should instead be
attributed to their assumption of a spherical body, while the fluid
solutions exist only for certain significantly nonspherical ellip-
soidal bodies.

Dobrovolskis (1982) considered the equilibrium of elastic tri-
axial ellipsoids with gravitational, spin, and tidal forces; Slyuta
and Voropaev (1997) considered only prolate spheroids with
self-gravitation. Both papers presented complete elastic stress,
strain, and displacement fields. Since they lead to elastic solu-
tions, both of these approaches implicitly assume deformation
from an initial globally stress-free state.

For all of these solutions, there are equilibrium solutions for
arbitrary shape and spin rate. The elastic solutions are unique
only from a given initial configuration. Thus the search shifts
from looking for shapes that are possible to assuming a shape and
initial state and deriving the stress, strain, and displacement field
imposed by the gravitational, rotational, or tidal forces. Then
failure is an additional consideration, based upon a comparison
of the elastic stress state to some stress failure or flow criteria
for the onset of plastic failure or flow. The consequences of
that “failure” are not easily determined, and disagreements have
arisen over that point.

For a general solid body, there is generally a multitude of
equilibrium stress solutions, and the one that also satisfies the
equations of strain compatibility (or is derived from smooth dis-
placement fields) is the unique elastic solution to the problem,
assuming an initial stress-free state. That is, the stress field is stat-
ically indeterminate, and considerations of displacements from
some initial state are necessary to make the solution unique. In
elasticity those deformation considerations are imposed by the
assumption of a smooth deformation from an initial stress-free
state, or, equivalently, by the equations of strain compatibility
on the strains calculated from the stresses using Hooke’s law.

In this author’s view, both the force approaches and the elastic
approaches have serious deficiencies. In the former, it is the lack
of detail about actual stress distributions and the uncertainty over
failure criteria for averaged forces. In the latter elastic methods,
there are two deficiencies. The first is the implicit need to choose
the initial state; the second is the inability to consider subsequent
deformation when the first yield is reached. The stress-free initial
state assumption gives solutions for a body that was assembled
with no stresses whatsoever, followed by the application of the
gravitational, rotational, and tidal forces, to give displacement
and stress fields from the initial stress-free reference state. Love
(1944) comments on that problem. In his discussion of the defor-
mation of the Earth under spin, he states: “All such applications
are beset by the difficulty which has been noted in Article 75,
viz.: that even when the effects of rotation and disturbing forces
are left out of account, the Earth is in a condition of stress, and the
internal stress is much too great to permit of the direct application
of the mathematical theory of superposable small strains.” He

gives a reference to Chree (1891) for that observation. However,
he then sidesteps the problem by assuming that the initial stress
TIONS OF SOLID BODIES 433

is only a hydrostatic pressure, in equilibrium with the gravita-
tional forces. Dobrovolskis (1982) does not consider any initial
state but also correctly notes that same problem, when interpret-
ing aspects of his elastic solution. He states: “Obviously, it is
unrealistic to imagine a planet or satellite fully assembled when
self-gravitation is abruptly turned on, leading to a sudden col-
lapse of its surface. This difficulty can be mitigated in the case of
an incompressible solid, but such an idealization (besides failing
to simplify the stress calculations) is somewhat unrealistic even
for chondritic material.”

While assuming a stress-free initial state is appropriate for
man-made structures such as airplanes or bridges, which are
built and then loaded, it does not seem suitable for Solar System
bodies that form and are modified while the loads are always
present. If the body has undergone any readjustments, reshaping,
or disruption during its history, there will generally not be a
global stress-free reference state. Instead there will exist inelastic
strains, and any global state with no forces would have significant
internal residual stresses. A determination of stress fields in an
elastic body of a given shape, subsequently compared to some
elastic limit, does not give a limit configuration; it simply gives
the state requiring inelastic flow and a change of internal stresses.
Then later deformations will not be from a global stress-free
state.

The more general inelastic problem must be analyzed us-
ing a complete inelastic theory; and, since the deformations of
interest would be expected to significantly change the body’s
shape, the analysis would require a finite deformation theory.
However, there are powerful approaches used in plasticity the-
ories that circumvent the need to know the past history: the
so-called limit analyses. In these approaches one seeks the max-
imum load which, for a given shape, can be withstood without
unconstrained plastic flow. That approach is used here. The inter-
est is then to determine meaningful equilibrium limit solutions
for solid bodies, and in particular for bodies consisting of ma-
terials such as soils, rocks, ices, or metals, whether coherent or
loosely bound assemblages of small pieces (“rubble piles”).

In Earth-bound studies of geological materials, in the fields of
soil and rock mechanics, it is universally accepted that appropri-
ate material behavior descriptions require elastic–plastic theo-
ries. A further basic tenet for many particulate (soil or gravel) or
solid (rock) geological materials is that the shear yield stress on
any plane increases with the normal pressure on that plane. The
simplest criterion of that type is the well-known Mohr–Coloumb
(MC) yield criterion, determined solely by a cohesion Y and an
angle of friction φ. Also required is some “flow rule” to deter-
mine the flow: some prescription of the plastic deformations that
occur when the stresses meet or exceed the yield criteria. These
flow rules are commonly given in a rate or incremental form.
Then, in principle, one can trace a particular loading (or for-
mation) history and incrementally determine the resulting stress
and strain fields.
Such an analysis is clearly complex, and the outcome will
depend on many of the details of the history, which cannot be



The completeness and uniqueness of this representation will be
addressed below.1

1 Chree (1888) and Love (1944) obtained elastic solutions in terms of spherical
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known for a given body. There are an infinity of equilibrium so-
lutions, corresponding to the infinity of possible histories. Thus,
such an analysis is also of limited usefulness. However, as stated
above, one can in many cases in elastic–plastic theories deter-
mine unique limit loads without considerations of or knowledge
of past body history, using the limit load theorems for the theory.

