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ABSTRACT

This paper evaluates managing the processor’s datapath-
width at the compiler level by means of exploiting dynamic
narrow-width operands. We capitalize on the large occur-
rence of these operands in multimedia programs to build
static narrow-width regions that may be directly exposed
to the compiler. We propose to augment the ISA with in-
structions directly exposing the datapath and the register
widths to the compiler. Simple exception management al-
lows this exposition to be only speculative. In this way,
we permit the software to speculatively accommodate the
execution of a program on a narrower datapath-width in or-
der to save energy. For this purpose, we introduce a novel
register file organization, the byte-slice register file, which
allows the width of the register file to be dynamically recon-
figured, providing both static and dynamic energy savings.
We show that by combining the advantages of the byte-slice
register file with the advantages provided by clock-gating
the datapath on a per-region basis, up to 17% of the data-
path dynamic energy can be saved, while a 22% reduction
of the register file static energy is achieved.
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1. INTRODUCTION

In a modern processor, the major source of power con-
sumption comes from the switching activities that occur
when the hardware components are being exercised, as a
result of executing a program. Hence, a common technique
used by architects to save energy consists in clock-gating
the unused portions of the chip. This has been done at the
pipeline level [16] to reduce the energy impact due to exe-
cuting wrong-path instructions. Recently, with the growing
interest for multimedia applications, there has been a new
avenue for exploiting fine-grain clock-gating at the operand
level. This latter approach is motivated by the fact that
most multimedia applications execute on 8- or 16-bit da-
ta; thus requiring only part of the full processor’s datapath.
Brooks et. al. [5] have recognized this opportunity. They
observed that with a 64-bit Alpha-like processor, more than
50% of the instructions had their operands with 16-bit or
less while executing the MiBench programs suite [12]. A
significant fraction of the processor’s power-efficiency is thus
wasted when operating with these narrow-width operands.

Brooks has proposed to exploit this narrow-width data by
means of a hardware-based technique. The implementation
targets a general purpose processor. Unfortunately, at the
compiler level, very few works have tried to exploit the oc-
currence of these narrow-width operands as a means to save
energy. There has been some attempts to determine stat-
ically the operand’s width of program statements written
in a high-level language [15, 23], sometimes with the assis-
tance of programmer’s visible hints. One may think for in-
stance of using this information to save energy, as proposed
in [8]. These approaches are however very conservative be-
cause they rely on static data flow analysis and make no
assumption on runtime data. This latter data comprises the
largest amount of narrow-width operands, as demonstrat-
ed in [5]. Most of the other research devoted to this top-
ic concentrates on efficiently exploiting SIMD instructions



in software [19, 13]. However, the aim of SIMD compila-
tion is not to "gate-off” unused portions of the processor’s
datapath, but instead to utilize its full capacity by packing
narrow-width operands into large registers.

In this paper, we evaluate an integrated hard-
ware/software approach for managing the energy con-
sumption at the compiler level. The ISA is augmented
with an instruction indicating that the subsequent code
might be executed through a narrower path; thus requir-
ing only narrow datapath and narrow register operands.
This instruction is just a hint. At hardware-level, a simple
exception management allows to recover instructions exe-
cuting with full datapath-width on an incorrect hint. The
rationale for speculating the processor’s datapath-width
at the compiler level is justified by the following facts:
first, as previously stated, we are already witnessing the
limitations of compiler analysis to uncover narrow-width
operands, as software-only-controlled datapath-width must
be conservative; second, the large occurrence of the dy-
namic narrow-width operands may suggest that a profiling
approach would probably enhance the compiler capability
of exploiting this narrow-width data more intensively. In
this sense, we introduce datapath-width speculation prin-
cipally as a means to predict, at the software level, the
operand bitwidth of certain program regions; this in order
to anticipate the reconfiguration of the processor resources.

The contributions of this paper are two-folded. First, we
provide evidence that there exist static code regions cor-
responding to dynamic program instances, where the vast
majority of the operands execute with a narrow-width. We
then present a profile-based technique to uncover these re-
gions at code generation time. Second, we present the archi-
tectural support that exploits these regions at runtime. The
idea is to reconfigure the datapath width as well as the reg-
ister file width when such a narrow-width operand region is
encountered. Central to our approach is the speculative na-
ture of the execution width of a region: we present a simple
and efficient recovery mechanism for handling such width
mispredictions.