Here, that limit problem is partly solved. For a Mohr–Coloumb
material with zero cohesion, such limit solutions are found for
arbitrary ellipsoidal bodies with self-gravitational and/or tidal
and rotational forces. The solutions provide the limit loads for a
given configuration and also the limit configurations for which
the body can exist in equilibrium without yield. In addition, at
those limits the flow rules can be used to determine whether the
deformation patterns would tend to lead to catastrophic disrup-
tion or to evolution to a new equilibrium state.

This model is suitable for a body with a negligible-strength
rubble-pile structure. It is commonly used for studies in soil
mechanics for dry sand, gravel, and “dirt” of moderate porosity,
specifically, for materials consisting of mineral grains with grain
density on the order of 3 to 4 g/cm3 having a bulk density of
perhaps 1.5 to 2.5 g/cm3. Consequently, the model can be said
to be appropriate for “gravel balls” in space. It would not be
appropriate for a very fragile porous structure held together by
weak cohesive forces, such as may be the case for comets. It is
also a continuum model and so would not be a good model for
an assemblage of a small number of rocks, which may be more
appropriately modeled using “n-body” approaches such as that
by Richardson et al. (1998).

For such a cohesionless material, the yield criterion is char-
acterized by a single material property, the angle of friction φ.
In the limit case where that angle is zero, the description is
that of a fluid, with equal pressure stresses required in all direc-
tions. Consequently, all of the special fluid cases of Maclaurin,
Jacobi, and Roche, where only special equilibrium shapes are
possible, are exactly included in the results. For nonzero fric-
tion angles, there are ranges of possible shapes, which are pre-
sented. The results are compared to the database of the shapes
and spins of known asteroids. It is found that, with very few
exceptions, all can exist in their present states as cohesionless
rubble-pile materials with very modest values for the angle of
friction.

The structure of this paper is as follows. Section 2 begins
with a general polynomial solution for the stress components
in terms of 15 constants. The equilibrium equations and the
zero-stress boundary conditions are shown to determine 12 con-
stants, no matter what constitutive equation is to be used. Then
the final three can be found for an elastic result; or, in the ap-
proach here, the final three are determined by constraints of the
Mohr–Coloumb yield condition. The final resulting form for the
stresses is then determined for a general quadratic body force
potential; those are given in Eq. (10).

Since this beginning polynomial form is only a particular

solution, it must be proved to be unique. In Section 3 this question
is posed and answered within the context of limit solutions of
SAPPLE

elastic–plastic theories. Readers unfamiliar with those theories
may want to take those discussions for granted.

Section 4 then gives the primary results: plots of curves of
permissible spin and shape combinations for various values of
the friction angle of the yield criteria. The shapes and spins
from the database of asteroids are compared to those limits in
Section 5. Finally, the application of the analysis to Phobos is
presented in Section 6.

2. EQUILIBRIUM STATES

The stresscs σi j in any body in equilibrium with body forces
bi must satisfy the three stress equilibrium equations. In an in-
dicial summation notation using Cartesian coordinates xi they
are given as:

∂

∂x j
σi j = −ρbi (1)

where ρ is the mass density, which is assumed to be constant.
The mutual gravitational forces, centrifugal forces, and tidal

forces for the body are obtained from a potential function V as

bi = −∂V

∂xi
(2)

For ellipsoidal bodies, and, assuming a large distant source for
the tidal forces (first order terms only), the potential is quadratic
in the coordinates. Using now an x, y, z coordinate notation it
has the form:

V = −V0 + kx x2 + ky y2 + kzz2 (3)

so that the body forces from Eq. (2) are linear in the three coor-
dinates.

As a consequence of the symmetry about the three axes, a
particular solution to the equilibrium equations can be obtained
starting from quadratic forms given as

σx = k1 + k2x2 + k3 y2 + k4z2

σy = k5 + k6x2 + k7 y2 + k8z2

σz = k9 + k10x2 + k11 y2 + k12z2 (4)

τxy = k13xy

τxz = k14xz

τxz = k15 yz
harmonics in spherical coordinates. Those can also be expressed in terms of
polynomials in Cartesian coordinates.



be no lateral stresses. This is true whether or not those points are
actually at yield, as long as the angle of friction is less than 90◦.

2 Except that closed-form solutions are obtainable using MATHEMATICA.
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These stresses are written in terms of 15 unknown constants.
The three equilibrium equations can be invoked to solve for three
constants, leaving 12. Then the stress boundary conditions must
be imposed. On the outer surface of the ellipsoid, the tractions,
given as

tx = nxσx + nyτxy + nzτxz,

ty = nxτxy + nyσy + nzτyz, (5)

tz = nxτxz + nyτyz + nzσz,

must be zero. The components of the outward normal to the ex-
ternal surface of an ellipsoid are given, to within an unnecessary
magnitude, as

nx = x

a2
, ny = y

b2
, nz = z

c2
, (6)

where a, b, and c are the lengths of the principal semi-axes,
always ordered from largest to smallest. Using those in the ex-
pressions (5), and using the equation for points on the surface
as

x = a

√
1 −

(
y

b

)2

−
(

z

c

)2

, (7)

reduces each surface traction to terms that are, to within a multi-
ple, constant, quadratic in y, or quadratic in z. Since the tractions
are zero over the entire surface, each such term must be zero, a
fact that can be used to eliminate nine more constants (three trac-
tions, three terms each). The calculations are somewhat complex
but straightforward and can be accomplished entirely in closed
algebraic form using the symbolic algebra program MATHE-
MATICA.

Dobrovolskis (1982) and Slyuta and Voropaev (1997) used a
similar approach to determine elastic solutions. However, they
began with polynomial expressions for the displacements and
then calculated the strains and then the stresses using Hooke’s
law, which resulted in the stress forms above. That approach
implicitly assumes elastic deformation from a stress-free ini-
tial state. The approach here is to look for equilibrium stresses
directly, without necessarily introducing elastic displacement
considerations. Dobrovolskis (1982) also resorted to numerical
methods to solve for the constants for particular application to
several satellite bodies, while Slyuta and Voropaev (1997) re-
stricted their analysis to prolate bodies without spin, where the
additional symmetry allowed them to obtain closed-form solu-
tions. In fact, the use of a modern symbolic algebra program
eliminates those practical considerations.