The remainder of this paper is organized as follows. In
Section 2, we further discuss the motivations to our work,
precisely emphasizing the main differences with other relat-
ed approaches. We show evidence of narrow-width operands
regions in Section 3. The architectural support that permits
to exploit these narrow-width operands regions is detailed
in Section 4. Then, in Section 5, we present a strategy to
detect them at code generation time. The experimental re-
sults are presented in Section 6, while Section 7 concludes
this work.

2. MOTIVATION AND RELATED WORK

Exploiting the processor’s datapath with narrow-width
operands is not a new topic of research. The SIMD pro-
gramming paradigm has been introduced primarily as a
means to take advantage of the full processor’s datapath-
width for improving the multimedia performance [13, 19].
As a side-effect of applying SIMD techniques, some studies
have shown that energy consumption can also be reduced
[9]. This can be primarily attributed to the reduction in
the number of executed instructions. However, many issues
make the exploitation of SIMD techniques very difficult to
realize. In particular, complicated vectorizing techniques
are often needed to uncover the parallel operations to be
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Figure 1: Cumulated distribution of operand-
s bitwidth. The first bar shows results for one

operand; the second bar shows results when both
operands are considered.

coalesced in a single SIMD instruction. In addition, if the
underlying ISA imposes some constraints on memory data
alignment, it might even be more challenging to use SIMD
instructions. Therefore, the effective parallelism covered by
SIMD techniques can be severely restricted due to these con-
straints.

Brooks et. al. [5] emphasized the availability of narrow-
width operands in programs. They conducted their exper-
iments with a 64-bit Alpha-like processor. We have per-
formed equivalent experiments on typical embedded appli-
cations, e.g. Powerstone benchmarks [20], running on a 32-
bit RISC-like embedded processor [10]. The results shown in
Figure 1 illustrate that, on average, 45,5% of the instruction-
s have their operands with less than 16-bit or equal. This
is already in accordance with Brooks’s estimations which
found that about 50% of the integer instructions execute
with narrow-width operands in multimedia applications run-
ning on a general purpose system.

Unlike a general purpose system, however, in an embed-
ded system, the compiler plays a central role in achieving
high performance. It is therefore of importance to improve
the compiler’s effectiveness to manage both power and per-
formance. Since the basic block is the natural compiler
granularity, we introduced the possibility to master narrow-
width operands at the basic block level. At this granularity,
the compiler can even achieve better energy/performance
tradeoff, rather than relying solely on the hardware, since
much more hardware components can be ”turned off” over a
longer period of time. Moreover, in contrast to the dynamic
approach proposed in [5], considering bitwidth regions at the
compiler level provides the additional advantage of reducing
the overhead due to clock-gating on a cycle-by-cycle basis.

Canal et. al. [6, 7] proposed two approaches to tack-
le narrow-width operands. In [6], they considered a byte-
serial (8-bit) or a semi-parallel (16-bit) pipeline to exploit
narrow-width data at the architecture level. The idea relies
on appending extension bits to data residing in caches and
registers in order to reflect which part of the processing da-
ta is significant. Only the useful bytes are loaded, stored
or computed on, and therefore a significant fraction of the
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switching activities can be reduced. However, the fixed na-
ture of the processor’s datapath incurs a high performance
penalty when processing operands of a larger bitwidth, e.g.
32-bit or more. This performance degradation can simply
not be afforded on performance-critical embedded systems.

In [7], the authors proposed to use a software-based tech-
nique to direct the operand-gating decision. The idea is to
rely on profiling information used conjointly with static com-
piler analysis techniques such as value range propagation to
discover useful ranges of operand-width. Energy savings is
achieved by re-encoding operands with narrower opcodes.
This approach is orthogonal to our, since it can also be used
to uncover regions with even more narrow-width operands.