The final form obtained for equilibrium stresses is then deter-
mined to within three final constants. That is because the gen-
eral problem is statically indeterminate: the three stress equi-
librium equations and the stress boundary conditions involve

six unknown stresses, leaving three degrees of freedom in the
solutions.
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From this point, there are several ways to proceed. First, one
can impose the requirement that the material is a fluid, which re-
quires that all shear stresses be zero and the three normal stresses
be equal. Doing so gives the classical hydrostatic fluid solu-
tions. Or, one can determine an elastic solution by expressing
the strains from the stresses using Hooke’s law and then im-
posing the six strain compatibility equations. From symmetry,
three of those equations are identically satisfied and the remain-
ing three determine the last three constants and the unique elastic
solution, which is exactly that given2 by Dobrovolskis (1982).
It is not repeated here. Finally, and more importantly, as per the
discussion above, a different approach is used here, using the
Mohr–Coloumb yield condition and limit analyses approaches.

The Mohr–Coloumb yield condition (see, for example, the soil
mechanics text by Lambe and Whitman (1969)) requires that the
largest (least negative and compressive here) principal stress σ1

and the smallest (most compressive) σ3 satisfy the inequality

(σ1 − σ3)
√

1 + f 2 + f (σ1 + σ3) ≤ 2Y, (8)

where f = tan(φ); φ is the angle of internal friction (or angle
of repose) and Y is the cohesion: the yield strength at zero con-
fining pressure. In the case of zero cohesion, the friction angle
required for a given stress state, in terms of the largest and small-
est principal stresses, is

tan(φ) ≥ σ1 − σ3

2
√

σ1σ3
= σ1/σ3 − 1

2
√

σ1/σ3
. (9)

In this case, the Mohr–Coloumb envelope, in a plot of shear
stress versus normal stress on any plane in the body, consists
of two straight lines through the origin, as shown in Fig. 1. The
slope of the lines are equal to the tangent of the friction angle.
Tensile stresses are not allowed. If the friction angle is 90◦,
the criteria become a simple no-tension criteria with no friction
effects. For any other case, if one principal stress is zero, then
the other two must also be zero, since a Mohr’s circle with the
right side through the origin would exceed the envelope unless
the least stress is also zero.

This fact can be used for points on the surface of the body. At
any point on the surface on any one of the three principal ellip-
soidal axes of a body, the shear stresses are zero from symmetry.
The normal stress is required to be zero from the traction bound-
ary conditions. Then that zero stress must also be the largest prin-
cipal stress σ1. As a consequence, from the observation above,
the smallest principal stress must also be zero, which implies that
all three principal stresses must be zero at those poles. There can
However, since those closed-form solutions fill several pages with algebraic
forms, they are not given here.
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FIG. 1. A zero-cohesion Mohr–Coloumb yield function. A Mohr’s circle
for a stress state at yield is shown. Principal stresses in tension are not allowed.
If the largest (least compressive) principal stress is zero, then the smallest must
also be zero, so that the Mohr’s circle for that stress state is a point at the
origin.

That is, no circle through the origin can be completely inside
the MC envelope unless it has zero radius.

Those conditions can then be used to determine the last three
constants; the requirement is that the lateral stresses must
be zero at the three poles of the body. Then, all 15 constants
are determined, giving an equilibrium stress state that is every-
where within the yield criteria.

The closed-form final result for these equilibrium stresses
found by this process is actually very simple; the normal stresses
are given as

σx = −ρkx a2

[
1 −

(
x

a

)2

−
(

y

b

)2

−
(

z

c

)2
]

,

σy = −ρkyb2

[
1 −

(
x

a

)2

−
(

y

b

)2

−
(

z

c

)2
]

, (10)

σz = −ρkzc
2

[
1 −

(
x

a

)2

−
(

y

b

)2

−
(

z

c

)2
]

and the three shear stresses are identically zero. Therefore the
normal stresses are also the principal stresses everywhere in the
body. Further, the three normal stresses are simple multiples of
each other over the entire body, with the ratios depending only
on the three components of the potential and the two ratios of
the ellipsoidal semi-axes given as

α = c

a
,

(11)

β = b

a
,

where always α ≤ β ≤ 1. Since the ratios of the stresses are
independent of position, either all points satisfy the strict in-
SAPPLE

equality of Eq. (9) and are within yield or all satisfy the equality
and are at yield.

For gravitational forces only, the body force potential in the
form of Eq. (3) is commonly given with the three parts as

kxG = ρπGabc

∞∫
0

ds

(a2 + s)
,

kyG = ρπGabc

∞∫
0

ds

(b2 + s)
, (12)

kzG = ρπGabc

∞∫
0

ds

(c2 + s)

with  =
√

(a2 + s)(b2 + s)(c2 + s). The centrifugal potential
due to spin rate ω, assuming rotation about the shortest axis
(always taken as z), is given as

VR = −ω2

2
(x2 + y2), (13)

which contributes one additional term −ω2/2 to each of kx and
ky . Finally, a tidal contribution, assuming a stable locked circular
rotation about a distant parent body, has kx , ky , and kz compo-
nents as the coefficients of the three terms in the potential:

VT = −ω2(x2 − y2 /2 − z2 /2). (14)

The total kx , ky , and kz are then those in Eq. (12) plus the
appropriate terms from Eqs. (13) and (14), depending on the
application of interest.

The gravitational contribution can be expressed in terms of
elliptical integrals in the general case, or in elementary functions
for special cases, and is determined by the two ratios α and β,
together with G, ρ, and a body average radius. The spin and
tidal contributions depend on the rotation rate ω.