Loh [14] proposed an hardware speculation scheme for
dynamically predicting narrow-width operands on a per-
instruction basis. The solution features a complex hardware
mechanism that best fits a superscalar processor. Our ap-
proach is superior to the solution proposed by Loh since
we address the speculation of narrow-width operands at a
coarser granularity, i.e. at the region or basic block level.

Nakra et. al. [18] also proposed to exploit narrow-width
operands in the context of embedded systems. They relied
on profiling information to speculate narrow-width operands
that may be packed together in the same VLIW instruction.
The main goal is to achieve a better exploitation of the pro-
CEesSOr resources.

3. BITWIDTH DISTRIBUTION ANALYSIS

Through profiling, we collected statistics on the width of
operands for applications from the Powerstone benchmarks
suite [20] on various input data sets. For instance, Figure
1 illustrates that narrow-width operands can be of a large
number on adpcm. In this section, we consider their avail-
ability at the basic block level and we propose to examine
their distribution across a program run.

Figure 2 captures a snapshot of the dynamic operands
bitwidth profile of the adpcm benchmark. Each point of the
x-axis identifies a dynamic instance of a given basic block,
while the value associated with the y-axis represents the
occurrence of the narrow-width operands within that ba-
sic block. It can be seen from the figure that a sufficiently
large number of basic blocks execute with more than 60%
of their operands having 16-bits or less. This last point may
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Figure 3: Average operand bitwidth convergence.

lead to two main observations. First, this indicates that a
strong narrow-width operand locality exists for the consid-
ered granularity. Second, this suggests that executing these
basic blocks on a narrower datapath-width may increase the
compiler opportunities for savings the energy. Hence, we
may try to take advantage of this to speculatively accommo-
date the width of the processor’s datapath to the operand’s
width of a basic block or region.

However, before we may exploit this fact, we must ensure
that basic blocks exhibiting such a behavior verify a proper-
ty we call bitwidth convergence. Bitwidth convergence refers
to the fact that, for a given basic block, its operands width
may not vary frequently enough during execution. The ra-
tionale behind this property is to prevent the compiler from
optimizing on very sensitive narrow-width operands region-
s. We estimated the bitwidth convergence in the following
manner. When a basic block is found to execute with 16-
bit or less (according to a defined threshold), we record for
each future execution of the same basic block the number of
times we are wrong. We then average this value on all the
basic blocks of concern. This provides us with an estimate
of the average bitwidth convergence for a given application.
Typically, a high value indicates that bitwidth transitions
occur very infrequently from one dynamic instance of a re-
gion to another. The results of the bitwidth convergence,
considering an 80% narrow-width operands availability, are
shown in Figure 3. On most applications in our benchmarks
set, basic blocks execute with constant operand’s bitwidth
on our data set inputs.

4. ARCHITECTURAL SUPPORT

In this section, we examine a potential architectural sup-
port for exploiting narrow-width operands regions. One ben-
eficial approach may consist in reducing the pipeline’s activ-
ity while achieving acceptable performance. Therefore, we
present a reconfigurable architecture that may dynamically
adapt itself to an application’s bitwidth behavior.

4.1 Hardware-exposed
struction

In order to benefit from narrow-width data elements at
the software level, we propose to enhance an ISA with an
hardware-exposed datapath-width reconfiguration instruc-
tion. The effect of this instruction can be deemed only as
a hint to predict the execution width of subsequent regions.

reconfiguration in-
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Via the use of this instruction, the compiler may specula-
tively cause the execution of a region to accommodate on a
narrower datapath-width (8-bit or 16-bit). Then at runtime,
a simple hardware-based exception mechanism will allow to
recover instructions executing with full datapath-width in
case of a misprediction.

4.2 Register file model

Related Work. Previous research on reducing the register
file activity focused on either, limiting the number of reg-
isters [3] or, limiting the number of ports [24]. Only few
studies attempted to capitalize on narrow-width data for
the same purpose. Canal et al. [6] proposed to load, sto-
re or compute only significant bytes in the whole pipeline
stages. To do so, they designed a byte-serial pipeline where
the data is processed on 8-bit slices. In order to provide
this 8-bit access, they considered a 32-bit register file parti-
tioned into 8-bit banks. In their study, as only one bank is
requested per cycle, this multi-banked approach permits to
reduce the register file activity. In contrast to their work,
we are considering a data-path that is dynamically resizable
according to the application’s needs. As a matter of fact, in
a multi-banked model, the row decoders are replicated on
each bank. Therefore, accessing a wide data would generate
redundant decoding and thus, useless power consumption.