The yield condition Eq. (9) is given in terms of the ratios of
the stresses; those ratios are, as noted, constant over the entire
body. Consequently, the stress state is either within the yield
surface at all points in the body or is just at the yield condition
at all points, depending on the value of the required angle of
friction given by Eq. (9) compared to the body’s actual angle
of friction. Conditions exceeding the yield condition are not
allowed. Therefore the required angle of friction for a given
body to be in the equilibrium state above is determined solely

by α and β and the spin rate ω. If the body yields at any one
point, it will do so also at all other points.
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3. UNIQENESS OF EQUILIBRIUM STATES, LIMIT
SOLUTIONS, DEFORMATION, AND STABILITY

The linear elastic solution from a stress-free initial state,
which is contained in the forms (4) assumed above, is known to
be unique to within a rigid body motion. Therefore, the starting
forms (4) are sufficiently general to recover that solution. How-
ever, for a general elastic–plastic problem, only the increments
(or rates) of stress, strain, and displacement are unique, and final
solutions for a particular loading history characteristically have
discontinuities in the slopes when plotted as a function of the co-
ordinates. (See, for example, Fig. S5.25 in the text by Chen and
Zhang (1991).) Those solutions are certainly in equilibrium, so
it is obvious that the smooth starting forms (4) cannot possibly
contain all equilibrium solutions to the general elastic–plastic
problem. However, limit solutions are generally smooth, and
those are the goal here. It is shown next that the above solutions,
as limit solutions, are also unique.

Chen and Han (1988) discuss the limit load approach. A “limit
load” or “collapse load” for a body is defined as a load state for
which the plastic deformation can increase without limit in the
body. If the body has several types of loads (e.g., gravitational
and spin) then it is convenient to let all increase from zero with
some common scale factor µ and seek the value µ = µ0 where
collapse occurs. Since the elastic strains play no role in the col-
lapse state, those elastic effects can be ignored in the analysis
(Chen and Han 1988, p. 414).

As a consequence, the analysis proceeds assuming a rigid-
plastic material, for which the elastic strains are all zero. Then
the plastic strain rates are assumed to be given by a flow rule of
the form

ε̇i j = λ̇
∂g

∂σi j
, (15)

where g, the so-called plastic potential, is some function of the
stresses, and λ̇ is some positive scalar factor of proportionality.
Commonly, the plastic potential g is assumed to be the same as
the yield function f , and the flow rule is called “associated.”
Then Eq. (15) implies that the strain rate vector is perpendicular
to the yield surface in stress space.

Here the Mohr–Coloumb yield condition is used. Chen and
Han (1988) give the explicit form of the associated flow rule
for that case. The result depends on which principal stress is
largest and which is smallest. Suppose that the numbering of
the principal stresses is always from the largest to the smallest.
Then, assuming all three are distinct, the flow rule for the three
strain rates is given as

[ε̇1 ε̇2 ε̇3] = λ̇[m 0 − 1], (16)

where the constant m is related to the angle of friction:
m = 1 + sin φ

1 − sin φ
. (17)
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Note that since the shear stresses are zero, these strain rates
are also the x, y, and z components, in some order. When two of
the stresses are equal, the stress point is at a corner on the yield
surface and the strain rates are indefinite but are always a sum
of two terms similar to Eq. (16) (see Chen and Han 1988). That
special case is not considered in detail here.

For fairly general yield functions and flow rules, and specifi-
cally for this one, there are two limit theorems that form the basis
of limit analysis. The first uses the definition of a
statically admissible stress field: it is any stress field that sat-
isfies the equilibrium equations and the stress boundary con-
ditions and nowhere violates the yield condition. The solution
above is statically admissible whenever it satisfies Eq. (9). Then
the first (lower limit) theorem states that the loads associated
with that stress field are less than or equal to the actual limit
load. Therefore the loads (spin and gravitational) that equate to
yield Eq. (9), used in the stress state given in Eq. (10), are nec-
essarily less than or equal to the collapse load. Thus, those loads
are a lower limit to the collapse loads.

Secondly, a kinematically admissible velocity field is any ve-
locity field leading to unconstrained flow (collapse) that satisfies
the given velocity boundary conditions (of which there are none
in the present problem). Hence here any choice of a collapse
velocity field, and its corresponding strain rates, gives a kine-
matically admissible velocity field. The second (upper bound)
theorem states that the loads associated with any such velocity
field are greater than or equal to the actual collapse load. (Ac-
tually the form in Chen and Han (1988) refers to the rate of
dissipation, which is related to the loads.)

It is useful to quote the paraphrasing of these two limit theo-
rems as given by Chen and Han. They state, “The lower bound
theorem expresses the ability of the ideal body to adjust itself to
carry the applied loads if at all possible.” For the second, upper
bound, result they state, “If a path of failure exists, the body will
not stand up.”

If a velocity field that is derived from the statically admis-
sible solution is also kinematically admissible, then that kine-
matically admissible velocity field has the same loads as the
statically admissible stresses, the upper and lower load lim-
its coincide, and those loads are indeed the actual limit loads.
That same result is also expressed in a different way by a result
given by Chakrabarty (1987, p. 96), where he proves that: “the
state of stress at the yield point is uniquely defined in a region
where the material can deform under given boundary condi-
tions.” The “can deform” proviso is the same as the existence
of the kinematically admissible collapse state. His definition of
the “yield point” refers to that of the body and is the same as the
limit load.