Our Approach. We introduce a novel register file organi-
zation, the byte-slice register file. This energy-aware design
permits to dynamically resize the register file width so that it
can be viewed as a 8-, 16- or 32-bits conventional register file,
as depicted in Figure 4. The register file is logically splitted
into three slices: the first slice, representing the low-order
data byte, is always enabled, whereas the others are con-
trolled by means of a ”slice-enable” signal. In our scheme,
at anytime, the registers can hold different bitwidth data;
and thus, it is not possible to turn off unused slices, unless
there is a way to recover the lost information. Consider-
ing this fact, the slices are turned off in a low-power mode,
achieved by the drowsy state [11]. In order to support such
a state, we assume that the memory cells are modified as
described in [1]. Technically, the drowsy circuitry is a state-
preserving circuit that relies on voltage scaling for leakage
reduction. A slice in a low-power mode preserves its data,
although, it must switch back to the normal mode to get
the correct information. The tag bits illustrated in Figure 4
provide this feature. We will get back to this later when we
will discuss the recovery mechanism.
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In contrast to [6], the adaptability and the simplicity of
the byte-slice concept provide the advantages of being well
suited to dynamically reconfigurable pipelines. In addition,
the drowsy circuitry, which represents only a small area over-
head [1], makes our design inherently low-power.

4.3 Reconfigurable datapath

In this section, we describe a power-effective pipeline that
may take advantage of the narrow-width regions. As depict-
ed in Figure 5, the datapath has the ability to adapt to the
bitwidth behavior of an application. This reconfigurable as-
pect is done via the clock-gating technique [5]. Clock-gating
is a well-known scheme used to reduce the dynamic pow-
er consumption in today’s processors [16]. In our approach,
the coarser clock-gating granularity (at region level) reduces
the amount of dynamic power dissipated by the clock-gating
circuitry [2].

4.4 Recovery mechanism

To tackle the disadvantages of a static compiler analysis,
as pointed in [5], we propose to statically construct narrow-
width regions by using runtime information. In order to
increase the number of these regions, we also consider the
ones that verify the bitwidth convergence property; thus in-
troducing datapath-width speculation. However, since it is
not realistic to profile each application for each input data,
or due to a dynamic event, a datapath-width misprediction
may occur. In this section, we present a recovery mechanism
that identifies the malformed regions and acts accordingly.

The main idea is to use a few tag bits to decide whether
the current narrow-width region has been correctly predict-
ed. In this respect, we use two tag bits appended to each
register (see Figure 4) in order to discriminate between the
different datapath modes (i.e. 8, 16, 32-bit mode). With
a 32-bit width register file, this represents a negligible area
overhead, with only 6% of the area being devoted to the
tag bits. These tag bits reflect the true data-width and are
generated by the functional unit, upon completion of an op-
eration, and by the memory unit, upon a load instruction.
[6] uses a similar scheme, however, we employ the tag bits
in a different manner. While in [6] they act as a way to
serialize the execution, in our proposal the tag bits dictate
the use of the recovery mechanism.

The flow chart shown in Figure 6 illustrates the basic
concept of this recovery mechanism. When an instruction
reads its source operands from the register file, both the
data and the tag bits are fed to the functional unit. A
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exception

ISA extension Description
MOVACC Reg ACC = Reg
MOVREG ACC Reg = ACC
LDACC Reg (ACC) = Reg
STACC Reg Reg = (ACC)
ADDACC Reg | Reg + ACC = ACC
SUBACC Reg | ACC - Reg = ACC

Table 1: Basic address instructions.

simple comparison logic, located at the execute stage, de-
tects whether the current operating mode is correct or not.
If it appears that the current mode is narrower than the
one expected, the current instructions are replayed, i.e. the
pipeline is flushed and the correct width is enabled. When
an instruction produces a result larger than the current mo-
de, the pipeline is stalled while switching to the correct
width. Although this mechanism may relatively impact on
performance, its hardware simplicity fits well into the em-
bedded context.

45 Handling addressinstructions

Address instructions, e.g. load and store, must be han-
dled separately, since they usually require a larger bitwidth
to represent memory addresses. We may address this pro-
blem by using a dedicated register file for memory addresses,
in a way which is reminiscent to a decoupled architecture
approach [22]. This feature is already integrated on some
modern embedded processors [17]; they may therefore di-
rectly benefit from our scheme. For the processors that do
not provide support for this feature, we suggest using special
purpose registers, e.g. accumulator registers, for hosting and
computing memory addresses. Along with the accumulator
registers, the ISA must also permit the data transfers be-
tween the register file and the accumulators. Table 1 shows
a possible subset of basic instructions that must be provid-
ed to support this scheme. In the table, the load and store
instructions must have their base address residing in an ac-
cumulator register. The arithmetic instructions might be
needed for computing new addresses.
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5. NARROW-WIDTH REGIONS

Having analyzed the distribution of the narrow-width data
and the relative bitwidth convergence of the regions, this
section discusses the formation of the narrow-width regions.

5.1 Selecting candidatesregions

In selecting the candidates regions, we may be forced to
leverage the availability of the narrow-width operands a-
gainst the probability that a bitwidth misprediction occurs
at runtime. This might be primarily due to the fact that
only a few regions would be able to exhibit narrow-width
operands exclusively. This phenomenon can be indeed ob-
served in Figure 2, where no perfect candidates regions can
be found. Therefore, these regions may be chosen accord-
ing to an arbitrary narrow-width operands availability, first
ignoring the constraints due to the wide data. We assume
for the rest of this study a threshold at 80%, which cor-
responds, on average, to one instruction out of five that
executes with at least one 32-bit operand. Under this con-
sideration, Figure 7 illustrates the average bitwidth profile
of a narrow-width operands region as well as their weight
in the program. The figure reveals that some applications
have perfect narrow-width operands regions (e.g. bent and
bilv), although some of them may not count too much in
the total program weight, e.g. bcnt. Some others, however,
include instructions with larger operand’s bitwidth. These
are labeled in the figure with 32-bit other and 32-bit address.
The former indicates the fraction of instructions, not count-
ing the memory instructions, having one of their operands
with 32-bit. The latter represents the fraction of memo-
ry instructions. We may then attempt to build 32-bit-free
operands regions out of these regions.

5.2 Regionstransformation

It is explicit from the previous section that building a
narrow-width operands region implies to deal with the 32-
bit operands instructions. This section discusses a technique
to efficiently overcome this problem.

5.2.1 Graph partitioning

By assuming that we have a means to deal with address
instructions separately, e.g. accumulator registers, the pro-



blem to which we are confronted at this stage may be viewed
as a graph partitioning problem. Let the graph G denotes
the data dependence graph confined to a basic block. A
node N of G represents a basic block operation. Two n-
odes, N and M, of G are connected via an edge e if there
exists a def-use relationship among them. The graph par-
titioning problem consists in selecting the set of load/store
nodes having one of their operand with 32-bit, in order to re-
place them with equivalent accumulator-based instructions,
while minimizing the cut-size. The cut-size may be viewed
as the number of additional instructions needed to move the
data between the accumulators and the register file. This
latter must be kept small enough in order not to impair
the performance and the energy. We use a simple branch-
and-bound heuristic to achieve this goal, deciding at each
processing step whether or not the cut-size is within an ac-
ceptable range. Otherwise, the transformations are simply
undone and the region is left unchanged.

5.2.2 Coderestructuring

The problem that is pointed out in this section arises as
soon as we have a narrow-width operands availability of less
than 100% within a region. Let us assume that we are deal-
ing with such a candidate region (a basic block). The pro-
blem to which we are confronted is to reorder the instruc-
tions in that region such that instructions having at least
one operand with 32-bit (determined during profiling) are
moved around it. The solution to this problem may be bet-
ter illustrated in Figure 8.