Therefore, to prove the uniqueness of the stresses above as
those at the limit load of the body, we noted already that they are
simultaneously at the yield point for all locations in the body, if
the loads are derived by using Eq. (9) with the equality. Their

associated strain rates can then be calculated from the flow rule,
Eq. (16). Those can be used to get a velocity field.
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Let the coordinate axes be relabeled as x1, x2, x3 to correspond
to the ordering of the principal stress axes, that is, order x , y,
and z depending on which axes have the largest, intermediate,
and smallest principal stress. Then the velocity field in this re-
ordered coordinate system can be taken as

v1 = x1mλ̇, v2 = 0, v3 = −x3λ̇, (18)

which is a uniform stretching: an expansion along the direction
of the first axis, a shortening along the third, and no motion in
the direction of the second. The strain rates from Eq. (18) are
then those of the flow rule Eq. (16). The magnitude of the scalar
λ̇ is indeterminate, but positive, which is a usual feature of plas-
ticity without hardening. It might be noted that there is a volume
expansion (the sum of the three) associated with this motion,
since m ≥ 1 for all angles of friction. That volume expansion is
a consequence of the fact that the flow rule associated with the
Mohr–Coloumb yield function has a dilation component.3

Then this is the sought after, kinematically admissible velocity
field. Its existence and its derivation from the stress field proves
that the form Eq. (10) with the loads giving the yield function
(9) with the actual angle of friction is the unique stress field
at the limit load for that angle of friction. Those loads are the
limit loads for that angle of friction. These results also justify
the starting forms (4), i.e., those initial forms are sufficiently
general to include both the elastic solution and the elastic–plastic
limit load solution, although they do not include many possible
equilibrium states with intermediate yielding and flow.

The flow rule also gives important additional information.
When a body yields at loads corresponding to its angle of fric-
tion, the flow rule (16) predicts a change of shape. The change of
shape would also give a change in the spin rate, conserving the
angular momentum. If that change moves toward a new shape
that is in equilibrium for a smaller angle of friction, then the
deformation can be considered to be stable. Otherwise the new
configuration requires a larger angle of friction, and the defor-
mation would be expected to proceed in an unstable manner
at an increasing rate, leading to disruption of the body. While
the general question of stability is not addressed here, such a
consideration is made below for Phobos.

4. REQUIRED ANGLE OF FRICTION

To obtain results, a specific angle of friction is chosen, and
Eq. (9) is used with the equality to solve for the limit load.
It is useful to express the solutions in nondimensional form.
The two aspect ratios α and β of the ellipsoidal principal axes
have already been introduced. The three scaled coordinates can

be given in terms of ratios of the coordinates to their respec-
tive semi-axes lengths. An equivalent-volume average radius is

3 Lambe and Whitman (1969, p. 129) discuss such behavior in dry sands.
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defined as R = (abc)1/3. Any stress component can be scaled as

σ̄i = σi

ρ2G R2
(19)

and a scaled spin rate is conveniently defined as

� = ω√
ρG

. (20)

The ratio of any two stresses is then independent of size scale
R. Then, since Eq. (9) has only stress ratios, the required friction
angle is expressible in terms of only α, β, and the scaled spin �

and is independent of the asteroid size. The only complication is
that in various cases one must determine which stress component
is the maximum and which is the minimum. Then, for each α, β,
and �, one can determine a value for the required friction angle.
To get two-dimensional plots, contour curves for the required
angle φ are shown on a plot of α versus � for some given value
or relation for β. Those also give, for that choice of β, the limits
of the aspect ratio α for a given �, i.e., limit shapes for a given
spin state.

Note that the solutions here are unique only as limit loads.
That is, a stress state on a contour curve for, say, φ = 10◦ is
not the only equilibrium stress state for a material with actual
angle of friction φ = 30◦. Many other equilibrium states are
possible. It is, however, the unique limit load if the material has
the actual angle of friction φ = 10◦: then any larger loads would
give unconstrained plastic deformation.

Also it should be noted that the limit solutions are for ideal
smooth ellipsoidal shapes, and all points are just at the MC yield
condition. It is not necessary to have surfaces with slopes for the
stress state to be at the MC limit. If in fact surface features and
slopes are to be allowed, then the body must be clearly within the
smooth shape limit, so that the perturbations in the stress field
due to those features still results in a stress state within yield.

Special cases follow.

4.1. Oblate Spheroids

The first case presented is for oblate spheroids, with b = a and
therefore β = 1. There are assumed to be gravitational forces
and arbitrary spin rate but no tidal forces. The contour curves of
required friction angle are as shown in Fig. 2.

Certain aspects of this figure are worth noting. First, the up-
per curve is an overall limit case, with the friction angle of 90◦

and f = tan(φ) → ∞. This is a spin limit at which kx becomes
zero: the spin is sufficient so that the x component of body
force becomes zero at all locations in the body. For any higher
spin rate the entire body would require tensile stress in the x
direction, which it cannot withstand. The intercept at the top
right for the spherical case with α = 1 is at the scaled spin � =
ω/

√
ρG = 2

√
π/3 ≈ 2.05. This is the limit given by Harris

(1996) for spherical bodies; he simply equated the centrifu-

gal acceleration to the gravitational acceleration at the equator.
It is then an upper bound for all ellipsoidal bodies. If the mass
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FIG. 2. Required angle of friction for oblate spheroids with spin. The Maclaurin spheroids on the central curve are for fluid bodies with zero angle of friction.
For any nonzero angle of friction there is a region of equilibrium spins bounded by an upper curve of maximum spin and a lower curve of minimum spin rate.

Equally, for a given spin, there is a left limit of maximum possible eccentricity and a right limit of minimum eccentricity. For a given friction angle, states between

the two limit curves are permissible equilibrium states.

density is assumed to have the generic value ρ = 2.5, that limit
corresponds to a period of 2.1 hr. Harris (1996) further assumes
that, for nonspherical cases, this value decreases linearly to zero
with the aspect ratio α; the actual curve as shown on the figure
is not linear.

It is seen that for common angle of friction values for soils
(typically about 30◦) this universal limit cannot be reached; it is
about 25% too large for near-spherical bodies. For that angle of
friction and for a spherical body the maximum spin, assuming
a generic value of 2.5 again for the mass density, has the period
of 2.56 hr, about 20% slower. If the mass density is ρ is 1.5,
then the maximum spin rate allowed at that friction angle has
the period of 3.3 hr. Also, nonspherical bodies with that friction
angle have essentially the same permissible spin values for any
moderate nonsphericity; i.e., the larger friction angle curves are
almost flat for 0.3 ≤ α ≤ 1.

All states on this plot have σy = σx as required by geometrical
symmetry and the fact that the rotation is about the z axis. When
the angle of friction is zero, as for a fluid, it is also required
that σz = σy = σx . The curve of those states is in the center of
all curves and gives the locus of the Maclaurin spheroids. For

spin rates less than those on that Maclaurin curve, the stresses
σx and σy are less than σz (more compressive), and increasing
spin offsets the gravitational stresses in the x and y directions.
Therefore the required angle of friction decreases with increas-
ing spin rates. Above the Maclaurin curve, the required angle of
friction increases for increasing spin rates. For each given angle
of friction φ there are then two limit curves, one below and one
above the Maclaurin spheroid curve. Any state between those
two curves requires less angle of friction than φ, so that it is a
possible equilibrium state for that angle of friction φ, and the
stress states from Eq. (10) are everywhere within yield.

When a state is on a limit curve for some given friction angle,
and subsequently yields, the velocity field (17) gives the defor-
mation rates. For states below the Maclaurin curve, yield could
be induced, for example, by decreased spin from some external
mechanism. In this region the x and y stresses are smaller than
the z stress, so that the z stress is σ1. Then the velocity field has
a uniform expansion in the shortest z direction and a contraction
in either the x or y direction, which can be taken to be equal.
This is a simple shape change toward more sphericity as the
spin is reduced. Offsetting that, the decreased elongation and
balance of angular momentum tend to increase the spin again.
Whether the net effect is a decreased required friction angle or

an increased one is not determined here in the general case. If it
is increased, this is an indication of an unstable deformation.
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For states above the Maclaurin curve, where the spin is greater
than that allowable in a fluid body at that same shape, the equal
x and y stresses are greater than the z stress. Then the z stress is
σ3, and the velocity field leads to an increased oblateness when
yielding occurs.

4.2. Prolate Spheroids

This case has the intermediate axis length b equal to the short-
est one, b = c, so thatβ = α. In this case all three normal stresses
can be different, and in different regimes different ones deter-
mine the yield condition. The contour curves for constant friction
angle are given in Fig. 3.

The states below the curve labeled σz = σx have σx < σz < σy .
In that lower region, increasing spin rate decreases the required
angle of friction. Just above that curve there is a central region
with σz < σx < σy and increasing spin rate requires increased an-
gle of friction. Above the next curve labeled σy = σx , σz < σy <

σx and increasing spin rate still requires increased angle of fric-
tion. For these prolate spheroids, the only fluid solution with
φ = 0 must have zero spin and the body must be spherical, at
the lower right point of the plot. For the angle of friction of 5◦

there is a possible region at the lower right and another toward
the left in the central region where σz < σx < σy . For the cases
of φ = 5.5◦ or more, the possible states are bounded by a lower
curve and an upper curve, as in the previous oblate cases. Any
state between those two limit curves are possible without yield.
The upper overall limit case is again where the x body force
becomes zero, and further spin would require tensile x
stresses.

4.3. Intermediate Ellipsoids

A case that is intermediate to those two just given has the
ellipsoidal intermediate axis length equal to the average of the
largest and smallest: b = (a + c)/2. The contour curves in this
case are shown in Fig. 4.

In this case there are six distinct regions, as labeled with differ-
ent combinations of stress inequality values, bounded by three
curves where two stresses are equal. There is a single point
where all three stresses are equal, which is the Jacobi ellipsoid
for this case; it has α = 0.498, β = (0.498 + 1)/2 = 0.749, and
� = 1.0663. For very small angles of friction, there are two dis-
tinct regions of permissible states. For any fixed φ greater than
about 2◦; there is a single region bounded again by an upper
curve for a maximum spin rate and a lower curve giving a mini-
mum spin rate. Any state between those two limits requires less
angle of friction and is therefore a permissible equilibrium state
for a given angle of friction. Note that the regions include points
at smaller aspect ratio c/a (to the left) than the Jacobi ellipsoid:
those ellipsoids do not furnish a lower limit to the aspect ratio.
Also, it is not necessary for the shapes of rubble-pile asteroids to
lie close to the Jacobi point; significant deviations are possible.
All three plots have the same intercepts at the right axis for
spherical bodies, but the upper overall limit and limits for par-
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ticular friction angles are distinct depending on the magnitude
of the intermediate aspect ratio β.

5. ASTEROID SHAPES AND SPINS

We can now compare the observations of asteroids to the equi-
librium shape limits derived here, with the hope of gleaning in-
formation or constraints on their internal structure and material.
The compilation of asteroid periods and lightcurve amplitudes
given by A. Harris and P. Pravec were obtained from Alan Harris
(personal communication). Following the lead of Pravec and
Harris (2000), a list of near-Earth asteroids, Mars-crossers, and
main belt asteroids was generated; Trojans and Centaurs were
excluded. That left 845 asteroids. It was assumed that the largest
observed full-range amplitude of lightcurve variation in magni-
tudes was due solely to the difference between the largest and
intermediate diameter, so that the usual relation for the amplitude

A = 2.5 log

(
a

b

)
(21)

was used to determine the aspect ratio β = b/a. While it is
well known that this equation may not be entirely reliable, it is
assumed here to give a good estimate of the shape. No attempt to
assign a minimum axis c was made; instead the data are shown on
plots of various plausible c values. In particular, since c ≤ b ≤ a,
we have also α ≤ β ≤ 1 and then, for any given β, α can take on
any lesser value. Thus in this case it is useful to generate plots
where α = kβ and k can range from 0 to 1. Figure 3 above has
β = α, so that k = 1, which is the upper limit on axis c. Another
popular assumption (with minimal justification) is that α = 1/2
and β = 1/

√
2, so that k = 1/

√
2. Therefore further plots are

generated for that case, as discussed below.