A first operation consists in renaming all the destina-
tion operands of the instructions having one of their source
operand with 32-bit, that may be used ahead of its compu-
tation. In this way, we augment the opportunities of find-
ing more instructions that can be moved around. A sec-
ond operation consists in computing the sets MoveUp and
MoveDown corresponding to the 32-bit instructions that
can be moved towards the beginning or the end of the ba-
sic block, respectively. Finally, a last operation consists in
scheduling the instructions contained in each one of these
sets upwards or downwards the underlying basic block, de-
pending on the set to which they belong. Note that a side-
effect of this algorithm may eventually cause some instruc-
tions to be duplicated if they are scheduled across a control
flow graph join point. In addition, this might also lead to
augment the pressure on the register file. This latter point
can however be avoided if we consider a large register file,
e.g. 64 general-purpose registers like that featured in our
processor model.

6. EXPERIMENTAL RESULTS

This section discusses the evaluation results of the pro-
posed scheme. We first present a brief overview of our so-
lution. Then, a description of our methodology is exposed.
Last, we evaluate and comment our results.

6.1 Solution overview

A synoptic view of our approach can be depicted in Fig-
ure 9. It consists of two main phases, a profiling phase and
a narrow-width regions formation phase. In the first phase,
the program is instrumented and stressed with different in-
put data sets. At each time, statistics about the operand’s
width are gathered and stored for further utilization. The
instrumentation is done by means of SALTO [4], which is
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a general, compiler-independent tool that makes the ma-
nipulation of the assembly code at the CFG level easier.
In the second phase, the profiled data collected during the
first phase is merged to create a converged profile for each
application. From this profile, narrow-width regions candi-
dates are initially identified by SALTO and then processed
to create more refined regions. The reconfiguration of the
processor datapath as well as the width of the register file
is performed at runtime, every time the execution proceed-
s through a narrow-width region. For this latter to take
place, we assume that the widths of the execution datapath
and the register file are exposed to the compiler via explicit
reconfiguration instructions (see Section 4.1).

6.2 Methodology

Platform. Our experiments were conducted on a RISC-like,
32-bit embedded processor belonging to the Lx family of
customizable, multi-cluster VLIW architectures [10]. The
processor’s implementation used in this study features a six-
stages pipeline, 4-issue width processor composed of 4 ALUs,
2 Multipliers, and 1 Load/Store unit with in-order execu-
tion, on each cluster. The different pipeline stages model
the instruction fetch (IF), the instruction decode (ID), the
register read (RR), the first stage execution (EX1), the sec-
ond stage execution (EX2), and the write-back (WB). There
are 3 forwarding paths which are EX1-EX1, EX2-EX1 and
EX2-RR. Each cluster provides a set of 64 32-bit general pur-



Benchmark Description
adpcm voice encoding/decoding
auto automotive control code
bent bit count
bffo find first zero
bilv shift, and, or operations
brev bit reverse operations
compress data compression
des data encryption
engine engine control application
fir integer FIR filter
g721 protocol for voice transmission
pocsag communication protocol for paging
qurt root computation of a quadratic equation
v42bis modem encoding/decoding

Table 2: Benchmarks.

pose registers organized in a monolithic conventional register
file. A set of 8 1-bit registers are used as branch condition
registers.

Smulation. The Lx platform is provided with an industrial
tool-chain, where no visible changes are exposed to the pro-
grammer. The tool-chain comprises, among other things,
an aggressive ILP compiler, called the Lx compiler, from
which we generate an input assembly. The extracted assem-
bly code is processed by SALTO [4] as described in Section
6.1, to instrument the code and construct the narrow-width
regions. The instrumented code is used to gather runtime
statistics about register file access frequency, instruction’s
types, and operands bitwidth.

Benchmarks. We evaluated our scheme with applications
collected from the Powerstone [20] suite of benchmarks. All
the chosen applications were compiled with the Lx native
compiler, with the optimization level 3, and then run until
completion. Table 2 provides an overview of each benchmark
used.

Energy model. Tn order to have a rough estimate of the
energy savings that one may expect to gain with our scheme,
we must quantify the energy consumption that is due to the
register file on one side, and to the various pipeline stages
on the other side. Let us first consider the register file. We
model the dynamic energy consumption of a register file,
EYY™ | as follows:

RF > :

El(;ngyn) = Npw * Eaccess (1)

where Fgccess 1S the average energy consumption on a
read/write access, and N, the number of read/write ac-
cesses to the register file. We used a modified version of
CACTI [21] for estimating the values of Fqccess, for both a
conventional register file, as well as for our byte-slice register
file architecture.

We employ the expression shown in (2) to quantify the
static energy consumption due to the register file.

1
f

stat
Eﬁ%F ) = Ncyc * Neel ¥ Preak *

(2)

Parameter Value
Clock 1 GHz
nb of read/write ports 8/4

Eqccess (monolithic RF) 0.36 nJ
Eaccess (8-bit byte-slice ) 0.11 nJ
Eoccess (32-bit byte-slice) | 0.40 nJ
normal leakage power/cell | 9.47 pW
drowsy leakage power/cell | 2.34 pW

Table 4: Simulation parameters.

In the above expression, Ny is the number of cycles need-
ed to execute the program, N.e; the number of cells con-
tained in the register file, Pr..x the leakage power consump-
tion per cell and f the processor’s clock speed. The term
Preak is strongly dependent on the technology and may vary
with transistor size, width and temperature. Assuming cur-
rent process technology parameter of 0.18 um, we estimate
Prear by means of Hotleakage [26], for both the normal and
the drowsy modes.

Estimating the energy consumed by the other pipeline
stages is a more difficult task, since very few processors ven-
dors communicate detailed results about it. Nevertheless,
we rely on power consumption estimates found in some re-
search articles to derive realistic trends that govern the ener-
gy consumption of the involved processor’s components. For
our purpose, we are primarily interested on the energy con-
sumption of the integer ALU and pipeline latches. In [25],
the authors published energy results for a generic embedded
processor, with a pipeline model very similar to ours. They
noted that the obtained energy values were independent of
the code being executed. One could deduce from this study
that, on average, the register file and the pipeline latches
account for ~64% of the datapath power consumption, with
the former representing 28% of the power and the latter
36%. The remaining 36% is due to the datapath multiplex-
ers and the ALU, with the latter contributing for more than
27%.

Since on a narrower bitwidth mode, clock-gating prevents
the high-order bytes of a pipeline to be latched, we can ex-
pect that the corresponding energy savings will be propor-
tional to the bitwidth mode of the latch. Similarly, we save
energy in the ALU structure by preventing its input latches
from changing; thus restricting the computation to the low-
order bytes of the input latches, yielding a linear reduction
in the energy’. We summarize all the simulation parameters
and the obtained ratios in Table 4 and Table 3.

6.3 Evaluation results

This section presents the evaluation results of the pro-
posed narrow-width regions formation scheme. We center
our discussion around four different aspects: the impact of
the recovery mechanism, the code size growth, the dynamic
energy reduction, and the leakage energy reduction.

Recovery mechanism. Let us consider a per-region
narrow-width prediction rate of r for a total of nbb executed
basic blocks. Then, assuming a misprediction frequency of

!We assume that the carry signal can be prevented from
propagating along the higher-bit carries of the ALU. In such
case, the energy savings can even be more important than
what we have presumed.



[ components | datapath energy | savings 16-bit | savings 8-bit |

latches 36% 18% 9%
ALU 27% 13% 7%
Table 3: Maximal energy savings.
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Figure 10: Prediction accuracy.

m, and an associated miss penalty of p, we may express the
diminishing returns, Cost, of the recovery mechanism as
follows:

®3)