5.1. The Asteroids Assuming Prolate Spheroids: α = β

These limit curves were already presented above. The data
for asteroids can then be superimposed on the previous limit
curves. The data for all with quality Q ≥ 2 (see Harris 1996 for
definition) are used on all plots.

For the C-type asteroids, on Fig. 5, a mass density of 1.5 g/cm3

was used to calculate the scaled spin rate � = ω/
√

ρG. For the
C-types, those with the better quality, Q ≥ 3, are depicted with
circles around the points. There are a total of 120 data points,
and 51 with Q ≥ 3. All these C-types easily fall within friction
angle limits typical of dry soils, which typically are in the range
of 30◦–40◦ even for relatively loose packing. Indeed, all of them
fall within the 15◦ limits except for 725 Amanda on the upper 25◦

curve. However, one notable exception not shown is the newly
discovered fast spinning asteroid 1998 KY26, with an apparent
aspect ratio of 0.76 and a scaled spin rate of about 30, about
15 times higher than the limits of this curve. It is clearly not a
rubble-pile asteroid.
For S-type asteroids, a mass density of 3.0 was used. If they
are silicate minerals but rubble piles, a density of about 2 might



EQUILIBRIUM CONFIGURATIONS OF SOLID BODIES 441

FIG. 3. Required angle of friction for prolate spheroids with spin. For any nonzero angle of friction there is a region of equilibrium shapes. No nonspherical
fluid possibility with spin exists here.

FIG. 4. Required angle of friction for ellipsoids with b = (a + c)/2 with spin. One Jacobi ellipsoid point exists at the center, for a fluid body with zero angle

of friction. For any nonzero angle of friction there is a region of equilibrium shapes, bounded by a lower curve of minimum spin and an upper curve of maximum
spin.
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FIG. 5. Shapes and spins for C-type asteroids, compared to limit curves, assuming prolate asteroid shapes, c = b. Only three asteroid points lie outside the
limits for φ = 10◦.
FIG. 6. Shapes and spins for S-Type asteroids, compared to limit curves, assuming prolate shapes, c = b. Only 1620 Geographos is outside the curves for a
25◦ friction angle, although about a 30% increase in its assumed aspect ratio b/a would put in within those curves.
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FIG. 7. Shapes and spins for M-Type asteroids, compared to limit curves, assuming prolate shapes, c = b. All points lie inside the limits for φ = 20◦.
FIG. 8. Shapes and spins for all other asteroids, compared to limit curves, assuming prolate shapes, c = b. All points lie inside the limits for about φ = 42◦.
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FIG. 9. The limits compared to data for spin rates and shapes of asteroids of the C-type, assuming that the smallest axis c is 0.707 times the intermediate axis
b. Only one asteroid, 725 Amanda, has a state outside the limits for φ = 20◦, and most are within the limits for φ = 15◦.
FIG. 10. The limits compared to data for spin rates and shapes of asteroids of the S-type, assuming that the smallest axis c is 0.707 times the intermediate
axis b. Only 1620 Geographos at the left is essentially outside the limits for a rubble-pile structure with 30◦ friction angle, a result of its highly elongated shape.
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FIG. 11. The limits compared to data for spin rates and shapes of asteroids
axis b. All are within the limits for a 20◦ angle, and all are below the fluid case.

be more appropriate, which would raise all points by about 25%.
There are 246 data points, as shown on Fig. 6. Two, Eros and
1620 Geographos, are noted. Geographos is the only asteroid
outside the 20◦–25◦ friction angle curves; however, it would
plot within the curves if its ratio of intermediate to longest axis
were only about 20% greater. Eros requires only a 5◦ friction
angle to be a rubble-pile asteroid, although it is now thought that
it is not a rubble-pile asteroid.

The data for M-types include 49 asteroids. While it may be
less likely that a rubble-pile structure is appropriate for those,
it is interesting to plot them anyway. A mass density of 8.0 was
used for all points, although if they are predominantly iron but
have porosity, a more appropriate value would be on the order
of 5, which would increase the scaled spin by a factor of about
25%. The data are in Fig. 7. Note that all except one are near the
lower branch limits.

Finally, there remain 426 other cases. A mass density of 3.0
was used for all; they are shown in Fig. 8. Only 3 fall outside
the 35◦ limit curve.

5.2. The Asteroids with α = β/
√

2

For k = 1/
√

2, the values of α are diminished from the β

values determined by the lightcurve magnitudes by that ratio,

nd so, compared to the case above, all data points move to
maller α values. The maximum β is 1, and so the maximum
of the M-type, assuming that the smallest axis c is 0.707 times the intermediate

α = 0.707, which gives a new range for the plots. Figure 9 shows
all C-type asteroids with quality Q > 2; those with Q ≥ 3 are
enclosed in circles.

The S-types are as in Fig. 10. Only one (1620 Geographos) is
outside the 30◦ curves, but again a relatively small increase in
its aspect ratio α value would put in within the curves.

The data for the M-types are in Fig. 11, and all others are
shown in Fig. 12. Only in the latter case are any outside typical
values for the friction angle, and none require tension.

6. AN APPLICATION TO PHOBOS

Dobrovolskis (1982) applied his elastic solution to Phobos.
The parameters for Phobos are taken as

a = 13,300 m,

b = 11,000 m,

c = 9,200 m,

ω = 2.28 × 10−4 rad/s,

ρ = 2.2 g/cm3

and it is assumed to be in a circular orbit at 2.76 Mars radii. At

the center, he reported the pressure to be “about 700 mbar” (the
exact elastic solution is actually 694 mbar).



446 K. A. HOLSAPPLE
FIG. 12. The limits compared to data for spin rates and shapes of asteroids of all other types, assuming that the smallest axis c is 0.707 times the intermediate
n ◦

The nature of the yield deformation can be determined here by
using the velocity field given in Eq. (18). The state of Phobos
axis b. Very few are above the limits for typical values for the angle of friction, a

In fact, if Phobos is a zero-cohesion Mohr–Coloumb body,
then the elastic solution cannot be valid. Every elastic solution
has lateral stresses at the surface, which, according to the anal-
ysis above, cannot be true here unless the friction angle is 90◦.
However, Dobrovolskis notes that only a small cohesion would
be required at the surface from the elastic solution.

The stresses here in the inelastic solution are not significantly
different, but note that the states here are not unique except as
a limit case. Using all of the same data for Phobos, we find that
the pressure at the center of this inelastic solution is 732 mbar,
and all three normal stresses are roughly equal. The maximum
shear stress at the center is 89 mbar, compared to the 74 mbar
of the elastic solution. Obviously, both solutions are close to a
pure fluid hydrostatic solution, which is determined by statics
alone. However, failure considerations are different here. Among
other things, the stresses in the present solution do not require
cohension at the surface.

Figure 13 shows the envelopes of required friction angle for
bodies when the tidal forces of a locked rotation around a parent
body are included in the gravitational and spin body forces. It is
otherwise for the same case given above, where the intermediate
axis b is the average of the largest and smallest: b = (a + c)/2.
Since Phobos very nearly satifies that relation, this is the conve-

nient plot to show its state on. Its spin rate of 2.28 × 10−4 radians
per second gives the scaled spin value of 0.595. The ratio of
d none require tension (above the 90 curve).

smallest to largest axis is 0.69. That point is shown on the curve;
it requires a friction angle of only 7.4◦. It is unlikely that Phobos
is presently at a limit case dictated by strength considerations.
Further, assuming a typical friction angle of 30◦, it is clearly
nowhere near a tidal limit for a MC body, although it may be
at the (fluid) Roche limit depending on the exact value for its
density.

Dobrovolskis (1982) considers the fate of Phobos as it ap-
proaches closer to Mars over the next ∼108 years and its rota-
tion rate increases. He notes that at a distance of 1.9 Mars radii,
surface gravity will vanish at the sub- and anti-Mars points and
loose material would be lost.4 He shows the elastic solution
stresses at a scaled distance of 2.0 radii.

Figure 14 shows the cross-plot of required angle of friction as
a function of orbit distance from the present analysis. For the ine-
lastic solution, assuming a typical friction angle of 30◦, the clos-
est possible approach in the present configuration is 2.12 Mars
radii, greater than given by Dobrovolskis. The spin rate at that
distance, assuming it is still locked, is ω = 3.383 × 10−4 rad/s.
4 In fact, if it truly has zero cohesion, it could not have the elastic solution at
its present distance.
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FIG. 13. Envelopes of required friction angle when locked rotation tidal forces are added to the gravitational and spin forces, for the case where the intermediate
axis is the average of the largest and smallest, b = (a + c)/2. The data point shows the present configuration of Phobos. The arrow shows the increasing rotation
rate states as it approaches more closely to Mars over the next ∼108 years. If it is a rubble pile with a friction angle of 30◦ then at the top of the vertical arrow,
equilibrium is no longer possible. The detailed results from the flow rule show that an increasing value of friction is required for the plastic deformation, indicating
a global catastrophic disruption with an unconstrained expansion along its longest axis.

FIG. 14. The required angle of friction for equilibrium of Phobos, as a function of its distance from Mars. At the current d = 2.76 R, an angle of friction of

7.1◦ suffices. If it is a rubble pile with a friction angle of 30◦, it will expand in an unbounded fashion at a distance of 2.12 times Mars’s radius. Even very large
friction angles would only allow existence to about 2.0 times Mars’s radius.



448 K. A. HOL

is in the region where the smallest principal stress (most com-
pressive) is along the y axis and the largest (least compressive)
is along the x axis. For the angle of friction of 30◦, m = 3.0
from Eq. (17). Therefore the velocity field upon yielding has the
form

vx = 3x λ̇, vy = −yλ̇, vz = 0, (22)

so that it would expand along the largest x axis and contract along
the intermediate y axis. There is no change along the shortest z
axis. Thus it will become even more elongated when this yield
occurs.

This change moves the state off of this plot. However, the de-
tailed results of the analysis were used to determine the change
in required friction angle for a small change in configuration of
this type. Specifically, an increment value of λ = 10−4 was
assumed, which gives an increment in the largest semi-axis a of
3.99 m and a shortening of b by 1.1 m. That change of shape in-
creases the rotary inertia and therefore decreases the spin accord-
ingly. The original spin of ω = 3.3827 × 10−4 rad/s decreases
to ω = 3.38178 × 10−4 rad/s. That new shape and spin have a
required friction angle of 29.978◦, so the deformation is initially
stable. However, assuming that the rate at which the spin again
achieves its resonance with its orbit is small compared to the
time to move to closer ranges, then Phobos will spin up to its
original value of ω = 3.3827 × 10−4 rad/s. That state requires a
friction angle of 30.01◦; consequently Phobos will, in this ideal
theory, fail during that phase of its evolution.

The expected fate of Phobos at that time would be a catas-
trophic and global disruption: it would fly apart in an expansion
along its largest direction.

7. SUMMARY

Limits to equilibrium shapes for cohesionless solid bodies
with self-gravitation and spin have been derived using a Mohr–
Coloumb model. There is a range of shapes possible for each
spin rate. The data for 845 known asteroids are compared to
these limit curves. In almost all cases, the combination of spin
rate and shape are well within equilibrium limits for fairly small
values for the friction angle and well within the values typical
of dry soils. Consequently, the shapes and spin states cannot be
used to claim that the bodies must be cohesive; they are almost
all consistent with a rubble-pile, moderate porosity structure.

Phobos is used as an example showing how the theory also
predicts the nature of any failure.
SAPPLE
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