In (3), the misprediction penalty p may be viewed as the
cost of flushing the pipeline plus the additive cost to recov-
er the correct bitwidth size. Since the misprediction takes
place at the execute stage, we may assume a 3 cycles penal-
ty for flushing the pipeline. On the other hand, the cost
to recover the correct bitwidth mode may vary with the
implementation complexity and the processor design. We
assume a 5 cycles recovery penalty for the best case and 25
cycles for the worst case. In Figure 10, we illustrated the
impact of varying the narrow-width operand availability 7
on the performance. As we increase T, the speculation rate
decreases because few regions may have high narrow-width
operand availability. As a consequence, the misprediction
frequency is also expected to decrease because the accuracy
is sharpened. In contrast, lowering 7 increases both r and
m. Considering this fact, we plotted in Figure 11 the IPC
degradation observed by varying the values of the narrow-
width operands availability 7 and the misprediction penalty
p. On average, most applications experience IPC degrada-
tions without consequences on the performance when consid-
ering a best case misprediction penalty p = 5. In contrast,
a worst case misprediction penalty of p = 25 can affect the
performance by up to 31% for 7 = 0.8 and 60% for 7 = 0.6.
An efficient scheme may therefore strive to keep p as low as
possible.

Cost =nbbxr+xm*p

Code size grovvth. Code size growth is mainly due to the
re-encoding of the 32-bit address instructions with equiva-
lent accumulator-based instructions and to the scheduling
of the 32-bit instructions around the underlying basic block.

Figure 11: IPC degradation for different values
of 7 and p.
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Practically, a good cross-block scheduling algorithm may
benefit from this code motion to improve the IPC and there-
by alleviating the impact of the code size growth. We have
not implemented such a tricky cross-block scheduling algo-
rithm. Still, the impact of the code size growth is marginal.
Considering a per-region narrow-width operands availability
of 80%, we experienced less than 3,1% code size growth, on
average, for our benchmarks set.

Dynamic energy reduction. The upper part of Figure
12 shows the breakdown of the dynamic energy savings
obtained for each component of the processor’s datapath.
Some applications such as bent, brev and qurt show no ben-
efit from using our scheme. This is mainly because not e-
nough static narrow-width regions have been uncovered at
code generation time. Our future works in this direction
therefore seek at improving our approach by addressing the
detection of these narrow-width regions at lower levels, e.g.
at post-link-time where, hopefully, more optimization op-
portunities may be given. The lower part of Figure 12
shows the overall datapath energy savings realized with our
scheme. We can indeed observe that an average energy sav-
ings of 17% can be obtained with the remaining applications.
On some modern embedded processors such as the M.Core
[20], for instance, the datapath dynamic energy contributes
to as much as 42% of the total processor’s power consump-
tion. Achieving a 17% energy reduction can therefore pro-
vide a substantial energy gain.

Leakage energy reduction. The byte-slice register file ar-
chitecture we proposed also permits to tackle the static en-
ergy consumption. This is mainly due to the fact that when
executing on a narrower datapath-width, the upper byte-
slices of the register file are put into in low-power mode.
Figure 13 illustrates the static energy savings observed in
the register file when using our scheme. For the vast ma-
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Figure 12: Breakdown of the datapath dynamic
energy savings and overall gain.

jority of the applications, an average of 22% reduction of
the static energy is realized, with a peak energy savings of
roughly 80% for the compress benchmark.

7. CONCLUSIONS

Operand-gating has been recently proposed as a means to
dynamically exploiting the availability of narrow-width data
elements in programs. Implementations of operand-gating
have principally relied on the hardware to drive the gating
decision. From a software point of view, some solutions have
also emerged that take benefit of narrow-width operands
to save energy. However, software-only solutions suffer a
lot from not considering runtime information. Hence, they
must often be very conservative about the ranges of bitwidth
values that a data may take during its execution.

In this paper, we have proposed a speculative software
management scheme to overcome the difficulties encoun-
tered by software-only solutions. Central to our approach is
the ability to expose dynamic narrow-width operands to the
compiler; this in order to allow it to speculatively accommo-
date the execution of static narrow-width regions on a nar-
rower datapath-width. For this purpose, we have introduced
a novel register file organization, the byte-slice register file,
that permits the width of the register file to be dynamical-
ly reconfigured; and a simple and efficient exception man-
agement mechanism to handle width mispredictions. Our
evaluation results have indeed demonstrated the efficacy of
our approach in managing the energy consumption at the
software level. We showed that up to 17% of the datapath
dynamic energy and 22% of the register file static energy
can be saved, while only a negligible IPC degradation is
observed for most applications.
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